WO2019004115A1 - サスペンションシステム - Google Patents

サスペンションシステム Download PDF

Info

Publication number
WO2019004115A1
WO2019004115A1 PCT/JP2018/023985 JP2018023985W WO2019004115A1 WO 2019004115 A1 WO2019004115 A1 WO 2019004115A1 JP 2018023985 W JP2018023985 W JP 2018023985W WO 2019004115 A1 WO2019004115 A1 WO 2019004115A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
damping force
control
main controller
sub
Prior art date
Application number
PCT/JP2018/023985
Other languages
English (en)
French (fr)
Inventor
ヨアヒム フンケ
マティアス ブルーンズ
ヘーヘンライットネル トーマス
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019004115A1 publication Critical patent/WO2019004115A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • B60G17/08Characteristics of fluid dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically

Definitions

  • the present invention relates to a suspension system mounted on a vehicle such as a car.
  • Patent Document 1 discloses a shock absorber in which an electro-rheological fluid whose property is changed by an electric field is sealed and a damping force is adjusted by supply (application) of a voltage from a power source.
  • Such a shock absorber is a system in which the sub controller controls the damping force of the shock absorber in accordance with a control signal from a main controller that comprehensively controls the vehicle body.
  • the sub controller can not control the damping force of the buffer. Therefore, when the sub-controller determines that a failure such as a failure occurs in the main controller, it may be considered to control the shock absorber to a predetermined damping force (for example, a medium damping force). However, if the shock absorber is kept controlled to a predetermined damping force, unnecessary power may be consumed.
  • An object of the present invention is to provide a suspension system capable of reducing power consumption of a battery mounted on a vehicle.
  • a suspension system is disposed between each wheel and a vehicle body, in which a functional fluid whose property is changed by an electric field or a magnetic field is enclosed and a damping force is supplied by the supply of voltage or current from a power supply.
  • a damping force adjustable shock absorber to be adjusted an actuator for switching the damping force of the damping force adjustable shock absorber, a vehicle height detection unit for detecting a vehicle height state of the vehicle, and a necessary damping force provided on the vehicle body
  • a main controller that calculates a control signal based on a detection value from the vehicle height detection unit, and a sub controller mounted on each damping force adjustable shock absorber, and responds to the control signal
  • a sub-controller for supplying the control voltage or control current to the actuator to control the damping force of the damping force adjustable shock absorber.
  • Each of the sub-controllers is connected to the main controller via a communication line for transmitting the control signal, and each damping force adjustable shock absorber is connected to the power supply via a power line different from the communication line. Each is individually connected.
  • a suspension system can reduce power consumption of a battery mounted on a vehicle.
  • FIG. 1 is a block diagram illustrating a suspension system according to a first embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view showing a damping force adjustable shock absorber in FIG. 1.
  • 4 is a flowchart showing control processing by a sub controller (Sub ECU) in FIG. 1;
  • FIG. 5 is a block diagram illustrating a suspension system according to a second embodiment of the present invention. 5 is a flowchart showing control processing by a sub controller (Sub ECU) in FIG. 4;
  • the vehicle body 1 constitutes a vehicle body.
  • wheels forming the vehicle together with the vehicle body 1, that is, left and right front wheels and left and right rear wheels (both not shown) are provided.
  • the wheel is configured to include a tire, and the tire acts as a spring that absorbs fine irregularities of the road surface.
  • "FL", “RL”, “FR”, and “RR” in Fig. 1 correspond to "front left”, “rear left”, “front right”, and “rear right” at the wheel position.
  • the suspension device 2 is provided between the vehicle body 1 and the wheels, which are between two members of the vehicle that move relative to each other.
  • the suspension device 2 includes a suspension spring (not shown) and a damping force adjustable shock absorber 3 (hereinafter referred to as a shock absorber 3) interposed between the vehicle body 1 and each wheel in parallel with the suspension spring. It is composed of For example, in the case of a four-wheeled vehicle, a total of four sets of suspension devices 2 are provided independently and independently between the wheels and the vehicle body 1.
  • the shock absorber 3 of the suspension device 2 is to damp the vertical movement of the wheel.
  • the shock absorber 3 is a damping force adjustable shock absorber (semi-active damper) using an electro-rheological fluid (ERF) as a hydraulic fluid (working fluid) sealed inside, that is, an electro-rheological fluid damper (ERF Damper) Is configured as).
  • EMF electro-rheological fluid
  • the buffer 3 adjusts the damping force by supplying a voltage (power) from the battery 14 described later.
  • the shock absorber 3 is slidably inserted into the inner cylinder 5 and the inner cylinder 5 and the outer cylinder 6 as cylinders in which the electro-rheological fluid 4 (hereinafter referred to as ERF 4) is enclosed.
  • ERF 4 electro-rheological fluid 4
  • It is comprised including the electrode cylinder 9 as an electrode which applies an electric field.
  • a control voltage (high voltage) is applied to the electrode cylinder 9 via an electrode pin 18 described later.
  • the enclosed ERF 4 is shown as colorless and transparent.
  • the ERF 4 is a functional fluid whose property is changed by an electric field (voltage).
  • the ERF 4 is composed of, for example, a base oil (base oil) made of silicone oil or the like, and particles (fine particles) which are mixed (dispersed) in the base oil to make the viscosity variable according to the change in electric field.
  • base oil base oil
  • particles fine particles which are mixed (dispersed) in the base oil to make the viscosity variable according to the change in electric field.
  • the viscosity of the ERF 4 changes in accordance with the applied voltage, and the flow resistance (damping force) changes. That is, according to the voltage applied to the electrode cylinder 9 provided at the portion where the flow of ERF 4 occurs, the shock absorber 3 has characteristics (damping force characteristics) of generated damping force as hard characteristics (hard characteristics). It is possible to adjust continuously between soft characteristics (soft characteristics). Note that the shock absorber 3 may be one that can adjust the damping force characteristic not continuously but in two or more steps.
  • the shock absorber 3 shown in FIG. 2 has a uniflow structure. Therefore, the ERF 4 in the inner cylinder 5 is always in one direction from the oil hole 5A of the inner cylinder 5 to the electrode passage 10 in both the compression stroke and the expansion stroke of the piston rod 8 (that is, in FIG. 2). It distribute
  • the electrode passage 10 is a passage through which the ERF 4 flows, and the sliding of the piston 7 causes the flow of the ERF 4.
  • the ERF 4 in the electrode passage 10 moves from the upper end side to the lower end in the axial direction of the electrode passage 10 when the piston rod 8 moves back and forth in the inner cylinder 5 (that is, while repeating the compression stroke and the expansion stroke). Flow towards the side. At this time, a potential difference according to the voltage applied to the electrode cylinder 9 is generated in the electrode passage 10, and the viscosity of the ERF 4 changes. That is, the shock absorber 3 generates a potential difference in the electrode passage 10 between the inner cylinder 5 and the electrode cylinder 9 and controls the viscosity of the ERF 4 passing through the electrode passage 10 to control (adjust the generated damping force (adjustment) )can do.
  • a plurality of spiral partition walls are provided between the inner cylinder 5 and the electrode cylinder 9 from one end side (upper end side) to the other end side (lower end side) in the axial direction, and adjacent partition walls It is good also as a flow path through which ERF 4 distributes between. As a result, the flow path of the ERF 4 flowing through the electrode passage 10 can be made longer, so the maximum damping force can be increased.
  • the vehicle body 1 is provided with four vehicle height sensors 11 (Position Sensors).
  • the vehicle height sensor 11 detects the vehicle height state of the vehicle in the vicinity of each shock absorber 3. For this reason, the vehicle height sensors 11 are attached to the vehicle body 1 at positions near the shock absorber 3 (that is, at the four corners of the vehicle).
  • Each vehicle height sensor 11 is connected to the main controller 12.
  • Each vehicle height sensor 11 detects the vehicle height at each of the four corners of the vehicle, and outputs a detection signal (vehicle height information) to the main controller 12.
  • the vehicle height sensor 11 constitutes a vehicle height detection unit that detects a vehicle height state (more specifically, a state quantity related to the vertical movement of the vehicle) which is a behavior of the vehicle.
  • the vehicle height detection unit is not limited to the four vehicle height sensors 11 provided in the vicinity of the shock absorber 3, but may be constituted by, for example, four sprung acceleration sensors and four unsprung acceleration sensors. Moreover, you may comprise only four spring top acceleration sensors. Furthermore, a wheel speed sensor (not shown) that detects the rotational speed of the wheel, a vehicle height sensor 11, and a sensor that detects the vehicle height state of the vehicle other than the acceleration sensor (state detection sensor) May be used. In this case, the vehicle height state (up and down movement) is estimated by, for example, estimating the up and down movement of each wheel from the information (acceleration) of one sprung acceleration sensor and the information (wheel speed) of the wheel speed sensor. May be detected.
  • the main controller 12 is provided on the vehicle body 1.
  • the main controller 12 is a main controller for controlling the shock absorber 3 which is a damping force variable damper, that is, an ECU (Electronic Control Unit) for a suspension device.
  • the main controller 12 is also called a main ECU (Main ECU), and includes, for example, a microcomputer.
  • the main controller 12 has a memory including a flash memory, a ROM, a RAM, an EEPROM and the like and an arithmetic circuit (CPU), and the memory uses a program (for example, a buffer) used for control processing of the buffer 3 A processing program or the like used to calculate the high voltage command applied to 3 is stored.
  • the main controller 12 is connected to the vehicle height sensor 11 and (the sub controller 16A of) the high voltage driver 16.
  • a signal output from each vehicle height sensor 11, that is, a vehicle height signal corresponding to a detection value of each vehicle height sensor 11 is input to the main controller 12.
  • the main controller 12 calculates a necessary damping force based on the detection value from each vehicle height sensor 11, and outputs a control signal to the sub controller 16A. That is, the main controller 12 calculates a high voltage command which is a command to be output to the high voltage driver 16 from the information obtained from each vehicle height sensor 11. More specifically, the main controller 12 is a high voltage command corresponding to a force (damping force) to be output by the shock absorber 3 based on a vehicle height signal (vehicle height) serving as vehicle behavior information (vehicle behavior signal).
