WO2019001317A1 - 电致发光二极管阵列基板及其制备方法、显示面板 - Google Patents

电致发光二极管阵列基板及其制备方法、显示面板 Download PDF

Info

Publication number
WO2019001317A1
WO2019001317A1 PCT/CN2018/091952 CN2018091952W WO2019001317A1 WO 2019001317 A1 WO2019001317 A1 WO 2019001317A1 CN 2018091952 W CN2018091952 W CN 2018091952W WO 2019001317 A1 WO2019001317 A1 WO 2019001317A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
array substrate
auxiliary electrode
diode array
Prior art date
Application number
PCT/CN2018/091952
Other languages
English (en)
French (fr)
Inventor
侯文军
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP18811433.4A priority Critical patent/EP3648189A4/en
Priority to JP2018564919A priority patent/JP7201440B2/ja
Priority to US16/308,883 priority patent/US20190288044A1/en
Publication of WO2019001317A1 publication Critical patent/WO2019001317A1/zh
Priority to US17/955,920 priority patent/US20230033003A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80522Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • H10K59/1315Interconnections, e.g. wiring lines or terminals comprising structures specially adapted for lowering the resistance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing

Definitions

  • At least one embodiment of the present disclosure is directed to an electroluminescent diode array substrate, a method of fabricating the same, and a display panel.
  • the electroluminescent diode has the advantages of simple preparation process, low production cost, high luminous efficiency, easy formation of flexible structure, low power consumption, high color saturation and wide viewing angle.
  • the display technology using electroluminescent diode has become an important Display technology.
  • Electroluminescent diodes include organic light emitting diodes (OLEDs) and quantum dot light emitting diodes (QLEDs).
  • OLED organic light emitting diode
  • QLED quantum dot light emitting diodes
  • an organic light emitting diode (OLED) array substrate includes a plurality of pixel units, and each of the pixel units may include a switching transistor, a driving transistor, an OLED display device, and the like.
  • the OLED display device is a current-type light-emitting device, and its structure mainly includes an anode, a cathode, and a functional layer of an organic material.
  • the working principle of the OLED display device is that the organic material functional layer emits light by carrier injection and recombination driven by an electric field formed by the anode and the cathode.
  • QLED quantum dot light-emitting diode
  • OLED organic light-emitting diode
  • the quantum center of a quantum dot light-emitting diode is composed of quantum dots (Quantum dots), and quantum dot light-emitting diodes (QLEDs).
  • the principle of luminescence is that electrons (Electron) and holes (Hole) converge in a quantum dot layer to form an photon (Exciton), which emits light by recombination of photons.
  • At least one embodiment of the present disclosure provides an electroluminescent diode array substrate, the electroluminescent diode array substrate comprising: a substrate, an auxiliary electrode, a pixel defining layer, a first electrode, and a functional layer on the substrate And a second electrode, wherein the pixel defining layer has a via structure; the auxiliary electrode is located on at least one side of the via structure; and the second electrode is electrically connected to the auxiliary electrode.
  • an upper surface of the auxiliary electrode is higher than an upper surface of the functional layer in the via structure.
  • the auxiliary electrode has a concave structure.
  • the auxiliary electrode is a plate-like structure, or the auxiliary electrodes are plural and spaced apart.
  • the via structure has a conductive polymer layer, and the second electrode and the auxiliary electrode are electrically connected through the conductive polymer layer.
  • the thickness of the conductive polymer layer is smaller than the thickness of the pixel defining layer.
  • the conductive polymer layer has a conductivity greater than 10 -6 S/m.
  • the material of the conductive polymer layer includes at least one of polypyrrole, polyphenylene sulfide, polyphthalocyanine, polyaniline, and polythiophene.
  • the electroluminescent diode array substrate provided by at least one embodiment of the present disclosure further includes: a planarization layer disposed between the substrate substrate and the pixel defining layer, wherein the via structure is from the pixel A defined layer extends through the planarization layer.
  • the thickness of the conductive polymer layer is greater than the thickness of the planarization layer, and is smaller than the planarization layer and the pixel defining layer. The sum of the thicknesses.
  • an upper surface of the conductive polymer layer is flush with an upper surface of the pixel defining layer.
  • an electroluminescent diode array substrate provided by at least one embodiment of the present disclosure includes a plurality of the via structures extending through the planarization layer and the pixel defining layer, and the second electrode is in the plurality of The hole structure is electrically connected to the auxiliary electrode, respectively.
  • the functional layer has a thickness of 100 nm to 300 nm
  • the auxiliary electrode has a thickness of 0.5 ⁇ m to 1 ⁇ m
  • the thickness of the planarization layer is 1 ⁇ m to 3 ⁇ m
  • the thickness of the pixel defining layer is 1 ⁇ m to 3 ⁇ m
  • the thickness of the conductive polymer layer is 2 ⁇ m to 5.7 ⁇ m.
  • the functional layer includes at least one of a light emitting layer, an electron injection layer, an electron transport layer, a hole injection layer, and a hole transport layer.
  • At least one embodiment of the present disclosure further provides a display panel comprising the electroluminescent diode array substrate of any of the above.
  • At least one embodiment of the present disclosure further provides a method for fabricating an electroluminescent diode array substrate, the method comprising: providing a substrate, forming an auxiliary electrode, a pixel defining layer, a first electrode, and a function on the substrate And a second electrode, wherein a via structure is formed in the pixel defining layer; the auxiliary electrode is formed on at least one side of the via structure; and the second electrode is electrically connected to the auxiliary electrode.
  • an upper surface of the auxiliary electrode formed on at least one side of the via structure is higher than an upper surface of the functional layer in the via structure.
  • the preparation method provided by at least one embodiment of the present disclosure further includes forming a planarization layer on the base substrate before forming the auxiliary electrode, wherein the via structure extends from the pixel defining layer and Through the planarization layer.
  • the preparation method provided in at least one embodiment of the present disclosure further includes forming a conductive polymer layer in the via structure, wherein the second electrode and the auxiliary electrode are electrically connected through the conductive polymer layer.
  • the conductive polymer layer is formed by a method of inkjet printing.
  • 1 is a schematic cross-sectional view of an organic light emitting diode array substrate
  • FIG. 2 is a schematic cross-sectional view of an organic light emitting diode array substrate according to an embodiment of the present disclosure
  • FIG. 3 is a schematic plan view showing a planar structure of an OLED array substrate according to an embodiment of the present disclosure
  • FIG. 4 is a cross-sectional structural diagram of still another OLED array substrate according to an embodiment of the present disclosure.
  • FIG. 5 is a cross-sectional structural diagram of still another OLED array substrate according to an embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional structural diagram of still another OLED array substrate according to an embodiment of the present disclosure.
  • FIG. 7 is a cross-sectional structural diagram of still another OLED array substrate according to at least one embodiment of the present disclosure.
  • FIG. 8 is a block diagram of a display panel according to an embodiment of the present disclosure.
  • FIG. 9 is a flowchart of a process for preparing an organic light emitting diode array substrate according to an embodiment of the present disclosure.
  • Electroluminescent diodes such as organic light-emitting diodes (OLEDs) and quantum dot light-emitting diodes (QLEDs), are mostly current-type driving devices.
  • OLEDs organic light-emitting diodes
  • QLEDs quantum dot light-emitting diodes
  • an auxiliary electrode is usually added to the electroluminescent diode display device.
  • an auxiliary electrode is formed on the electroluminescent diode array substrate, and the auxiliary electrode is electrically connected to the cathode through the via structure.
  • the organic material is vapor-deposited at the via structure, and the organic material isolates the cathode and the auxiliary electrode; in the preparation process of the QLED device, especially In the preparation process of the large-size QLED panel, a quantum dot light-emitting layer is printed at the via structure, and the quantum dot light-emitting layer isolates the cathode and the auxiliary electrode.
  • an organic light emitting diode array substrate will be described as an example.
  • 1 is a schematic cross-sectional view of an organic light emitting diode array substrate.
  • the OLED array substrate includes: a base substrate 101, an auxiliary electrode 102 disposed on the base substrate 101, a planarization layer 103, a first electrode 104, an organic material functional layer 105, and a second
  • the electrode 106 and the pixel define a layer 108 in which the via structure 107 is disposed.
  • the second electrode 106 of the OLED array substrate is generally prepared by using a thin layer of metallic silver
  • the first electrode 104 is generally prepared by using ITO (indium tin oxide), the resistivity of the thin layer of metallic silver and indium tin oxide (ITO).
  • the second electrode 106 prepared by using a thin layer of metal silver has a large resistivity, which causes a large voltage drop (IR drop), resulting in an actual OLED array substrate.
  • the driving voltage is greatly different from the power supply voltage.
  • the brightness of the large area is uneven, which affects the display effect.
  • forming an auxiliary electrode 102 on the base substrate 101 can reduce the electrical resistance of the second electrode 106.
  • the subsequently formed organic material functional layer 105 electrically isolates the auxiliary electrode 102 from the second electrode 106.
  • the auxiliary electrode 102 cannot be connected in parallel with the second electrode 106, and the voltage drop cannot be effectively reduced.
  • the second electrode and the auxiliary electrode can be electrically connected by changing the structural design of the auxiliary electrode, so that the auxiliary electrode electrically connected to the second electrode can increase the equivalent of the second electrode.
