WO2019003670A1 - 火落ち時間制御方法、火落ち時間制御ガイダンス表示装置、コークス炉の操業方法、及び、火落ち時間制御装置 - Google Patents

火落ち時間制御方法、火落ち時間制御ガイダンス表示装置、コークス炉の操業方法、及び、火落ち時間制御装置 Download PDF

Info

Publication number
WO2019003670A1
WO2019003670A1 PCT/JP2018/018508 JP2018018508W WO2019003670A1 WO 2019003670 A1 WO2019003670 A1 WO 2019003670A1 JP 2018018508 W JP2018018508 W JP 2018018508W WO 2019003670 A1 WO2019003670 A1 WO 2019003670A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
carbonization
temperature
chamber
fire
Prior art date
Application number
PCT/JP2018/018508
Other languages
English (en)
French (fr)
Inventor
佳也 橋本
博之 山辺
喜昭 北山
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2018543183A priority Critical patent/JP6673490B2/ja
Priority to KR1020197032598A priority patent/KR102292145B1/ko
Priority to CN201880041572.0A priority patent/CN110809620B/zh
Publication of WO2019003670A1 publication Critical patent/WO2019003670A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B21/00Heating of coke ovens with combustible gases
    • C10B21/10Regulating and controlling the combustion

Definitions

  • the present invention relates to a method for controlling a burning time, a burning time control guidance display device, a method of operating a coke oven, and a burning time in a coke oven in which a combustion chamber and a carbonization chamber are alternately connected to form a furnace group. It relates to a control device.
  • coke is produced by dry distillation of coal charged in the carbonization chamber with heat from an adjacent combustion chamber.
  • it is necessary to reduce the variation in the burnout time of each carbonizing chamber. The reason is that in order to operate the coke oven so as not to generate non-distilled coke, the operation pace is determined based on the carbonization chamber with the longest burning time, and the surplus heat is consumed.
  • Patent Documents 1 and 2 are known as methods for solving this kind of problem.
  • the techniques disclosed in the patent documents 1 and 2 construct a regression equation of the furnace temperature and the burning time for each carbonization chamber, and calculate the temperature target value for each combustion chamber so that the burning time becomes the target value. Furthermore, the operator is guided by the amount of gas cock operation to achieve the temperature target value.
  • the furnace temperature of the carbonization chamber tends to rise due to the accumulated effects of actions such as furnace temperature operation in the past, even if the current fire fall time is longer than the target value, the future fire fall time Is expected to asymptotically reach the target value. In such a case, if action such as furnace temperature control is taken with reference to only the latest burning time, overaction tends to occur.
  • the present invention has been made in view of the above problems, and an object thereof is to determine the appropriate temperature control amount for each carbonization chamber in consideration of the future transition of the burnout time.
  • a control method, a flash time control guidance display device, a coke oven operating method, and a flash time control device are provided.
  • the method for controlling the fire time according to the present invention is a method of controlling fire of each carbonizing chamber in a coke oven comprising a furnace group in which combustion chambers and carbonizing chambers are alternately connected.
  • a method of controlling a falling time comprising: determining a relational expression using information on a furnace temperature for each of the carbonization chambers as an explanatory variable, using the fire time for each of the carbonization chambers as an objective variable; And the step of predicting the next fire fall time based on the temperature change tendency of the furnace temperature within the latest predetermined period, and the predicted next fire fall time becomes the preset target fire fall time
  • the method is characterized by including the steps of: obtaining the temperature operation amount for each of the carbonization chambers; and converting the temperature operation amount for each of the carbonization chambers into a temperature operation amount for each of the combustion chambers.
  • the predicted value of the next flash time for each of the carbonization chambers calculated using the flash time control method of the present invention, and for each of the combustion chambers. And the temperature operation amount of.
  • the coke oven operating method according to the present invention is a coke oven operating method in which a combustion chamber and a carbonization chamber are alternately connected to form a furnace group, and the method according to the present invention for controlling the fire time And controlling the burn-out time of each carbonizing chamber.
  • the fire fall time control device is a fire fall time control device for controlling the fire fall time of each carbonizing chamber in a coke oven in which a combustion chamber and a carbonizing chamber are alternately connected to constitute a furnace group.
  • Relationship formula calculation means for obtaining a relationship equation with the burnout time for each carbonization chamber as an objective variable and the information on the furnace temperature for each carbonization chamber as an explanatory variable, the relationship equation, and the aforementioned within the most recent predetermined period
  • Next fire fall time predicting means for predicting the next fire fall time based on the temperature change tendency of the furnace temperature, and the temperature for each of the carbonization chambers so that the predicted next fire fall time becomes the target fire fall time
  • a temperature operation amount calculation means for obtaining an operation amount, and a temperature operation amount conversion means for converting a temperature operation amount for each of the carbonization chambers into a temperature operation amount for each combustion chamber.
  • the method for controlling the fire time, the display device for controlling the fire time, the operating method of the coke oven, and the control device for the fire time are appropriate for each carbonization chamber in consideration of the transition of the fire time in the future.
  • FIG. 1 is a schematic view showing the entire configuration of the coke oven according to the present embodiment.
  • FIG. 2 is a flowchart of the fire time control according to the present embodiment.
  • FIG. 3 is a diagram showing the concept of local regression.
  • FIG. 4 is a flowchart showing the flow of each process performed in the regression equation construction step.
  • FIG. 5 is a diagram showing a method of predicting the burn-out time based on the previous operation results.
  • FIG. 6 is a graph showing an example of temperature measurement data in a predetermined period immediately before each combustion chamber located on both sides of the carbonization chamber.
  • FIG. 7 is an explanatory view of the prediction of the next burning time based on the previous actual value of the burning time.
  • FIG. 1 is a schematic view showing the entire configuration of the coke oven according to the present embodiment.
  • FIG. 2 is a flowchart of the fire time control according to the present embodiment.
  • FIG. 3 is a diagram showing the concept of local regression.
  • FIG. 4 is a
  • FIG. 8 is a graph showing the accuracy of the predicted value of the next burning time calculated in the burning time prediction step.
  • FIG. 9 shows an example of the guidance information displayed on the guidance display device.
  • Fig.10 (a) is a histogram of the deviation of the actual burning time for every carbonization chamber in a comparative example.