  • the main controller 12 outputs a control signal (high voltage command signal) corresponding to the calculated high voltage command to the high voltage driver 16.
  • the high voltage driver 16 outputs a high voltage corresponding to the signal (command) to the electrode cylinder 9 of the buffer 3 based on a control signal (high voltage command) from the main controller 12.
  • the viscosity of the ERF 4 changes according to the change of the voltage value (the potential difference between the electrode cylinder 9 and the inner cylinder 5), and switches the damping force characteristic of the shock absorber 3 Can be adjusted).
  • the power supply 13 (Power Supply) is connected to the main controller 12 and the high voltage driver 16 (the connection between the power supply 13 and the main controller 12 is omitted in FIG. 1).
  • the power source 13 is for applying a voltage to the electrode cylinder 9 of the buffer 3.
  • the power supply 13 supplies power to the main controller 12 and the sub-controller 16A of the high voltage driver 16.
  • the power supply 13 includes a 12V battery 14 (Battery) serving as an accessory battery of a vehicle, an alternator for charging the vehicle battery as needed, and a fuse including a fuse 15A for suppressing an excessive current flow. It is comprised by the box 15 (Fuse Box).
  • the power supply 13 (battery 14) is connected to the buffer 3 (the electrode cylinder 9 and the outer cylinder 6 serving as a damper shell) via a high voltage driver 16 also called a high voltage box (HV-Box).
  • a high voltage driver 16 also called a high voltage box (HV-Box).
  • HV-Box high voltage box
  • a large capacity battery (not shown) for driving the vehicle can be used as the battery 14 of the shock absorber 3.
  • the vehicle body 1 is provided with four high voltage drivers 16.
  • the high voltage driver 16 is provided for each buffer 3. That is, the high voltage driver 16 is attached to each buffer 3.
  • the high voltage driver 16 generates a high voltage to be applied to the ERF 4 of the buffer 3.
  • each high voltage driver 16 is individually connected to the power supply 13 via the power lines 17A to 17D, which are power supply lines (wires) for supplying voltage.
  • power line 17A is connected to fuse box 15 of power supply 13 and high voltage driver 16 of buffer 3 located on the left front side of the vehicle
  • power line 17B is located on fuse box 15 of power supply 13 and the left rear side of the vehicle Are connected to the high voltage driver 16 of the buffer 3.
  • power line 17C is connected to fuse box 15 of power supply 13 and high voltage driver 16 of buffer 3 located on the front right of the vehicle
  • power line 17D is located on fuse box 15 of power supply 13 and the rear right of the vehicle Are connected to the high voltage driver 16 of the buffer 3.
  • the high voltage driver 16 is connected to (the electrode cylinder 9 of) the buffer 3 via the electrode pin 18.
  • the electrode pin 18 serves as an actuator for switching the damping force of the shock absorber 3. That is, the damping force is switched (adjusted) based on the control voltage supplied to the electrode pin 18 of the high voltage driver 16.
  • the high voltage driver 16 includes a sub controller 16A and a booster circuit 16B.
  • the sub controller 16A of the high voltage driver 16 boosts the DC voltage output from the battery 14 in the booster circuit 16B based on the control signal (high voltage command) output from the main controller 12.
  • the high voltage driver 16 supplies (outputs) the boosted high voltage to the buffer 3 through the electrode pin 18.
  • the sub controller 16A is an ECU (Electronic Control Unit) of the high voltage driver 16, and includes, for example, a microcomputer.
  • the sub controller 16A has a memory including a flash memory, a ROM, a RAM, an EEPROM, and the like and an arithmetic circuit (CPU), and the memory performs processing for executing the processing flow shown in FIG. The program is stored.
  • each sub controller 16A supplies a control voltage other than the soft command (for example, a medium command) to the electrode pin 18 when detecting a failure of the main controller 12 (control processing of FIG. 3).
  • the sub-controller 16A includes a fault diagnosis unit (S1 in FIG. 3) and a fault supply unit (S3 and S5 in FIG. 3).
  • the fault diagnosis unit detects a fault in the main controller 12. That is, the fault diagnosis unit detects (determines) that there is no control signal from the main controller 12. As a failure of the main controller 12, for example, a failure of the main controller 12, a disconnection of the vehicle data bus 19, or the like can be considered.
  • the failure time supply unit supplies the control voltage of the medium command to the electrode pin 18.
  • the failure time supply unit makes the control voltage supplied to the electrode pin 18 lower than the medium command (for example, soft command) Do.
  • the soft command is a command for not applying a voltage
  • the “control voltage other than the soft command” corresponds to a voltage greater than 0 (control voltage> 0).
  • the voltage may be a constant value (e.g., 1/2 of the maximum voltage).
  • the predetermined time can be set within a range of several tens of seconds to several tens of minutes after starting supply of the control voltage of medium designation, for example, based on experiments, calculations, simulations and the like in advance. As an example, it is possible to set the predetermined time in consideration of the time from when the driver recognizes the failure of the main controller 12 to when the vehicle falls below the predetermined speed.
  • the predetermined time is not limited to any preset time, and may be set based on, for example, the vehicle speed when a failure of the main controller 12 is detected. That is, it is difficult to stop the vehicle immediately when the vehicle is traveling at a high speed on a high speed road etc., so the predetermined time is set long or short when the vehicle is low. be able to. Thus, stability of the vehicle can be secured even when a failure occurs in the main controller 12, and long-term voltage supply from the power supply 13 can be suppressed, thereby reducing the power consumption of the battery 14. be able to.
  • the vehicle data bus 19 connects the main controller 12 and each sub controller 16A.
  • the vehicle data bus 19 is an on-vehicle communication line capable of communication, also called, for example, L-CAN (Local CAN). That is, the vehicle data bus 19 configures a CAN (Controller Area Network) as a serial communication unit which is a network necessary for data communication.
  • L-CAN Local CAN
  • each sub-controller 16A corresponding to each shock absorber 3 located on the left front side and left back side, and each The controller 16 A is connected to the main controller 12 by a separate vehicle data bus 19. Then, the main controller 12 transmits (transmits) a control signal (that is, a high voltage command corresponding to the damping force to be output by the buffer 3) to each sub controller 16A via each vehicle data bus 19.
  • the sub controller 16A controls the damping force of the buffer 3 by supplying a control voltage to the electrode pin 18 in response to the control signal from the main controller 12.
  • the main controller 12 is an ECU (not shown) mounted on the vehicle via a vehicle data bus 20 different from the vehicle data bus 19, ie, a large number of electronic devices mounted on the vehicle (for example, steering system ECU, It is connected to various ECUs, such as a braking system ECU.
  • the vehicle data bus 20 is, for example, an on-vehicle communication line capable of communication called V-CAN (Vehicle CAN). That is, similarly to the vehicle data bus 19, the vehicle data bus 20 also configures a CAN as a serial communication unit, which is a network necessary for data communication.
  • the vehicle data bus 20 is connected to a vehicle speed sensor 21 (Speed Sensor) as a vehicle speed detection unit for detecting the speed of the vehicle. Thereby, the main controller 12 can acquire the vehicle speed information by the signal (vehicle speed signal) from the vehicle speed sensor 21. Further, as other vehicle information sent to the vehicle data bus 20, for example, information (vehicle information) such as steering information may be mentioned.
  • the signal from the vehicle speed sensor 21 is not limited to being input to the main controller 12 via the vehicle data bus 20, and may be input directly to the main controller 12, for example. Further, in FIG. 1, a signal (vehicle height signal) from the vehicle height sensor 11 is directly input to the main controller 12. However, not limited to this, for example, the main controller 12 may be configured to acquire vehicle behavior information such as vehicle height information and the like via the vehicle data bus 20.
  • the suspension system according to the present embodiment has the configuration as described above, and next, its operation (processing for variably controlling the damping force characteristic of the shock absorber 3 using the main controller 12 and the high voltage driver 16) explain.
  • detection signals vehicle height information at the four corners of the vehicle
  • the main controller 12 calculates a target damping force from the vehicle height using a skyhook control law or the like, and calculates a high voltage command to be applied to the electrode cylinder 9 necessary to generate the target damping force.
  • the main controller 12 outputs a control signal corresponding to the calculated high voltage command to the sub controller 16 A of each high voltage driver 16 via the vehicle data bus 19.
  • the sub-controller 16A of each high voltage driver 16 boosts the DC voltage output from the power supply 13 (battery 14) by the booster circuit 16B of the high voltage driver 16 based on the high voltage command from the main controller 12.
  • a voltage (high voltage) corresponding to the high voltage command is applied to ERF 4 of buffer 3 via electrode pin 18 and electrode cylinder 9 of high voltage driver 16, and the viscosity of ERF 4 can be controlled.
  • the damping force characteristic of the shock absorber 3 is controlled continuously (or stepwise) so as to be variable between the soft characteristic (soft characteristic) and the hard characteristic (hard characteristic).
  • control processing performed by the sub controller 16A will be described with reference to FIG.
  • this control process is repeatedly performed in a predetermined control cycle, that is, every predetermined time (for example, 10 ms).
  • the sub controller 16A determines whether or not there is an input of a control signal from the main controller 12 via the vehicle data bus 19. This determination can be made based on whether a control signal from the main controller 12 is input to the sub controller 16A via the vehicle data bus 19 at a predetermined cycle. In this case, the main controller 12 can be configured to output the control signal to the sub controller 16A at a predetermined control cycle.
  • S1 constitutes a failure diagnosis unit of the present invention.
  • the process proceeds to S2.
  • the control signal from the main controller 12 is input to the sub controller 16A via the vehicle data bus 19. Therefore, in S2, the sub controller 16A supplies the control voltage to the electrode pin 18 in accordance with the control signal (command voltage) from the main controller 12. That is, in this case, the high voltage driver 16 applies a voltage (high voltage) according to the control signal from the main controller 12 to the electrode cylinder 9 of the buffer 3.
  • a voltage (high voltage) corresponding to the control signal is applied in S2, the process returns to S1 via the return, and the processes after S1 are repeated.