  • the thickness can be reduced, so that the resistance of the second electrode can be reduced, and the voltage drop caused by the larger resistance of the second electrode when the thinner metal is used as the second electrode can be avoided, thereby avoiding a large voltage drop.
  • At least one embodiment of the present disclosure provides an electroluminescent diode array substrate, the electroluminescent diode array substrate comprising: a substrate, an auxiliary electrode on the substrate, a pixel defining layer, a first electrode, a functional layer, and
  • the second electrode is provided with a via structure in the pixel defining layer, and the auxiliary electrode is located on at least one side of the via structure, and the second electrode is electrically connected to the auxiliary electrode.
  • the embodiment of the present disclosure ensures that the second electrode is electrically connected to the auxiliary electrode by changing the structural design of the auxiliary electrode, thereby reducing the problem of large voltage drop in the external circuit.
  • At least one embodiment of the present disclosure provides an electroluminescent diode array substrate, which may be an organic light emitting diode (OLED) array substrate or a quantum dot light emitting diode (QLED) array substrate.
  • OLED organic light emitting diode
  • QLED quantum dot light emitting diode
  • the electroluminescent diode array substrate is exemplified as an organic light emitting diode (OLED) array substrate.
  • FIG. 2 is a schematic cross-sectional view of an organic light emitting diode array substrate according to at least one embodiment of the present disclosure.
  • the OLED array substrate 2 includes a substrate substrate 201, an auxiliary electrode 202 disposed on the substrate substrate 201, a pixel defining layer 208, a first electrode 204, and a functional layer 205 (eg, organic a material function layer) and a second electrode 206.
  • the pixel defining layer 208 is provided with a via structure 207.
  • the auxiliary electrode 202 is disposed on at least one side of the via structure 207, and the second electrode 206 is electrically connected to the auxiliary electrode 202. .
  • auxiliary electrode disposed on at least one side of the via structure does not emphasize that the auxiliary electrode is disposed on the outer side or the inner side of the via structure, but refers to the sidewall of the auxiliary electrode disposed in at least one direction outside the via structure. on.
  • the upper surface of the auxiliary electrode 202 is higher than the upper surface of the functional layer 205 in the via structure 207.
  • the OLED array substrate includes a display area and a peripheral area other than the display area.
  • the display area is also referred to as an AA (Active Area) area, and is generally used for displaying, and the peripheral area can be used for setting a driving circuit and performing a display panel.
  • the second electrode 206 may be electrically connected to the auxiliary electrode 202.
  • the second electrode 206 may be electrically connected again with the auxiliary electrode 202, such that the second electrode 206 and the auxiliary electrode 202 are at the first end and The two ends are respectively connected to form a parallel circuit.
  • the two positions at which the second electrode 206 and the auxiliary electrode 202 are connected to each other may be located in the display region.
  • the auxiliary electrode 202 transmits the branch as the voltage signal and the second electrode 206 simultaneously.
  • the voltage signal is equivalent to the second electrode 206 and the auxiliary electrode 202 forming a parallel circuit, which reduces the resistance during the electrical signal transmission, or the auxiliary electrode 202 can first receive the voltage signal, and when the voltage signal arrives and the auxiliary electrode 202 is electrically
  • the second electrode 206 transmits a voltage signal to the auxiliary electrode 202 as a branch of the voltage signal; or the second electrode 206 and the auxiliary electrode 202 simultaneously receive the voltage signal, the second electrode 206 and the auxiliary
  • the electrode 202 simultaneously transmits a voltage signal as two branches.
  • the OLED array substrate 2 further includes a power supply line, a data line, and a gate line (not shown) disposed on the base substrate 201, and pixels are disposed in an area defined by the intersection of the gate line and the data line.
  • the pixel structure includes a switching transistor 30, a driving transistor 40, and an OLED device 20, the switching transistor 30 is connected to a gate line and a data line, and the driving transistor 40 is connected to the switching transistor 30, the power supply line, and the OLED device.
  • a pixel defining layer 208 is formed between the first electrode 204 and the second electrode 206, which can be used to isolate two adjacent sub-pixel units.
  • the pixel structure, the gate line, and the data line are all located in the display area.
  • the OLED array substrate may further include a detection compensation line connecting the pixel unit and the detection integrated circuit, and the detection compensation The line can also be in the display area.
  • the upper surface of the auxiliary electrode 202 disposed on at least one side of the via structure 207 is higher than the upper surface of the functional layer 205 in the via structure 207, such that the auxiliary electrode 202 can pass higher than the via structure.
  • a portion of the upper surface of the functional layer 205 in 207 is electrically connected to the second electrode 206.
  • FIG. 4 is a cross-sectional structural diagram of still another organic light emitting diode array substrate according to an embodiment of the present disclosure.
  • the electroluminescent diode array substrate further includes a planarization layer 203 disposed between the substrate substrate 201 and the pixel defining layer 208, wherein the via structure 207 extends from the pixel defining layer 208 and is planarized throughout Layer 203.
  • the via structure 207 extends from the pixel defining layer 208 and extends through the planarization layer 203.
  • the depth of the via structure 207 is substantially equal to the sum of the thicknesses of the pixel defining layer 208 and the planarizing layer 203.
  • the functional layer 205 has a thickness of 100 nm to 300 nm, for example, the functional layer 205 has a thickness of 100 nm, 200 nm, or 300 nm or the like.
  • the auxiliary electrode 202 has a thickness of 0.5 ⁇ m to 1 ⁇ m, for example, 0.5 ⁇ m, 0.6 ⁇ m, 0.7 ⁇ m, 0.8 ⁇ m, 0.9 ⁇ m, or 1 ⁇ m.
  • the thickness of the planarization layer 203 is 1 ⁇ m to 3 ⁇ m, for example, 1 ⁇ m, 2 ⁇ m, or 3 ⁇ m.
  • the pixel defining layer 208 has a thickness of 1 ⁇ m to 3 ⁇ m, for example, 1 ⁇ m, 2 ⁇ m, or 3 ⁇ m.
  • the thickness of the first electrode 204 is 200 nm to 300 nm, for example, 200 nm, 250 nm, or 300 nm.
  • the second electrode 206 has a thickness of 100 nm to 200 nm, for example, 100 nm, 150 nm, or 200 nm.
  • the second electrode 206 may have a step difference, that is, the second electrode 206 is broken.
  • a conductive polymer layer 209 may be disposed in the via structure 207 to raise the functional layer 205, thereby preventing the second electrode 206 from being broken.
  • a conductive current is formed between the auxiliary electrode 202 and the second electrode 206.
  • the polymer layer 209, the second electrode 206 and the auxiliary electrode 202 are electrically connected through the conductive polymer layer 209 to reduce the risk of a step difference in the second electrode 206.
  • the thickness of the conductive polymer layer 209 is greater than the thickness of the planarization layer 203 and less than the sum of the thicknesses of the planarization layer 203 and the pixel defining layer 208.
  • the upper surface of the conductive polymer layer 209 may be flush with the upper surface of the pixel defining layer 208, which substantially eliminates the risk of the second electrode 206 having a step.
  • the conductive polymer layer 209 has a thickness of 2 ⁇ m to 5.7 ⁇ m.
  • the conductive polymer layer may have a thickness of 2 ⁇ m, 3 ⁇ m, 4 ⁇ m or 5 ⁇ m or the like.
  • the conductivity of the conductive polymer layer 209 is greater than 10 -6 S/m, so that the auxiliary electrode 202 and the second electrode 206 can be electrically connected.
  • the material of the conductive polymer layer 209 includes at least one of polypyrrole, polyphenylene sulfide, polyphthalocyanine, polyaniline, and polythiophene.
  • FIG. 5 is a cross-sectional structural diagram of still another OLED array substrate according to at least one embodiment of the present disclosure.
  • the auxiliary electrode 202 in the via structure 207 has a "concave" structure such that the two sidewalls of the auxiliary electrode 202 are padded so that the second electrode 206 is at the via structure 207.
  • the auxiliary electrode 202 is directly electrically connected, which reduces the step of forming a conductive polymer layer, and at the same time reduces the risk of the second electrode 206 generating a step.
  • the "concave" structure of the auxiliary electrode 202 means that the cross-sectional structure of the auxiliary electrode (ie, the longitudinal section of the auxiliary electrode) is “concave” in a direction perpendicular to the surface of the substrate 201.
  • FIG. 6 is a cross-sectional structural diagram of still another organic light emitting diode array substrate according to at least one embodiment of the present disclosure.
  • the conductive polymer layer 209 may also be formed on the auxiliary electrode 202 of the "concave" structure, which may further reduce the risk of the second electrode 206 generating a step.
  • the auxiliary electrode 202 is a plate-like structure, at least covered with the via structure 207, or in a plane parallel to the plate surface of the base substrate 201, and along the extending direction of the via structure 207, the auxiliary electrode 202 is more And a plurality of auxiliary electrodes 202 are spaced apart from each other.
  • FIG. 7 is a cross-sectional structural diagram of still another OLED array substrate according to at least one embodiment of the present disclosure.
  • the electroluminescent diode array substrate includes a plurality of via structures 207 extending through the planarization layer 203 and the pixel defining layer 208.
  • the second electrodes 206 are respectively assisted at the plurality of via structures 207.
  • the electrode 202 is electrically connected such that the second electrode 206 and the auxiliary electrode 202 are connected in parallel.
  • FIG. 7 shows two via structures 207.
  • embodiments of the present application are not limited thereto, and more via structures 207 may be formed to further reduce the resistance of the second electrode and the auxiliary electrode.
  • connecting the second electrode 206 in parallel with the auxiliary electrode 202 through the plurality of via structures 207 can also increase the thickness of the second electrode 206, corresponding to increasing the cross-sectional area of the second electrode 206, further reducing the second.