  • FIG. 10 (b) is a histogram of the deviation of the actual burning time for each carbonizing chamber in the example of the present invention.
  • Fig.11 (a) is a histogram of the furnace temperature for every carbonization chamber in a comparative example.
  • FIG. 11 (b) is a histogram of the furnace temperature for each carbonization chamber in the example of the present invention.
  • FIG. 1 is a schematic view showing the entire configuration of the coke oven 1 according to the present embodiment.
  • the coke oven 1 shown in FIG. 1 includes N combustion chambers 2 (2-1 to 2-N) and N-1 carbonization chambers 3 (3-1 to 3- (N-1)). Are alternately arranged to form a furnace group.
  • This coke oven 1 charges the coal which is the raw material into each carbonizing chamber 3 and supplies the fuel gas G to each combustion chamber 2 and heats each carbonizing chamber 3 by the heat emitted from the combustion chambers 2 on both sides.
  • the coal in each carbonizing chamber 3 is dry distilled to produce coke.
  • the other end side branched into N pieces of gas main pipes 4 one end of which is connected to a gas supply source (not shown) is piped in each combustion chamber 2, and fuel gas is supplied to each combustion chamber 2 Supply G
  • a gas cock 5 is provided at one end side of the gas main pipe 4 to adjust the flow rate of the fuel gas G supplied to the entire furnace (total flow rate of the fuel gas G supplied to each combustion chamber 2).
  • Each of the other end sides is provided with a gas cock 6 (6-1 to 6-N) for finely adjusting the flow rate of the gas distributed by the branch on the other end side and supplying it to each combustion chamber 2 ing.
  • the control unit 10 controls the opening (gas cock opening) of the gas cocks 5 and 6.
  • the control unit 10 monitors and controls the state of each combustion chamber 2 and each carbonization chamber 3 to manage the operation of the coke oven 1, adjusts the gas cock opening degree of the gas cock 5, and burns out the entire furnace group
  • the flow rate of the fuel gas G supplied to the whole of the reactor group is controlled so that the average value of time (the actual fire fall time for each carbonization chamber 3, ie, the average of the actual fire fall time) becomes the target fire fall time
  • the gas cock opening degree of the gas cock 6 finely and controlling the flow rate of the fuel gas G supplied to each combustion chamber 2, the process from the coal charging when all the coal in each carbonization chamber 3 becomes coke
  • the operation of the coke oven 1 is controlled so that the time, ie, the actual burn-out time, is substantially the same between the carbonization chambers 3.
  • the control unit 10 is connected to a storage unit 20 in which various programs, data and the like necessary for monitoring and controlling the states of the combustion chambers 2 and the carbonizing chambers 3 are stored.
  • a storage unit 20 for example, actual burn-out time in past plural operations, actual carbonizing chamber temperature of each carbonizing chamber 3, actual combustion chamber temperature of each combustion chamber 2, fuel gas in each combustion chamber 2
  • Actual operation data such as actual gas cock opening degree of each gas cock 6 which supplies G, a target burning time, etc. are accumulated and stored.
  • the storage unit 20 is realized by various storage media such as a memory and a hard disk.
  • control unit is configured of the control unit 10, the storage unit 20, and the input device 30 that receives the input operation from the operator and transmits the information input to the control unit 10, and the like. It is done. Further, the guidance display device 40 shown in FIG. 1 displays the guidance information output from the control unit 10.
  • FIG. 2 is a flowchart of the fire time control according to the present embodiment.
  • a regression equation construction step S1 a burning time prediction step S2, a carbonization chamber temperature operation amount calculation step S3, and a combustion chamber temperature operation amount conversion step S4.
  • regression equation construction step S1 for constructing a regression equation, which is a relational expression in which information on the furnace temperature of the carbonization chamber 3 is used as an explanatory variable, with the burning time of the carbonization chamber 3 as an objective variable, will be described.
  • the burning time of the carbonization chamber 3 is affected by the moisture content and amount of coal charged in the carbonization chamber 3, the furnace temperature of the carbonization chamber 3, etc.
  • the carbonization chamber A regression equation is constructed in which the objective variable is the burnout time and the explanatory variable is the furnace temperature of the carbonization chamber 3 every three. At this time, the concept of the local regression equation shown in FIG.
  • the explanatory variable for constructing the regression equation is not limited to the furnace temperature.
  • the gas cock opening degree, the supply amount of the fuel gas G supplied to the combustion chamber 2, and the furnace temperature are measured.
  • Information related to the furnace temperature such as an electromotive force value output from a temperature detection sensor such as a thermocouple may be used as an explanatory variable.
  • FIG. 4 is a flowchart showing the flow of each process performed in the regression equation construction step S1.
  • the regression equation construction step S1 starts at the timing at which the operator operates the input device 30 to input the explanatory variable of the prediction target and instructs the execution of the regression equation construction step S1, and the regression equation construction step S1 proceeds to step S11. Go to the process of
  • step S11 the control unit 10 standardizes the explanatory variables included in the operation result data and the explanatory variables to be predicted (data of all the explanatory variables).
  • the value of the explanatory variable differs depending on the unit as it is the original physical multiplier. Therefore, by standardizing the explanatory variables, it is possible to define the degree of similarity between the explanatory variables (operation conditions) with the same index.
  • step S11 is completed, and the regression equation constructing step S1 proceeds to the process of step S12.
  • the control unit 10 calculates, for each operation record data x [i], the weight A [i] according to the similarity to the explanatory variable x to be predicted, using the following formula (1).
  • the parameter a in the following equation (1) is a weight parameter, and is a parameter that needs adjustment depending on the case. In the present embodiment, the parameter a is a fixed value of 10 ⁇ 4 .
  • step S12 is completed, and the regression equation constructing step S1 proceeds to the process of step S13.
  • the parameter C in the following formula (2) is an adjustment parameter called a forgetting factor. In the present embodiment, the parameter C is a fixed value of 100 [days].
  • step S13 the process of step S13 is completed, and the regression equation constructing step S1 proceeds to the process of step S14.
  • each operation is performed by substituting the weights A [i] and B [i] calculated by the process of step S12 and the process of step S13 into the following equation (3).
  • the weight W [i] of the actual data x [i] is calculated.
  • the control unit 10 multiplies the weight W [i] by the explanatory variable and the objective variable (fire fall time) and then performs multiple regression analysis to obtain the explanatory variable and the objective variable. Construct a regression equation that represents the relationship with By this processing, it is possible to construct a regression equation which emphasizes the operation result data having the high degree of similarity of the explanatory variables (operation conditions) and the latest operation result data.
