WO2019003696A1 - 位置検出装置 - Google Patents

位置検出装置 Download PDF

Info

Publication number
WO2019003696A1
WO2019003696A1 PCT/JP2018/019098 JP2018019098W WO2019003696A1 WO 2019003696 A1 WO2019003696 A1 WO 2019003696A1 JP 2018019098 W JP2018019098 W JP 2018019098W WO 2019003696 A1 WO2019003696 A1 WO 2019003696A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection device
position detection
base
heat flux
heat
Prior art date
Application number
PCT/JP2018/019098
Other languages
English (en)
French (fr)
Inventor
倫央 郷古
谷口 敏尚
坂井田 敦資
岡本 圭司
芳彦 白石
浅野 正裕
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019003696A1 publication Critical patent/WO2019003696A1/ja
Priority to US16/727,152 priority Critical patent/US11262180B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid

Definitions

  • the present disclosure relates to a position detection device.
  • An object of the present disclosure is to provide a position detection device capable of detecting a positional change of an object to be detected reproducibly and easily.
  • the base portion, the following portion, the extendable member, and the heat flux detection portion are configured as one unit.
  • the positions of the expandable member and the heat flux detection unit are fixed within the unit, so that the base is fixed relative to the reference so as not to move relative to the reference, and the tracking unit follows the relative movement of the detection object relative to the reference
  • the tracking unit follows the relative movement of the detection object relative to the reference
  • an expandable member that generates a heat flux with the outside by expansion and contraction, and a heat flux detection unit that can detect the size of the heat flux are integrated with the base and the following portion.
  • the base member 18 is a member formed in a substantially rectangular parallelepiped shape from a conductive material.
  • the base member 18 has a housing portion 181 and a support portion 182.
  • the housing portion 181 is a plate-like portion provided on one end side of the base member 18.
  • the housing portion 181 has a housing surface 183 as an “end surface of a base forming a housing space” in which a heat flux sensor 10 described later is provided on the top side.
  • the area of the housing surface 183 is larger than the area of the heat flux sensor 10.
  • the housing portion 181 has an end surface 184 in contact with a stage portion 914 of a support base 91 described later on the ground side.
  • the pressing member 19 is a member formed in a flat plate shape from an elastically deformable material having conductivity.
  • the pressing member 19 is pressed against the mounting table 92 as a “detection target”, and is provided so as to be deformable with respect to the base member 18 following the movement of the mounting table 92.
  • the pressing member 19 is bonded to the elastic member 17 by, for example, an adhesive.
  • the end face 192 at one end of the pressing member 19 is formed to abut on the end face 189 of the base member 18.
  • the pressing member 19 has a through hole 191 through which two bolts 99 can be inserted.
  • the pressing member 19 is fixed to the base member 18 by bolts 99 inserted into the through holes 191 and 187.
  • the other end of the pressing member 19 has a receiving surface 193 as an “end surface of the following portion forming a receiving space” at a position facing the receiving surface 183 of the base member 18.
  • a housing space 160 capable of housing the elastic member 17 and the heat flux sensor 10 is formed between the housing surface 183 of the base member 18 and the housing surface 193 of the pressing member 19.
  • the accommodation space 160 communicates with the groove 180.
  • the heat flux sensor 10 is provided between the elastic member 17 and the base member 18.
  • the heat flux sensor 10 is bonded to the elastic member 17 and the base member 18 by, for example, an adhesive.
  • the heat flux sensor 10 is a member having flexibility, and can be deformed according to the expansion and contraction of the elastic member 17.
  • a heat flux which is a heat flow between the inside and the outside of the elastic member 17, passes through the heat flux sensor 10.
  • the heat flux sensor 10 is a sensor capable of detecting a heat flux crossing itself.
  • the heat flux sensor 10 outputs the detected heat flux, for example, as a voltage signal.
  • the heat flux sensor 10 includes an insulating base 11, a back surface protection member 12, a surface protection member 13, a first interlayer connection member 14, and a second interlayer connection member 15.
  • FIG. 3 has expanded the direction which goes to the surface protection member 13 from the back surface protection member 12 compared with an actual shape.
  • the back surface protection member 12 is formed of a film made of a thermoplastic resin having the same size as the size of the insulating base 11.
  • the back surface protection member 12 is provided on the back surface 112 of the insulating base 11.
  • a plurality of back surface patterns 114 patterned with copper foil or the like are provided.
  • the back surface pattern 114 electrically connects the first interlayer connection member 14 and the second interlayer connection member 15.
  • the surface protection member 13 is formed of a film made of a thermoplastic resin having the same size as the size of the insulating base 11.
  • the surface protection member 13 is provided on the surface 113 of the insulating base 11.
  • a plurality of surface patterns 115 in which a copper foil or the like is patterned are formed.
  • the surface pattern 115 electrically connects the first interlayer connection member 14 and the second interlayer connection member 15.
  • the plurality of first interlayer connection members 14 and the plurality of second interlayer connection members 15 are made of different metals so as to exert the Seebeck effect.
  • the first interlayer connection member 14 may be made of a metal compound which is solid-phase sintered so that the powder of the Bi-Sb-Te alloy constituting the P-type maintains the crystal structure of a plurality of metal atoms before sintering. It is formed.
  • the second interlayer connection member 15 is formed of a metal compound which is solid phase sintered so that the powder of the Bi-Te alloy constituting the N-type maintains a predetermined crystal structure of a plurality of metal atoms before sintering. It is done.
  • the first interlayer connection member 14 and the second interlayer connection member 15 are alternately connected in series by the back surface pattern 114 and the surface pattern 115.
  • the heat flux sensor 10 when the amount of heat flowing in the thickness direction of the heat flux sensor 10 (the direction from the back surface protection member 12 to the surface protection member 13 in FIG. 3) changes, the first layer alternately connected in series The electromotive voltage generated in the connection member 14 and the second interlayer connection member 15 changes.
  • the heat flux sensor 10 externally outputs this voltage as a detection signal via the output lines 143 and 153.
  • the magnitude of the heat flux passing through the heat flux sensor 10 is calculated based on the detection signal.
  • FIG. 5 is a schematic view showing a state in which the detection object 95 to be detected is set in the position detection system 9.
  • the position detection system 9 has a base 90 as a “reference”, a support base 91, a mounting base 92, a position detection device 1, and the like.
  • the object to be detected 95 is, for example, a driving device such as a robot or a single-axis loader, and the position detection system 9 can detect a change in position of the motor due to vibration accompanying the drive of the object to be detected 95 is there.
  • the base 90 is a member fixed to a floor or the like.
  • the base 90 serves as a reference in the positional change of the detection object 95.
  • On the base 90 a support base 91 and a mounting table 92 are provided.
  • the support base 91 supports the position detection device 1 so that the position detection device 1 is positioned at a predetermined position on the base 90.
  • the support 91 includes a base 911, legs 912, a slider 913, and a stage 914.
  • the base portion 911 is fixed to the base 90.
  • the legs 912 are formed to extend from the base 911 in the upper direction.
  • the leg 912 is provided with a slider 913.
  • the slider 913 is provided on the leg 912 movably along the direction in which the leg 912 extends.
  • the slider 913 supports the stage portion 914 from the ground side, and can change the distance between the base portion 911 and the stage portion 914.
  • the stage 914 is provided on the leg 912.
  • the stage portion 914 has a screw hole screwable with the bolt 98. Thereby, the stage portion 914 can fix the base member 18 relative to the base 90 so as not to move relative thereto.
  • FIG. 6 the enlarged view of elastic member 17 periphery provided in the position detection system 9 is shown.
  • the sealing part 16 is abbreviate
  • a state before the elastic member 17 is deformed is shown by a dotted line
  • a state after the elastic member 17 is deformed is shown by a solid line.
  • the inside of the elastic member 17 is Heat is generated.
  • the heat flux sensor 10 detects the magnitude of the heat flux.
  • the elastic member 17 absorbs heat, so the heat flux from the outside to the inside of the elastic member 17 is Occur.
  • the heat flux sensor 10 detects the magnitude of the heat flux. In the position detection device 1, the magnitude and direction of the positional change of the detection subject 95 moving integrally with the stage portion 922 with respect to the base 90 based on the magnitude and direction of flow of the heat flux thus detected.
  • (A) In the position detection device 1 according to the first embodiment, when the elastic member 17 generates heat or absorbs heat according to the deformation of the pressing member 19 with respect to the base member 18, the flow of heat between the inside and the outside of the elastic member 17 Heat flux is generated.
  • the heat flux has a certain relationship with the degree of compression or extension of the elastic member 17, that is, the magnitude and direction of the acting force acting on the elastic member 17 due to the change in position of the detection object 95.
  • the magnitude of the heat flux can be detected by the heat flux sensor 10.
  • the position detection device 1 can easily detect the amount of change in the relative position of the detection target 95 with respect to the base 90 and the direction of the change based on the change in heat flux.
  • the elastic member 17 and the heat flux sensor 10 are accommodated in the accommodation space 160. Further, the elastic member 17 and the heat flux sensor 10 of the accommodation space 160 are sealed by the sealing portion 16. Thereby, breakage of the elastic member 17 and the heat flux sensor 10 due to an unexpected action force on the position detection device 1 can be prevented.
  • the position detection device 1 according to the first embodiment is fixed by a bolt 98 to the stage portion 914 fixed to the base 90.