  • the resistance of the electrode 206 can also increase the thickness of the second electrode 206, corresponding to increasing the cross-sectional area of the second electrode 206, further reducing the second. The resistance of the electrode 206.
  • the pixel defining layer 208 is typically formed of an organic insulating material (eg, an acrylic resin) or an inorganic insulating material (eg, silicon nitride SiN x or silicon oxide SiO x ), and the pixel defining layer 208 has insulating properties.
  • the pixel defining layer 208 can be viewed as an insulating structure disposed between the second electrode 206 and the auxiliary electrode 202.
  • the material of the first electrode 205 may be a transparent conductive material including indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium oxide (IGO), gallium zinc oxide (GZO) zinc oxide (ZnO). ), indium oxide (In 2 O 3 ), aluminum zinc oxide (AZO), carbon nanotubes, and the like.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • IGO indium gallium oxide
  • GZO gallium zinc oxide
  • ZnO zinc oxide
  • AZO aluminum zinc oxide
  • carbon nanotubes and the like.
  • the material of the first electrode 205 may be a metal conductive material including a single metal such as copper (Cu), chromium (Cr), molybdenum (Mo), gold (Au), and platinum (Pt) or the above metal. Alloy material, for example, copper chromium alloy (CuCr) or chromium molybdenum alloy (CrMo).
  • the material of the first electrode 205 may also be a laminated structure formed by any combination of the above transparent conductive material and a metal conductive material, for example, ITO-Mo-IZO, ITO-Cr-In 2 O 3 , ITO-Cu-ZnO.
  • the two-layer laminated structure formed by the layer transparent conductive material for example, the laminated structure formed by any combination of the transparent conductive material and the metal conductive material is not limited to the two-layer laminated structure and the three-layer laminated structure described above, and may be other layers.
  • a multilayer laminated structure for example, a four-layer laminate structure, a five-layer laminate structure, or the like.
  • the metal material or the alloy material forming the first electrode has a low work function, the matching with the functional layer of the organic material in the OLED array substrate is not good, and the functional layer of the first metal layer is close to the organic material.
  • Forming a transparent conductive material on one side can improve the work function of the first metal, so that the first electrode and the functional layer of the organic material can be better matched, and in addition, the first electrode phase of the two-layer structure or the three-layer structure The resistance is smaller than the first electrode of the single layer structure, thereby reducing the electrical resistance of the first electrode of the multilayer structure.
  • the material of the second electrode 104 includes a single metal such as magnesium, aluminum or lithium, or a magnesium aluminum alloy (MgAl), a lithium aluminum alloy (LiAl) or the like.
  • an array substrate is used as an organic light emitting diode (OLED) array substrate
  • the functional layer includes a light emitting layer, an electron injection layer, and an electron transport layer. a hole injection layer, a hole transport layer, and the like.
  • a method of forming a functional layer in the organic light emitting diode (OLED) array substrate includes a vacuum evaporation method and a solution method.
  • the vacuum evaporation method is suitable for organic small molecules and does not require a solvent, and the thickness of each layer of the formed organic material functional layer is uniform.
  • the solution method includes spin coating, inkjet printing, nozzle coating method, etc., and the method is suitable for polymer materials and soluble small molecules, and is characterized by low cost of production equipment, and superior in the production of large-scale and large-sized products, especially It is an inkjet printing technology that accurately sprays the solution into the pixel area.
  • the quantum dots of the self-luminous quantum dot light emitting diode cannot achieve the same evaporation as the self-luminous OLED due to the disadvantage that they are easily affected by heat and moisture.
  • At least one embodiment of the present disclosure further provides a display panel comprising the electroluminescent diode array substrate provided by any of the above embodiments.
  • FIG. 8 is a block diagram of a display panel including an electroluminescent diode array substrate.
  • the display panel 1 includes an electroluminescent diode array substrate 2 disposed therein.
  • the display panel 1 can be applied to a display device.
  • the display device can be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • At least one embodiment of the present disclosure provides a method for fabricating an electroluminescent diode array substrate, which may be an organic light emitting diode (OLED) array substrate or a quantum dot light emitting diode (QLED) array substrate.
  • an electroluminescent diode array substrate which may be an organic light emitting diode (OLED) array substrate or a quantum dot light emitting diode (QLED) array substrate.
  • the electroluminescent diode array substrate is exemplified as an organic light emitting diode (OLED) array substrate.
  • FIG. 9 is a flowchart of a process for preparing an organic light emitting diode array substrate according to at least one embodiment of the present disclosure.
  • the preparation method includes:
  • S102 forming an auxiliary electrode, a pixel defining layer, a first electrode, a functional layer and a second electrode on the base substrate, and forming the pixel defining layer comprises forming a via structure in the pixel defining layer, the auxiliary electrode being formed in the via structure At least one side of the second electrode is electrically connected to the auxiliary electrode.
  • the upper surface of the auxiliary electrode formed on at least one side of the via structure is higher than the upper surface of the functional layer in the via structure.
  • the auxiliary electrode can be electrically connected to the second electrode by a portion higher than the upper surface of the functional layer in the via structure.
  • forming a planarization layer may also be included prior to forming the pixel delimiting layer, the via structure extending from the pixel defining layer to extending through the planarization layer.
  • the pixel defining layer can be used to isolate two adjacent sub-pixel units.
  • the second electrode is electrically connected to the auxiliary electrode at a plurality of via structures, respectively, such that the second electrode and the auxiliary electrode are connected in parallel.
  • the second electrode is connected in parallel with the auxiliary electrode through a plurality of via structures, and the thickness of the second electrode can be increased, which is equivalent to increasing the cross-sectional area of the second electrode, further reducing the second electrode. resistance.
  • the pixel defining layer is typically formed using an organic insulating material (eg, an acrylic resin) or an inorganic insulating material (eg, silicon nitride SiN x or silicon oxide SiO x ), the pixel defining layer having insulating properties.
  • the pixel defining layer can be regarded as an insulating structure disposed between the second electrode and the auxiliary electrode.
  • the preparation method provided in at least one embodiment of the present disclosure further includes forming a conductive polymer layer in the via structure, and the second electrode and the auxiliary electrode are electrically connected through the conductive polymer layer. If the second electrode is directly connected to the auxiliary electrode, the second electrode may have a step difference, that is, the second electrode is broken.
  • a conductive polymer layer may be disposed in the via structure to raise the functional layer to prevent the second electrode from being broken.
  • the thickness of the conductive polymer layer is greater than the thickness of the planarization layer and less than the sum of the thicknesses of the planarization layer and the pixel defining layer.
  • the upper surface of the conductive polymer layer is flush with the upper surface of the pixel defining layer, so that the risk of a step difference in the second electrode can be substantially eliminated.
  • the conductive polymer layer 209 has a thickness of 2 ⁇ m to 5.7 ⁇ m.
  • the conductive polymer layer may have a thickness of 2 ⁇ m, 3 ⁇ m, 4 ⁇ m or 5 ⁇ m or the like.
  • the conductivity of the conductive polymer layer 209 is greater than 10 -6 S/m, which ensures a good electrical connection between the auxiliary electrode 202 and the second electrode 206.
  • the material of the conductive polymer layer 209 includes at least one of polypyrrole, polyphenylene sulfide, polyphthalocyanine, polyaniline, and polythiophene.
  • the conductive polymer layer is formed by a method of inkjet printing.
  • the thickness of the functional layer is from 100 nm to 300 nm, for example, 100 nm, 200 nm, or 300 nm.
  • the auxiliary electrode 202 has a thickness of 0.5 ⁇ m to 1 ⁇ m, for example, 0.5 ⁇ m, 0.6 ⁇ m, 0.7 ⁇ m, 0.8 ⁇ m, 0.9 ⁇ m, or 1 ⁇ m.
  • the thickness of the planarization layer 203 is 1 ⁇ m to 3 ⁇ m, for example, 1 ⁇ m, 2 ⁇ m, or 3 ⁇ m.
  • the pixel defining layer 208 has a thickness of 1 ⁇ m to 3 ⁇ m, for example, 1 ⁇ m, 2 ⁇ m, or 3 ⁇ m.
  • the thickness of the first electrode 204 is 200 nm to 300 nm, for example, 200 nm, 250 nm, or 300 nm.
  • the second electrode 206 has a thickness of 100 nm to 200 nm, for example, 100 nm, 150 nm, or 200 nm.
  • An electroluminescent diode array substrate provided by at least one embodiment of the present disclosure, a preparation method thereof, and a display panel have at least one of the following beneficial effects:
  • the electroluminescent diode array substrate provided by at least one embodiment of the present disclosure ensures that the second electrode and the auxiliary electrode are electrically connected by changing the structural design of the auxiliary electrode, such that the auxiliary electrode electrically connected to the second electrode
  • the equivalent thickness of the second electrode can be increased;
  • the electroluminescent diode array substrate provided by at least one embodiment of the present disclosure can reduce the resistance of the second electrode, and can avoid the use of a thin metal as the second electrode due to the large resistance of the second electrode.
  • the electroluminescent diode array substrate provided by at least one embodiment of the present disclosure can avoid the problem of damaging the organic electroluminescent display panel due to a large voltage drop.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种电致发光二极管阵列基板及其制备方法、显示面板,该电致发光二极管阵列基板包括:衬底基板(201),位于所述衬底基板(201)上的辅助电极(202)、像素界定层(208)、第一电极(204)、功能层(205)和第二电极(206),其中,所述像素界定层(208)中有过孔结构(207);所述辅助电极(202)位于所述过孔结构(207)的至少一侧;所述第二电极(206)与所述辅助电极(202)电连接。该电致发光二极管阵列基板通过改变辅助电极(202)的结构设计,以保证第二电极(206)与辅助电极(202)电性连接,从而减小了第二电极(206)的电阻,避免了采用较薄的金属作为第二电极(206)时由于第二电极(206)的电阻较大而导致的电压降较大的问题,进而可以避免由于电压降较大而损坏有机电致发光显示面板的问题。