  • the sub controller 16A makes the buffer 3 medium (more specifically, medium control) except for soft. That is, in S3, the sub-controller 16A supplies a control voltage at which the buffer 3 is medium to the electrode pin 18, and the characteristics of the buffer 3 are medium (for example, constant between the softest and the hardest). Characteristics).
  • each buffer 3 is separately connected via the power supply 13 and the power lines 17A to 17D. Therefore, each sub-controller 16A can independently control each buffer 3 to medium when the main controller 12 fails. Further, for example, when disconnection or the like occurs in the vehicle data bus 19 connected to each sub-controller 16A of each buffer 3 on the left side, each sub-controller 16A on the left side controls each buffer 3 on the left to medium. be able to. On the other hand, the sub-controllers 16A of the right side shock absorbers 3 can control the damping force of the right side shock absorbers 3 based on the control signal from the main controller 12.
  • the sub-controller 16A which is normally connected to the main controller 12 controls the damping force of the shock absorber 3 based on the control signal from the main controller 12.
  • S3 constitutes the failure time supply unit of the present invention.
  • the sub controller 16A is provided with a predetermined time lapse determining unit.
  • the predetermined time determination unit measures a time t after the supply of the control voltage of the medium command to the electrode pin 18 is started, and determines whether a predetermined time T has elapsed (t ⁇ T). Then, if it is determined that the predetermined time has not elapsed since the supply of the control voltage of "NO", that is, the medium command in S4 is started, monitoring is performed until the predetermined time has elapsed.
  • the sub-controller 16A supplies the electrode pin 18 with a control voltage at which the buffer 3 is medium, and keeps the characteristics of the buffer 3 medium.
  • the shock absorber 3 is equivalent to a conventional suspension (a shock absorber of a constant damping force which is not a damping force adjustment type).
  • the sub controller 16A controls the buffer 3 by software. That is, by switching the control voltage to the electrode pin 18 from the medium command to the soft command, the sub controller 16A stops the control voltage to the electrode pin 18, softens the characteristics of the buffer 3, and returns.
  • S5 constitutes the failure time supply unit of the present invention. Thereby, since the long-term voltage supply to buffer 3 can be suppressed, the power consumption of battery 14 can be reduced.
  • each buffer 3 is connected to the power supply 13 via the power lines 17A to 17D separate from the vehicle data bus 19 connecting the sub-controller 16A of each buffer 3 and the main controller 12. Connected individually. Thus, when a failure occurs in the main controller 12, each sub controller 16A can independently control the damping force of each shock absorber 3.
  • the sub-controller 16A makes the damping force of the buffer 3 lower than that of medium (for example, softly controlled). Therefore, the stability of the vehicle when a failure occurs in the main controller 12 can be achieved, and the power consumption of the battery 14 can be reduced.
  • FIG. 4 and FIG. 5 show a second embodiment of the present invention.
  • a feature of the second embodiment is that each sub controller 16A and the vehicle data bus 20 are connected to each other.
  • the same components as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof will be omitted.
  • the connection line 31 connects between each sub controller 16A and the vehicle data bus 20.
  • each sub-controller 16A can acquire various vehicle information transmitted to the vehicle data bus 20. That is, various vehicle information transmitted to the vehicle data bus 20 is output to the main controller 12 and each sub controller 16A.
  • a vehicle speed sensor 21 is connected to the vehicle data bus 20. Therefore, even if a failure occurs in the main controller 12, for example, each sub controller 16A can acquire the vehicle speed via the connection line 31.
  • each sub-controller 16A is configured to control the damping force of the shock absorber 3 based on the speed of the vehicle detected by the vehicle speed sensor 21 when a failure occurs in the main controller 12.
  • each sub controller 16A further includes a vehicle speed acquisition unit (S6 in FIG. 5) that acquires the speed of the vehicle.
  • the failure time supply unit of the sub controller 16A supplies the control voltage of the medium command to the electrode pin 18 and acquired by the vehicle speed acquisition unit
  • the control voltage supplied to the electrode pin 18 is made lower than the medium command.
  • the predetermined speed can be set to, for example, 50 km / h or less in advance based on experiments, calculations, simulations, etc., as a value corresponding to the stability of the vehicle. That is, the predetermined speed can be set at a low speed at which the vehicle is stabilized. Also, for example, when the time when the speed of the vehicle is 0 km / h continues for a predetermined time, it may be determined that the vehicle has stopped, and the damping force of the shock absorber 3 may be a soft command.
  • control processing performed by the sub controller 16A will be described with reference to FIG.
  • this control process is repeatedly performed in a predetermined control cycle, that is, every predetermined time (for example, 10 ms).
  • control process in FIG. 5 the same control process is performed in the same steps as the steps of the control process in FIG. And in control processing in FIG. 5, it replaces with S4 of the control processing in FIG. 3, and S6 is provided. That is, when the vehicle speed is less than a predetermined speed, instead of control to make the buffer 3 lower than the medium command (for example, soft command) after a predetermined time has elapsed since the medium command of the buffer 3 was started.
  • the buffer 3 is controlled to be lower than the medium command (for example, soft command).
  • S1 it is determined whether or not a failure has occurred. If no failure has occurred ("NO" in S1), the process proceeds to S2, and the sub controller 16A receives a control signal from the main controller 12 The control voltage is supplied to the electrode pin 18 according to (command voltage), and the process returns. On the other hand, if a failure has occurred ("YES" in S1), the process proceeds to S6.
  • the sub controller 16A includes a vehicle speed acquisition unit.
  • the vehicle speed acquisition unit acquires the vehicle speed signal detected by the vehicle speed sensor 21 via the vehicle data bus 20 and the connection line 31. Then, the vehicle speed acquisition unit determines whether the acquired speed v of the vehicle is equal to or less than a predetermined speed V (v ⁇ V).
  • the sub controller 16A is connected to the vehicle data bus 20 via the connection line 31.
  • the sub controller 16A can obtain vehicle speed information.
  • the sub-controller 16A determines whether to make the damping force of the shock absorber 3 medium or not (for example, soft) based on the vehicle speed.
  • the stability of the vehicle can be achieved, and the power consumption of the battery 14 can be reduced.
  • the sub controller 16A controls the damping force of the buffer 3 to be lower than the medium after a predetermined time has elapsed since the failure of the main controller 12 caused the buffer 3 to be medium.
  • the case of (for example, software control) has been described as an example.
  • the present invention is not limited to this.
  • a plurality of threshold values for a predetermined time may be provided, and the damping force of the shock absorber 3 may be gradually reduced toward soft as time passes. The same is true for the predetermined speed of the second embodiment.
  • the shock absorber 3 uses the working fluid as the functional fluid as the electro-rheological fluid (ER fluid) and adjusts the damping force by supplying the voltage (electric power) from the power supply 13 as an example.
  • the functional fluid for example, a magnetic fluid (MR fluid) whose property is changed by a magnetic field may be used.
  • MR fluid magnetic fluid
  • the intermediate cylinder which is the electrode cylinder 9 is replaced with an electrode to be a magnetic pole, and a magnetic field is generated between the inner cylinder and the intermediate cylinder by supplying current (electric power) from a power supply (battery).
  • the generated damping force may be variably adjusted by performing the control.
  • the actuator that switches the damping force can be, for example, a magnetic pole.
  • the sub controller may be configured to supply a control current in response to the control signal.
  • the damping force of the damping force adjustable shock absorber can be adjusted by supplying the current (power).
  • a damping force is disposed between each wheel and a vehicle body, in which a functional fluid whose property is changed by an electric field or a magnetic field is enclosed and a damping force is adjusted by supply of voltage or current from a power source.
  • An adjustable shock absorber an actuator for switching the damping force of the damping force adjustable shock absorber, a vehicle height detecting unit for detecting a vehicle height state of the vehicle, and a vehicle body provided with the vehicle body, the necessary damping force being the vehicle height
  • a main controller that outputs a control signal by calculating based on a detection value from a detection unit, and a sub-controller mounted on each damping force adjustable shock absorber, wherein the actuator responds to the control signal
  • a sub-controller for supplying a control voltage or control current to control the damping force of the damping force adjustable shock absorber.
  • Each of the sub-controllers is connected to the main controller via a communication line for transmitting the control signal, and each damping force adjustable shock absorber is connected to the power supply via a power line different from the communication line. Each is individually connected.
  • each of the sub-controllers is a medium command when a fault diagnosis unit for detecting a fault in the main controller and the fault diagnosis unit detects a fault in the main controller.
  • a fault supply unit for supplying a control voltage or control current corresponding to the voltage to the actuator.
  • the failure time supply unit is configured to start the supply of the control voltage or the control current corresponding to the medium command to the actuator when a predetermined time has elapsed.
  • the control voltage or control current supplied to the actuator is smaller than the control voltage or control current corresponding to the medium command.
  • each of the sub-controllers further includes a vehicle speed acquisition unit that acquires the speed of the vehicle, and the failure time supply unit is acquired by the vehicle speed acquisition unit.
  • the control voltage or control current corresponding to the medium command is supplied to the actuator, and the speed of the vehicle acquired by the vehicle speed acquisition unit is the speed of the vehicle.
  • the control voltage or control current supplied to the actuator is smaller than the control voltage or control current corresponding to the medium command.
  • Reference Signs List 1 vehicle body, 3 shock absorbers (damping force adjustment shock absorber), 4 ERF (electro-rheological fluid, functional fluid), 11 vehicle height sensors (vehicle height detection unit), 12 main controller, 13 power supplies, 16A sub controller, 17A , 17B, 17C, 17D power line, 18 electrode pin (actuator), 19 vehicle data bus (communication line)