  • the position detection device 1 can be provided at a predetermined position. Therefore, the reproducibility of the detection result of the positional change of the detection object 95 with respect to the base 90 can be further improved.
  • (D) In the position detection device 1 according to the first embodiment, it is possible to adjust the initial amount of elastic deformation of the elastic member 17 by the distance between the accommodation surface 183 and the accommodation surface 193. Since the elastic member 17 becomes hard as the amount of deformation is large, it can follow rapid changes in position. On the other hand, when the acting force caused by the position change of the detection target 95 is weak, deformation is less likely to occur, so the voltage output from the heat flux sensor 10 becomes smaller. Therefore, in the position detection device 1, when the acting force caused by the position change of the detection object 95 is weak and the change is slow, the initial deformation amount of the elastic member 17 is reduced so as to decrease. Make the spacing relatively wide.
  • the distance between the housing surface 183 and the housing surface 193 is relatively narrowed so that the initial deformation amount of the elastic member 17 becomes large.
  • the distance between the housing surface 183 and the housing surface 193 is adjusted in accordance with the characteristics of the acting force caused by the change in position of the detection target 95. Thereby, the position change of the to-be-detected body 95 can be detected reliably.
  • the pressing member 19 is formed of an elastically deformable material. After the elastic member 17 is deformed by the action force caused by the position change of the detection object 95, when the acting force disappears, the pressing member 19 to which the elastic member 17 is adhered as well as its own restoring force is It is also returned to the original shape by the restoring force that tries to return to the original shape. As a result, the elastic member 17 recovers to its original shape after deformation relatively quickly, so even if the direction in which the acting force acts repeatedly changes in a relatively short time, the elastic member 17 follows Can be deformed. Therefore, it is possible to reliably detect the positional change of the detection subject 95 repeated in a relatively short time.
  • the ground wire 101 of the heat flux sensor 10 is provided so as to be sandwiched between the base member 18 and the pressing member 19 in the groove 180. Thereby, the site
  • the second embodiment differs from the first embodiment in the configuration of the tracking unit.
  • symbol is attached
  • the position detection apparatus 2 by 2nd embodiment is provided with the base member 18, the pressing member 29 as a "following part", the elastic member 17, and the heat flux sensor 10, as shown to FIG.
  • the upper side in the direction of gravity when applied to the position detection device 2 in the position detection system 9 is taken as the “heaven” direction
  • the lower side in the gravity direction is taken as the “ground” direction.
  • the pressing member 29 has a fixed portion 291, two arm portions 292 as “deformed portions”, and an abutting portion 293 as "movable portion".
  • the pressing member 29 is provided so as to be deformable with respect to the base member 18 in a state of being in contact with the mounting table 92.
  • the fixing portion 291 is a substantially flat portion.
  • the fixing portion 291 is provided on the end surface 189 of the support portion 182.
  • the fixing portion 291 has a through hole 294 through which two bolts 99 can be inserted.
  • the fixing portion 291 is fixed to the base member 18 by bolts 99 inserted into the through holes 294 and 187.
  • the abutting portion 293 is a flat plate-like portion having a smaller area than the fixing portion 291.
  • the entire surface of one surface 296 as “the end surface of the following portion forming the accommodation space” formed on the ground side is bonded to one surface 171 of the elastic member 17 by, for example, an adhesive.
  • the other surface 297 formed on the top side of the contact portion 293 is in contact with the end surface 924 of the mounting table 92.
  • the second embodiment can achieve the same effects as the effects (a) and (c) to (f) of the first embodiment, and can further improve the detection accuracy of the position change of the detection object 95.
  • the pressing member 39 has a fixed portion 391 and a thin plate portion 392.
  • the fixing portion 391 and the thin plate portion 392 are integrally formed of a conductive and elastically deformable material.
  • the fixing portion 391 is a substantially flat portion.
  • the fixing portion 391 is provided on the end surface 189 of the support portion 182.
  • the fixing portion 391 has a through hole 393 through which two bolts 99 can be inserted.
  • the fixing portion 391 is fixed to the base member 18 by bolts 99 inserted into the through holes 393 and 187.
  • the thin plate portion 392 is provided on the end surface 394 on the heat flux sensor 10 side of the fixed portion 391.
  • the thin plate portion 392 is formed such that the thickness in the top-bottom direction is smaller than the thickness in the top-bottom direction of the fixed portion 391.
  • the end face 395 on the ground side of the thin plate portion 392 is bonded to one surface 171 of the elastic member 17 by, for example, an adhesive.
  • the position detection device 3 according to the third embodiment is formed so that the thickness of the thin plate portion 392 to which the action force resulting from the position change of the detection target 95 acts becomes relatively thin. Thereby, the elastic member 17 is deformed even with a small acting force, and heat absorption or heat generation of the elastic member 17 is performed. Therefore, the third embodiment can achieve the same effects as the effects (a) and (c) to (f) of the first embodiment, and can further improve the detection accuracy of the positional change of the detection object 95. Further, in the position detection device 3, the fixing portion 391 connected to the thin plate portion 392 and fixed to the base member 18 is formed so that the thickness in the vertical direction becomes relatively thick.
  • the pressing member 39 can be reliably fixed to the base member 18 while the detection accuracy of the positional change of the detection target 95 is further improved by the thin plate portion 392 having a relatively thin thickness in the vertical direction. Therefore, breakage of the position detection device 3 due to the acting force caused by the position change of the detection object 95 can be prevented.
  • a position detection device according to a fourth embodiment will be described based on FIG.
  • the fourth embodiment is different from the first embodiment in the configuration of the tracking unit.
  • symbol is attached
  • the position detection device 4 includes a base member 18, a support member 48 as a “follower”, a pressing member 49 as a “follower” and a “length adjuster”, an elastic member 17, and a heat flow.
  • a bundle sensor 10 is provided.
  • the upper side in the direction of gravity when applied to the position detection device 4 in the position detection system 9 is taken as the “heaven” direction, and the lower side in the gravity direction is taken as the “ground” direction.
  • the support member 48 is a member formed in a flat plate shape from an elastically deformable material having conductivity.
  • the support member 48 has a fixed portion 481, an abutting portion 482, and a support portion 483.
  • the fixing portion 481 is provided on the end surface 189 of the support portion 182.
  • the fixing portion 481 has a through hole 484 through which two bolts 99 can be inserted.
  • the fixing portion 481 is fixed to the base member 18 by a bolt 99 inserted into the through holes 484 and 187.
  • the contact portion 482 is provided on the heat flux sensor 10 side of the fixed portion 481.
  • the contact portion 482 is such that the end surface 485 on the ground side as “the end surface of the following portion forming the accommodation space” is adhered to one surface 171 of the elastic member 17 by an adhesive, for example.
  • the support portion 483 is provided on the opposite side of the fixing portion 481 of the contact portion 482.
  • the support portion 483 has a plurality of through holes 486 through which the pressing member 49 can be inserted.
  • the plurality of through holes 486 are formed along the direction away from the contact portion 482.
  • the pressing member 49 has a rod member 491 and two nuts 492, 493.
  • the rod member 491 is inserted into any one of the plurality of through holes 486 that the support portion 483 has.
  • a screw groove is formed on the radially outer wall of the rod member 491.
  • the two nuts 492 and 493 are provided to engage with the thread groove of the rod member 491 inserted into the through hole 486.
  • the nut 492 can be in contact with the top surface 487 of the support portion 483 while being engaged with the screw groove of the rod member 491.
  • the nut 493 can be in contact with the ground surface 488 of the support portion 483 while being engaged with the screw groove of the rod member 491.
  • the support portion 483 is sandwiched by the two nuts 492, 493.
  • the distance from the contact surface 494 of the rod member 491 to the surface 487 of the support portion 483 can be changed such that the contact surface 494 on the top side of the rod member 491 contacts the end surface 924 of the mounting table 92.
  • the position detection device 4 adjusts the height of the contact surface 494 of the pressing member 49 in accordance with the degree of position change of the detected body 95, and heat flow in detection of the position change of the detected body 95.
  • the output characteristic of bundle sensor 10 can be made into an optimal state. Therefore, the fourth embodiment can achieve the same effects as the effects (a) and (c) to (f) of the first embodiment, and can further improve the detection accuracy of the position change of the detection object 95.
  • the plurality of through holes 486 included in the support portion 483 are formed along the direction away from the contact portion 482.
  • the position of the pressing member 49 in the horizontal direction is adjusted according to the positional relationship between the stage portion 914 of the support table 91 and the stage portion 922 of the mounting table 92, and the pressing member 49 is reliably brought into contact with the stage portion 922. It can be connected. Therefore, the positional change of the detection object 95 can be detected reliably.
  • the fifth embodiment differs from the first embodiment in the configuration of the tracking unit.
  • symbol is attached
  • the position detection device 5 includes a base member 18, a support member 57 as a “follower”, a pressing member 58 as a “follower” and a “length adjuster”, a “follower” and a “longer”. It comprises a nut 59 as a height adjustment portion, an elastic member 17 and a heat flux sensor 10.
  • a base member 18 as a “follower”
  • a pressing member 58 as a “follower”