  • a method of calculating the regression equation for example, a known technique disclosed in Japanese Patent Application Laid-Open No. 2004-355189 or the like can be used, and the detailed description will be omitted.
  • step S14 is completed and a series of regression equation construction step S1 is completed.
  • furnace temperature data which is data in combustion chamber units
  • fire loss data which is data in carbonization chamber units
  • temperature information it is necessary to convert temperature information into carbonization chamber unit data. Therefore, in the present embodiment, for each operation, the temperatures of the combustion chambers 2 located on both sides of the carbonization chamber 3 are averaged until 15 hours have elapsed from the timing at which the carbonization chamber 3 is charged with coal. Therefore, the furnace temperature in the carbonization chamber unit was defined.
  • a flash time estimation step S2 for predicting the next flash time will be described.
  • the coke oven 1 is affected by various disturbances such as the type of coal to be charged and the condition of the adjacent carbonization chamber 3 changing momentarily. Therefore, it is necessary to predict the burn-out time reflecting the influence of such disturbances. Therefore, in the flash time prediction step S2, as shown in FIG. 5, the influence coefficient coef on the flash time at the time of the temperature operation determined by the local regression based on the previous flash time and furnace temperature as a base point, By multiplying the temperature change amount ⁇ T, the change amount of the burning time is predicted, and by adding the actual value of the previous burning time to the predicted changing amount of the burning time, the next fire is obtained. Predict the fall time. This can be expressed by the following equation (4). In the following mathematical expression (4), “NCT (previous)” is the actual value of the previous burning time, and “NCT (prediction)” is the predicted value of the next burning time.
  • a regression equation is constructed based on temperature measurement data in the nearest predetermined period of each of the combustion chambers 2W and 2E located on both sides of the carbonization chamber 3. And the slope of the regression equation [° C./hr] ⁇ 20 [hr].
  • the inclination of this regression represents the temperature change tendency of furnace temperature, and it has shown that the furnace temperature of the carbonization chamber 3 has a rising tendency in FIG.
  • the above-mentioned 20 [hr] is the time from the time of charging of the carbonization chamber 3 in the previous operation to the time of charging of the carbonization chamber 3 in the next operation (1 time Operation time).
  • FIG. 8 is a graph showing the accuracy of the predicted value of the next burning time calculated in the burning time prediction step S2.
  • the horizontal axis in FIG. 8 is the actual value of the previous burning time, and the vertical axis is the predicted value of the next burning time.
  • RMSE root mean square error
  • a carbonization chamber temperature operation amount calculation step for obtaining a recommended temperature operation amount for each carbonization chamber 3 based on the predicted value of the next flashover time so as to be a preset target value of the next flashover time S3 will be described.
  • a recommended temperature manipulated variable ⁇ T (recommended) is determined by the following equation (5), with the target value of the next burning time as NCT_ref.
  • combustion chamber temperature operation amount conversion step S4 for converting the recommended temperature operation amount for each carbonization chamber 3 into a temperature operation amount for each combustion chamber 2 will be described.
  • the recommended temperature operation amount determined using the above equation (5) is for the temperature of the carbonization chamber 3, what the operator can actually operate is the temperature of the combustion chamber 2. Therefore, in the combustion chamber temperature operation amount conversion step S4, the recommended temperature operation amount for each carbonization chamber 3 obtained in the carbonization chamber temperature operation amount calculation step S3 is converted to a temperature operation amount for each combustion chamber 2.
  • the temperature operation amount ⁇ T (recommended) _ (FlueX) of the combustion chamber was determined by averaging (carbonizing chamber X + 1)).
  • FIG. 9 shows an example of the guidance information displayed on the guidance display device 40.
  • Etc. by displaying them on the guidance display device 40 as guidance information and guiding the operator to, for example, the gas cock opening degree of each gas cock 6 so that the next burning time of each carbonization chamber 3 becomes the target value. The operator can easily determine whether the adjustment should be made.
  • Example 2 As an example of the present invention to which the flash time control method according to the present invention is applied, the predicted value of the next flash time calculated in the above-described regression equation construction step S1 to combustion chamber temperature operation amount conversion step S4 or the combustion chamber 2 The coke oven 1 was operated while adjusting the gas cock opening degree of each gas cock 6 using the guidance value of the temperature operation amount. Further, as a comparative example, the coke oven 1 was operated while adjusting the gas cock opening degree of each gas cock 6 by applying a conventional method, for example, without applying the fire time control method according to the present invention.
  • FIG. 10A is a histogram of the deviation of the actual burning time for each carbonization chamber 3 in the comparative example.
  • FIG.10 (b) is a histogram of the deviation of the actual burning time for every carbonization chamber 3 in the example of this invention.
  • the average time of the actual fire fall time for every carbonization chamber 3 in a comparative example was 16.0 [hr]
  • the standard deviation ((sigma)) was 1.45 [hr].
  • the average time of the actual burnout time for each carbonization chamber 3 in the present invention example is 16.9 [hr]
  • the standard deviation ( ⁇ ) is 1.24. It was [hr].
  • the application of the method for controlling the fire time according to the present invention reduces the variation in the actual fire time for each carbonization chamber 3.
  • Fig.11 (a) is a histogram of the furnace temperature for every carbonization chamber 3 in a comparative example.
  • FIG. 11B is a histogram of the furnace temperature for each carbonization chamber 3 in the example of the present invention.
  • the operation rate of the coke oven 1 is constant in the present invention example and the comparative example.
  • the average furnace temperature of each carbonization chamber 3 in a comparative example was 1230 [degreeC].
  • the average furnace temperature of each carbonizing chamber 3 in the present invention example was 1202 [° C.].
  • the present invention it is possible to determine an appropriate temperature control amount for each carbonization chamber in consideration of the future transition of the burning time, a burning time control method, a burning time control guidance display device, and a coke oven It is possible to provide an operation method and a flash time control device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Coke Industry (AREA)