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

車両に搭載されたバッテリの消費電力を低減することができるサスペンションシステムを提供する。 サスペンションシステムは、各車輪と車体との間に配置され、電界または磁界により性状が変化する機能性流体が封入されると共に電源からの電圧または電流の供給により減衰力を調整する減衰力調整式緩衝器と、減衰力調整式緩衝器の減衰力を切換えるアクチュエータと、車両の車高状態を検出する車高検出部と、車体に設けられ、必要な減衰力を車高検出部からの検出値に基づいて演算して制御信号を出力するメインコントローラと、各減衰力調整式緩衝器に装着されるサブコントローラであって、制御信号に応答することによりアクチュエータに制御電圧または制御電流を供給して減衰力調整式緩衝器の減衰力を制御するサブコントローラと、を備える。各サブコントローラは、制御信号を伝送する通信線を介してメインコントローラと接続されている。各減衰力調整式緩衝器は、通信線とは別の電力線を介して電源とそれぞれ個別に接続されている。

Description

サスペンションシステム
 本発明は、例えば自動車等の車両に搭載されるサスペンションシステムに関する。
 自動車等の車両には、車体(ばね上)側と各車輪(ばね下)側との間に緩衝器が介装されている。ここで、特許文献1には、電界により性状が変化する電気粘性流体が封入されると共に電源からの電圧の供給(印加)により減衰力を調整する緩衝器が開示されている。
特開平10-2368号公報
 ところで、このような緩衝器は、車体を総合的に制御するメインコントローラからの制御信号に応じてサブコントローラが緩衝器の減衰力を制御するシステムとなっている。このようなシステムにおいて、メインコントローラが故障したり、断線等によりサブコントローラに制御信号が送信されなかったりした場合には、サブコントローラが緩衝器の減衰力を制御することができないことになる。そこで、サブコントローラは、メインコントローラに故障等の障害が発生していると判断したときに、緩衝器を所定の減衰力(例えば、ミディアムの減衰力)に制御することが考えられる。しかし、緩衝器を所定の減衰力に制御し続けた場合には、無駄な電力を消費する虞がある。
 本発明の目的は、車両に搭載されたバッテリの消費電力を低減することができるサスペンションシステムを提供することにある。
 本発明の一実施形態によるサスペンションシステムは、各車輪と車体との間に配置され、電界または磁界により性状が変化する機能性流体が封入されると共に電源からの電圧または電流の供給により減衰力を調整する減衰力調整式緩衝器と、前記減衰力調整式緩衝器の前記減衰力を切換えるアクチュエータと、車両の車高状態を検出する車高検出部と、前記車体に設けられ、必要な減衰力を前記車高検出部からの検出値に基づいて演算して制御信号を出力するメインコントローラと、前記各減衰力調整式緩衝器に装着されるサブコントローラであって、前記制御信号に応答することにより前記アクチュエータに制御電圧または制御電流を供給して前記減衰力調整式緩衝器の前記減衰力を制御するサブコントローラと、を備える。前記各サブコントローラは、前記制御信号を伝送する通信線を介して前記メインコントローラと接続されており、前記各減衰力調整式緩衝器は、前記通信線とは別の電力線を介して前記電源とそれぞれ個別に接続されている。
 本発明の一実施形態によるサスペンションシステムは、車両に搭載されたバッテリの消費電力を低減させることができる。
本発明の第1の実施形態によるサスペンションシステムを示すブロック図。 図1中の減衰力調整式緩衝器を示す縦断面図。 図1中のサブコントローラ(Sub ECU)による制御処理を示す流れ図。 本発明の第2の実施形態によるサスペンションシステムを示すブロック図。 図4中のサブコントローラ(Sub ECU)による制御処理を示す流れ図。
 以下、実施形態によるサスペンションシステムについて、当該サスペンションシステムを4輪自動車に搭載した場合を例に挙げ、図1ないし図5を参照して説明する。なお、図3および図5に示す流れ図の各ステップは、それぞれ「S」という表記を用いる(例えば、ステップ1=「S1」とする)。
 図1ないし図3は、本発明の第1の実施形態を示している。車体1は、車両のボディを構成している。車体1の下側には、車体1と共に車両を構成する車輪、即ち、左,右の前輪および左,右の後輪(いずれも図示せず)が設けられている。車輪は、タイヤを含んで構成され、タイヤは、路面の細かい凹凸を吸収するばねとして作用する。なお、図1中の「FL」、「RL」、「FR」、「RR」は、車輪の位置となる「前左」、「後左」、「前右」、「後右」にそれぞれ対応する。
 サスペンション装置2は、車両の相対移動する2部材間となる車体1と各車輪との間に設けられている。サスペンション装置2は、懸架ばね(図示せず)と、懸架ばねと並列になって車体1と各車輪との間に介装された減衰力調整式緩衝器3(以下、緩衝器3という)とにより構成されている。サスペンション装置2は、例えば4輪自動車の場合、車輪と車体1との間に個別に独立して合計4組設けられている。
 サスペンション装置2の緩衝器3は、車輪の上下動を減衰させるものである。緩衝器3は、内部に封入する作動油(作動流体)として電気粘性流体(ERF:Electro Rheological Fluid)を用いた減衰力調整式緩衝器(セミアクティブダンパ)、即ち、電気粘性流体ダンパ(ERF Damper)として構成されている。この場合、緩衝器3は、後述のバッテリ14からの電圧(電力)の供給により減衰力を調整する。
 図2に示すように、緩衝器3は、電気粘性流体4(以下、ERF4という)が封入されたシリンダとしての内筒5および外筒6と、内筒5内に摺動可能に挿入されたピストン7と、ピストン7に連結されて内筒5および外筒6の外部に延出するピストンロッド8と、内筒5内のピストン7の摺動によってERF4の流れが生じる部分に設けられERF4に電界をかける電極としての電極筒9とを含んで構成されている。電極筒9には、後述の電極ピン18を介して制御電圧(高電圧)が印加される。なお、図2では、封入されているERF4を無色透明で表している。
 ERF4は、電界(電圧)により性状が変化する機能性流体である。ERF4は、例えばシリコンオイル等からなる基油(ベースオイル)と、基油に混ぜ込まれ(分散され)電界の変化に応じて粘性を可変にする粒子(微粒子)とにより構成されている。これにより、ERF4は、印加される電圧に応じて粘度が変化し、流通抵抗(減衰力)が変化する。即ち、緩衝器3は、ERF4の流れが生じる部分に設けられた電極筒9に印加する電圧に応じて、発生減衰力の特性(減衰力特性)をハード(Hard)な特性(硬特性)とソフト(Soft)な特性(軟特性)との間で連続的に調整することができる。なお、緩衝器3は、減衰力特性を連続的でなくとも、2段階または複数段階に調整可能なものであってもよい。
 ここで、図2に示す緩衝器3は、ユニフロー構造となっている。このため、内筒5内のERF4は、ピストンロッド8の縮み行程と伸び行程との両行程で、内筒5の油穴5Aから電極通路10に向けて常に一方向(即ち、図2中に二点鎖線で示す矢印Fの方向)に流通する。即ち、中間筒としての電極筒9は、内筒5の外周側を全周にわたって取囲むことにより、電極筒9の内周側と内筒5の外周側との間に環状の電極通路10を形成している。電極通路10は、ERF4が流通する通路であり、ピストン7の摺動によってERF4の流れが生じる。
 電極通路10内のERF4は、ピストンロッド8が内筒5内を進退動するとき(即ち、縮み行程と伸び行程を繰返す間)に、この進退動により電極通路10の軸方向の上端側から下端側に向けて流動する。このとき、電極通路10内には、電極筒9に印加される電圧に応じた電位差が発生し、ERF4の粘度が変化する。即ち、緩衝器3は、内筒5と電極筒9との間の電極通路10内に電位差を発生させ、電極通路10を通過するERF4の粘度を制御することで、発生減衰力を制御(調整)することができる。なお、内筒5と電極筒9との間に軸方向の一端側(上端側)から他端側(下端側)に向けて螺旋状の隔壁(図示せず)を複数本設け、隣合う隔壁間をERF4が流通する流路としてもよい。これにより、電極通路10を流通するERF4の流路を長くすることができるので、最大減衰力を大きくすることができる。
 図1に示すように、車体1には、4個の車高センサ11(Position Sensor)が設けられている。車高センサ11は、車両の車高状態をそれぞれの緩衝器3の近傍で検出する。このため、車高センサ11は、車体1のうち、緩衝器3の近傍となる位置(即ち、車両の四隅)にそれぞれ取付けられている。各車高センサ11は、メインコントローラ12と接続されている。各車高センサ11は、車両の四隅でそれぞれ車高を検出し、その検出信号(車高情報)をメインコントローラ12に出力する。車高センサ11は、車両の挙動となる車高状態(より具体的には、車両の上下方向の運動に関する状態量)を検出する車高検出部を構成している。