  • a “length adjuster” a "follower” and a “longer”.
  • a nut 59 as a height adjustment portion
  • an elastic member 17 as a heat flux sensor 10.
  • the support member 57 has a fixing portion 571 and a screw hole portion 572 as a “length adjusting portion”.
  • the fixing portion 571 and the screw hole portion 572 are integrally formed of a conductive and elastically deformable material.
  • the support member 57 supports the pressing member 58.
  • the fixing portion 571 is a substantially flat portion.
  • the fixing portion 571 is provided on the end surface 189 of the support portion 182.
  • the fixing portion 571 has a through hole 573 through which two bolts 99 can be inserted.
  • the fixing portion 571 is fixed to the base member 18 by a bolt 99 inserted into the through holes 573 and 187.
  • the screw hole portion 572 is provided on the heat flux sensor 10 side of the fixed portion 571 and on the top side of the elastic member 17.
  • the screw hole portion 572 has a screw hole 574 penetrating the screw hole portion 572 in a direction substantially perpendicular to the one surface 171 of the elastic member 17.
  • the end surface 575 as “the end surface of the following portion forming the accommodation space” on the ground side of the screw hole portion 572 is adhered to one surface 171 of the elastic member 17 by an adhesive, for example.
  • the pressing member 58 has a screw portion 581 and an abutting portion 582.
  • the screw portion 581 is formed in a substantially rod shape, and the screw portion 581 is formed with a screw thread on the outer wall in the radial direction.
  • the screw portion 581 engages with a thread formed on the inner wall of the screw hole 572 in a state of being inserted into the screw hole 572.
  • the contact portion 582 is provided on the top side of the screw portion 581.
  • the contact portion 582 is formed such that the contact surface 583 on the top side can contact the end surface 924 of the mounting table 92.
  • the nut 59 is provided radially outward of the screw portion 581 of the pressing member 58.
  • the nut 59 determines the relative position of the pressing member 58 to the support member 57 depending on the position of screw fastening with respect to the screw portion 581. That is, it is possible to adjust the length of the nut 59 projecting from the screw hole 572 of the pressing member 58.
  • the length projecting from the screw hole portion 572 of the pressing member 58 is adjusted according to the degree of position change of the detected body 95, and detection of the position change of the detected body 95
  • the output characteristics of the heat flux sensor 10 can be made optimal in Therefore, the fourth embodiment can achieve the same effects as the effects (a) and (c) to (f) of the first embodiment, and can further improve the detection accuracy of the position change of the detection object 95.
  • the pressing member 58 capable of coming into contact with the end surface 924 of the mounting table 92 is positioned in the upper direction of the elastic member 17 and provided on the upper side of the elastic member 17 through the screw hole 572. ing.
  • the acting force resulting from the positional change of the detection target 95 acts from immediately above the elastic member 17, so that a minute positional change of the mounting table 92 can be detected. Therefore, the detection accuracy of the position change of the detection object 95 can be further improved.
  • the sixth embodiment differs from the first embodiment in the configuration of the tracking unit.
  • symbol is attached
  • the position detection device 6 includes a base member 18, a first support member 67 as a “follower”, a second support member 68 as a “follower”, a “follower” and a “rotary member”.
  • the roller 69, the elastic member 17, and the heat flux sensor 10 are provided.
  • the upper side in the direction of gravity when applied to the position detection device 6 in the position detection system 9 is taken as the “heaven” direction
  • the lower side in the gravity direction is taken as the “ground” direction.
  • the fixing portion 671 has an end surface 675 as “the end surface of the contact portion forming the accommodation space” that abuts on one surface 171 of the elastic member 17 at a portion provided on the elastic member 17.
  • the end surface 675 is bonded to one surface 171 by, for example, an adhesive.
  • the extending portion 672 is a substantially flat portion formed to extend in the horizontal direction from an end portion having the end surface 675 of the fixing portion 671.
  • the extending portion 672 has a through hole 676 through which the connecting member 60 connecting the first support member 67 and the second support member 68 can be inserted.
  • the seventh embodiment differs from the first embodiment in the configuration of the tracking unit.
  • symbol is attached
  • the first support member 77 is provided on the end face 189 of the support portion 182.
  • the first support member 77 has a through hole 771 through which two bolts 99 can be inserted.
  • the second support member 78 has a fixing portion 781 and a guiding portion 782.
  • the fixing portion 781 is a substantially flat portion.
  • the fixing portion 781 is provided on the top side of the first support member 77.
  • the fixing portion 781 has a through hole 783 through which two bolts 99 can be inserted.
  • the fixing portion 781 is fixed to the base member 18 by bolts 99 inserted into the through holes 783, 771, and 187 through the first support member 67.
  • the guide portion 782 is provided on the heat flux sensor 10 side of the fixed portion 781.
  • the guide portion 782 is formed at a position where the end surface 785 on the ground side is separated from the one surface 171 of the elastic member 17.
  • the guide portion 782 has a through hole 786 through which the pressing member 79 can be inserted.
  • the through hole 786 is formed to be located in the upper direction of the elastic member 17.
  • the contact portion 793 is a truncated cone portion provided on the top side of the insertion portion 792.
  • the contact portion 793 has a side surface 795 inclined with respect to the vertical direction and an end surface 796 substantially perpendicular to the vertical direction.
  • the side surface 795 and the end surface 796 are formed to be able to abut on the end surface 924 of the mounting table 92.
  • the pressing member 79 is formed separately from the first support member 77 and the second support member 78.
  • the pressing member 79 is not pushed back by the reaction force of the elastic deformation, so that the pressing member 79 It is possible to apply an acting force resulting from the positional change of the detection object 95 stably and perpendicularly. Therefore, the seventh embodiment achieves the same effect as the effects (a), (c), (d) and (f) of the first embodiment, and further improves the detection accuracy of the position change of the detection object 95. be able to.
  • the pressing member 79 has a side surface 795 inclined with respect to the vertical direction, and an end surface 796 substantially perpendicular to the vertical direction. As a result, it is possible to prevent one side of the mounting table 92 from being hit. Therefore, since the relationship between the change in position of the detection object 95 and the output voltage of the heat flux sensor 10 is linear, the change in position of the detection object 95 can be easily calculated.
  • the position detection device detects, for example, a change in position of a driving device such as a robot or a single-axis loader.
  • a driving device such as a robot or a single-axis loader.
  • the target to which the position detection device can detect the change in relative position is not limited to this.
  • it may be an apparatus driven by an externally supplied driving force.
  • the pressing member and the elastic member, the elastic member and the heat flux sensor, and the heat flux sensor and the base member are adhered by an adhesive.
  • the method of bonding them is not limited to this. It may be adhered by an adhesive sheet.
  • the elastic member may be deformed according to the deformation of the pressing member, and the heat flux sensor may be provided so as to detect the movement of heat due to the deformation of the elastic member.
  • the sealing portion in the first embodiment may be applied to the second to seventh embodiments.
  • the pressing member has the fixing portion and the thin plate portion whose thickness in the vertical direction is thinner than that of the fixing portion, and they are integrally formed.
  • a reinforcing member may be provided between the pressing member and the base member, which have a relatively thin thickness in the vertical direction.
  • the position detection device 3 shown in FIG. 15 includes a base member 18, a reinforcing member 33, a pressing member 34 as a “follower”, an elastic member 17, and a heat flux sensor 10.
  • the upper side in the direction of gravity when applied to the position detection device 3 in the position detection system 9 is taken as the “heaven” direction, and the lower side in the gravity direction is taken as the “ground” direction.
  • the end surface 342 on the ground side away from the portion where the through hole 341 is formed is adhered to one surface 171 of the elastic member 17 by, for example, an adhesive.
  • the position detection device 3 shown in FIG. 15 can also exhibit the same effect as the effect of the third embodiment with such a configuration.
  • the pressing member of the first and third embodiments, the arm portion of the second embodiment, the support member of the fourth and fifth embodiments, and the first support member of the sixth embodiment are formed of an elastically deformable material. And the elastic member.
  • the elastic member is returned to its original shape not only by its own restoring force but also by the restoring force that causes the member bonded to the elastic member to return to its original shape.
  • the member adhered to the elastic member according to the characteristics of the acting force such as the magnitude of the acting force caused by the position change of the body to be detected and the period of the vibration accompanying the position change of the body It is possible to widen the range in which the positional change of the object to be detected can be detected by changing the rigidity, thickness or the like of the material forming the.
  • the position detection device is fixed to the stage unit by a bolt.
  • the method of fixing the position detection device to the stage portion is not limited to this. Reproducibility can be further improved by providing positioning pins and grooves for attaching the position detection device to the stage portion.
  • the height of the support for supporting the position detection device is adjusted by the slider.
  • the height may be adjusted with a screw or the like, or supports having different heights may be prepared.
  • the elastic member is formed of viton.
  • Other types of rubber, resin, metal, etc. may be made of a material that generates heat when contracted and absorbs heat when extended.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