Abstract

本発明に係る火落ち時間制御方法は、燃焼室と炭化室とが交互に連接されて炉団を構成するコークス炉における各炭化室の火落ち時間を制御する火落ち時間制御方法であって、炭化室毎の火落ち時間を目的変数とし、炭化室毎の炉温に関する情報を説明変数とした関係式を求めるステップと、この関係式と、直近の所定期間内における炉温の温度変化傾向とに基づいて、次回の火落ち時間を予測するステップと、予測した次回の火落ち時間が、予め設定された目標火落ち時間となるように、炭化室毎の温度操作量を求めるステップと、炭化室毎の温度操作量を燃焼室毎の温度操作量に変換するステップと、を含むことを特徴とするものである。

Description

火落ち時間制御方法、火落ち時間制御ガイダンス表示装置、コークス炉の操業方法、及び、火落ち時間制御装置
 本発明は、燃焼室と炭化室とが交互に連接されて炉団を構成するコークス炉における、火落ち時間制御方法、火落ち時間制御ガイダンス表示装置、コークス炉の操業方法、及び、火落ち時間制御装置に関する。
 燃焼室と炭化室とが複数交互に連接されて炉団を構成するコークス炉では、炭化室に装入した石炭を隣接する燃焼室からの熱で乾留することによってコークスを製造している。コークス炉において乾留熱量の無駄な消費を低減するためには、各炭化室の火落ち時間のばらつきを低減することが必要である。なぜならば未乾留のコークスを生成しないようにコークス炉を操業するために、火落ち時間の最も長い炭化室を基準にして操業ペースが決定されるため余剰熱量が消費されてしまうからである。
 この種の問題点を解決するための手法としては、例えば、特許文献1及び2の技術が知られている。この特許文献1及び2に開示された技術は、炭化室毎に炉温と火落ち時間との回帰式を構築し、火落ち時間が目標値となるように燃焼室毎の温度目標値を算出し、さらにその温度目標値を達成するためのガスコック操作量を、オペレータにガイダンスするものである。
特開2012-153882号公報 特開2014-74163号公報
 しかしながら、特許文献1及び2に開示された技術では、燃焼室毎の温度目標値を決定する際に、炭化室のダイナミクスに依存する火落ち時間の将来推移が考慮されていない。コークス炉は炉体の熱容量が大きいため、炉温操作などのアクションに対する応答の時定数が長い特徴がある。そのため、炭化室の炉温制御のためには、将来の火落ち時間予測に基づいた炉温操作などのアクションの適正化が望ましい。例えば、現在の火落ち時間が目標値から長めに外れていても、過去の炉温操作などのアクションの蓄積影響により、炭化室の炉温が上昇傾向にある場合には、将来の火落ち時間が目標値に漸近することが予想される。このような場合に、直近の火落ち時間だけを参考にして、炉温操作などのアクションを講じるとオーバーアクションが発生しがちとなる。
 本発明は、上記課題に鑑みてなされたものであって、その目的は、将来の火落ち時間推移を考慮した上で、適正な炭化室毎の温度操作量を決定することができる火落ち時間制御方法、火落ち時間制御ガイダンス表示装置、コークス炉の操業方法、及び、火落ち時間制御装置を提供することである。
 上述した課題を解決し、目的を達成するために、本発明に係る火落ち時間制御方法は、燃焼室と炭化室とが交互に連接されて炉団を構成するコークス炉における各炭化室の火落ち時間を制御する火落ち時間制御方法であって、炭化室毎の火落ち時間を目的変数とし、前記炭化室毎の炉温に関する情報を説明変数とした関係式を求めるステップと、前記関係式と、直近の所定期間内における前記炉温の温度変化傾向とに基づいて、次回の火落ち時間を予測するステップと、予測した次回の火落ち時間が、予め設定された目標火落ち時間となるように、前記炭化室毎の温度操作量を求めるステップと、前記炭化室毎の温度操作量を燃焼室毎の温度操作量に変換するステップと、を含むことを特徴とするものである。
 また、本発明に係る火落ち時間制御ガイダンス表示装置は、上記の発明の火落ち時間制御方法を用いて算出した、前記炭化室毎の次回の火落ち時間の予測値、及び、前記燃焼室毎の温度操作量を表示することを特徴とするものである。
 また、本発明に係るコークス炉の操業方法は、燃焼室と炭化室とが交互に連接されて炉団を構成するコークス炉の操業方法であって、上記の発明の火落ち時間制御方法を用いて、各炭化室の火落ち時間を制御するステップを含むことを特徴とするものである。
 また、本発明に係る火落ち時間制御装置は、燃焼室と炭化室とが交互に連接されて炉団を構成するコークス炉における各炭化室の火落ち時間を制御する火落ち時間制御装置であって、炭化室毎の火落ち時間を目的変数とし、前記炭化室毎の炉温に関する情報を説明変数とした関係式を求める関係式算出手段と、前記関係式と、直近の所定期間内における前記炉温の温度変化傾向とに基づいて、次回の火落ち時間を予測する次回火落ち時間予測手段と、予測した次回の火落ち時間が目標火落ち時間となるように、前記炭化室毎の温度操作量を求める温度操作量算出手段と、前記炭化室毎の温度操作量を燃焼室毎の温度操作量に変換する温度操作量変換手段と、を備えることを特徴とするものである。
 本発明に係る火落ち時間制御方法、火落ち時間制御ガイダンス表示装置、コークス炉の操業方法、及び、火落ち時間制御装置は、将来の火落ち時間推移を考慮した上で、適正な炭化室毎の温度操作量を決定することができるという効果を奏する。
図1は、本実施形態に係るコークス炉の全体構成を示す模式図である。 図2は、本実施形態に係る火落ち時間制御のフローチャートである。 図3は、局所回帰式の考え方を示した図である。 図4は、回帰式構築ステップで実施される各処理の流れを示すフローチャートである。 図5は、前回の操業実績を基点とした火落ち時間予測方法を示す図である。 図6は、炭化室の両隣に位置する各燃焼室の直近の所定期間内における測温データの一例を示すグラフである。 図7は、前回の火落ち時間の実績値を基点とした次回の火落ち時間の予測の説明図である。 図8は、火落ち時間予測ステップで算出した次回の火落ち時間の予測値の精度を示したグラフである。 図9は、ガイダンス表示装置に表示されたガイダンス情報の一例を示したものである。 図10(a)は、比較例における炭化室毎の実績火落ち時間の偏差のヒストグラムである。図10(b)は、本発明例における炭化室毎の実績火落ち時間の偏差のヒストグラムである。 図11(a)は、比較例における炭化室毎の炉温のヒストグラムである。図11(b)は、本発明例における炭化室毎の炉温のヒストグラムである。
 以下に、本発明に係る火落ち時間制御方法、火落ち時間制御ガイダンス表示装置、コークス炉の操業方法、及び、火落ち時間制御装置の一実施形態について説明する。なお、本実施形態により本発明が限定されるものではない。
 図1は、本実施形態に係るコークス炉1の全体構成を示す模式図である。図1に示すコークス炉1は、N個の燃焼室2(2-1~2-N)及びN-1個の炭化室3(3-1~3-(N-1))を備え、これらが交互に連接配置されて炉団を構成している。このコークス炉1は、原料である石炭を各炭化室3に装入するとともに各燃焼室2に燃料ガスGを供給し、各炭化室3を両側の燃焼室2が発する熱によって加熱することにより、各炭化室3内の石炭を乾留してコークスを製造する。