Description

电致发光二极管阵列基板及其制备方法、显示面板
本申请要求于2017年6月30日递交的中国专利申请第201710558592.2号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一实施例涉及一种电致发光二极管阵列基板及其制备方法和显示面板。
背景技术
电致发光二极管具有制备工艺简单、生产成本低、发光效率高、易形成柔性结构、功耗低、色饱和度高以及视角广等优点,利用电致发光二极管的显示技术已经成为一种重要的显示技术。
电致发光二极管包括有机发光二极管(OLED)和量子点发光二极管(QLED)等。例如,有机发光二极管(OLED)阵列基板包括多个像素单元,每个像素单元可以包括开关晶体管、驱动晶体管和OLED显示器件等。OLED显示器件是电流型发光器件,其结构主要包括阳极、阴极以及有机材料功能层。OLED显示器件的工作原理是:有机材料功能层在阳极和阴极形成的电场的驱动下,通过载流子注入和复合而发光。量子点发光二极管(QLED)的结构与有机发光二极管(OLED)的结构非常相似,主要区别在于量子点发光二极管(QLED)的发光中心由量子点(Quantum dots)构成,量子点发光二极管(QLED)的发光原理是电子(Electron)和空穴(Hole)在量子点层中汇聚后形成光子(Exciton),通过光子的重组而发光。
发明内容
本公开至少一实施例提供一种电致发光二极管阵列基板,该电致发光二极管阵列基板包括:衬底基板,位于所述衬底基板上的辅助电极、像素界定层、第一电极、功能层和第二电极,其中,所述像素界定层中有过孔结构;所述辅助电极位于所述过孔结构的至少一侧;所述第二电极与所述 辅助电极电连接。
例如,在本公开至少一实施例提供的电致发光二极管阵列基板中,所述辅助电极的上表面高于所述过孔结构中所述功能层的上表面。
例如,在本公开至少一实施例提供的电致发光二极管阵列基板中,所述辅助电极为凹字形结构。
例如,在本公开至少一实施例提供的电致发光二极管阵列基板中,所述辅助电极为板状结构,或者,所述辅助电极为多个且间隔排列。
例如,在本公开至少一实施例提供的电致发光二极管阵列基板中,所述过孔结构中具有导电高分子层,所述第二电极与所述辅助电极通过所述导电高分子层电连接。
例如,在本公开至少一实施例提供的电致发光二极管阵列基板中,所述导电高分子层的厚度小于所述像素界定层的厚度。
例如,在本公开至少一实施例提供的电致发光二极管阵列基板中,所述导电高分子层的导电率大于10 -6S/m。
例如,在本公开至少一实施例提供的电致发光二极管阵列基板中,所述导电高分子层的材料包括聚吡咯、聚苯硫醚、聚酞菁、聚苯胺和聚噻吩中至少之一。
例如,本公开至少一实施例提供的电致发光二极管阵列基板还包括:设置在所述衬底基板和所述像素界定层之间的平坦化层,其中,所述过孔结构从所述像素界定层延伸且贯穿所述平坦化层。
例如,在本公开至少一实施例提供的电致发光二极管阵列基板中,所述导电高分子层的厚度大于所述平坦化层的厚度,且小于所述平坦化层与所述像素界定层的厚度之和。
例如,在本公开至少一实施例提供的电致发光二极管阵列基板中,所述导电高分子层的上表面和所述像素界定层的上表面平齐。
例如,本公开至少一实施例提供的电致发光二极管阵列基板,包括多个贯穿所述平坦化层和所述像素界定层的所述过孔结构,所述第二电极在多个所述过孔结构处分别与所述辅助电极电连接。
例如,在本公开至少一实施例提供的电致发光二极管阵列基板中,所述功能层的厚度为100nm~300nm,所述辅助电极的厚度为0.5μm~1μm,所述平坦化层的厚度为1μm~3μm,所述像素界定层的厚度为1μm~3μm, 所述导电高分子层的厚度为2μm~5.7μm。
例如,在本公开至少一实施例提供的电致发光二极管阵列基板中,所述功能层包括发光层、电子注入层、电子传输层、空穴注入层和空穴传输层中至少之一。
本公开至少一实施例还提供一种显示面板,包括上述任一项所述的电致发光二极管阵列基板。
本公开至少一实施例还提供一种电致发光二极管阵列基板的制备方法,该制备方法包括:提供衬底基板,在所述衬底基板上形成辅助电极、像素界定层、第一电极、功能层和第二电极,其中,所述像素界定层中形成有过孔结构;所述辅助电极形成在所述过孔结构的至少一侧;所述第二电极与所述辅助电极电连接。
例如,在本公开至少一实施例提供的制备方法中,形成在所述过孔结构的至少一侧的所述辅助电极的上表面高于所述过孔结构中所述功能层的上表面。
例如,本公开至少一实施例提供的制备方法,在形成所述辅助电极之前,还包括在所述衬底基板上形成平坦化层,其中,所述过孔结构从所述像素界定层延伸且贯穿所述平坦化层。
例如,本公开至少一实施例提供的制备方法,还包括在所述过孔结构中形成导电高分子层,其中,所述第二电极与所述辅助电极通过所述导电高分子层电连接。
例如,在本公开至少一实施例提供的制备方法中,采用喷墨打印的方法形成所述导电高分子层。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为一种有机发光二极管阵列基板的截面结构示意图;
图2为本公开一实施例提供的一种有机发光二极管阵列基板的截面结构示意图;
图3为本公开一实施例提供的一种有机发光二极管阵列基板的平面结 构示意图;
图4为本公开一实施例提供的再一种有机发光二极管阵列基板的截面结构示意图;
图5为本公开一实施例提供的又一种有机发光二极管阵列基板的截面结构示意图;
图6为本公开一实施例提供的又一种有机发光二极管阵列基板的截面结构示意图;
图7为本公开至少一实施例提供的又一种有机发光二极管阵列基板的截面结构示意图;
图8为本公开一实施例提供的一种显示面板的框图;以及
图9为本公开一实施例提供的一种有机发光二极管阵列基板的制备过程的流程图。
附图标记:
101,201-衬底基板;102,202-辅助电极;103,203-平坦化层;104,204-第一电极;105-有机材料功能层;205-功能层;106,206-第二电极;107,207-过孔结构;108,208-像素界定层;209-导电高分子层;1-显示面板;2-电致发光二极管阵列基板;20-OLED器件;30-开关晶体管;40-驱动晶体管。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定 于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
电致发光二极管,例如,有机发光二极管(OLED)和量子点发光二极管(QLED)等大多为电流型驱动器件,当用于提供驱动电流的外部电路太长或太细时,外部电路会导致严重的电压梯度(压降)。为减小电压降,通常会在电致发光二极管显示器件中增加辅助电极,例如,将辅助电极制作在电致发光二极管阵列基板上,辅助电极通过过孔结构与阴极电连接。但是,在OLED器件的制备过程中,尤其在大尺寸OLED面板的制备过程中,会在过孔结构处蒸镀有机材料,有机材料会隔绝阴极与辅助电极;在QLED器件的制备过程中,尤其在大尺寸QLED面板的制备过程中,会在过孔结构处打印形成量子点发光层,量子点发光层会隔绝阴极与辅助电极。
例如,以有机发光二极管阵列基板为例加以说明。图1为一种有机发光二极管阵列基板的截面结构示意图。如图1所示,该有机发光二极管阵列基板包括:衬底基板101,设置在该衬底基板101上的辅助电极102、平坦化层103、第一电极104、有机材料功能层105、第二电极106和像素界定层108,该平坦化层103中设置有过孔结构107。