被検出体(92,95)の基準(90)に対する相対位置の変化を検出可能な位置検出装置であって、基準に対して相対移動不能な基部(18)、被検出体の前記基準に対する相対移動に追従して変形可能または移動可能に設けられる追従部(19,29,34,39,48,49,57,58,59,67,68,69,79)、伸縮可能部材(17)、及び、熱流束検出部(10)を備える。伸縮可能部材は、基部と追従部との間に設けられ、追従部の変形または移動に応じて伸縮可能な材料から形成され、収縮すると発熱し伸長すると吸熱する。熱流束検出部は、伸縮可能部材の熱が伝わるよう設けられ、伸縮可能部材の内部と外部との間の熱の流れである熱流束を検出可能である。

Description

位置検出装置 関連出願の相互参照
 本出願は、2017年6月27日に出願された特許出願番号2017-124878号に基づくものであり、ここにその記載内容を援用する。
 本開示は、位置検出装置に関する。
 従来、基準に対する部材の位置変化を検出可能な位置検出装置が知られている。例えば、特許文献1には、変位センサ、変位センサの両端に固定される二つの固定部材、及び、固定部材に連結される二つのベースを備え、一定距離離れた二つの位置の相対位置の変化を検出可能な歪みクラック計測装置が記載されている。
特開2009-229183号公報
 しかしながら、特許文献1に記載の歪みクラック計測装置では、二つのベースを一定距離離した状態で被検出体に固定するため、二つのベースが固定されるそれぞれの部位の位置関係によっては、検出される歪みクラックの大きさが変化するおそれがある。このため、例えば、歪みクラック計測装置の取り付け場所を検討するために被検出体に複数回取り付ける場合など、被検出体に取り付けるごとに出力特性が変化するため、再現性があるデータを得ることができない。
 本開示の目的は、被検出体の位置変化を再現性よくかつ簡便に検出可能な位置検出装置を提供することにある。
 本開示は、被検出体の基準に対する相対位置の変化を検出可能な位置検出装置であって、基部、追従部、伸縮可能部材、及び、熱流束検出部を備える。
 基部は、基準に対して相対移動不能である。
 追従部は、被検出体の基準に対する相対移動に追従して変形可能または移動可能に設けられる。
 伸縮可能部材は、基部と追従部との間に設けられ、追従部の変形または移動に応じて伸縮可能な材料から形成され、収縮すると発熱し伸長すると吸熱する。
 熱流束検出部は、伸縮可能部材の熱が伝わるよう設けられ、伸縮可能部材の内部と外部との間の熱の流れである熱流束を検出可能である。
 本開示の位置検出装置では、基部に対する追従部の変形または移動に応じて伸縮可能部材が発熱または吸熱すると、伸縮可能部材の内部と外部との間の熱の流れである熱流束が発生する。この熱流束は、伸縮可能部材の圧縮または伸長の度合い、すなわち、被検出体の位置変化によって伸縮可能部材に作用する作用力の大きさ及び方向と一定の関係がある。本開示の位置検出装置では、この熱流束の大きさを熱流束検出部によって検出することができる。これにより、本開示の位置検出装置は、当該熱流束の変化によって基準に対する被検出体の相対位置の変化量及び変化の方向を簡便に検出することができる。
 また、本開示の位置検出装置は、基部、追従部、伸縮可能部材、及び、熱流束検出部が一つのユニットとして構成されている。これにより、伸縮可能部材及び熱流束検出部の位置は当該ユニット内において一定であるため、基部を基準に対して相対移動不能に固定するとともに、追従部を被検出体の基準に対する相対移動に追従して変形可能なよう設けることによって、基部に対する追従部の変形を再現性よく検出することができる。
 このように、本開示の位置検出装置は、伸縮によって外部との間における熱流束を発生させる伸縮可能部材と当該熱流束の大きさを検出可能な熱流束検出部とを基部及び追従部と一体にユニット化することによって、基準に対する被検出体の位置変化を再現性よくかつ簡便に検出することができる。
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な技術により、より明確になる。その図面は、
図1は、第一実施形態による位置検出装置の模式図であり、 図2は、図1のII矢視図であり、 図3は、第一実施形態による位置検出装置が備える熱流束センサの断面図であり、 図4は、図3のIV矢視図であり、 図5は、第一実施形態による位置検出装置の作用を示す模式図であり、 図6は、図5のVI部拡大図であり、 図7は、第二実施形態による位置検出装置の模式図であり、 図8は、図7のVIII矢視図であり、 図9は、第三実施形態による位置検出装置の模式図であり、 図10は、第四実施形態による位置検出装置の模式図であり、 図11は、第五実施形態による位置検出装置の模式図であり、 図12は、第六実施形態による位置検出装置の模式図であり、 図13は、第七実施形態による位置検出装置の模式図であり、 図14は、図13のXIV矢視図であり、 図15は、その他の実施形態による位置検出装置の模式図である。
 以下、本開示の複数の実施形態について図面に基づいて説明する。
 (第一実施形態)
 第一実施形態による位置検出装置を図1~6に基づいて説明する。第一実施形態による位置検出装置1は、「基部」としてのベース部材18、「追従部」としての押し当て部材19、「伸縮可能部材」としての弾性部材17、及び、「熱流束検出部」としての熱流束センサ10を備える。なお、図1、6では、図5に示す位置検出システム9に位置検出装置1に適用するときの重力方向上方を「天」方向とし、重力方向下方を「地」方向とする。
 ベース部材18は、導電性を有する材料から略直方体状に形成されている部材である。ベース部材18は、収容部181、及び、支持部182を有する。
 収容部181は、ベース部材18の一端側に設けられている板状の部位である。収容部181は、天側に後述する熱流束センサ10が設けられる「収容空間を形成する基部の端面」としての収容面183を有する。収容面183の面積は、熱流束センサ10の面積に比べ大きい。収容部181は、地側に後述する支持台91のステージ部914に当接している端面184を有する。
 支持部182は、ベース部材18の他端側であって、収容部181の収容面183と端面184とを接続する面185に設けられている。支持部182は、二つの「固定部材」としてのボルト98を挿入可能な貫通孔186、及び、二つの「締結部材」としてのボルト99を挿入可能な貫通孔187を有する。貫通孔186に挿入されるボルト98は、ベース部材18のステージ部914への固定に利用される。これにより、ベース部材18は、ステージ部914に対して相対移動不能となる。貫通孔187に挿入されるボルト99は、ベース部材18と押し当て部材19との固定に利用される。
 支持部182の天地方向の厚みは、収容部181の天地方向の厚みに比べ厚い。支持部182の地側の端面188は、収容部181の端面184と同一平面となるよう形成されている。これにより、ベース部材18は、収容部181の天側が支持部182に比べて凹むよう形成されている。支持部182の天側の端面189は、押し当て部材19に当接している。
 支持部182の端面189には、支持部182の収容部181側から収容部181とは反対側とを連通可能な「配線空間」としての溝180が形成されている。
 押し当て部材19は、導電性を有する弾性変形可能な材料から平板状に形成されている部材である。押し当て部材19は、「被検出体」としての載置台92に押し当てられ、載置台92の移動に追従してベース部材18に対して変形可能に設けられる。押し当て部材19は、例えば、接着剤によって、弾性部材17と接着されている。
 押し当て部材19の一方の端部の端面192は、ベース部材18の端面189に当接するよう形成されている。押し当て部材19は、二つのボルト99を挿通可能な貫通孔191を有する。押し当て部材19は、貫通孔191,187に挿入されるボルト99によってベース部材18に固定される。
 押し当て部材19の他方の端部は、ベース部材18の収容面183と対向する位置にある「収容空間を形成する追従部の端面」としての収容面193を有する。これにより、ベース部材18の収容面183と押し当て部材19の収容面193との間に、弾性部材17及び熱流束センサ10を収容可能な収容空間160が形成される。収容空間160は、溝180と連通している。
 弾性部材17は、例えば、バイトンゴムから形成されている略平板状の部材である。弾性部材17は、収容空間160に設けられている。弾性部材17は、一方の面171が押し当て部材19の収容面193に接着されている。弾性部材17は、押し当て部材19の変形に応じて収縮すると発熱し、伸長すると吸熱する。
 熱流束センサ10は、弾性部材17とベース部材18との間に設けられている。熱流束センサ10は、弾性部材17及びベース部材18と、例えば、接着剤によって接着されている。熱流束センサ10は、可撓性を有する部材であって、弾性部材17の伸縮に応じて変形可能である。熱流束センサ10には弾性部材17の内部と外部との間の熱の流れである熱流束が通る。熱流束センサ10は、自身を横切る熱流束を検出可能なセンサである。熱流束センサ10は、検出した熱流束を、例えば、電圧信号として出力する。
 熱流束センサ10は、図3に示すように、絶縁基材11、裏面保護部材12、表面保護部材13、第一層間接続部材14、及び、第二層間接続部材15を有する。なお、図3は、熱流束センサ10の構成を分かりやすくするため、実際の形状に比べて裏面保護部材12から表面保護部材13に向かう方向を拡大している。
 絶縁基材11は、熱可塑性樹脂からなるフィルムから形成されている。絶縁基材11は、厚さ方向に貫通する複数のビアホール111を有する。ビアホール111には、第一層間接続部材14または第二層間接続部材15が設けられている。第一層間接続部材14が設けられているビアホール111の隣には第二層間接続部材15が設けられるビアホール111が設けられている。すなわち、絶縁基材11には、第一層間接続部材14と第二層間接続部材15とが離間して互い違いになるように配置されている。
 裏面保護部材12は、大きさが絶縁基材11の大きさと同じ熱可塑性樹脂からなるフィルムから形成されている。裏面保護部材12は、絶縁基材11の裏面112に設けられている。絶縁基材11の裏面112と裏面保護部材12の絶縁基材11側の面121との間には、銅箔などがパターニングされた複数の裏面パターン114が設けられている。裏面パターン114は、第一層間接続部材14と第二層間接続部材15とを電気的に接続している。
 表面保護部材13は、大きさが絶縁基材11の大きさと同じ熱可塑性樹脂からなるフィルムから形成されている。表面保護部材13は、絶縁基材11の表面113に設けられている。絶縁基材11の表面113と表面保護部材13の絶縁基材11側の面131との間には、銅箔などがパターニングされた複数の表面パターン115が形成されている。表面パターン115は、第一層間接続部材14と第二層間接続部材15とを電気的に接続している。