 なお、車高検出部は、緩衝器3の近傍に設けた4個の車高センサ11に限らず、例えば4個のばね上加速度センサおよび4個のばね下加速度センサにより構成してもよい。また、4個のばね上加速度センサのみにより構成してもよい。さらには、車輪の回転速度を検出する車輪速センサ(図示せず)等、車高センサ11、加速度センサ以外の車両の車高状態(に対応する状態量)を検出するセンサ(状態検出センサ)を用いてもよい。この場合に、例えば1個のばね上加速度センサの情報(加速度)と車輪速センサの情報(車輪速)とから各車輪毎の上下運動を推定することで、車両の車高状態(上下運動)を検出する構成としてもよい。
 メインコントローラ12は、車体1に設けられている。メインコントローラ12は、減衰力可変ダンパである緩衝器3を制御するためのメインのコントローラ、即ち、サスペンション装置用のECU(Electronic Control Unit)である。メインコントローラ12は、メインECU(Main ECU)とも呼ばれ、例えばマイクロコンピュータを含んで構成されている。この場合、メインコントローラ12は、フラッシュメモリ、ROM、RAM、EEPROM等からなるメモリおよび演算回路(CPU)を有しており、メモリには、緩衝器3の制御処理に用いるプログラム(例えば、緩衝器3に印加する高電圧指令の算出に用いる処理プログラム等)が格納されている。
 メインコントローラ12は、車高センサ11および高電圧ドライバ16(のサブコントローラ16A)と接続されている。メインコントローラ12には、各車高センサ11から出力される信号、即ち、各車高センサ11の検出値に対応する車高信号が入力される。メインコントローラ12は、各車高センサ11からの検出値に基づいて、必要な減衰力を演算してサブコントローラ16Aに制御信号を出力する。即ち、メインコントローラ12は、各車高センサ11より得た情報から、高電圧ドライバ16に出力する指令となる高電圧指令を演算する。より具体的には、メインコントローラ12は、車両の挙動情報(車両挙動信号)となる車高信号(車高)に基づき、緩衝器3で出力すべき力(減衰力)に対応する高電圧指令を演算する。
 メインコントローラ12は、演算した高電圧指令に対応する制御信号(高電圧指令信号)を、高電圧ドライバ16に出力する。高電圧ドライバ16は、メインコントローラ12からの制御信号(高電圧指令)に基づき、その信号(指令)に応じた高電圧を緩衝器3の電極筒9に出力する。高電圧が入力された緩衝器3は、その電圧値(電極筒9と内筒5との間の電位差)の変化に応じてERF4の粘性が変化し、緩衝器3の減衰力特性を切換える(調整する)ことができる。
 電源13(Power Supply)は、メインコントローラ12および高電圧ドライバ16に接続されている(図1で電源13とメインコントローラ12との接続は省略)。電源13は、緩衝器3の電極筒9に電圧を印加するためのものである。また、電源13は、メインコントローラ12および高電圧ドライバ16のサブコントローラ16Aに電力を供給するものである。そして、電源13は、車両の補機用バッテリとなる12Vのバッテリ14(Battery)および必要に応じて車載バッテリの充電を行うオルタネータと、過大な電流が流れるのを抑制するヒューズ15Aを備えたヒューズボックス15(Fuse Box)とにより構成されている。
 電源13(バッテリ14)は、高電圧ボックス(HV-Box)とも呼ばれる高電圧ドライバ16を介して緩衝器3(電極筒9およびダンパシェルとなる外筒6)に接続されている。なお、緩衝器3のバッテリ14は、例えば走行用の電動モータ(駆動モータ)が搭載されたハイブリッド自動車や電気自動車の場合、車両駆動用の大容量バッテリ(図示せず)を用いることもできる。
 図1に示すように、車体1には、4個の高電圧ドライバ16が設けられている。この場合、高電圧ドライバ16は、緩衝器3毎に設けられている。即ち、高電圧ドライバ16は、各緩衝器3に装着されている。高電圧ドライバ16は、緩衝器3のERF4に印加する高電圧を発生する。このために、各高電圧ドライバ16は、電圧を供給するための電力供給線(電線)となる電力線17A~17Dを介して電源13にそれぞれ個別に接続されている。
 即ち、電力線17Aは、電源13のヒューズボックス15と車両の左前側に位置する緩衝器3の高電圧ドライバ16に接続され、電力線17Bは、電源13のヒューズボックス15と車両の左後側に位置する緩衝器3の高電圧ドライバ16に接続されている。一方、電力線17Cは、電源13のヒューズボックス15と車両の右前側に位置する緩衝器3の高電圧ドライバ16に接続され、電力線17Dは、電源13のヒューズボックス15と車両の右後側に位置する緩衝器3の高電圧ドライバ16に接続されている。これにより、高電圧ドライバ16のサブコントローラ16Aは、メインコントローラ12から出力される制御信号に基づき緩衝器3の減衰力を制御することに加えて、メインコントローラ12に障害が発生したときに、自ら緩衝器3の減衰力の制御を行うことができる。
 図2に示すように、高電圧ドライバ16は、電極ピン18を介して緩衝器3(の電極筒9)に接続されている。電極ピン18は、緩衝器3の減衰力を切換えるアクチュエータとなるものである。即ち、緩衝器3は、高電圧ドライバ16の電極ピン18に供給される制御電圧に基づいて減衰力が切換えられる(調整される)。
 高電圧ドライバ16は、サブコントローラ16Aおよび昇圧回路16Bを含んで構成されている。高電圧ドライバ16のサブコントローラ16Aは、メインコントローラ12から出力される制御信号(高電圧指令)に基づいて、バッテリ14から出力される直流電圧を昇圧回路16Bで昇圧する。高電圧ドライバ16は、その昇圧した高電圧を、電極ピン18を介して緩衝器3に供給(出力)する。
 サブコントローラ16Aは、高電圧ドライバ16のECU(Electronic Control Unit)であり、例えばマイクロコンピュータを含んで構成されている。この場合、サブコントローラ16Aは、フラッシュメモリ、ROM、RAM、EEPROM等からなるメモリおよび演算回路(CPU)を有しており、メモリには、後述の図3に示す処理フローを実行するための処理プログラムが格納されている。
 即ち、各サブコントローラ16Aは、メインコントローラ12の障害を検出したとき、電極ピン18にソフト指令以外(例えば、ミディアム指令)の制御電圧を供給する(図3の制御処理)。このために、サブコントローラ16Aは、障害診断部(図3のS1)と、障害時供給部(図3のS3、S5)とを備えている。
 障害診断部は、メインコントローラ12の障害を検出する。即ち、障害診断部は、メインコントローラ12からの制御信号がないことを検出(判定)する。メインコントローラ12の障害としては、例えばメインコントローラ12の故障および車両データバス19の断線等が考えられる。
 一方、障害時供給部は、障害診断部によりメインコントローラ12の障害を検出したときに、電極ピン18にミディアム指令の制御電圧を供給する。また、障害時供給部は、電極ピン18にミディアム指令の制御電圧の供給を開始してから所定時間経過したとき、電極ピン18に供給する制御電圧をミディアム指令よりも低く(例えば、ソフト指令)する。
 ここで、ソフト指令は、電圧を印加しない指令となり、「ソフト指令の制御電圧」は0(制御電圧=0)に対応する。これに対して、「ソフト指令以外の制御電圧」は、0よりも大きい電圧(制御電圧>0)に対応する。そして、「ミディアム指令の制御電圧」は、ソフト指令の制御電圧(=0)とハード指令の制御電圧(=最大電圧)との間の指令、例えば、最大電圧の1/3~2/3の一定値(例えば、最大電圧の1/2)の電圧とすることができる。
 また、前記所定時間は、予め実験、計算、シミュレーション等に基づき、例えばミディアム指定の制御電圧の供給を開始してから数十秒~数十分の範囲内で設定することができる。一例を挙げると、運転者がメインコントローラ12の障害を認識してから車両が所定速度以下となるまでの時間を考慮して所定時間の設定をすることができる。
 この場合、所定時間は、予め設定された任意の時間に限らず、例えばメインコントローラ12の障害を検出したときの車速に基づいて設定してもよい。即ち、所定時間は、車両が高速道路等を高速で走行しているときには、すぐに車両を停車させることが困難であるので長く設定したり、車両が低速の場合には、短く設定したりすることができる。これにより、メインコントローラ12に障害が発生したときでも車両の安定性を確保することができると共に、電源13からの長時間の電圧供給を抑制することができるので、バッテリ14の消費電力を低減させることができる。
 車両データバス19は、メインコントローラ12と各サブコントローラ16Aとを接続している。車両データバス19は、例えばL-CAN(Local CAN)とも呼ばれる通信が可能な車載の通信線である。即ち、車両データバス19は、データ通信に必要な回線網であるシリアル通信部としてのCAN(Controller Area Network)を構成している。
 ここで、図1に示すように、左前側と左後側に位置する各緩衝器3に対応する各サブコントローラ16Aと、右前側と右後側に位置する各緩衝器3に対応する各サブコントローラ16Aとは、それぞれ別個の車両データバス19によりメインコントローラ12に接続されている。そして、メインコントローラ12は、各車両データバス19を介して各サブコントローラ16Aに制御信号(即ち、緩衝器3で出力すべき減衰力に対応する高電圧指令)を伝送(送信)する。サブコントローラ16Aは、メインコントローラ12からの制御信号に応答して電極ピン18に制御電圧を供給することにより、緩衝器3の減衰力を制御する。