例如,OLED阵列基板的第二电极106一般采用薄层金属银制备,第一电极104一般采用ITO(indium tin oxide,氧化铟锡)制备,薄层金属银以及氧化铟锡(ITO)的电阻率均较高,尤其是对于大面积成型的第二电极106,采用薄层金属银制备的第二电极106的电阻率较大,从而造成电压降(IR drop)较大,造成OLED阵列基板的实际驱动电压与电源电压有较大的差异,在大尺寸的OLED显示器件上,表现为大面积的亮度不均匀,从而影响显示效果。如图1所示,在衬底基板101上形成一层辅助电极102可以降低第二电极106的电阻,但是,后续形成的有机材料功能层105会使辅助电极102和第二电极106电性隔绝,这样辅助电极102不能与第二电极106并联连接,不能有效地减小电压降。
本公开的发明人注意到,可以通过改变辅助电极的结构设计,来保证第二电极与辅助电极电性连接,这样,与第二电极电性连接的辅助电极可以增大第二电极的等效厚度,从而可以减小第二电极的电阻,可以避免采用较薄的金属作为第二电极时由于第二电极的电阻较大而导致的电压降较 大的问题,进而可以避免由于电压降较大而损坏有机电致发光显示面板的问题。
本公开的至少一实施例提供一种电致发光二极管阵列基板,该电致发光二极管阵列基板包括:衬底基板,位于衬底基板上的辅助电极、像素界定层、第一电极、功能层和第二电极,该像素界定层中设置有过孔结构,辅助电极位于该过孔结构的至少一侧,该第二电极与辅助电极电性连接。本公开的实施例通过改变辅助电极的结构设计,来保证第二电极与辅助电极电性连接,从而减小了外部电路中电压降较大的问题。
本公开至少一实施例提供一种电致发光二极管阵列基板,该电致发光二极管阵列基板可以为有机发光二极管(OLED)阵列基板或者量子点发光二极管(QLED)阵列基板。下面以该电致发光二极管阵列基板为有机发光二极管(OLED)阵列基板为例加以说明。
例如,图2为本公开至少一实施例提供的一种有机发光二极管阵列基板的截面结构示意图。如图2所示,该有机发光二极管阵列基板2包括:衬底基板201以及设置在该衬底基板201上的辅助电极202、像素界定层208、第一电极204、功能层205(例如,有机材料功能层)和第二电极206,该像素界定层208中设置有过孔结构207,该辅助电极202设置在过孔结构207的至少一侧,该第二电极206与该辅助电极202电连接。
需要说明的是,辅助电极设置在过孔结构的至少一侧并不是强调辅助电极设置在过孔结构的外侧或者内侧,而是指辅助电极设置在过孔结构的外侧的至少一个方向的侧壁上。
例如,辅助电极202的上表面高于过孔结构207中功能层205的上表面。
例如,该OLED阵列基板包括显示区域和显示区域之外的外围区域,其中,显示区域又称为AA(Active Area)区,一般用于实现显示,外围区域可用于设置驱动电路、进行显示面板的封装等。例如,在外围区域,第二电极206可以和辅助电极202电连接,在显示区域,第二电极206可以和辅助电极202再次电连接,这样第二电极206和辅助电极202在第一端和第二端分别连接以形成并联电路。或者,第二电极206和辅助电极202彼此连接的两个位置可以都位于显示区域中。当第二电极206接受电压信号并将电压信号进行传递,且当电压信号到达和第二电极206电连接的辅助电极202时,辅助电极202作为电压信号传递的支路与第二电极206同时 传递电压信号,这样相当于第二电极206和辅助电极202形成并联电路,降低了电信号传递过程中的电阻,或者,也可以是辅助电极202先接受电压信号,当电压信号到达和辅助电极202电连接的第二电极206时,第二电极206作为电压信号传递的支路与辅助电极202同时传递电压信号;再或者,第二电极206和辅助电极202同时接受电压信号,第二电极206和辅助电极202作为两条支路同时传递电压信号。
例如,如图3所示,该OLED阵列基板2还包括设置在衬底基板201上的电源线、数据线和栅线(未示出),栅线和数据线交叉限定的区域内设置有像素结构,示例性地,该像素结构包括开关晶体管30、驱动晶体管40和OLED器件20,开关晶体管30连接到栅线和数据线,驱动晶体管40连接到开关晶体管30、电源线和OLED器件。
例如,如图2和图3所示,像素界定层208形成在第一电极204和第二电极206之间,该像素界定层208可以用于隔离相邻的两个子像素单元。
例如,上述像素结构、栅线和数据线均位于显示区域,在该OLED阵列基板中除了栅线、数据线等导线外,还可以包括连接像素单元与检测集成电路的检测补偿线,该检测补偿线也可以位于显示区域。
例如,如图2所示,设置在过孔结构207的至少一侧的辅助电极202的上表面高于过孔结构207中功能层205的上表面,这样辅助电极202可以通过高于过孔结构207中的功能层205的上表面的部分与第二电极206电性连接。
例如,图4为本公开一实施例提供的再一种有机发光二极管阵列基板的截面结构示意图。如图4所示,该电致发光二极管阵列基板还包括设置在衬底基板201和像素界定层208之间的平坦化层203,其中,过孔结构207从像素界定层208延伸且贯穿平坦化层203。
例如,如图4所示,该过孔结构207从像素界定层208延伸且贯穿平坦化层203。这样,该过孔结构207的深度大致等于像素界定层208和平坦化层203的厚度之和。
例如,在本公开的实施例中,该功能层205的厚度为100nm~300nm,例如,该功能层205的厚度为100nm、200nm或者300nm等。
例如,辅助电极202的厚度为0.5μm~1μm,例如为0.5μm、0.6μm、0.7μm、0.8μm、0.9μm或者1μm等。
例如,平坦化层203的厚度为1μm~3μm,例如为1μm、2μm或者3μm 等。
例如,像素界定层208的厚度为1μm~3μm,例如为1μm、2μm或者3μm等。
例如,第一电极204的厚度为200nm~300nm,例如为200nm、250nm或者300nm等。
例如,第二电极206的厚度为100nm~200nm,例如为100nm、150nm或者200nm等。
再例如,如果第二电极206与辅助电极202直接连接,第二电极206可能会出现段差,即第二电极206断裂。可以在过孔结构207中设置导电高分子层209以垫高功能层205,从而防止第二电极206断裂,如图2和图4所示,在辅助电极202和第二电极206之间形成导电高分子层209,第二电极206与辅助电极202通过该导电高分子层209电连接以减小第二电极206出现段差的风险。
例如,该导电高分子层209的厚度大于平坦化层203的厚度,且小于平坦化层203与像素界定层208的厚度之和。
例如,该导电高分子层209的上表面可以和该像素界定层208的上表面平齐,这样可以基本消除第二电极206存在段差的风险。
例如,该导电高分子层209的厚度为2μm~5.7μm。例如,该导电高分子层的厚度可以为2μm、3μm、4μm或者5μm等。
例如,该导电高分子层209的导电率大于10 -6S/m,这样可以保证辅助电极202和第二电极206进行电性连接。
例如,该导电高分子层209的材料包括聚吡咯、聚苯硫醚、聚酞菁、聚苯胺和聚噻吩中至少之一。