 このコークス炉1において、各燃焼室2には、一端が不図示のガス供給源と連結されたガス本管4のN個に分岐した他端側が配管されており、各燃焼室2に燃料ガスGを供給する。このガス本管4の一端側には、炉団全体に供給する燃料ガスGの流量(各燃焼室2に供給される燃料ガスGの総流量)を調整するためのガスコック5が設けられ、分岐した他端側のそれぞれには、この他端側の分岐によって分配されたガス流量を微調整して各燃焼室2に供給するためのガスコック6(6-1~6-N)がそれぞれ設けられている。これらガスコック5,6は、制御部10によってその開度(ガスコック開度)が制御される。
 制御部10は、各燃焼室2及び各炭化室3の状態を監視・制御し、コークス炉1の操業を管理するものであり、ガスコック5のガスコック開度を調整し、炉団全体の火落ち時間の平均値(炭化室3毎の実際の火落ち時間すなわち実績火落ち時間の平均値)が目標火落ち時間となるように炉団全体に供給する燃料ガスGの流量を制御するとともに、各ガスコック6のガスコック開度を微調整して各燃焼室2に供給する燃料ガスGの流量を制御することによって、各炭化室3内の石炭が全てコークスとなったときの石炭装入からの経過時間、すなわち実績火落ち時間が炭化室3間でほぼ同一時間となるようにコークス炉1の操業を管理する。
 この制御部10は、各燃焼室2及び各炭化室3の状態を監視や制御するのに必要な各種プログラムやデータ等が記憶される記憶部20と接続されている。また、記憶部20には、例えば、過去の複数回の操業時における実績火落ち時間、各炭化室3の実績炭化室温度、各燃焼室2の実績燃焼室温度、各燃焼室2に燃料ガスGを供給する各ガスコック6の実績ガスコック開度といった操業実績データや、目標火落ち時間等が蓄積して記憶される。この記憶部20は、メモリーやハードディスクなどの各種記憶媒体によって実現される。なお、本実施形態においては、制御部10、記憶部20、及び、オペレータからの入力操作を受け付けて制御部10に入力された情報を送信する入力装置30などによって、火落ち時間制御装置が構成されている。また、図1に示すガイダンス表示装置40は、制御部10から出力されたガイダンス情報を表示するものである。
 図2は、本実施形態に係る火落ち時間制御のフローチャートである。本実施形態に係る火落ち時間制御では、図2に示すように、回帰式構築ステップS1、火落ち時間予測ステップS2、炭化室温度操作量算出ステップS3、及び、燃焼室温度操作量変換ステップS4の各処理を実施することによって、各炭化室3の火落ち時間を制御する。
(回帰式構築ステップS1)
 まず、炭化室3の火落ち時間を目的変数とし、炭化室3の炉温に関する情報を説明変数とする関係式である回帰式を構築する回帰式構築ステップS1について説明する。炭化室3の火落ち時間には、炭化室3に装入した石炭の水分量や装炭量、炭化室3の炉温などが影響するが、本実施形態における回帰式構築ステップS1では炭化室3毎に、目的変数を火落ち時間とし、説明変数を炭化室3の炉温とする回帰式を構築する。この際、特開2004-355189号公報に開示されているような、図3に示す局所回帰式の考え方を適用した。なお、図3中において、「○」は操業データを意味し、「斜線で示した面」は局所回帰式を意味し、「矢印」は装炭量や石炭の水分など他の説明変数を意味している。このような局所回帰式の考え方を適用することによって、目的変数と説明変数との関係とが非線形な場合や、プロセスが経時的に変化する場合であっても、良好な精度を保つことが可能である。なお、回帰式を構築する際の説明変数としては、炉温に限定されるものではなく、例えば、ガスコック開度や、燃焼室2に供給する燃料ガスGの供給量や、炉温を測定する熱電対などの温度検知センサから出力される起電力値など、炉温と関係性のある情報を説明変数として用いても良い。
 図4は、回帰式構築ステップS1で実施される各処理の流れを示すフローチャートである。回帰式構築ステップS1は、オペレータが入力装置30を操作することによって、予測対象の説明変数を入力し、回帰式構築ステップS1の実行を指示したタイミングで開始となり、回帰式構築ステップS1はステップS11の処理に進む。
 ステップS11の処理では、制御部10が、操業実績データに含まれる説明変数及び予測対象の説明変数(全ての説明変数のデータ)の標準化を行う。説明変数の値は、元の物理乗数のままだと単位によって異なる。そのため、説明変数の標準化を行うことにより、同じ指標で説明変数同士(操業条件同士)の類似度を定義することを可能にする。これにより、ステップS11の処理は完了し、回帰式構築ステップS1はステップS12の処理に進む。
 ステップS12の処理では、制御部10が、予測対象の説明変数(データ)との類似度に応じた重みを操業実績データ毎(過去データ)に算出する。具体的には、標準化後の説明変数の値を並べたベクトルをx[i](i=1~N、Nは操業実績データの数)とし、予測対象の説明変数のベクトルをxとすると、制御部10は、下記数式(1)を用いて、予測対象の説明変数xとの類似度に応じた重みA[i]を、操業実績データx[i]毎に算出する。なお、下記数式(1)中のパラメータaは、重みパラメータであり、場合によって調整が必要なパラメータである。本実施形態においては、パラメータaを10-4の固定値とした。
Figure JPOXMLDOC01-appb-M000001
 これにより、ステップS12の処理は完了し、回帰式構築ステップS1はステップS13の処理に進む。
 ステップS13の処理では、制御部10が、予測対象のデータの日時と操業実績データ(過去データ)の取得日時との時間差に応じた重みを操業実績データ毎に算出する。具体的には、i番目の操業実績データの取得日時をdate[i](i=1~N、Nは操業実績データの数)、予測対象のデータの日時をdateとすると、制御部10は、下記数式(2)を用いて、予測対象のデータの日時dateと操業実績データの取得日時date[i]との時間差に応じた重みB[i]を、操業実績データx[i]毎に算出する。なお、下記数式(2)中のパラメータCは、忘却係数とよばれる調整パラメータである。本実施形態においては、パラメータCを100[日]の固定値とした。
Figure JPOXMLDOC01-appb-M000002
 これにより、ステップS13の処理は完了し、回帰式構築ステップS1はステップS14の処理に進む。
 ステップS14の処理では、制御部10が、ステップS12の処理とステップS13の処理とによって算出された重みA[i],B[i]を、下記数式(3)に代入することによって、各操業実績データx[i]の重みW[i]を算出する。
Figure JPOXMLDOC01-appb-M000003
 そして、制御部10は、各操業実績データx[i]について、説明変数及び目的変数(火落ち時間)に重みW[i]を乗算した後に重回帰分析を行うことにより、説明変数と目的変数との関係を表す回帰式を構築する。この処理によって、説明変数(操業条件)の類似度が高い操業実績データ及び直近の操業実績データを重視した回帰式を構築することができる。なお、回帰式の算出方法としては、例えば、特開2004-355189号公報などに開示された公知の技術を用いることができ、詳細な説明は省略する。