 一方、メインコントローラ12は、車両データバス19とは別の車両データバス20を介して、車両に搭載された図示しないECU、即ち、車両に搭載された多数の電子機器(例えば、操舵系ECU、制動系ECU等の各種のECU)に接続されている。車両データバス20は、例えばV-CAN(Vehicle CAN)とも呼ばれる通信が可能な車載の通信線である。即ち、車両データバス20も、車両データバス19と同様に、データ通信に必要な回線網であるシリアル通信部としてのCANを構成している。
 車両データバス20には、車両の速度を検出する車速検出部としての車速センサ21(Speed Sensor)が接続されている。これにより、メインコントローラ12は、車速センサ21からの信号(車速信号)により車速情報を取得することができる。また、車両データバス20に送られる他の車両情報としては、例えば操舵情報等の情報(車両情報)等が挙げられる。
 なお、車速センサ21からの信号は、車両データバス20を介してメインコントローラ12に入力する場合に限らず、例えばメインコントローラ12に直接入力してもよい。また、図1では、車高センサ11からの信号(車高信号)をメインコントローラ12に直接入力する構成としている。しかし、これに限らず、例えばメインコントローラ12は、車両データバス20を介して車高情報等の車両の挙動情報を取得する構成としてもよい。
 本実施形態によるサスペンションシステムは、上述のような構成を有するもので、次に、その動作(メインコントローラ12および高電圧ドライバ16を用いて緩衝器3の減衰力特性を可変に制御する処理)について説明する。
 メインコントローラ12には、車両の走行時に、各車高センサ11から検出信号(車両の四隅の車高情報)が入力される。このとき、メインコントローラ12は、車高からスカイフック制御則等を用いて目標減衰力を演算し、目標減衰力を発生させるために必要な電極筒9に印加すべき高電圧指令を算出する。メインコントローラ12は、算出した高電圧指令に対応する制御信号を、車両データバス19を介して各高電圧ドライバ16のサブコントローラ16Aに出力する。
 各高電圧ドライバ16のサブコントローラ16Aは、メインコントローラ12からの高電圧指令に基づいて、電源13(バッテリ14)から出力される直流電圧を高電圧ドライバ16の昇圧回路16Bで昇圧する。これにより、緩衝器3のERF4には、高電圧ドライバ16の電極ピン18および電極筒9を介して高電圧指令に応じた電圧(高電圧)が印加され、ERF4の粘性を制御することができる。このとき、緩衝器3の減衰力特性は、例えば、ソフトな特性(軟特性)とハードな特性(硬特性)との間で可変となって連続的(または、段階的)に制御される。
 次に、サブコントローラ16Aで行われる制御処理(フェールセーフ処理)について、図3を参照しつつ説明する。この制御処理は、例えばサブコントローラ16Aに通電している間、所定の制御周期で、即ち所定時間(例えば、10ms)毎に繰り返し実行される。
 サブコントローラ16Aが起動することにより、図3の制御処理が開始されると、S1では、障害発生か否かを判定する。即ち、サブコントローラ16Aは、車両データバス19を介してメインコントローラ12からの制御信号の入力があるか否かを判定する。この判定は、所定の周期でメインコントローラ12からの制御信号が車両データバス19を介してサブコントローラ16Aに入力されているか否かにより行うことができる。この場合、メインコントローラ12は、所定の制御周期でサブコントローラ16Aに制御信号を出力する構成とすることができる。S1は、本発明の障害診断部を構成している。
 S1で「NO」、即ちメインコントローラ12が正常であると判定された場合は、S2に進む。この場合は、サブコントローラ16Aに、メインコントローラ12からの制御信号が車両データバス19を介して入力されている。そこで、S2では、サブコントローラ16Aは、メインコントローラ12からの制御信号(指令電圧)に従って電極ピン18に制御電圧を供給する。即ち、この場合は、高電圧ドライバ16は、緩衝器3の電極筒9にメインコントローラ12からの制御信号に応じた電圧(高電圧)を印加する。S2で制御信号に応じた電圧(高電圧)を印加したら、リターンを介してS1に戻り、S1以降の処理を繰り返す。
 これに対して、S1で「YES」、即ちメインコントローラ12に障害が発生していると判定された場合は、S3に進む。この場合は、メインコントローラ12の故障および車両データバス19の断線等により、メインコントローラ12からの制御信号が車両データバス19を介してサブコントローラ16Aに入力されない状態である。
 S3では、サブコントローラ16Aは、緩衝器3をソフト以外、より具体的には、ミディアムにする(ミディアム制御する)。即ち、S3では、サブコントローラ16Aは、電極ピン18に緩衝器3がミディアムとなる制御電圧を供給し、緩衝器3の特性をミディアム(例えば、最ソフトと最ハードとの間の中間の一定の特性)にする。
 この場合、各緩衝器3は、電源13と電力線17A~17Dを介してそれぞれ別個に接続されている。従って、各サブコントローラ16Aは、メインコントローラ12が故障した場合に、独自に各緩衝器3をミディアムに制御することができる。また、例えば左側の各緩衝器3の各サブコントローラ16Aに接続された車両データバス19に断線等が発生した場合には、左側の各サブコントローラ16Aは左側の各緩衝器3をミディアムに制御することができる。一方、右側の各緩衝器3の各サブコントローラ16Aは、メインコントローラ12からの制御信号に基づいて右側の各緩衝器3の減衰力を制御することができる。
 即ち、メインコントローラ12との接続が正常に行われているサブコントローラ16Aは、メインコントローラ12からの制御信号に基づいて緩衝器3の減衰力を制御する。一方、メインコントローラ12との接続が正常に行われていない(異常である)サブコントローラ16Aは、緩衝器3の減衰力をミディアムに制御する。S3は、本発明の障害時供給部を構成している。なお、S1で「YES」と判定された場合には、メインコントローラ12を含むサスペンションシステムが正常でない(故障が発生している)旨を、運転者に報知することが好ましい。例えば、報知装置となるダッシュボード(計器盤)やモニタ等に、サスペンションシステムが正常でない旨を表示(警告表示)することができる。運転者は、この報知に基づいて、車両の速度を低下させたり、車両を停止したりすることができる。
 次のS4では、所定時間経過か否かを判定する。即ち、サブコントローラ16Aは、所定時間経過判定部を備えている。所定時間判定部は、電極ピン18にミディアム指令の制御電圧の供給を開始してからの時間tを計測し、所定時間Tが経過したか否かを判定する(t≧T)。そして、S4で「NO」、即ちミディアム指令の制御電圧の供給を開始してから所定時間の経過前であると判定された場合には、所定時間が経過するまで監視する。
 この場合、サブコントローラ16Aは、電極ピン18に緩衝器3がミディアムとなる制御電圧を供給し、緩衝器3の特性をミディアムにし続ける。このとき、緩衝器3は、コンベンショナルサスペンション相当(減衰力調整式でない一定減衰力の緩衝器)となる。一方、S4で「YES」、即ちミディアム指令の制御電圧の供給を開始してから所定時間が経過したと判定された場合には、S5に進む。
 S5では、サブコントローラ16Aは、緩衝器3をソフトで制御する。即ち、サブコントローラ16Aは、電極ピン18への制御電圧をミディアム指令からソフト指令に切換えることにより、電極ピン18への制御電圧を停止して緩衝器3の特性をソフトにし、リターンする。S5は、本発明の障害時供給部を構成している。これにより、緩衝器3への長時間の電圧供給を抑制することができるので、バッテリ14の消費電力を低減させることができる。
 かくして、第1の実施形態では、各緩衝器3は、各緩衝器3のサブコントローラ16Aとメインコントローラ12とを接続する車両データバス19とは別の電力線17A~17Dを介して電源13とそれぞれ個別に接続されている。これにより、メインコントローラ12に障害が発生した場合に、各サブコントローラ16Aが独自に各緩衝器3の減衰力を制御することができる。
 また、サブコントローラ16Aが緩衝器3をミディアムに制御してから所定時間経過後に、サブコントローラ16Aは緩衝器3の減衰力をミディアムよりも低く(例えば、ソフトに制御)する。従って、メインコントローラ12に障害が発生したときにおける車両の安定性を図ることができると共に、バッテリ14の消費電力を低減させることができる。
 次に、図4、図5は、本発明の第2の実施形態を示している。この第2の実施形態の特徴は、各サブコントローラ16Aと車両データバス20とをそれぞれ接続したことにある。なお、第2の実施形態では、前述した第1の実施形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