 複数の第一層間接続部材14と複数の第二層間接続部材15とは、ゼーベック効果を発揮するよう互いに異なる金属で構成されている。例えば、第一層間接続部材14は、P型を構成するBi-Sb-Te合金の粉末が焼結前における複数の金属原子の結晶構造を維持するように固相焼結された金属化合物から形成されている。また、第二層間接続部材15は、N型を構成するBi-Te合金の粉末が焼結前における複数の金属原子の所定の結晶構造を維持するように固相焼結された金属化合物から形成されている。第一層間接続部材14と第二層間接続部材15とは、裏面パターン114及び表面パターン115によって交互に直列されている。
 図3,4に示すように、複数の第一層間接続部材14のうち一つの第一層間接続部材140は、端子141と電気的に接続している。また、複数の第二層間接続部材15のうち一つの第二層間接続部材150は、端子151と電気的に接続している。端子141、151は、図4に示すように、一つの熱流束センサ10内で裏面パターン114、第一層間接続部材14、表面パターン115、及び、第二層間接続部材15が蛇行するよう接続されている両端に位置している(図4の二点鎖線L4参照)。端子141、151は、表面保護部材13が有する開口132を介して外部に露出している。
 端子141は、接続バンプ142を介して「電気配線」としての出力線143と電気的に接続している。また、端子151は、接続バンプ152を介して「電気配線」としての出力線153と電気的に接続している。出力線143と出力線153とは、一つのケーブル100として束ねられている。ケーブル100は、図1,2に示すように、溝180に収容されている。ケーブル100は、いわゆる、同軸ケーブルの形態をなしており、熱流束センサ10のアース線101が網組銅線として、出力線143,153の周囲に配置されている。このとき、アース線101は、溝180においてベース部材18と押し当て部材19とに挟まれるよう設けられている。
 熱流束センサ10では、熱流束センサ10の厚さ方向(図3の裏面保護部材12から表面保護部材13に向かう方向)に流れる熱量の大きさが変化すると、交互に直列接続された第一層間接続部材14及び第二層間接続部材15において発生する起電圧が変化する。熱流束センサ10では、この電圧を出力線143、153を介して検出信号として外部に出力する。この検出信号に基づいて熱流束センサ10を通る熱流束の大きさが算出される。
 弾性部材17及び熱流束センサ10は、収容空間160において、封止部16によって封止されている。これにより、外部からの不意の外力によって弾性部材17や熱流束センサ10が破損することを防止可能である。
 次に、第一実施形態による位置検出装置1の作用を図5,6に基づいて説明する。
 図5には、検出対象である被検出体95を位置検出システム9にセットした状態を示す模式図である。位置検出システム9は、「基準」としてのベース90、支持台91、載置台92、位置検出装置1などを有する。ここでは、被検出体95は、例えば、ロボットや一軸ローダなどの駆動機器であって、位置検出システム9は、被検出体95の駆動に伴う振動をモータの位置変化を検出することが可能である。
 ベース90は、床等に固定される部材である。ベース90は、被検出体95の位置変化における基準となる。ベース90上には、支持台91及び載置台92が設けられる。
 支持台91は、ベース90上の所定の位置に位置検出装置1が位置するよう位置検出装置1を支持する。支持台91は、ベース部911、脚部912、スライダ913、及び、ステージ部914を有する。
 ベース部911は、ベース90に固定されている。
 脚部912は、ベース部911から天方向に延びるよう形成されている。脚部912には、スライダ913が設けられている。スライダ913は、脚部912が延びる方向に沿って移動可能に脚部912に設けられている。スライダ913は、ステージ部914を地側から支持し、ベース部911とステージ部914との間の距離を変更可能である。
 ステージ部914は、脚部912に設けられている。ステージ部914は、ボルト98とねじ結合可能なねじ穴を有する。これにより、ステージ部914は、ベース部材18をベース90に対して相対移動不能に固定可能である。
 載置台92は、ベース90上の所定の位置に被検出体95が位置するよう被検出体95を支持する。載置台92は、二つの脚部921及びステージ部922を有する。
 脚部921は、ベース90から天方向に延びるよう形成されている。
 ステージ部922は、二つの脚部921の天側の端部に設けられている。ステージ部922の天側の載置面923には、被検出体95が載置されている。
 第一実施形態では、位置検出装置1は、押し当て部材19の天側の当接面194が載置台92の地側の端面924に当接するよう設けられている。
 載置台92上の被検出体95の振動などによってステージ部922のベース90に対する位置が変化すると、ステージ部922に当接している押し当て部材19に位置変化に起因する力が作用する。この位置変化に起因する作用力によって押し当て部材19が変形し、収容面183と収容面193との間隔が変化する。収容面183と収容面193との間隔が変化すると、弾性部材17が圧縮または伸長する。このときの位置検出装置1の作用について図6に基づいて説明する。
 図6に、位置検出システム9に設けられている弾性部材17周辺の拡大図を示す。なお、図6では、弾性部材17が変形する前と変形した後とを比較する目的から封止部16を省略している。図6では、弾性部材17が変形する前の状態を点線で示し、弾性部材17が変形した後の状態を実線で示す。
 例えば、図6に示すように、被検出体95の位置変化に起因する作用力Fr1によって収容面183と収容面193との間隔が短くなり弾性部材17が圧縮されると、弾性部材17の内部で熱が発生する。弾性部材17の内部で熱が発生すると、弾性部材17の内部から外部に向かう熱流束が発生する。熱流束センサ10は、この熱流束の大きさを検出する。
 また、被検出体95の位置変化によって収容面183と収容面193との間隔が長くなり弾性部材17が伸長すると、弾性部材17が吸熱するため、弾性部材17の外部から内部に向かう熱流束が発生する。熱流束センサ10は、この熱流束の大きさを検出する。
 位置検出装置1では、このように検出された熱流束の大きさ及び流れの方向に基づいて、ステージ部922と一体となって移動する被検出体95のベース90に対する位置変化の大きさ及び方向を算出する。
 (a)第一実施形態による位置検出装置1では、ベース部材18に対する押し当て部材19の変形に応じて弾性部材17が発熱または吸熱すると、弾性部材17の内部と外部との間の熱の流れである熱流束が発生する。この熱流束は、弾性部材17の圧縮または伸長の度合い、すなわち、被検出体95の位置変化によって弾性部材17に作用する作用力の大きさ及び方向と一定の関係がある。位置検出装置1では、この熱流束の大きさを熱流束センサ10によって検出することができる。これにより、位置検出装置1は、当該熱流束の変化によってベース90に対する被検出体95の相対位置の変化量及び変化の方向を簡便に検出することができる。
 また、位置検出装置1は、ベース部材18、押し当て部材19、弾性部材17、及び、熱流束センサ10が一つのユニットとして構成されている。これにより、弾性部材17及び熱流束センサ10の位置は当該ユニット内において一定であるため、ベース部材18をベース90に対して相対移動不能に固定するとともに、押し当て部材19を被検出体95のベース90に対する相対移動に追従して変形可能なよう設けることによって、ベース部材18に対する押し当て部材19の変形を再現性よく検出することができる。
 このように、第一実施形態による位置検出装置1は、伸縮によって外部との間における熱流束を発生させる弾性部材17と当該熱流束の大きさの検出可能な熱流束センサ10とをベース部材18及び押し当て部材19と一体にユニット化することによって、ベース90に対する被検出体95の位置変化を再現性よくかつ簡便に検出することができる。
 (b)第一実施形態による位置検出装置1は、弾性部材17及び熱流束センサ10が収容空間160に収容されている。また、収容空間160の弾性部材17及び熱流束センサ10は、封止部16によって封止されている。これにより、位置検出装置1への不意の作用力による弾性部材17及び熱流束センサ10の破損を防止することができる。
 (c)第一実施形態による位置検出装置1は、ベース90に固定されているステージ部914にボルト98によって固定されている。これにより、位置検出装置1をステージ部914に設置するとき、所定の位置に位置検出装置1を設けることができる。したがって、ベース90に対する被検出体95の位置変化の検出結果の再現性をさらに向上することができる。
 (d)第一実施形態による位置検出装置1では、収容面183と収容面193との間隔によって弾性部材17の初期の弾性変形量を調整することが可能である。弾性部材17は、変形量が大きいと硬くなるため、急激な位置変化にも追従できる。一方、被検出体95の位置変化に起因する作用力が弱いと変形が起こりにくくなるため、熱流束センサ10が出力する電圧は小さくなる。
 そこで、位置検出装置1では、被検出体95の位置変化に起因する作用力が弱くかつ変化がゆっくりである場合、弾性部材17の初期変形量が小さくなるよう収容面183と収容面193との間隔を比較的広くする。また、被検出体95の位置変化に起因する作用力が強くかつ変化が急激である場合、弾性部材17の初期変形量が大きくなるよう収容面183と収容面193との間隔を比較的狭くする。
 このように、位置検出装置1では、被検出体95の位置変化に起因する作用力の特性に応じて、収容面183と収容面193との間隔を調整する。これにより、被検出体95の位置変化を確実に検出することができる。
 (e)位置検出装置1では、押し当て部材19は、弾性変形可能な材料から形成されている。被検出体95の位置変化に起因する作用力によって弾性部材17が変形した後、当該作用する力がなくなると、弾性部材17は、自らの復元力のみならず接着されている押し当て部材19が元の形状に戻ろうとする復元力によっても元の形状に戻される。これにより、弾性部材17の変形後の元の形状への復元が比較的早くなるため、作用力が作用する方向が比較的短い時間で繰り返し変化する場合であっても、弾性部材17は追従して変形することができる。したがって、比較的短い時間で繰り返される被検出体95の位置変化を確実に検出することができる。
 (f)位置検出装置1では、熱流束センサ10のアース線101が溝180においてベース部材18と押し当て部材19とに挟まれるよう設けられている。これにより、被検出体95のアース線を接続する部位が不要となる。また、熱流束センサ10の同じ位置にアース線101が接地されるため、熱流束センサ10が出力する電圧信号のノイズをアース線101で消せるため、被検出体95の位置変化の検出精度をさらに向上することができる。
 (第二実施形態)
 次に、第二実施形態による位置検出装置を図7,8に基づいて説明する。第二実施形態は、追従部の構成が第一実施形態と異なる。なお、第一実施形態と実質的に同一の部位には同一の符号を付し、説明を省略する。