 これにより、ステップS14の処理は完了し、一連の回帰式構築ステップS1は終了する。
 ここで、燃焼室単位のデータである炉温データを、炭化室単位のデータである火落ちデータと対応づけるため、温度情報を炭化室単位データに変換する必要がある。そのため、本実施形態においては、各操業毎に、炭化室3に石炭が装入されたタイミングから15時間経過するまでの当該炭化室3の両隣に位置する各燃焼室2の温度を平均化することによって、炭化室単位での炉温を定義した。
(火落ち時間予測ステップS2)
 次に、次回の火落ち時間を予測する火落ち時間予測ステップS2について説明する。コークス炉1では、装入する石炭の種類や、隣接する炭化室3の状況などが時々刻々変化するなどの種々の外乱の影響を受ける。そのため、このような外乱の影響を反映した火落ち時間の予測が必要となる。そこで、火落ち時間予測ステップS2においては、図5に示すように、前回の火落ち時間及び炉温を基点として、局所回帰で求めた温度操作時の火落ち時間への影響係数coefと、将来温度変化量δTとを乗じることによって、火落ち時間の変化量を予測し、この予測した火落ち時間の変化量に対して、前回の火落ち時間の実績値を加算することにより、次回の火落ち時間を予測する。これを数式であらわすと、下記数式(4)のようになる。なお、下記数式(4)中における、「NCT(前回)」は前回の火落ち時間の実績値であり、「NCT(予測)」は次回の火落ち時間の予測値である。
Figure JPOXMLDOC01-appb-M000004
 将来温度変化量δTを求める方法としては、図6に示すような、炭化室3の両隣に位置する各燃焼室2W,2Eの直近の所定期間内における測温データを元にして回帰式を構築し、その回帰式の傾き[℃/hr]×20[hr]により求めた。なお、この回帰式の傾きは、炉温の温度変化傾向を表しており、図6においては、炭化室3の炉温が上昇傾向にあることを示している。また、前記20[hr]は、本実施形態に係るコークス炉1における、前回の操業における炭化室3への装炭時から次の操業における炭化室3の装炭時までの時間(1回の操業時間)である。
 このように、火落ち時間予測ステップS2においては、図7に示すように、次回の火落ち時間を予測する際に、前回の火落ち時間の実績値を基点とすることによって、外乱により次回の火落ち時間に変化が生じた場合も、その変化に追従した次回の火落ち時間の予測が可能となる。
 図8は、火落ち時間予測ステップS2で算出した次回の火落ち時間の予測値の精度を示したグラフである。なお、図8の横軸は前回の火落ち時間の実績値であり、縦軸は次回の火落ち時間の予測値である。図8から、二乗平均平方根誤差(RMSE)が1.2[hr]であり、火落ち時間予測ステップS2によって次回の火落ち時間を精度良く予測できることがわかる。
(炭化室温度操作量算出ステップS3)
 次に、次回の火落ち時間の予測値に基づいて、予め設定された次回の火落ち時間の目標値となるように、炭化室3毎の推奨温度操作量を求める炭化室温度操作量算出ステップS3について説明する。炭化室温度操作量算出ステップS3においては、次回の火落ち時間の目標値をNCT_refとして、下記数式(5)により推奨温度操作量ΔT(推奨)を求める。なお、下記数式(5)中の「A」は、オーバーアクションを低減するための緩和係数であり、0<A≦1を満たす任意の値である。
Figure JPOXMLDOC01-appb-M000005
(燃焼室温度操作量変換ステップS4)
 次に、炭化室3毎の推奨温度操作量を燃焼室2毎の温度操作量に変換する燃焼室温度操作量変換ステップS4について説明する。上記数式(5)を用いて求めた推奨温度操作量は炭化室3の温度についてのものであるが、実際にオペレータが操作可能なのは燃焼室2の温度である。そのため、燃焼室温度操作量変換ステップS4においては、炭化室温度操作量算出ステップS3で求めた炭化室3毎の推奨温度操作量を、燃焼室2毎の温度操作量に変換する。ここでは、下記数式(6)に示すように、ある燃焼室の両隣に位置する炭化室X及び炭化室X+1の推奨温度操作量(ΔT(推奨)_(炭化室X)及びΔT(推奨)_(炭化室X+1))を平均化することによって、当該燃焼室の温度操作量ΔT(推奨)_(FlueX)を求めた。
Figure JPOXMLDOC01-appb-M000006
 図9は、ガイダンス表示装置40に表示されたガイダンス情報の一例を示したものである。図9に示すように、火落ち時間予測ステップS2で求めた炭化室3毎の次回の火落ち時間の予測値や、燃焼室温度操作量変換ステップS4で求めた燃焼室2毎の温度操作量などを、ガイダンス情報としてガイダンス表示装置40に表示し、オペレータにガイダンスすることによって、例えば、各炭化室3の次回の火落ち時間が目標値となるように、各ガスコック6のガスコック開度をどれだけ調整すれば良いのかをオペレータが容易に判断することが可能となる。
(実施例)
 本発明に係る火落ち時間制御方法を適用した本発明例として、上述した回帰式構築ステップS1~燃焼室温度操作量変換ステップS4によって算出した、次回の火落ち時間の予測値や燃焼室2の温度操作量のガイダンス値を用いて、各ガスコック6のガスコック開度を調整しながらコークス炉1の操業を行った。また、比較例として、本発明に係る火落ち時間制御方法を適用せずに、例えば従来の手法を適用して各ガスコック6のガスコック開度を調整しながらコークス炉1の操業を行った。
 図10(a)は、比較例における炭化室3毎の実績火落ち時間の偏差のヒストグラムである。図10(b)は、本発明例における炭化室3毎の実績火落ち時間の偏差のヒストグラムである。図10(a)に示すように、比較例における炭化室3毎の実績火落ち時間の平均時間は16.0[hr]であり、標準偏差(σ)は1.45[hr]であった。これに対して、図10(b)に示すように、本発明例における炭化室3毎の実績火落ち時間の平均時間は16.9[hr]であり、標準偏差(σ)は1.24[hr]であった。このように、本発明に係る火落ち時間制御方法を適用することによって、炭化室3毎の実績火落ち時間のばらつきが低減されることが確かめられた。
 図11(a)は、比較例における炭化室3毎の炉温のヒストグラムである。図11(b)は、本発明例における炭化室3毎の炉温のヒストグラムである。なお、本発明例と比較例とで、コークス炉1の稼働率は一定である。
 図11(a)に示すように、比較例における各炭化室3の平均炉温は1230[℃]であった。これに対して、図11(b)に示すように、本発明例における各炭化室3の平均炉温は1202[℃]であった。このように、本発明に係る火落ち時間制御方法を適用することによって、従来例に対して、上述したように炭化室3毎の実績火落ち時間のばらつきが低減され、その結果、コークス炉1の稼働率が一定の下で、各炭化室3の炉温が低減されることが確かめられた。
 本発明によれば、将来の火落ち時間推移を考慮した上で、適正な炭化室毎の温度操作量を決定することができる火落ち時間制御方法、火落ち時間制御ガイダンス表示装置、コークス炉の操業方法、及び、火落ち時間制御装置を提供することができる。
 1 コークス炉
 2 燃焼室
 3 炭化室
 4 ガス本管
 5 ガスコック
 6 ガスコック
 10 制御部
 20 記憶部
 30 入力装置
 40 ガイダンス表示装置