例如,图5为本公开至少一实施例提供的又一种有机发光二极管阵列基板的截面结构示意图。如图5所示,过孔结构207中的辅助电极202为“凹”字形结构,这样相当于辅助电极202的两个侧壁被垫高,以使第二电极206在过孔结构207处与辅助电极202直接电性连接,减少了形成导电高分子层的步骤,同时可以减少第二电极206产生段差的风险。
需要说明的是,辅助电极202为“凹”字形结构是指:在垂直于衬底基板201板面的方向上,辅助电极的截面结构(即辅助电极的纵截面)为“凹”字形。
例如,图6为本公开至少一实施例提供的又一种有机发光二极管阵列基板的截面结构示意图。例如,也可以在“凹”字形结构的辅助电极202上形成导电高分子层209,这样可以进一步地减少第二电极206产生段差的风险。
例如,辅助电极202为板状结构,至少铺满过孔结构207,或者,在平行于衬底基板201的板面的平面上,且沿着过孔结构207的延伸方向,辅助电极202为多个,且多个辅助电极202相互间隔排列。
例如,图7为本公开至少一实施例提供的又一种有机发光二极管阵列基板的截面结构示意图。如图7所示,该电致发光二极管阵列基板包括多个贯穿该平坦化层203和该像素界定层208的过孔结构207,该第二电极206在多个过孔结构207处分别与辅助电极202电连接,以使第二电极206和辅助电极202并联连接。图7示出了两个过孔结构207,显然,本申请的实施例不限于此,还可以形成更多个的过孔结构207,以使得第二电极和辅助电极的电阻进一步降低,除此之外,通过多个过孔结构207将第二电极206与辅助电极202并联还可以增加第二电极206的厚度,相当于增加了第二电极206的横截面积,进一步地减小了第二电极206的电阻。
例如,该像素界定层208通常采用有机绝缘材料(例如,丙烯酸类树脂)或者无机绝缘材料(例如,氮化硅SiN x或者氧化硅SiO x)形成,像素界定层208具有绝缘的性质。该像素界定层208可以被看作设置在第二电极206和辅助电极202之间的绝缘结构。
例如,第一电极205的材料可以为透明导电材料,该透明导电材料包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化镓锌(GZO)氧化锌(ZnO)、氧化铟(In 2O 3)、氧化铝锌(AZO)和碳纳米管等。
例如,第一电极205的材料可以为金属导电材料,该金属导电材料包括铜(Cu)、铬(Cr)、钼(Mo)、金(Au)以及铂(Pt)等单金属或者上述金属形成的合金材料,例如,铜铬合金(CuCr)或者铬钼合金(CrMo)等。
例如,第一电极205的材料还可以为上述透明导电材料和金属导电材料的任意组合形成的叠层结构,例如:ITO-Mo-IZO、ITO-Cr-In 2O 3、ITO-Cu-ZnO以及ITO-Pt-IGO形成的两层透明导电材料中间夹设一层金属导电材料的结构,或者,IZO-Mo、ITO-Cr、ZnO-Mg以及ITO-Au形成的一层金属导电材料和一层透明导电材料形成的双层叠层结构,例如,透明 导电材料和金属导电材料的任意组合形成的叠层结构不限于上述中的双层叠层结构和三层叠层结构,还可以是其它层数的多层层叠结构,例如,四层叠层结构、五层叠层结构等。
需要说明的是,由于上述形成第一电极的金属材料或者合金材料的功函较低,与OLED阵列基板中的有机材料功能层的匹配性不好,在第一金属层的靠近有机材料功能层的一侧形成一层透明导电材料可以提高第一金属的功函,使第一电极与有机材料功能层能更好的匹配,除此之外,双层结构或者三层结构的第一电极相比于单层结构的第一电极,电阻更小,从而降低了该多层结构的第一电极的电阻。
例如,第二电极104的材料包括镁、铝或者锂等单金属,或者镁铝合金(MgAl)、锂铝合金(LiAl)等。
例如,在本公开至少一实施例提供的电致发光二极管阵列基板中,以阵列基板为有机发光二极管(OLED)阵列基板为例加以说明,该功能层包括发光层、电子注入层、电子传输层、空穴注入层和空穴传输层等。
例如,该有机发光二极管(OLED)阵列基板中的功能层的形成方法包括真空蒸镀方法和溶液法。真空蒸镀方法适用于有机小分子,且不需要溶剂,形成的有机材料功能层中的各层薄膜的厚度均一。溶液法包括旋涂、喷墨打印、喷嘴涂覆法等,该方法适用于聚合物材料和可溶性小分子,其特点是生产设备成本低,在大规模、大尺寸产品的生产上优势突出,特别是喷墨打印技术,能将溶液精准的喷涂到像素区中。
需要说明的是,与有机发光二极管(OLED)阵列基板不同的是,自发光量子点发光二极管(QLED)的量子点因其容易受热量和水分影响的缺点,无法实现与自发光OLED相同的蒸镀方式,只能采用喷墨打印的方式。
本公开至少一实施例还提供一种显示面板,该显示面板包括上述任一实施例提供的电致发光二极管阵列基板。
例如,图8为包括电致发光二极管阵列基板的显示面板的框图。如图8所示,显示面板1包括设置在其中的电致发光二极管阵列基板2。例如,该显示面板1可应用于显示装置中,例如,该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。该显示装置的实施可以参见上述电致发光二极管阵列基 板的实施例,重复之处不再赘述。
本公开至少一实施例提供一种电致发光二极管阵列基板的制备方法,该电致发光二极管阵列基板可以为有机发光二极管(OLED)阵列基板或者量子点发光二极管(QLED)阵列基板。下面以该电致发光二极管阵列基板为有机发光二极管(OLED)阵列基板为例加以说明。
例如,图9为本公开至少一实施例提供的一种有机发光二极管阵列基板的制备过程的流程图。例如,该制备方法包括:
S101:提供衬底基板。
S102:在衬底基板上形成辅助电极、像素界定层、第一电极、功能层和第二电极,形成该像素界定层包括在像素界定层中形成过孔结构,该辅助电极形成在过孔结构的至少一侧,该第二电极与辅助电极电连接。
例如,在本公开至少一实施例提供的制备方法中,形成在过孔结构的至少一侧的辅助电极的上表面高于过孔结构中功能层的上表面。这样辅助电极可以通过高于过孔结构中的功能层的上表面的部分与第二电极电性连接。
例如,在形成像素界定层之前还可以包括形成平坦化层,该过孔结构从像素界定层延伸至贯穿该平坦化层。该像素界定层可以用于隔离相邻的两个子像素单元。
例如,该第二电极在多个过孔结构处分别与该辅助电极电连接,以使第二电极和辅助电极并联。除此之外,通过多个过孔结构将第二电极与辅助电极并联,还可以增加第二电极的厚度,相当于增加了第二电极的横截面积,进一步地减小了第二电极的电阻。
例如,该像素界定层通常采用有机绝缘材料(例如,丙烯酸类树脂)或者无机绝缘材料(例如,氮化硅SiN x或者氧化硅SiO x)形成,像素界定层具有绝缘的性质。该像素界定层可以被看作设置在第二电极和辅助电极之间的绝缘结构。
例如,本公开至少一实施例提供的制备方法,还包括在过孔结构中形成导电高分子层,第二电极与辅助电极通过该导电高分子层电连接。如果第二电极与辅助电极直接连接,第二电极可能会出现段差,即第二电极断裂。可以在过孔结构中设置导电高分子层以垫高功能层,从而防止第二电极断裂。
例如,该导电高分子层的厚度大于平坦化层的厚度,且小于平坦化层与像素界定层的厚度之和。
例如,该导电高分子层的上表面和该像素界定层的上表面平齐,这样可以基本消除第二电极存在段差的风险。
例如,该导电高分子层209的厚度为2μm~5.7μm。例如,该导电高分子层的厚度可以为2μm、3μm、4μm或者5μm等。
例如,该导电高分子层209的导电率大于10 -6S/m,这样可以保证辅助电极202和第二电极206进行很好的电性连接。
例如,该导电高分子层209的材料包括聚吡咯、聚苯硫醚、聚酞菁、聚苯胺和聚噻吩中至少之一。
例如,在本实施例提供的制备方法中,采用喷墨打印的方法形成该导电高分子层。
例如,在本实施例中,功能层的厚度为100nm~300nm,例如为100nm、200nm或者300nm等。
例如,辅助电极202的厚度为0.5μm~1μm,例如为0.5μm、0.6μm、0.7μm、0.8μm、0.9μm或者1μm等。
例如,平坦化层203的厚度为1μm~3μm,例如为1μm、2μm或者3μm等。
例如,像素界定层208的厚度为1μm~3μm,例如为1μm、2μm或者3μm等。
例如,第一电极204的厚度为200nm~300nm,例如为200nm、250nm或者300nm等。
例如,第二电极206的厚度为100nm~200nm,例如为100nm、150nm或者200nm等。
本公开至少一实施例提供的一种电致发光二极管阵列基板及其制备方法、显示面板具有以下至少一项有益效果:
(1)本公开至少一实施例提供的电致发光二极管阵列基板,通过改变辅助电极的结构设计,来保证第二电极与辅助电极电性连接,这样,与第二电极电性连接的辅助电极可以增大第二电极的等效厚度;
(2)本公开至少一实施例提供的电致发光二极管阵列基板,可以减小第二电极的电阻,可以避免采用较薄的金属作为第二电极时由于第二电 极的电阻较大而导致的电压降较大的问题;
(3)本公开至少一实施例提供的电致发光二极管阵列基板,可以避免由于电压降较大而损坏有机电致发光显示面板的问题。
有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种电致发光二极管阵列基板,包括:
    衬底基板,
    位于所述衬底基板上的辅助电极、像素界定层、第一电极、功能层和第二电极,
    其中,所述像素界定层中有过孔结构;
    所述辅助电极位于所述过孔结构的至少一侧;
    所述第二电极与所述辅助电极电连接。
  2. 根据权利要求1所述的电致发光二极管阵列基板,其中,所述辅助电极的上表面高于所述过孔结构中所述功能层的上表面。
  3. 根据权利要求1或2所述的电致发光二极管阵列基板,其中,所述辅助电极为凹字形结构。
  4. 根据权利要求1或2所述的电致发光二极管阵列基板,其中,所述辅助电极为板状结构,或者,所述辅助电极为多个且间隔排列。
  5. 根据权利要求3或4所述的电致发光二极管阵列基板,其中,所述过孔结构中具有导电高分子层,所述第二电极与所述辅助电极通过所述导电高分子层电连接。
  6. 根据权利要求5所述的电致发光二极管阵列基板,其中,所述导电高分子层的厚度小于所述像素界定层的厚度。
  7. 根据权利要求5所述的电致发光二极管阵列基板,其中,所述导电高分子层的导电率大于10 -6S/m。
  8. 根据权利要求5或6所述的电致发光二极管阵列基板,其中,所述导电高分子层的材料包括聚吡咯、聚苯硫醚、聚酞菁、聚苯胺和聚噻吩中至少之一。
  9. 根据权利要求5~8中任一项所述的电致发光二极管阵列基板,还包括设置在所述衬底基板和所述像素界定层之间的平坦化层,其中,所述过孔结构从所述像素界定层延伸且贯穿所述平坦化层。
  10. 根据权利要求9所述的电致发光二极管阵列基板,其中,所述导电高分子层的厚度大于所述平坦化层的厚度,且小于所述平坦化层与所述 像素界定层的厚度之和。
  11. 根据权利要求9所述的电致发光二极管阵列基板,其中,所述导电高分子层的上表面和所述像素界定层的上表面平齐。
  12. 根据权利要求9所述的电致发光二极管阵列基板,其中,包括多个贯穿所述平坦化层和所述像素界定层的所述过孔结构,所述第二电极在多个所述过孔结构处分别与所述辅助电极电连接。
  13. 根据权利要求9所述的电致发光二极管阵列基板,其中,所述功能层的厚度为100nm~300nm,所述辅助电极的厚度为0.5μm~1μm,所述平坦化层的厚度为1μm~3μm,所述像素界定层的厚度为1μm~3μm,所述导电高分子层的厚度为2μm~5.7μm。
  14. 根据权利要求13所述的电致发光二极管阵列基板,其中,所述功能层包括发光层、电子注入层、电子传输层、空穴注入层和空穴传输层中至少之一。
  15. 一种显示面板,包括权利要求1~14中任一项所述的电致发光二极管阵列基板。
  16. 一种电致发光二极管阵列基板的制备方法,包括:
    提供衬底基板,
    在所述衬底基板上形成辅助电极、像素界定层、第一电极、功能层和第二电极,
    其中,所述像素界定层中形成有过孔结构;
    所述辅助电极形成在所述过孔结构的至少一侧;
    所述第二电极与所述辅助电极电连接。
  17. 根据权利要求16所述的制备方法,其中,形成在所述过孔结构的至少一侧的所述辅助电极的上表面高于所述过孔结构中所述功能层的上表面。
  18. 根据权利要求16或17所述的制备方法,在形成所述辅助电极之前,还包括在所述衬底基板上形成平坦化层,其中,所述过孔结构从所述像素界定层延伸且贯穿所述平坦化层。
  19. 根据权利要求16~18中任一项所述的制备方法,还包括在所述过孔结构中形成导电高分子层,其中,所述第二电极与所述辅助电极通过所 述导电高分子层电连接。
  20. 根据权利要求19所述的制备方法,其中,采用喷墨打印的方法形成所述导电高分子层。
PCT/CN2018/091952 2017-06-30 2018-06-20 电致发光二极管阵列基板及其制备方法、显示面板 WO2019001317A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18811433.4A EP3648189A4 (en) 2017-06-30 2018-06-20 LUMINESCENT DIODES NETWORK SUBSTRATE, PREPARATION PROCESS AND DISPLAY PANEL
JP2018564919A JP7201440B2 (ja) 2017-06-30 2018-06-20 エレクトロルミネセントダイオードアレイ基板及びその製造方法並びに表示パネル
US16/308,883 US20190288044A1 (en) 2017-06-30 2018-06-20 Electroluminescent diode array substrate, manufacturing method thereof and display panel
US17/955,920 US20230033003A1 (en) 2017-06-30 2022-09-29 Electroluminescent diode array substrate, manufacturing method thereof and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710558592.2 2017-06-30
CN201710558592.2A CN109216578B (zh) 2017-06-30 2017-06-30 电致发光二极管阵列基板及其制备方法、显示面板