 第二実施形態による位置検出装置2は、図7,8に示すように、ベース部材18、「追従部」としての押し当て部材29、弾性部材17、及び、熱流束センサ10を備える。なお、図7では、位置検出システム9に位置検出装置2に適用するときの重力方向上方を「天」方向とし、重力方向下方を「地」方向とする。
 押し当て部材29は、固定部291、二本の「変形部」としてのアーム部292、及び、「移動可能部」としての当接部293を有する。押し当て部材29は、載置台92に当接した状態で、ベース部材18に対して変形可能に設けられる。
 固定部291は、略平板状の部位である。固定部291は、支持部182の端面189上に設けられている。固定部291は、二つのボルト99を挿通可能な貫通孔294を有する。固定部291は、貫通孔294,187に挿入されるボルト99によってベース部材18に固定される。
 二本のアーム部292は、固定部291の熱流束センサ10側の端面295に設けられている。二本のアーム部292は、弾性変形可能な材料から略L字状に形成されている。二本のアーム部292の固定部291に接続する側とは反対側は、当接部293を挟むよう形成されている。
 当接部293は、固定部291に比べ面積が小さい平板状の部位である。当接部293は、地側に形成されている「収容空間を形成する追従部の端面」としての一方の面296の全面が弾性部材17の一方の面171に、例えば、接着剤によって接着されている。当接部293の天側に形成されている他方の面297は、載置台92の端面924に当接している。
 第二実施形態による位置検出装置2では、図7に示すように、被検出体95の位置変化に伴い当接部293に作用力Fr2が作用すると、アーム部292が変形する。これにより、当接部293は、一方の面296の全面が弾性部材17の一方の面171に当接したまま作用力Fr2が作用する方向に平行移動する。このとき、弾性部材17は、作用力Fr2の大きさに応じて全体が変形するため、作用力Fr2の大きさに対応した弾性部材17の吸熱または発熱が行われる。したがって、第二実施形態は、第一実施形態の効果(a),(c)~(f)と同じ効果を奏するとともに、被検出体95の位置変化の検出精度をさらに向上することができる。
 (第三実施形態)
 次に、第三実施形態による位置検出装置を図9に基づいて説明する。第二実施形態は、追従部の構成が第一実施形態と異なる。なお、第一実施形態と実質的に同一の部位には同一の符号を付し、説明を省略する。
 第三実施形態による位置検出装置3は、ベース部材18、「追従部」としての押し当て部材39、弾性部材17、及び、熱流束センサ10を備える。なお、図9では、位置検出システム9に位置検出装置3に適用するときの重力方向上方を「天」方向とし、重力方向下方を「地」方向とする。
 押し当て部材39は、固定部391、及び、薄板部392を有する。固定部391及び薄板部392は、導電性を有する弾性変形可能な材料から一体に形成されている。
 固定部391は、略平板状の部位である。固定部391は、支持部182の端面189上に設けられている。固定部391は、二つのボルト99を挿通可能な貫通孔393を有する。固定部391は、貫通孔393,187に挿入されるボルト99によってベース部材18に固定される。
 薄板部392は、固定部391の熱流束センサ10側の端面394に設けられている。薄板部392は、天地方向の厚みが固定部391の天地方向の厚みに比べ薄くなるよう形成されている。薄板部392は、地側の端面395が、例えば、接着剤によって弾性部材17の一方の面171に接着されている。
 第三実施形態による位置検出装置3は、被検出体95の位置変化に起因する作用力が作用する薄板部392の厚みが比較的薄くなるよう形成されている。これにより、小さい作用力でも弾性部材17が変形し、弾性部材17の吸熱または発熱が行われる。したがって、第三実施形態は、第一実施形態の効果(a),(c)~(f)と同じ効果を奏するとともに、被検出体95の位置変化の検出精度をさらに向上することができる。
 また、位置検出装置3は、薄板部392に接続しベース部材18に固定される固定部391が天地方向の厚みが比較的厚くなるよう形成されている。これにより、天地方向の厚みが比較的薄い薄板部392によって被検出体95の位置変化の検出精度をさらに向上しつつ、押し当て部材39をベース部材18に確実に固定することができる。したがって、被検出体95の位置変化に起因する作用力による位置検出装置3の破損を防止することができる。
 (第四実施形態)
 次に、第四実施形態による位置検出装置を図10に基づいて説明する。第四実施形態は、追従部の構成が第一実施形態と異なる。なお、第一実施形態と実質的に同一の部位には同一の符号を付し、説明を省略する。
 第四実施形態による位置検出装置4は、ベース部材18、「追従部」としての支持部材48、「追従部」及び「長さ調整部」としての押し当て部材49、弾性部材17、及び、熱流束センサ10を備える。なお、図10では、位置検出システム9に位置検出装置4に適用するときの重力方向上方を「天」方向とし、重力方向下方を「地」方向とする。
 支持部材48は、導電性を有する弾性変形可能な材料から平板状に形成されている部材である。支持部材48は、固定部481、当接部482、及び、支持部483を有する。
 固定部481は、支持部182の端面189上に設けられている。固定部481は、二つのボルト99を挿通可能な貫通孔484を有する。固定部481は、貫通孔484,187に挿入されるボルト99によってベース部材18に固定される。
 当接部482は、固定部481の熱流束センサ10側に設けられている。当接部482は、「収容空間を形成する追従部の端面」としての地側の端面485が、例えば、接着剤によって弾性部材17の一方の面171に接着されている。
 支持部483は、当接部482の固定部481とは反対側に設けられている。支持部483は、押し当て部材49を挿通可能な複数の貫通孔486を有する。複数の貫通孔486は、当接部482から離れる方向に沿って並ぶよう形成されている。
 押し当て部材49は、棒部材491、及び、二つのナット492,493を有する。
 棒部材491は、支持部483が有する複数の貫通孔486のいずれかに挿通されている。棒部材491の径方向外側の外壁には、ねじ溝が形成されている。
 二つのナット492,493は、貫通孔486に挿通されている棒部材491のねじ溝に係合するよう設けられている。ナット492は、棒部材491のねじ溝に係合しつつ支持部483の天側の面487に当接可能である。ナット493は、棒部材491のねじ溝に係合しつつ支持部483の地側の面488に当接可能である。
 押し当て部材49では、棒部材491を所定の位置に固定するとき、二つのナット492,493によって支持部483を挟む。これにより、棒部材491の天側の当接面494が載置台92の端面924に当接するよう棒部材491の当接面494から支持部483の面487までの距離を変更可能である。
 第四実施形態による位置検出装置4は、被検出体95の位置変化の度合いに応じて押し当て部材49の当接面494の高さを調整し、被検出体95の位置変化の検出において熱流束センサ10の出力特性を最適な状態とすることができる。したがって、第四実施形態は、第一実施形態の効果(a),(c)~(f)と同じ効果を奏するとともに、被検出体95の位置変化の検出精度をさらに向上することができる。
 また、位置検出装置4では、支持部483が有する複数の貫通孔486は、当接部482から離れる方向に沿って並ぶよう形成されている。これにより、支持台91のステージ部914と載置台92のステージ部922との位置関係に応じて押し当て部材49の水平方向の位置を調整し、押し当て部材49をステージ部922に確実に当接させることができる。したがって、被検出体95の位置変化を確実に検出することができる。
 (第五実施形態)
 次に、第五実施形態による位置検出装置を図11に基づいて説明する。第五実施形態は、追従部の構成が第一実施形態と異なる。なお、第一実施形態と実質的に同一の部位には同一の符号を付し、説明を省略する。
 第五実施形態による位置検出装置5は、ベース部材18、「追従部」としての支持部材57、「追従部」及び「長さ調整部」としての押し当て部材58、「追従部」及び「長さ調整部」としてのナット59、弾性部材17、及び、熱流束センサ10を備える。なお、図11では、位置検出システム9に位置検出装置5に適用するときの重力方向上方を「天」方向とし、重力方向下方を「地」方向とする。
 支持部材57は、固定部571、及び、「長さ調整部」としてのねじ穴部572を有する。固定部571及びねじ穴部572は、導電性を有する弾性変形可能な材料から一体に形成されている。支持部材57は、押し当て部材58を支持する。
 固定部571は、略平板状の部位である。固定部571は、支持部182の端面189上に設けられている。固定部571は、二つのボルト99を挿通可能な貫通孔573を有する。固定部571は、貫通孔573,187に挿入されるボルト99によってベース部材18に固定される。
 ねじ穴部572は、固定部571の熱流束センサ10側であって弾性部材17の天側に設けられている。ねじ穴部572は、弾性部材17の一方の面171に略垂直な方向にねじ穴部572を貫通するねじ穴574を有する。ねじ穴部572の地側の「収容空間を形成する追従部の端面」としての端面575は、例えば、接着剤によって弾性部材17の一方の面171に接着されている。
 押し当て部材58は、ねじ部581、及び、当接部582を有する。
 ねじ部581は、略棒状に形成されている、ねじ部581は、径方向外側の外壁にねじ山が形成されている。ねじ部581は、ねじ穴部572に挿入された状態でねじ穴部572の内壁に形成されているねじ山と係合している。
 当接部582は、ねじ部581の天側に設けられている。当接部582は、天側の当接面583が載置台92の端面924に当接可能に形成されている。
 ナット59は、押し当て部材58のねじ部581の径方向外側に設けられている。ナット59は、ねじ部581に対するねじ締結の位置によって押し当て部材58の支持部材57に対する相対位置を決定する。すなわち、ナット59は、押し当て部材58のねじ穴部572から突出する長さを調整することが可能である。
 第五実施形態による位置検出装置5では、被検出体95の位置変化の度合いに応じて押し当て部材58のねじ穴部572から突出する長さを調整し、被検出体95の位置変化の検出において熱流束センサ10の出力特性を最適な状態とすることができる。したがって、第四実施形態は、第一実施形態の効果(a),(c)~(f)と同じ効果を奏するとともに、被検出体95の位置変化の検出精度をさらに向上することができる。
 また、位置検出装置5では、載置台92の端面924に当接可能な押し当て部材58が弾性部材17の天方向に位置し、ねじ穴部572を介して弾性部材17の天側に設けられている。これにより、被検出体95の位置変化に起因する作用力が弾性部材17の直上から作用するため、載置台92の微小な位置変化を検出することができる。したがって、被検出体95の位置変化の検出精度をさらに向上することができる。