Claims (4)

  1.  燃焼室と炭化室とが交互に連接されて炉団を構成するコークス炉における各炭化室の火落ち時間を制御する火落ち時間制御方法であって、
     炭化室毎の火落ち時間を目的変数とし、前記炭化室毎の炉温に関する情報を説明変数とした関係式を求めるステップと、
     前記関係式と、直近の所定期間内における前記炉温の温度変化傾向とに基づいて、次回の火落ち時間を予測するステップと、
     予測した次回の火落ち時間が、予め設定された目標火落ち時間となるように、前記炭化室毎の温度操作量を求めるステップと、
     前記炭化室毎の温度操作量を燃焼室毎の温度操作量に変換するステップと、
     を含むことを特徴とする火落ち時間制御方法。
  2.  請求項1に記載の火落ち時間制御方法を用いて算出した、前記炭化室毎の次回の火落ち時間の予測値、及び、前記燃焼室毎の温度操作量を表示することを特徴とする火落ち時間制御ガイダンス表示装置。
  3.  燃焼室と炭化室とが交互に連接されて炉団を構成するコークス炉の操業方法であって、
     請求項1に記載の火落ち時間制御方法を用いて、各炭化室の火落ち時間を制御するステップを含むことを特徴とするコークス炉の操業方法。
  4.  燃焼室と炭化室とが交互に連接されて炉団を構成するコークス炉における各炭化室の火落ち時間を制御する火落ち時間制御装置であって、
     炭化室毎の火落ち時間を目的変数とし、前記炭化室毎の炉温に関する情報を説明変数とした関係式を求める関係式算出手段と、
     前記関係式と、直近の所定期間内における前記炉温の温度変化傾向とに基づいて、次回の火落ち時間を予測する次回火落ち時間予測手段と、
     予測した次回の火落ち時間が目標火落ち時間となるように、前記炭化室毎の温度操作量を求める温度操作量算出手段と、
     前記炭化室毎の温度操作量を燃焼室毎の温度操作量に変換する温度操作量変換手段と、
     を備えることを特徴とする火落ち時間制御装置。
PCT/JP2018/018508 2017-06-29 2018-05-14 火落ち時間制御方法、火落ち時間制御ガイダンス表示装置、コークス炉の操業方法、及び、火落ち時間制御装置 WO2019003670A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018543183A JP6673490B2 (ja) 2017-06-29 2018-05-14 火落ち時間制御方法、火落ち時間制御ガイダンス表示装置、コークス炉の操業方法、及び、火落ち時間制御装置
KR1020197032598A KR102292145B1 (ko) 2017-06-29 2018-05-14 탄화 종료 시간 제어 방법, 탄화 종료 시간 제어 가이던스 표시 장치, 코크스로의 조업 방법, 및 탄화 종료 시간 제어 장치
CN201880041572.0A CN110809620B (zh) 2017-06-29 2018-05-14 火落时间控制方法、火落时间控制引导显示装置、炼焦炉的作业方法以及火落时间控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-127556 2017-06-29
JP2017127556 2017-06-29

Publications (1)

Publication Number Publication Date
WO2019003670A1 true WO2019003670A1 (ja) 2019-01-03

Family

ID=64740496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018508 WO2019003670A1 (ja) 2017-06-29 2018-05-14 火落ち時間制御方法、火落ち時間制御ガイダンス表示装置、コークス炉の操業方法、及び、火落ち時間制御装置

Country Status (4)

Country Link
JP (1) JP6673490B2 (ja)
KR (1) KR102292145B1 (ja)
CN (1) CN110809620B (ja)
WO (1) WO2019003670A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109887A (ja) * 1985-11-08 1987-05-21 Nippon Steel Corp コ−クス炉の火落時間制御方法
JP2012153882A (ja) * 2011-01-04 2012-08-16 Jfe Steel Corp ガスコック開度算出方法、コークス炉の操業方法及びコークスの製造方法
JP2014074163A (ja) * 2012-09-11 2014-04-24 Jfe Steel Corp ガスコック開度算出方法、コークス炉の操業方法、およびコークスの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2933069C2 (de) * 1979-08-16 1984-07-05 Dr. C. Otto & Co Gmbh, 4630 Bochum Verfahren zum Betriebe einer Batterie von Verkokungsöfen
JPS58104984A (ja) * 1981-12-17 1983-06-22 Nippon Kokan Kk <Nkk> コ−クス炉における火落ち判定方法
DE3347244A1 (de) * 1983-12-28 1985-07-11 Dr. C. Otto & Co Gmbh, 4630 Bochum Verfahren zum betrieb einer koksofenbatterie
CN101372622B (zh) * 2007-08-20 2011-12-28 尚文彬 焦炉加热自动控制方法
US8381506B2 (en) * 2009-03-10 2013-02-26 General Electric Company Low heating value fuel gas blending control
JP4697340B2 (ja) * 2009-05-29 2011-06-08 Jfeスチール株式会社 高炉操業方法
CN102176221B (zh) * 2011-03-16 2013-05-15 中南大学 基于动态工况的焦炉加热燃烧过程焦炉温度预测方法
DE102013104837A1 (de) * 2012-05-11 2013-11-14 Fisher-Rosemount Systems, Inc. Verfahren und Vorrichtung zum Steuern von Verbrennungsprozesssystemen
CN102888233B (zh) * 2012-06-18 2014-04-30 马钢(集团)控股有限公司 一种特大型焦炉的炉温控制方法
US20150198097A1 (en) * 2014-01-14 2015-07-16 General Electric Company Systems and Methods for Managing a Combustor
CN105137947A (zh) * 2015-09-15 2015-12-09 湖南千盟智能信息技术有限公司 一种焦炉智能控制管理系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109887A (ja) * 1985-11-08 1987-05-21 Nippon Steel Corp コ−クス炉の火落時間制御方法
JP2012153882A (ja) * 2011-01-04 2012-08-16 Jfe Steel Corp ガスコック開度算出方法、コークス炉の操業方法及びコークスの製造方法
JP2014074163A (ja) * 2012-09-11 2014-04-24 Jfe Steel Corp ガスコック開度算出方法、コークス炉の操業方法、およびコークスの製造方法

Also Published As

Publication number Publication date
JP6673490B2 (ja) 2020-03-25
KR102292145B1 (ko) 2021-08-20
JPWO2019003670A1 (ja) 2019-06-27
CN110809620A (zh) 2020-02-18
CN110809620B (zh) 2021-08-27
KR20190131119A (ko) 2019-11-25

Similar Documents

Publication Publication Date Title
JP4948304B2 (ja) 高炉の溶銑温度予測方法
US11193984B2 (en) Method and device for the service life-optimized usage of an electrochemical energy store
KR20180073434A (ko) 연속 소둔라인의 강판 온도 패턴 제어 시스템 및 방법
JP6673490B2 (ja) 火落ち時間制御方法、火落ち時間制御ガイダンス表示装置、コークス炉の操業方法、及び、火落ち時間制御装置
JP2004094939A (ja) モデル構造、制御装置、温度調節器および熱処理装置
JP2008001816A (ja) コークス炉の燃焼制御方法
JP4203275B2 (ja) 連続鋼材加熱炉の燃焼制御方法、燃焼制御装置及び燃焼制御プログラム並びにコンピュータ読み取り可能な記録媒体
JP5919815B2 (ja) ガスコック開度算出方法、コークス炉の操業方法及びコークスの製造方法
JP2014071858A (ja) 結果予測方法及び結果予測装置
JP5572957B2 (ja) コークス炉燃焼室のガス量調整方法およびコークスの製造方法
WO2024004585A1 (ja) 加熱炉燃焼ガス使用量予測装置、エネルギー運用最適化システム、エネルギー運用最適化装置、表示端末装置、加熱炉燃焼ガス使用量予測方法およびエネルギー運用最適化方法
JPS61141787A (ja) コ−クス炉における炉温制御方法
JPH0248196B2 (ja) Kookusuronohiotoshijikanseigyohoho
JP5892131B2 (ja) ガスコック開度算出方法、コークス炉の操業方法、およびコークスの製造方法
JP5556249B2 (ja) コークス炉における火落判定方法
JP2020021411A (ja) 制御装置、制御方法及びプログラム
JP2014071859A (ja) 結果予測方法及び結果予測装置
Salmanova et al. Lifetime prediction for structural elements of a tamman vacuum high-temperature furnace by means of mathematical models
TWI750863B (zh) 石墨化爐之終止送電的管控方法
JPS5950196B2 (ja) コ−クス炉の火落判定方法
JP5954382B2 (ja) コークス炉における火落判定方法
Hashimoto et al. Thermal control of coke furnace by data-driven approach
CN115480479A (zh) 一种还原炉系统的温度控制方法及装置
JP5223373B2 (ja) コークス炉燃焼室のガス量調整方法およびコークスの製造方法
JPH0485392A (ja) コークス炉の投入熱量制御方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018543183

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18822821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197032598

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18822821

Country of ref document: EP

Kind code of ref document: A1