 接続線31は、各サブコントローラ16Aと車両データバス20との間を接続している。これにより、各サブコントローラ16Aは、車両データバス20に送信される種々の車両情報を取得することができる。即ち、車両データバス20に送信される種々の車両情報は、メインコントローラ12と各サブコントローラ16Aとに出力される。具体的には、車両データバス20には車速センサ21が接続されている。従って、各サブコントローラ16Aは、例えばメインコントローラ12に障害が発生したとしても、接続線31を介して車速を取得することができる。
 そして、第2の実施形態では、各サブコントローラ16Aは、メインコントローラ12に障害が発生した場合に、車速センサ21で検出された車両の速度に基づき緩衝器3の減衰力の制御を行う構成としている。そのために、各サブコントローラ16Aには、車両の速度を取得する車両速度取得部(図5のS6)をさらに備えている。
 サブコントローラ16Aの障害時供給部は、車両速度取得部により取得される車両の速度が所定の速度よりも大きいときは、電極ピン18にミディアム指令の制御電圧を供給し、車両速度取得部により取得される車両の速度が所定の速度以下のときは、電極ピン18に供給する制御電圧をミディアム指令よりも低くする。
 この場合、所定の速度は、車両の安定性に対応した値として、予め実験、計算、シミュレーション等に基づき、例えば50km/h以下と設定することができる。即ち、所定の速度は、車両が安定する低速の場合に設定することができる。また、例えば車両の速度が0km/hの時間が所定時間継続したときに車両が停止したと判断して、緩衝器3の減衰力をソフト指令にしてもよい。
 次に、サブコントローラ16Aで行われる制御処理(フェールセーフ処理)について、図5を参照しつつ説明する。この制御処理は、例えばサブコントローラ16Aに通電している間、所定の制御周期で、即ち所定時間(例えば、10ms)毎に繰り返し実行される。
 なお、図5中の制御処理では、図3中の制御処理のステップと同じステップについては同様の制御処理を行うものとする。そして、図5中の制御処理では、図3中の制御処理のS4に代えてS6を設けている。即ち、緩衝器3のミディアム指令を開始してから所定時間経過後に、緩衝器3をミディアム指令よりも低く(例えば、ソフト指令)する制御に代えて、車両の速度が所定の速度以下のときに、緩衝器3をミディアム指令よりも低く(例えば、ソフト指令)する制御としている。
 具体的には、S1では、障害発生か否かを判定し、障害が発生していない場合(S1で「NO」)には、S2に進み、サブコントローラ16Aは、メインコントローラ12からの制御信号(指令電圧)に従って電極ピン18に制御電圧を供給し、リターンする。一方、障害が発生している場合(S1で「YES」)には、S6に進む。
 S6では、車速が所定速度以下か否かを判定する。即ち、サブコントローラ16Aは、車両速度取得部を備えている。車両速度取得部は、車速センサ21で検出された車速信号を車両データバス20および接続線31を介して取得する。そして、車両速度取得部は、取得した車両の速度vが所定の速度V以下か否かを判定する(v≦V)。
 そして、S6で「NO」、即ち車両の速度vが所定の速度Vよりも大きい場合には、S3に進み、緩衝器3をミディアムで制御する。一方、S6で「YES」、即ち車両の速度vが所定の速度V以下であると判定された場合には、S5に進み、緩衝器3をソフトで制御する。これにより、メインコントローラ12に障害が発生したときに、車両の速度が速いときには緩衝器3をミディアムで制御して車両の安定性を図ることができると共に、車両の速度が遅いときには緩衝器3への制御電圧の供給を停止してバッテリ14の消費電力を低減させることができる。
 かくして、第2の実施形態においても第1の実施形態と同様の作用、効果を得ることができる。また、サブコントローラ16Aは、車両データバス20に接続線31を介して接続されている。これにより、サブコントローラ16Aは、メインコントローラ12に障害が発生したとしても、車両の速度情報を取得することができる。そして、サブコントローラ16Aは、車速に基づき緩衝器3の減衰力をミディアムにするかミディアム以下(例えば、ソフト)にするかを決定している。これにより、車両の安定性を図ることができると共に、バッテリ14の消費電力を低減させることができる。
 なお、第1の実施形態では、サブコントローラ16Aは、メインコントローラ12に障害が発生して緩衝器3をミディアムに制御してから所定時間経過後に、緩衝器3の減衰力をミディアムよりも低く制御(例えば、ソフト制御)した場合を例に挙げて説明した。しかし、本発明はこれに限らず、例えば所定時間の閾値を複数個設け、時間が経過するに従って緩衝器3の減衰力をソフトに向けて段階的に低くしてもよい。このことは、第2の実施形態の所定の速度についても同様である。
 実施形態では、緩衝器3は、機能性流体としての作動流体を電気粘性流体(ER流体)とすると共に、電源13からの電圧(電力)の供給により減衰力を調整する構成とした場合を例に挙げて説明した。しかし、本発明はこれに限るものではなく、機能性流体として例えば、磁界により流体の性状が変化する磁性流体(MR流体)を用いてもよい。磁性流体を用いる場合には、例えば、電極筒9である中間筒を電極に代えて磁極とし、電源(バッテリ)からの電流(電力)の供給により内筒と中間筒との間に磁界を発生させることにより、発生減衰力を可変に調整する構成としてもよい。即ち、減衰力を切換えるアクチュエータは、例えば、磁極とすることができる。また、サブコントローラは、制御信号に応答して制御電流を供給する構成とすることができる。換言すれば、電流(電力)の供給により減衰力調整式緩衝器の減衰力を調整する構成とすることができる。
 以上説明した実施形態に基づくサスペンションシステムとして、例えば、下記に述べる態様のものが考えられる。
 第1の態様としては、各車輪と車体との間に配置され、電界または磁界により性状が変化する機能性流体が封入されると共に電源からの電圧または電流の供給により減衰力を調整する減衰力調整式緩衝器と、前記減衰力調整式緩衝器の前記減衰力を切換えるアクチュエータと、車両の車高状態を検出する車高検出部と、前記車体に設けられ、必要な減衰力を前記車高検出部からの検出値に基づいて演算して制御信号を出力するメインコントローラと、前記各減衰力調整式緩衝器に装着されるサブコントローラであって、前記制御信号に応答することにより前記アクチュエータに制御電圧または制御電流を供給して前記減衰力調整式緩衝器の前記減衰力を制御するサブコントローラと、を備える。前記各サブコントローラは、前記制御信号を伝送する通信線を介して前記メインコントローラと接続されており、前記各減衰力調整式緩衝器は、前記通信線とは別の電力線を介して前記電源とそれぞれ個別に接続されている。
 第2の態様としては、第1の態様において、前記各サブコントローラは、前記メインコントローラの障害を検出する障害診断部と、前記障害診断部により前記メインコントローラの障害を検出したときに、ミディアム指令に対応する制御電圧または制御電流を前記アクチュエータに供給する障害時供給部と、を備える。
 第3の態様としては、第2の態様において、前記障害時供給部は、前記アクチュエータに前記ミディアム指令に対応する前記制御電圧または前記制御電流の供給を開始してから所定時間経過したとき、前記アクチュエータに供給する前記制御電圧または前記制御電流を前記ミディアム指令に対応する前記制御電圧または前記制御電流よりも小さくする。
 第4の態様としては、第2の態様において、前記各サブコントローラは、前記車両の速度を取得する車両速度取得部をさらに備え、前記障害時供給部は、前記車両速度取得部により取得される前記車両の前記速度が所定の速度よりも大きいときは、前記ミディアム指令に対応する前記制御電圧または制御電流を前記アクチュエータに供給し、前記車両速度取得部により取得される前記車両の前記速度が前記所定の速度以下のときは、前記アクチュエータに供給する前記制御電圧または前記制御電流を前記ミディアム指令に対応する前記制御電圧または前記制御電流よりも小さくする。
 以上、本発明のいくつかの実施形態について説明してきたが、上述した発明の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその均等物が含まれる。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。
 本願は、2017年6月28日出願の日本特許出願番号2017-126111号に基づく優先権を主張する。2017年6月28日出願の日本特許出願番号2017-126111号の明細書、特許請求の範囲、図面及び要約書を含む全ての開示内容は、参照により全体として本願に組み込まれる。
 1 車体、 3 緩衝器(減衰力調整式緩衝器)、 4 ERF(電気粘性流体、機能性流体)、 11 車高センサ(車高検出部)、 12 メインコントローラ、 13 電源、 16A サブコントローラ、 17A,17B,17C,17D 電力線、 18 電極ピン(アクチュエータ)、 19 車両データバス(通信線)