 (第六実施形態)
 次に、第六実施形態による位置検出装置を図12に基づいて説明する。第六実施形態は、追従部の構成が第一実施形態と異なる。なお、第一実施形態と実質的に同一の部位には同一の符号を付し、説明を省略する。
 第六実施形態による位置検出装置6は、ベース部材18、「追従部」としての第一支持部材67、「追従部」としての第二支持部材68、「追従部」及び「回転部材」としてのローラ69、弾性部材17、及び、熱流束センサ10を備える。なお、図12では、位置検出システム9に位置検出装置6に適用するときの重力方向上方を「天」方向とし、重力方向下方を「地」方向とする。
 第一支持部材67は、固定部671及び延伸部672を有する。固定部671及び延伸部672は、導電性を有する弾性変形可能な材料から一体に形成されている。第一支持部材67は、第二支持部材68を支持する。
 固定部671は、略平板状の部位である。固定部671は、支持部182の端面189上及び弾性部材17上に設けられている。固定部671は、端面189上に設けられている部位に二つのボルト99を挿通可能な貫通孔673を有する。固定部671は、貫通孔673,187に挿入されるボルト99によってベース部材18に固定される。固定部671は、弾性部材17上に設けられている部位に弾性部材17の一方の面171に当接する「収容空間を形成する当接部の端面」としての端面675を有する。端面675は、例えば、接着剤によって、一方の面171に接着されている。
 延伸部672は、固定部671の端面675を有する端部から水平方向に延びるよう形成されている略平板状の部位である。延伸部672は、第一支持部材67と第二支持部材68とを連結する連結部材60を挿通可能な貫通孔676を有する。
 第二支持部材68は、延伸部672の天側に設けられている。第二支持部材68は、天方向に延びるよう形成されている。第二支持部材68は、連結部材60とねじ締結可能なねじ穴681を有する。第二支持部材68は、ねじ穴681及び貫通孔676に挿入される連結部材60によって延伸部672に固定される。第二支持部材68は、延伸部672に接続される側とは反対側に端部にローラ69が設けられている。
 ローラ69は、第二支持部材68に回転可能に設けられている。ローラ69は、例えば、柱状に形成されている。ローラ69は、径方向外側の壁面691が載置台92の端面924に当接可能に形成されている。
 第六実施形態による位置検出装置6では、載置台92の端面924に当接可能なローラ69は、回転可能に設けられている。これにより、被検出体95が水平方向に移動してもローラ69と載置台92との当接を維持することができる。したがって、第六実施形態は、第一実施形態の効果(a),(c)~(f)と同じ効果を奏するとともに、水平方向に移動する被検出体95の位置変化を検出することができる。
 (第七実施形態)
 次に、第七実施形態による位置検出装置を図13,14に基づいて説明する。第七実施形態は、追従部の構成が第一実施形態と異なる。なお、第一実施形態と実質的に同一の部位には同一の符号を付し、説明を省略する。
 第七実施形態による位置検出装置7は、ベース部材18、第一支持部材77、第二支持部材78、「追従部」及び「移動可能部」としての押し当て部材79、弾性部材17、及び、熱流束センサ10を備える。なお、図13では、位置検出システム9に位置検出装置7に適用するときの重力方向上方を「天」方向とし、重力方向下方を「地」方向とする。
 第一支持部材77は、支持部182の端面189上に設けられている。第一支持部材77は、二つのボルト99を挿通可能な貫通孔771を有する。
 第二支持部材78は、固定部781、及び、案内部782を有する。
 固定部781は、略平板状の部位である。固定部781は、第一支持部材77の天側に設けられている。固定部781は、二つのボルト99を挿通可能な貫通孔783を有する。固定部781は、第一支持部材67を介して貫通孔783,771,187に挿入されるボルト99によってベース部材18に固定される。
 案内部782は、固定部781の熱流束センサ10側に設けられている。案内部782は、地側の端面785が弾性部材17の一方の面171から離間した位置に形成されている。案内部782は、押し当て部材79を挿通可能な貫通孔786を有している。貫通孔786は、弾性部材17の天方向に位置するよう形成されている。
 押し当て部材79は、第一支持部材77及び第二支持部材78とは別体に形成されている略円柱状の部材であって、作用部791、挿通部792、及び、当接部793を有する。
 作用部791は、案内部782と弾性部材17との間に設けられている円板状の部位である。作用部791は、外径が貫通孔786の内径に比べ大きくなるよう形成されている。作用部791は、地側の「収容空間を形成する追従部の端面」としての端面794が、例えば、接着剤によって、弾性部材17の一方の面171に接着されている。
 挿通部792は、作用部791の天側に設けられている円柱状の部位である。挿通部792は、貫通孔786に挿通されている。これにより、押し当て部材79は、水平方向の移動が案内部782によって規制される。
 当接部793は、挿通部792の天側に設けられている円錐台状の部位である。当接部793は、天地方向に対して傾斜している側面795及び天地方向に対して略垂直な端面796を有する。側面795及び端面796は、載置台92の端面924に当接可能に形成されている。
 第七実施形態による位置検出装置7では、押し当て部材79は、第一支持部材77及び第二支持部材78と別体に形成されている。これにより、第一支持部材77や第二支持部材78が弾性変形しても当該弾性変形の反力によって押し当て部材79が押し返されることはないため、押し当て部材79は、弾性部材17に対して安定かつ垂直に被検出体95の位置変化に起因する作用力を作用させることができる。したがって、第七実施形態は、第一実施形態の効果(a),(c),(d),(f)と同じ効果を奏するとともに、被検出体95の位置変化の検出精度をさらに向上することができる。
 また、押し当て部材79は、天地方向に対して傾斜している側面795及び天地方向に対して略垂直な端面796を有する。これにより、載置台92への片当たりを防止することができる。したがって、被検出体95の位置変化と熱流束センサ10の出力電圧との関係が線形となるため、被検出体95の位置変化を容易に演算することができる。
  (他の実施形態)
 上述の実施形態では、位置検出装置を適用した位置検出システムによって駆動機器の位置変化を検出するとした。位置検出装置のみで駆動機器の位置変化を検出してもよい。
 上述の実施形態では、位置検出装置は、例えば、ロボットや一軸ローダなどの駆動機器の位置変化を検出するとした。しかしながら、位置検出装置が相対位置の変化を検出可能な対象はこれに限定されない。例えば、外部から供給される駆動力によって駆動する機器であってもよい。
 上述の実施形態では、押し当て部材と弾性部材、弾性部材と熱流束センサ、及び、熱流束センサとベース部材とは、接着材によって接着されているとした。しかしながら、これらを接着する方法はこれに限定されない。接着シートによって接着されていてもよい。押し当て部材の変形に応じて弾性部材が変形し、弾性部材の変形による熱の移動を熱流束センサが検出可能に設けられていればよい。
 第一実施形態における封止部を第二~七実施形態に適用してもよい。
 第三実施形態では、押し当て部材は、固定部、及び、固定部に比べ天地方向の厚みが薄い薄板部を有するとし、これらは、一体に形成されるとした。しかしながら、図15に示すように、天地方向の厚みが比較的薄い押し当て部材とベース部材との間に補強部材を設けてもよい。
 図15に示す第三実施形態の変形例について説明する。
 図15に示す位置検出装置3は、ベース部材18、補強部材33、「追従部」としての押し当て部材34、弾性部材17、及び、熱流束センサ10を備える。なお、図15では、位置検出システム9に位置検出装置3に適用するときの重力方向上方を「天」方向とし、重力方向下方を「地」方向とする。
 補強部材33は、略平板状の部材であって、支持部182の端面189上に設けられている。補強部材33は、二つのボルト99を挿通可能な貫通孔331を有する。
 押し当て部材34は、補強部材33の天側に設けられている。押し当て部材34は、導電性を有する弾性変形可能な材料から天地方向の厚みが比較的薄くなるよう形成されている。押し当て部材34は、二つのボルト99を挿通可能な貫通孔341を有する。これにより、補強部材33及び押し当て部材34は、貫通孔341,331,187に挿入されるボルト99によってベース部材18に固定される。押し当て部材34は、貫通孔341が形成されている部位から離れた位置の地側の端面342が、例えば、接着剤によって弾性部材17の一方の面171に接着されている。
 図15に示す位置検出装置3は、このような構成によって第三実施形態の効果と同じ効果を奏することもできる。
 第一,三実施形態の押し当て部材、第二実施形態のアーム部、第四,五実施形態の支持部材、及び、第六実施形態の第一支持部材は、弾性変形可能な材料から形成され、弾性部材に接着されているとした。これにより、弾性部材は、自らの復元力のみならず弾性部材に接着されている部材が元の形状に戻ろうとする復元力によっても元の形状に戻されるとした。このことから、本開示は、被検出体の位置変化に起因する作用力の大きさ、被検出体の位置変化に伴う振動の周期など作用力の特性に応じて弾性部材に接着されている部材を形成する材料の剛性や厚みなどを変更することによって、被検出体の位置変化を検出可能なレンジを広げることが可能である。
 上述の実施形態では、位置検出装置は、ボルトによってステージ部に固定されるとした。位置検出装置のステージ部への固定の方法はこれに限定されない。ステージ部に位置検出装置を取り付けるための位置決めピンや溝を設けることによってさらに再現性を向上することができる。
 上述の実施形態では、位置検出装置を支持する支持台の高さをスライダによって調整するとした。ねじなどで高さを調整してもよいし、高さが異なる支持台を用意してもよい。
 上述の実施形態では、弾性部材が熱流束センサの天側に位置するとした。しかしながら、ベース部材、押し当て部材、弾性部材、及び、熱流束センサの位置関係はこれに限定されない。熱流束センサの地方向に位置する駆動機器の位置変化を検出するよう設けてもよい。
 上述の実施形態では、弾性部材は、バイトンから形成されるとした。他の種類のゴムや樹脂、金属など収縮すると発熱し伸長すると吸熱する材料から形成されていればよい。
 以上、本開示はこのような実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の形態で実施可能である。
 本開示は、実施例に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も、本開示の範疇や思想範囲に入るものである。

Claims (14)

  1.  被検出体(92,95)の基準(90)に対する相対位置の変化を検出可能な位置検出装置であって、
     前記基準に対して相対移動不能な基部(18)と、
     前記被検出体の前記基準に対する相対移動に追従して変形可能または移動可能に設けられる追従部(19,29,34,39,48,49,57,58,59,67,68,69,79)と、
     前記基部と前記追従部との間に設けられ、前記追従部の変形または移動に応じて伸縮可能な材料から形成され、収縮すると発熱し伸長すると吸熱する伸縮可能部材(17)と、
     前記伸縮可能部材の熱が伝わるよう設けられ、前記伸縮可能部材の内部と外部との間の熱の流れである熱流束を検出可能な熱流束検出部(10)と、
     を備える位置検出装置。
  2.  前記追従部は、弾性変形可能な材料から形成されている請求項1に記載の位置検出装置。
  3.  前記基部と前記熱流束検出部、前記熱流束検出部と前記伸縮可能部材、及び、前記伸縮可能部材と前記追従部とは、それぞれ接着されている請求項1または2に記載の位置検出装置。
  4.  前記基部と前記追従部とは、前記伸縮可能部材及び前記熱流束検出部を収容可能な収容空間(160)を形成する請求項1~3のいずれか一項に記載の位置検出装置。
  5.  前記収容空間に収容されている前記伸縮可能部材及び前記熱流束検出部を封止する封止部(16)をさらに備える請求項4に記載の位置検出装置。
  6.  前記収容空間を形成する前記基部の端面(183)と前記収容空間を形成する前記追従部の端面(193,296,485,575,794)との間の距離は、変更可能である請求項4または5に記載の位置検出装置。
  7.  前記追従部は、前記伸縮可能部材に当接したまま前記被検出体の移動に追従して前記基部に対して相対移動可能な移動可能部(293)、及び、弾性変形可能な材料から形成され前記移動可能部を支持する変形部(292)を有する請求項1~6のいずれか一項に記載の位置検出装置。
  8.  前記追従部は、前記伸縮可能部材と前記被検出体との両方に当接可能なよう長さを変更可能な長さ調整部(49,572,58,59)を有する請求項1~6のいずれか一項に記載の位置検出装置。
  9.  前記追従部は、前記被検出体に当接可能に設けられ回転可能な回転部材(69)を有する請求項1~6のいずれか一項に記載の位置検出装置。
  10.  前記追従部は、前記伸縮可能部材に当接したまま前記被検出体の移動に追従して前記基部に対して相対移動可能な移動可能部(79)、及び、前記移動可能部とは別体に形成され前記移動可能部の移動を案内可能な案内部(782)を有する請求項1~6のいずれか一項に記載の位置検出装置。
  11.  前記基部と前記追従部とを締結可能な締結部材(99)をさらに備える請求項1~10のいずれか一項に記載の位置検出装置。
  12.  前記基部を前記基準に対して相対移動不能なよう固定する固定部材(98)をさらに備える請求項1~11のいずれか一項に記載の位置検出装置。
  13.  前記基部及び前記追従部の少なくとも一方は、前記熱流束検出部が有する電気配線(143,153)を収容可能な配線空間(180)を有する請求項1~12のいずれか一項に記載の位置検出装置。
  14.  前記基部または前記追従部は、導電性を有する材料から形成され、
     前記熱流束検出部のアース線(101)と電気的に接続している請求項1~13のいずれか一項に記載の位置検出装置。
PCT/JP2018/019098 2017-06-27 2018-05-17 位置検出装置 WO2019003696A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/727,152 US11262180B2 (en) 2017-06-27 2019-12-26 Position detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017124878A JP6743772B2 (ja) 2017-06-27 2017-06-27 位置検出装置
JP2017-124878 2017-06-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/727,152 Continuation US11262180B2 (en) 2017-06-27 2019-12-26 Position detection device

Publications (1)

Publication Number Publication Date
WO2019003696A1 true WO2019003696A1 (ja) 2019-01-03

Family

ID=64740503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019098 WO2019003696A1 (ja) 2017-06-27 2018-05-17 位置検出装置

Country Status (3)

Country Link
US (1) US11262180B2 (ja)
JP (1) JP6743772B2 (ja)
WO (1) WO2019003696A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6950427B2 (ja) 2017-10-03 2021-10-13 株式会社デンソー 位置検出装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5642105A (en) * 1995-08-22 1997-06-24 The Torrington Company Bearing with an arrangement for obtaining an indication of the temperature within the bearing
JP2009229183A (ja) * 2008-03-21 2009-10-08 Oyo Keisoku Kogyo Kk ひずみクラック計測装置
JP2015014585A (ja) * 2013-06-04 2015-01-22 株式会社デンソー 振動検出器
WO2017057069A1 (ja) * 2015-10-01 2017-04-06 株式会社デンソー 異常兆候診断装置
WO2017082298A1 (ja) * 2015-11-12 2017-05-18 株式会社デンソー 組付状態の診断装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284340A (ja) 2005-03-31 2006-10-19 Fuji Heavy Ind Ltd 剛性計測装置、及び、剛性計測方法
JP4992084B2 (ja) 2006-11-29 2012-08-08 国立大学法人京都工芸繊維大学 構造物の損傷の診断システムおよび方法
US7762119B2 (en) * 2006-11-30 2010-07-27 Corning Incorporated Method and apparatus for distortion measurement imaging
JP2017067761A (ja) 2015-10-01 2017-04-06 株式会社デンソー 異常兆候診断装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5642105A (en) * 1995-08-22 1997-06-24 The Torrington Company Bearing with an arrangement for obtaining an indication of the temperature within the bearing
JP2009229183A (ja) * 2008-03-21 2009-10-08 Oyo Keisoku Kogyo Kk ひずみクラック計測装置
JP2015014585A (ja) * 2013-06-04 2015-01-22 株式会社デンソー 振動検出器
WO2017057069A1 (ja) * 2015-10-01 2017-04-06 株式会社デンソー 異常兆候診断装置
WO2017082298A1 (ja) * 2015-11-12 2017-05-18 株式会社デンソー 組付状態の診断装置

Also Published As

Publication number Publication date
US20200132430A1 (en) 2020-04-30
JP6743772B2 (ja) 2020-08-19
JP2019007878A (ja) 2019-01-17
US11262180B2 (en) 2022-03-01

Similar Documents

Publication Publication Date Title
KR101821736B1 (ko) 콤팩트한 다목적의 스틱-슬립 압전 모터
JP5171579B2 (ja) エンコーダの走査構成ユニット
US10180557B2 (en) Correcting optical device, image deflection correcting device and imaging device
US8314532B2 (en) Drive device
JP6337108B2 (ja) 半導体ウェーハのレベリング、力の平衡化、および接触感知のための装置および方法
TW201732254A (zh) 組裝狀態的診斷裝置
WO2019003696A1 (ja) 位置検出装置
US10982973B2 (en) Position change measuring device
US10718612B2 (en) Strain detector
AU2008256413A1 (en) Device having a membrane structure for detecting thermal radiation, method of production and use of the device
TW201435320A (zh) 具有電磁防護件的微機電系統壓力感測器組件
US11131369B2 (en) Failure diagnostic apparatus for ball screw device
JP2006521677A (ja) 高密度電気コネクタ
CN113243078B (zh) 热电发电装置
JP4925389B2 (ja) エンコーダ
US20070262249A1 (en) Encoder having angled die placement
JP6095022B1 (ja) 波動エネルギー放射装置
CN110637333B (zh) 热电发电传送器
US10964668B2 (en) Stacked transistor packages
JP5442860B2 (ja) エンコーダの走査ユニット
JP4906326B2 (ja) 駆動装置及び駆動装置の製造方法
WO2019131699A1 (ja) 荷重センサおよび荷重センサ一体型多軸アクチュエータ
JP2007333626A (ja) シリンダのストローク位置計測装置
JPH09257515A (ja) 位置検出装置
TW200730826A (en) Sensor device and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18822822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18822822

Country of ref document: EP

Kind code of ref document: A1