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/308,883 A-371-Of-International US20190288044A1 (en) 2017-06-30 2018-06-20 Electroluminescent diode array substrate, manufacturing method thereof and display panel
US17/955,920 Continuation US20230033003A1 (en) 2017-06-30 2022-09-29 Electroluminescent diode array substrate, manufacturing method thereof and display panel

Publications (1)

Publication Number Publication Date
WO2019001317A1 true WO2019001317A1 (zh) 2019-01-03

Family

ID=64741043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091952 WO2019001317A1 (zh) 2017-06-30 2018-06-20 电致发光二极管阵列基板及其制备方法、显示面板

Country Status (5)

Country Link
US (2) US20190288044A1 (zh)
EP (1) EP3648189A4 (zh)
JP (1) JP7201440B2 (zh)
CN (1) CN109216578B (zh)
WO (1) WO2019001317A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019197621A (ja) * 2018-05-08 2019-11-14 株式会社Joled 表示装置
CN113224254A (zh) * 2020-06-28 2021-08-06 广东聚华印刷显示技术有限公司 显示面板及其制备方法、显示装置
EP3910696A4 (en) * 2019-01-11 2022-10-05 Boe Technology Group Co., Ltd. QUANTUM DOT ELECTROLUMINESCENT DEVICE AND METHOD FOR MAKING IT

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148538A (zh) * 2018-08-27 2019-01-04 京东方科技集团股份有限公司 显示基板、显示装置及显示基板的制造方法
CN109817669B (zh) * 2019-01-23 2021-07-23 深圳市华星光电半导体显示技术有限公司 一种有机发光二极管显示器
CN110112201B (zh) * 2019-05-22 2021-01-19 合肥鑫晟光电科技有限公司 显示基板及其制造方法、显示装置
CN110299467A (zh) * 2019-06-26 2019-10-01 云谷(固安)科技有限公司 一种显示面板和显示装置
US11374073B2 (en) * 2020-08-11 2022-06-28 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel with auxiliary electrode and manufacturing method thereof
CN112397563B (zh) * 2020-11-13 2024-03-12 京东方科技集团股份有限公司 一种显示面板、显示装置及显示面板的制作方法
CN112968049A (zh) * 2021-02-22 2021-06-15 合肥鑫晟光电科技有限公司 一种有机发光显示面板、其制作方法及显示装置
CN113013362B (zh) * 2021-02-26 2023-04-18 云谷(固安)科技有限公司 显示面板、显示面板的制备方法及显示装置
CN113241367B (zh) * 2021-07-09 2021-09-21 北京京东方技术开发有限公司 显示基板及其制备方法
CN114284331B (zh) * 2021-12-24 2023-06-02 深圳市华星光电半导体显示技术有限公司 一种有机发光显示面板及其制作方法
CN115275058B (zh) * 2022-07-29 2024-01-19 武汉华星光电半导体显示技术有限公司 显示面板及显示终端

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176495A (ja) * 2008-01-23 2009-08-06 Seiko Epson Corp 有機el装置、有機el装置の製造方法、電子機器
CN103296052A (zh) * 2012-02-29 2013-09-11 群康科技(深圳)有限公司 显示面板及显示装置
CN103311265A (zh) * 2012-03-08 2013-09-18 群康科技(深圳)有限公司 有机发光二极管显示面板及其制造方法
CN104466021A (zh) * 2014-12-17 2015-03-25 昆山国显光电有限公司 Amoled器件结构及其制造方法
US20150090989A1 (en) * 2013-09-30 2015-04-02 Japan Display Inc. Organic el display device and method for manufacturing the organic el display device
US20160043341A1 (en) * 2014-08-05 2016-02-11 Lg Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
CN106057844A (zh) * 2015-04-02 2016-10-26 乐金显示有限公司 降低有机发光显示装置的阴极中的电阻的辅助线
CN107331691A (zh) * 2017-08-24 2017-11-07 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示面板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100573132B1 (ko) * 2004-02-14 2006-04-24 삼성에스디아이 주식회사 유기 전계 발광 표시장치 및 그 제조 방법
KR102060364B1 (ko) * 2013-04-19 2019-12-31 삼성디스플레이 주식회사 유기발광 표시장치 제조방법
KR20150061921A (ko) 2013-11-28 2015-06-05 엘지디스플레이 주식회사 유기전계발광표시장치
KR102313362B1 (ko) * 2014-12-02 2021-10-18 삼성디스플레이 주식회사 유기발광 디스플레이 장치 및 그 제조방법
KR102372091B1 (ko) * 2015-01-16 2022-03-11 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR102483434B1 (ko) * 2015-05-28 2022-12-30 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR102646658B1 (ko) * 2015-06-30 2024-03-12 엘지디스플레이 주식회사 유기발광표시장치와 그 제조방법
KR102616580B1 (ko) * 2015-11-23 2023-12-22 삼성디스플레이 주식회사 유기발광 디스플레이 장치 및 그 제조방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176495A (ja) * 2008-01-23 2009-08-06 Seiko Epson Corp 有機el装置、有機el装置の製造方法、電子機器
CN103296052A (zh) * 2012-02-29 2013-09-11 群康科技(深圳)有限公司 显示面板及显示装置
CN103311265A (zh) * 2012-03-08 2013-09-18 群康科技(深圳)有限公司 有机发光二极管显示面板及其制造方法
US20150090989A1 (en) * 2013-09-30 2015-04-02 Japan Display Inc. Organic el display device and method for manufacturing the organic el display device
US20160043341A1 (en) * 2014-08-05 2016-02-11 Lg Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
CN104466021A (zh) * 2014-12-17 2015-03-25 昆山国显光电有限公司 Amoled器件结构及其制造方法
CN106057844A (zh) * 2015-04-02 2016-10-26 乐金显示有限公司 降低有机发光显示装置的阴极中的电阻的辅助线
CN107331691A (zh) * 2017-08-24 2017-11-07 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示面板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3648189A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019197621A (ja) * 2018-05-08 2019-11-14 株式会社Joled 表示装置
US11217650B2 (en) 2018-05-08 2022-01-04 Joled Inc. Display unit
US11678539B2 (en) 2018-05-08 2023-06-13 Joled Inc. Display unit
EP3910696A4 (en) * 2019-01-11 2022-10-05 Boe Technology Group Co., Ltd. QUANTUM DOT ELECTROLUMINESCENT DEVICE AND METHOD FOR MAKING IT
US11751412B2 (en) 2019-01-11 2023-09-05 Beijing Boe Technology Development Co., Ltd. Quantum dot light-emitting device and preparation method thereof
CN113224254A (zh) * 2020-06-28 2021-08-06 广东聚华印刷显示技术有限公司 显示面板及其制备方法、显示装置

Also Published As

Publication number Publication date
JP2020525967A (ja) 2020-08-27
EP3648189A1 (en) 2020-05-06
US20190288044A1 (en) 2019-09-19
CN109216578B (zh) 2020-12-22
EP3648189A4 (en) 2021-03-24
US20230033003A1 (en) 2023-02-02
CN109216578A (zh) 2019-01-15
JP7201440B2 (ja) 2023-01-10

Similar Documents

Publication Publication Date Title
WO2019001317A1 (zh) 电致发光二极管阵列基板及其制备方法、显示面板
WO2018133385A1 (zh) 有机发光二极管(oled)阵列基板及其制备方法、显示装置
JP6211873B2 (ja) 有機el表示装置及び有機el表示装置の製造方法
CN104681588B (zh) 有机发光二极管显示装置
WO2018045658A1 (zh) Amoled显示装置
CN101341608B (zh) 有机led器件
US8581281B2 (en) Organic light emitting display device and method for fabricating the same
KR102059962B1 (ko) 유기 발광 표시 장치 및 그 제조방법
US10396135B2 (en) OLED substrate and manufacturing method thereof, and display device
CN109524437B (zh) Oled结构及其制备方法、显示面板以及电子设备
US11329246B2 (en) Organic light emitting diode panel and method for fabricating same
KR102595445B1 (ko) 유기 발광 표시 장치 및 이의 제조 방법
CN113241367B (zh) 显示基板及其制备方法
US10608056B2 (en) Display unit and method of producing the same, display panel
WO2018166157A1 (zh) 阵列基板、阵列基板的制造方法以及显示装置
CN113013357B (zh) 一种显示面板及显示装置
KR101796934B1 (ko) 반사 전극을 구비한 유기전계발광 표시장치 및 그 제조 방법
CN103081159A (zh) 有机发光器件及其制备方法
JP2010066766A5 (zh)
CN108987431B (zh) 像素结构及其制作方法
CN207781600U (zh) 一种有机发光二极管显示基板和显示装置
US20190058024A1 (en) Organic light emitting diode display panel and method for manufacturing same
WO2020179034A1 (ja) 表示装置、表示装置の製造方法
KR102485869B1 (ko) 보조전극 구조 및 이를 갖는 유기전계발광 표시 장치
KR102684476B1 (ko) 디스플레이 패널, 플렉시블 디스플레이, 전자 디바이스 및 디스플레이 패널을 제조하는 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018564919

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18811433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018811433

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018811433

Country of ref document: EP

Effective date: 20200130