Claims (4)

  1.  サスペンションシステムであって、
     各車輪と車体との間に配置され、電界または磁界により性状が変化する機能性流体が封入されると共に電源からの電圧または電流の供給により減衰力を調整する減衰力調整式緩衝器と、
     前記減衰力調整式緩衝器の前記減衰力を切換えるアクチュエータと、
     車両の車高状態を検出する車高検出部と、
     前記車体に設けられ、必要な減衰力を前記車高検出部からの検出値に基づいて演算して制御信号を出力するメインコントローラと、
     前記各減衰力調整式緩衝器に装着されるサブコントローラであって、前記制御信号に応答することにより前記アクチュエータに制御電圧または制御電流を供給して前記減衰力調整式緩衝器の前記減衰力を制御するサブコントローラと
     を備え、
     前記各サブコントローラは、前記制御信号を伝送する通信線を介して前記メインコントローラと接続されており、
     前記各減衰力調整式緩衝器は、前記通信線とは別の電力線を介して前記電源とそれぞれ個別に接続されている
     サスペンションシステム。
  2.  請求項1に記載のサスペンションシステムであって、
     前記各サブコントローラは、
     前記メインコントローラの障害を検出する障害診断部と、
     前記障害診断部により前記メインコントローラの障害を検出したときに、ミディアム指令に対応する制御電圧または制御電流を前記アクチュエータに供給する障害時供給部と
     を備える
     サスペンションシステム。
  3.  請求項2に記載のサスペンションシステムであって、
     前記障害時供給部は、前記アクチュエータに前記ミディアム指令に対応する前記制御電圧または前記制御電流の供給を開始してから所定時間経過したとき、前記アクチュエータに供給する前記制御電圧または前記制御電流を前記ミディアム指令に対応する前記制御電圧または前記制御電流よりも小さくする
     サスペンションシステム。
  4.  請求項2に記載のサスペンションシステムであって、
     前記各サブコントローラは、前記車両の速度を取得する車両速度取得部をさらに備え、
     前記障害時供給部は、
      前記車両速度取得部により取得される前記車両の前記速度が所定の速度よりも大きいときは、前記ミディアム指令に対応する前記制御電圧または前記制御電流を前記アクチュエータに供給し、
      前記車両速度取得部により取得される前記車両の前記速度が前記所定の速度以下のときは、前記アクチュエータに供給する前記制御電圧または前記制御電流を前記ミディアム指令に対応する前記制御電圧または前記制御電流よりも小さくする
     サスペンションシステム。
PCT/JP2018/023985 2017-06-28 2018-06-25 サスペンションシステム WO2019004115A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-126111 2017-06-28
JP2017126111A JP2020142537A (ja) 2017-06-28 2017-06-28 サスペンションシステム

Publications (1)

Publication Number Publication Date
WO2019004115A1 true WO2019004115A1 (ja) 2019-01-03

Family

ID=64742074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023985 WO2019004115A1 (ja) 2017-06-28 2018-06-25 サスペンションシステム

Country Status (2)

Country Link
JP (1) JP2020142537A (ja)
WO (1) WO2019004115A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999137A (ja) * 1982-11-29 1984-06-07 Atsugi Motor Parts Co Ltd 減衰力可変型液圧緩衝器用制御回路
JPS60189408U (ja) * 1984-05-29 1985-12-16 日産自動車株式会社 減衰力可変サスペンシヨン装置
JPH102368A (ja) * 1996-06-14 1998-01-06 Nissan Motor Co Ltd 電気粘性流体利用緩衝器及び減衰力制御方法
JP2002067650A (ja) * 2000-08-31 2002-03-08 Tokico Ltd サスペンション制御装置
WO2017002620A1 (ja) * 2015-06-30 2017-01-05 日立オートモティブシステムズ株式会社 サスペンション制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999137A (ja) * 1982-11-29 1984-06-07 Atsugi Motor Parts Co Ltd 減衰力可変型液圧緩衝器用制御回路
JPS60189408U (ja) * 1984-05-29 1985-12-16 日産自動車株式会社 減衰力可変サスペンシヨン装置
JPH102368A (ja) * 1996-06-14 1998-01-06 Nissan Motor Co Ltd 電気粘性流体利用緩衝器及び減衰力制御方法
JP2002067650A (ja) * 2000-08-31 2002-03-08 Tokico Ltd サスペンション制御装置
WO2017002620A1 (ja) * 2015-06-30 2017-01-05 日立オートモティブシステムズ株式会社 サスペンション制御装置

Also Published As

Publication number Publication date
JP2020142537A (ja) 2020-09-10

Similar Documents

Publication Publication Date Title
WO2017002620A1 (ja) サスペンション制御装置
EP2070739B1 (en) Vehicle suspension system
US20060118370A1 (en) Damper with variable damping force
BR102017015965A2 (pt) Método e dispositivo para ajuste da força de amortecimento de amortecedores ajustáveis de uma montagem da cabine de motorista
JP7489367B2 (ja) アクティブサスペンション装置、及びアクティブサスペンション装置を備える車両
JP2018161920A (ja) サスペンションシステム
US11104198B2 (en) Suspension control apparatus
JP6706393B2 (ja) サスペンション制御装置
US10434834B2 (en) Method for operating a motor vehicle, method for roll compensation of a motor vehicle, and motor vehicle
WO2019004115A1 (ja) サスペンションシステム
JP2009023377A (ja) 減衰力可変ダンパの制御装置
WO2019003893A1 (ja) サスペンション制御装置
JP5272799B2 (ja) 車両用サスペンションシステム
JP2008273356A (ja) 車両用サスペンションシステム
JP5043751B2 (ja) 減衰力可変ダンパの制御装置
JP7161958B2 (ja) サスペンション装置及びその制御方法
JP6838785B2 (ja) サスペンション制御装置
JP2010100094A (ja) 減衰力可変ダンパの制御装置
WO2020066707A1 (ja) サスペンション装置
JP6791812B2 (ja) サスペンション制御装置
JP4879115B2 (ja) 可変減衰力ダンパの制御装置
JP2009137342A (ja) 減衰力可変ダンパの制御装置
JP4696081B2 (ja) 減衰力可変ダンパシステム
JP2019006334A (ja) サスペンション制御装置
JP2008247380A (ja) 減衰力可変ダンパの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18825232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18825232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP