WO2018233648A1 - 作为TLR8激动剂的异噻唑并[4,3-d]嘧啶-5,7-二胺衍生物 - Google Patents

作为TLR8激动剂的异噻唑并[4,3-d]嘧啶-5,7-二胺衍生物 Download PDF

Info

Publication number
WO2018233648A1
WO2018233648A1 PCT/CN2018/092088 CN2018092088W WO2018233648A1 WO 2018233648 A1 WO2018233648 A1 WO 2018233648A1 CN 2018092088 W CN2018092088 W CN 2018092088W WO 2018233648 A1 WO2018233648 A1 WO 2018233648A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
pharmaceutically acceptable
acceptable salt
compound according
compound
Prior art date
Application number
PCT/CN2018/092088
Other languages
English (en)
French (fr)
Inventor
丁照中
蔡哲
孙飞
胡国平
黎健
陈曙辉
Original Assignee
南京明德新药研发股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发股份有限公司 filed Critical 南京明德新药研发股份有限公司
Publication of WO2018233648A1 publication Critical patent/WO2018233648A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems

Definitions

  • the present invention relates to a novel TLR8 (Toll-like Receptor 8) agonist isothiazolo[4,3-d]pyrimidine-5,7-diamine derivative, in particular to a compound of formula (I) or a pharmaceutically acceptable compound thereof
  • TLR8 Toll-like Receptor 8
  • a salt acceptable as well as a pharmaceutical composition comprising the compound or salt, and a compound of formula (I), or a pharmaceutically acceptable salt thereof, and a pharmaceutical composition, for treating a tumor or a viral infection.
  • TLRs Toll-like receptors
  • innate immunity non-specific immunity
  • TLR is a single transmembrane non-catalytic protein mainly expressed in a series of immune cells such as dendritic cells, macrophages, monocytes, T cells, B cells, NK cells and the like.
  • Toll-like receptors can recognize molecules with conserved structures derived from microorganisms. When microorganisms break through physical barriers of the body, such as skin, mucous membranes, etc., TLRs can recognize them and activate the body to produce immune cell responses.
  • TLR1, -2, -4, -5 and -6 mainly recognize extracellular stimuli such as bacterial lipopolysaccharide, lipopeptide, flagellin, etc.
  • TLR3, -7, -8, and -9 are in cell endosomes. It plays a role in phagocytosis and binding of the envelope to their ligands, which can recognize nucleic acids of microorganisms and the like.
  • TLR8 has a unique function: TLR8 is mainly expressed in monocytes, macrophages and myeloid dendritic cells.
  • the signaling pathway of TLR8 can be activated by bacterial single-stranded RNA, small molecule agonists and microRNAs.
  • Activation of TLR8 results in the production of Th1 polar cytokines such as IL-12, IL-18, TNF-a and IFN- ⁇ and various costimulatory factors such as CD80, CD86.
  • Th1 polar cytokines such as IL-12, IL-18, TNF-a and IFN- ⁇
  • CD80, CD86 various costimulatory factors
  • These cytokines activate and amplify innate and adaptive immune responses and provide beneficial therapeutic regimens for diseases involving antiviral, anti-infective, autoimmune, and oncology.
  • TLR8 activation of TLR8 on antigen-presenting cells and other immune cells in the liver activates cytokines such as IL-12, thereby activating specific T cells and NK cells depleted by the virus, thereby reconstituting the liver.
  • cytokines such as IL-12
  • VentiRX Pharmaceutical's selective TLR8 agonist VTX-2337 was first used clinically for the evaluation of different tumors, and VTX-2337 was administered subcutaneously.
  • the present invention provides a compound of the formula (I) or a pharmaceutically acceptable salt thereof,
  • R 1 is selected from the group consisting of: H, NH 2 , CN, OH, or selected from: C 1-5 alkyl or C 1-5 heteroalkyl optionally substituted by 1, 2 or 3 R;
  • n is selected from: 0 or 1;
  • L is selected from: a single bond or -CH 2 -;
  • R 2 is selected from the group consisting of: H or C 1-5 alkyl
  • R 3 is selected from the group consisting of H, C 1-6 alkyl, 3- to 6-membered cycloalkyl, phenyl or 5- to 6-membered heteroaryl.
  • R 2 and R 3 are joined together to form a 4- to 7-membered heterocyclic ring optionally substituted by 1, 2 or 3 R;
  • R 4 is selected from H or is selected from: C 1-6 alkyl optionally substituted by 1, 2 or 3 R;
  • R 5 is selected from C 1 1-6 alkyl or 3 to 6 membered cycloalkyl optionally substituted by 1, 2 or 3 R;
  • the "ring" of the 4- to 7-membered heterocyclic ring is selected from the group consisting of: a single ring, a spiro ring or a bridged ring;
  • R is selected from the group consisting of F, Cl, Br, I, OH, CN, NH 2 , CH 3 , CH 2 F, CHF 2 , CF 3 , "Heter” means a hetero atom or a hetero atom group, and the "hetero" of the C 1-5 heteroalkyl group, the 5- to 6-membered heteroaryl group, and the 4 to 7-membered heterocyclic ring are independently selected from the group consisting of: -O-, - S-, N, -NH-;
  • the number of heteroatoms or heteroatoms is independently selected from 1, 2 or 3.
  • R 1 above is selected from the group consisting of H, NH 2 , CN, OH, C 1-3 alkyl or C 1-3 heteroalkyl.
  • R 1 is selected from the group consisting of: H, NH 2 , CH 3 ,
  • R 2 is selected from the group consisting of: H, CH 3 ,
  • R 3 above is selected from the group consisting of: H, C 1-6 alkyl, 3- to 6-membered cycloalkyl, phenyl.
  • R 3 is selected from the group consisting of: H, CH 3 ,
  • R 4 above is selected from H or is selected from C 3-5 alkyl optionally substituted by 1, 2 or 3 R.
  • R 4 is selected from the group consisting of: H or CH 3 .
  • R 5 is selected from the group consisting of C 1-3 alkyl, cyclopropyl.
  • R 5 is selected from the group consisting of: CH 3 .
  • the structural unit From: R is as defined above.
  • the structural unit From: R is as defined above.
  • the structural unit From:
  • the structural unit From:
  • the structural unit From:
  • R 1 above is selected from the group consisting of: H, NH 2 , CN, OH, C 1-3 alkyl or C 1-3 heteroalkyl, and other variables are as defined above.
  • R 1 is selected from the group consisting of: H, NH 2 , CH 3 , Other variables are as defined above.
  • R 2 is selected from the group consisting of: H, CH 3 , Other variables are as defined above.
  • R 3 above is selected from the group consisting of: H, C 1-6 alkyl, 3- to 6-membered cycloalkyl, phenyl, and other variables are as defined above.
  • R 3 is selected from the group consisting of: H, CH 3 , Other variables are as defined above.
  • R 4 is selected from H or is selected from C 3-5 alkyl optionally substituted by 1, 2 or 3 R, and the other variables are as defined above.
  • R 4 is selected from the group consisting of: H or CH 3 , and other variables are as defined above.
  • R 5 is selected from the group consisting of C 1-3 alkyl, cyclopropyl, and other variables are as defined above.
  • R 5 above is selected from the group consisting of: CH 3 , and other variables are as defined above.
  • the structural unit From: R is as defined above, and other variables are as defined above.
  • the structural unit From: R is as defined above, and other variables are as defined above.
  • the above compound is selected from the group consisting of
  • R 1 , R 2 , R 3 , R 4 , R 5 and L are as defined above.
  • the above compound is selected from the group consisting of
  • R 1 , R 2 , R 3 , R 4 , R 5 and R are as defined above.
  • the present invention also provides a compound or a pharmaceutically acceptable salt thereof, wherein the compound is selected from the group consisting of
  • the above compound is selected from the group consisting of
  • the invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically effective amount of a compound described above, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
  • the present invention also provides the use of the above compound or a pharmaceutically acceptable salt thereof or the above pharmaceutical composition for the preparation of a medicament for treating tumors and viruses.
  • the compound of the present invention uses isothiazolo[4,3-d]pyrimidine-5,7-diamine as a mother nucleus, and a chiral amino group is introduced into the side chain, so that the compound of the present invention has high induction activity while still Has excellent selectivity.
  • Human PBMC cytokine induction experiments showed that the compounds of the present invention have higher TLR8 pathway-specific cytokine (IL-12p40, TNF-a)-inducing activity; liver tissue distribution studies in mice show that the present invention has a higher liver Drug exposure, higher hepatic-hepatic ratio.
  • the compound of the present invention is an orally available TLR8 agonist which conforms to a convenient administration mode and is in good compliance with medical needs.
  • the compounds of the present invention have liver-targeting properties and are superior to existing drugs in reducing the side effects of immune responses caused by systemic systemic exposure.
  • pharmaceutically acceptable salt refers to a salt of a compound of the invention prepared from a compound having a particular substituent found in the present invention and a relatively non-toxic acid or base.
  • a base addition salt can be obtained by contacting a neutral amount of such a compound with a sufficient amount of a base in a neat solution or a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic ammonia or magnesium salts or similar salts.
  • an acid addition salt can be obtained by contacting a neutral form of such a compound with a sufficient amount of an acid in a neat solution or a suitable inert solvent.
  • pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, hydrogencarbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, Hydrogen sulfate, hydroiodic acid, phosphorous acid, etc.; and an organic acid salt, such as acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric acid, lactic acid, mandelic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, citric acid, tartaric acid, and me
  • the salt is contacted with a base or acid in a conventional manner, and the parent compound is separated, thereby regenerating the neutral form of the compound.
  • the parent form of the compound differs from the form of its various salts by certain physical properties, such as differences in solubility in polar solvents.
  • a "pharmaceutically acceptable salt” is a derivative of a compound of the invention wherein the parent compound is modified by salt formation with an acid or with a base.
  • pharmaceutically acceptable salts include, but are not limited to, inorganic or organic acid salts of bases such as amines, alkali metal or organic salts of acid groups such as carboxylic acids, and the like.
  • Pharmaceutically acceptable salts include the conventional non-toxic salts or quaternary ammonium salts of the parent compound, for example salts formed from non-toxic inorganic or organic acids.
  • non-toxic salts include, but are not limited to, those derived from inorganic acids and organic acids selected from the group consisting of 2-acetoxybenzoic acid, 2-hydroxyethanesulfonic acid, acetic acid, ascorbic acid, Benzenesulfonic acid, benzoic acid, hydrogencarbonate, carbonic acid, citric acid, edetic acid, ethane disulfonic acid, ethanesulfonic acid, fumaric acid, glucoheptose, gluconic acid, glutamic acid, glycolic acid, Hydrobromic acid, hydrochloric acid, hydroiodide, hydroxyl, hydroxynaphthalene, isethionethane, lactic acid, lactose, dodecylsulfonic acid, maleic acid, malic acid, mandelic acid, methanesulfonic acid, nitric acid, oxalic acid, Pamoic acid, pantothenic acid, phenylacetic acid, phen
  • the pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound containing an acid group or a base by conventional chemical methods.
  • such salts are prepared by reacting these compounds in water or an organic solvent or a mixture of the two via a free acid or base form with a stoichiometric amount of a suitable base or acid.
  • a nonaqueous medium such as ether, ethyl acetate, ethanol, isopropanol or acetonitrile is preferred.
  • the compounds provided herein also exist in the form of prodrugs.
  • Prodrugs of the compounds described herein are readily chemically altered under physiological conditions to convert to the compounds of the invention.
  • prodrugs can be converted to the compounds of the invention by chemical or biochemical methods in an in vivo setting.
  • Certain compounds of the invention may exist in unsolvated or solvated forms, including hydrated forms.
  • the solvated forms are equivalent to the unsolvated forms and are included within the scope of the invention.
  • Certain compounds of the invention may have asymmetric carbon atoms (optical centers) or double bonds. Racemates, diastereomers, geometric isomers and individual isomers are included within the scope of the invention.
  • wedged solid keys are used unless otherwise stated
  • wedge-shaped dashed keys Represents the absolute configuration of a stereocenter, using wavy lines Indicates a wedge solid key Or wedge-shaped dotted key
  • straight dashed keys Indicates the relative configuration of the stereocenter.
  • the compounds described herein contain olefinic double bonds or other centers of geometric asymmetry, they include the E and Z geometric isomers unless otherwise specified.
  • all tautomeric forms are included within the scope of the invention.
  • the compounds of the invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including the cis and trans isomers, the (-)- and (+)-p-enantiomers, the (R)- and (S)-enantiomers, and the diastereomeric a conformation, a (D)-isomer, a (L)-isomer, and a racemic mixture thereof, and other mixtures, such as enantiomerically or diastereomeric enriched mixtures, all of which belong to It is within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in the substituents such as alkyl groups. All such isomers, as well as mixtures thereof, are included within the scope of the invention.
  • optically active (R)- and (S)-isomers as well as the D and L isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If an enantiomer of a compound of the invention is desired, it can be prepared by asymmetric synthesis or by derivatization with a chiral auxiliary wherein the resulting mixture of diastereomers is separated and the auxiliary group cleaved to provide pure The desired enantiomer.
  • a diastereomeric salt is formed with a suitable optically active acid or base, followed by conventional methods well known in the art.
  • the diastereomers are resolved and the pure enantiomer is recovered.
  • the separation of enantiomers and diastereomers is generally accomplished by the use of chromatography using a chiral stationary phase and optionally in combination with chemical derivatization (eg, formation of an amino group from an amine) Formate).
  • the compounds of the present invention may contain unnatural proportions of atomic isotopes on one or more of the atoms that make up the compound.
  • radiolabeled compounds can be used, such as tritium (3 H), iodine -125 (125 I) or C-14 (14 C). Alterations of all isotopic compositions of the compounds of the invention, whether radioactive or not, are included within the scope of the invention.
  • pharmaceutically acceptable carrier refers to any formulation or carrier medium that is capable of delivering an effective amount of an active substance of the present invention, does not interfere with the biological activity of the active substance, and has no toxic side effects to the host or patient, including water, oil, Vegetables and minerals, cream bases, lotion bases, ointment bases, etc. These bases include suspending agents, tackifiers, transdermal enhancers and the like. Their formulations are well known to those skilled in the cosmetic or topical pharmaceutical arts. For additional information on the vector, reference is made to Remington: The Science and Practice of Pharmacy, 21st Ed., Lippincott, Williams & Wilkins (2005), the disclosure of which is incorporated herein by reference.
  • excipient generally refers to the carrier, diluent and/or vehicle required to formulate an effective pharmaceutical composition.
  • an "effective amount” or “therapeutically effective amount” with respect to a pharmaceutical or pharmacologically active agent refers to a sufficient amount of a drug or agent that is non-toxic but that achieves the desired effect.
  • an "effective amount” of an active substance in a composition refers to the amount required to achieve the desired effect when used in combination with another active substance in the composition. The determination of the effective amount will vary from person to person, depending on the age and general condition of the recipient, and also on the particular active substance, and a suitable effective amount in a case can be determined by one skilled in the art based on routine experimentation.
  • active ingredient refers to a chemical entity that is effective in treating a target disorder, disease or condition.
  • substituted means that any one or more hydrogen atoms on a particular atom are replaced by a substituent, and may include variants of heavy hydrogen and hydrogen, as long as the valence of the particular atom is normal and the substituted compound is stable. of.
  • Oxygen substitution does not occur on the aromatic group.
  • optionally substituted means that it may or may not be substituted, and unless otherwise specified, the kind and number of substituents may be arbitrary on the basis of chemically achievable.
  • any variable eg, R
  • its definition in each case is independent.
  • the group may optionally be substituted with at most two R, and each case has an independent option.
  • combinations of substituents and/or variants thereof are permissible only if such combinations result in stable compounds.
  • linking group When the number of one linking group is 0, such as -(CRR) 0 -, it indicates that the linking group is a single bond.
  • one of the variables When one of the variables is selected from a single bond, it means that the two groups to which it is attached are directly linked. For example, when L represents a single bond in A-L-Z, the structure is actually A-Z.
  • a substituent When a substituent is vacant, it means that the substituent is absent. For example, when X is vacant in AX, the structure is actually A.
  • the substituent can be attached to more than one atom on a ring, the substituent can be bonded to any atom on the ring, for example, a structural unit. It is indicated that the substituent R can be substituted at any position on the cyclohexyl group or cyclohexadiene.
  • substituents When the listed substituents are not indicated by which atom is attached to the substituted group, such a substituent may be bonded through any atom thereof, for example, a pyridyl group as a substituent may be passed through any one of the pyridine rings. A carbon atom is attached to the substituted group.
  • the medium linking group L is -MW-, and at this time, -MW- can be connected in the same direction as the reading order from left to right to form ring A and ring B. It is also possible to connect the ring A and the ring B in a direction opposite to the reading order from left to right. Combinations of the linking groups, substituents and/or variants thereof are permissible only if such combinations result in stable compounds.
  • hetero denotes a hetero atom or a hetero atomic group (ie, a radical containing a hetero atom), including atoms other than carbon (C) and hydrogen (H), and radicals containing such heteroatoms, including, for example, oxygen (O).
  • ring means substituted or unsubstituted cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, cycloalkynyl, heterocycloalkynyl, aryl or heteroaryl. So-called rings include single rings, interlocking rings, spiral rings, parallel rings or bridge rings. The number of atoms on the ring is usually defined as the number of elements of the ring. For example, "5 to 7-membered ring” means 5 to 7 atoms arranged in a circle. Unless otherwise specified, the ring optionally contains from 1 to 3 heteroatoms.
  • 5- to 7-membered ring includes, for example, phenyl, pyridine, and piperidinyl; on the other hand, the term “5- to 7-membered heterocycloalkyl ring” includes pyridyl and piperidinyl, but does not include phenyl.
  • ring also includes ring systems containing at least one ring, each of which "ring” independently conforms to the above definition.
  • heterocycle or “heterocyclyl” means a stable monocyclic, bicyclic or tricyclic ring containing a hetero atom or a hetero atom which may be saturated, partially unsaturated or unsaturated ( Aromatic) which comprise a carbon atom and 1, 2, 3 or 4 ring heteroatoms independently selected from N, O and S, wherein any of the above heterocycles may be fused to a phenyl ring to form a bicyclic ring.
  • the nitrogen and sulfur heteroatoms can be optionally oxidized (i.e., NO and S(O)p, p is 1 or 2).
  • the nitrogen atom can be substituted or unsubstituted (i.e., N or NR, wherein R is H or other substituents as already defined herein).
  • the heterocyclic ring can be attached to the side groups of any hetero atom or carbon atom to form a stable structure. If the resulting compound is stable, the heterocycles described herein can undergo substitutions at the carbon or nitrogen sites.
  • the nitrogen atom in the heterocycle is optionally quaternized.
  • a preferred embodiment is that when the total number of S and O atoms in the heterocycle exceeds 1, these heteroatoms are not adjacent to each other. Another preferred embodiment is that the total number of S and O atoms in the heterocycle does not exceed one.
  • aromatic heterocyclic group or "heteroaryl” as used herein means a stable 5, 6, or 7 membered monocyclic or bicyclic or aromatic ring of a 7, 8, 9 or 10 membered bicyclic heterocyclic group, It contains carbon atoms and 1, 2, 3 or 4 ring heteroatoms independently selected from N, O and S.
  • the nitrogen atom can be substituted or unsubstituted (i.e., N or NR, wherein R is H or other substituents as already defined herein).
  • the nitrogen and sulfur heteroatoms can be optionally oxidized (i.e., NO and S(O)p, p is 1 or 2).
  • bridged rings are also included in the definition of heterocycles.
  • a bridged ring is formed when one or more atoms (ie, C, O, N, or S) join two non-adjacent carbon or nitrogen atoms.
  • Preferred bridged rings include, but are not limited to, one carbon atom, two carbon atoms, one nitrogen atom, two nitrogen atoms, and one carbon-nitrogen group. It is worth noting that a bridge always converts a single ring into a three ring. In the bridged ring, a substituent on the ring can also be present on the bridge.
  • heterocyclic compounds include, but are not limited to, acridinyl, anthracycline, benzimidazolyl, benzofuranyl, benzofurylfuranyl, benzindenylphenyl, benzoxazolyl, benzimidin Oxazolinyl, benzothiazolyl, benzotriazolyl, benzotetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolyl, oxazolyl, 4aH-carbazolyl, Porphyrin, chroman, chromene, porphyrin-decahydroquinolinyl, 2H, 6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b] Tetrahydrofuranyl, furyl, furfuryl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-carbazolyl, nonenyl, ind
  • hydrocarbyl or its subordinate concept (such as alkyl, alkenyl, alkynyl, aryl, etc.), by itself or as part of another substituent, is meant to be straight-chain, branched or cyclic.
  • the hydrocarbon atom group or a combination thereof may be fully saturated (such as an alkyl group), a unit or a polyunsaturated (such as an alkenyl group, an alkynyl group, an aryl group), may be monosubstituted or polysubstituted, and may be monovalent (such as Methyl), divalent (such as methylene) or polyvalent (such as methine), may include divalent or polyvalent radicals with a specified number of carbon atoms (eg, C 1 -C 12 represents 1 to 12 carbons) , C 1-12 is selected from C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 and C 12 ; C 3-12 is selected from C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 and C 12 .).
  • C 1-12 is selected from C 1
  • Hydrocarbyl includes, but is not limited to, aliphatic hydrocarbyl groups including chain and cyclic, including but not limited to alkyl, alkenyl, alkynyl groups including, but not limited to, 6-12 members.
  • An aromatic hydrocarbon group such as benzene, naphthalene or the like.
  • hydrocarbyl means a straight or branched chain radical or a combination thereof, which may be fully saturated, unitary or polyunsaturated, and may include divalent and multivalent radicals.
  • saturated hydrocarbon radicals include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, sec-butyl, isobutyl, cyclohexyl, (cyclohexyl).
  • a homolog or isomer of a methyl group, a cyclopropylmethyl group, and an atomic group such as n-pentyl, n-hexyl, n-heptyl, n-octyl.
  • the unsaturated hydrocarbon group has one or more double or triple bonds, and examples thereof include, but are not limited to, a vinyl group, a 2-propenyl group, a butenyl group, a crotyl group, a 2-isopentenyl group, and a 2-(butadienyl group). , 2,4-pentadienyl, 3-(1,4-pentadienyl), ethynyl, 1- and 3-propynyl, 3-butynyl, and higher homologs and isomers body.
  • heterohydrocarbyl or its subordinate concept (such as heteroalkyl, heteroalkenyl, heteroalkynyl, heteroaryl, etc.), by itself or in combination with another term, means a stable straight chain, branched chain. Or a cyclic hydrocarbon radical or a combination thereof having a number of carbon atoms and at least one heteroatom.
  • heteroalkyl by itself or in conjunction with another term refers to a stable straight chain, branched hydrocarbon radical or combination thereof, having a number of carbon atoms and at least one heteroatom.
  • the heteroatoms are selected from the group consisting of B, O, N, and S, wherein the nitrogen and sulfur atoms are optionally oxidized, and the nitrogen heteroatoms are optionally quaternized.
  • the hetero atom or heteroatom group may be located at any internal position of the heterohydrocarbyl group, including where the hydrocarbyl group is attached to the rest of the molecule, but the terms "alkoxy”, “alkylamino” and “alkylthio” (or thioalkoxy). By customary expression, those alkyl groups which are attached to the remainder of the molecule through an oxygen atom, an amino group or a sulfur atom, respectively.
  • Up to two heteroatoms may be consecutive, for example, -CH 2 -NH-OCH 3.
  • cycloalkyl refers to any heterocyclic alkynyl group, etc., by itself or in combination with other terms, denotes a cyclized “hydrocarbyl group” or “heterohydrocarbyl group”, respectively.
  • a hetero atom may occupy a position at which the hetero ring is attached to the rest of the molecule.
  • cycloalkyl groups include, but are not limited to, cyclopentyl, cyclohexyl, 1-cyclohexenyl, 3-cyclohexenyl, cycloheptyl, and the like.
  • heterocyclic groups include 1-(1,2,5,6-tetrahydropyridyl), 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-morpholinyl, 3-morpholinyl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydrothiophen-2-yl, tetrahydrothiophen-3-yl, 1-piperazinyl and 2-piperazinyl.
  • alkyl is used to denote a straight or branched saturated hydrocarbon group, which may be monosubstituted (eg, -CH 2 F) or polysubstituted (eg, -CF 3 ), and may be monovalent (eg, Methyl), divalent (such as methylene) or polyvalent (such as methine).
  • alkyl group include methyl (Me), ethyl (Et), propyl (e.g., n-propyl and isopropyl), butyl (e.g., n-butyl, isobutyl, s-butyl). , t-butyl), pentyl (eg, n-pentyl, isopentyl, neopentyl) and the like.
  • alkenyl refers to an alkyl group having one or more carbon-carbon double bonds at any position of the chain, which may be mono- or poly-substituted, and may be monovalent, divalent or multivalent.
  • alkenyl group include a vinyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, a butadienyl group, a pentadienyl group, a hexadienyl group and the like.
  • alkynyl refers to an alkyl group having one or more carbon-carbon triple bonds at any position of the chain, which may be mono- or poly-substituted, and may be monovalent, divalent or multivalent.
  • alkynyl groups include ethynyl, propynyl, butynyl, pentynyl and the like.
  • a cycloalkyl group includes any stable cyclic or polycyclic hydrocarbon group, any carbon atom which is saturated, may be monosubstituted or polysubstituted, and may be monovalent, divalent or multivalent.
  • Examples of such cycloalkyl groups include, but are not limited to, cyclopropyl, norbornyl, [2.2.2]bicyclooctane, [4.4.0]bicyclononane, and the like.
  • a cycloalkenyl group includes any stable cyclic or polycyclic hydrocarbon group which contains one or more unsaturated carbon-carbon double bonds at any position of the ring, and may be monosubstituted or polysubstituted, It can be one price, two price or multiple price.
  • Examples of such cycloalkenyl groups include, but are not limited to, cyclopentenyl, cyclohexenyl, and the like.
  • a cycloalkynyl group includes any stable cyclic or polycyclic hydrocarbon group which contains one or more carbon-carbon triple bonds at any position of the ring, which may be monosubstituted or polysubstituted, and may be one Price, price or price.
  • halo or “halogen”, by itself or as part of another substituent, denotes a fluorine, chlorine, bromine or iodine atom.
  • haloalkyl is intended to include both monohaloalkyl and polyhaloalkyl.
  • halo(C 1 -C 4 )alkyl is intended to include, but is not limited to, trifluoromethyl, 2,2,2-trifluoroethyl, 4-chlorobutyl, 3-bromopropyl, and the like. Wait.
  • examples of haloalkyl include, but are not limited to, trifluoromethyl, trichloromethyl, pentafluoroethyl, and pentachloroethyl.
  • alkoxy represents attached through an oxygen bridge
  • C 1-6 alkoxy groups include C 1, C 2, C 3 , C 4, C 5 , and C 6 alkoxy groups.
  • alkoxy groups include, but are not limited to, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, n-pentyloxy and S- Pentyloxy.
  • aryl denotes a polyunsaturated, aromatic hydrocarbon substituent which may be monosubstituted or polysubstituted, which may be monovalent, divalent or polyvalent, which may be monocyclic or polycyclic ( For example, 1 to 3 rings; at least one of which is aromatic), they are fused together or covalently linked.
  • heteroaryl refers to an aryl (or ring) containing one to four heteroatoms. In an illustrative example, the heteroatoms are selected from the group consisting of B, N, O, and S, wherein the nitrogen and sulfur atoms are optionally oxidized, and the nitrogen atom is optionally quaternized.
  • a heteroaryl group can be attached to the remainder of the molecule through a heteroatom.
  • aryl or heteroaryl groups include phenyl, naphthyl, biphenyl, pyrrolyl, pyrazolyl, imidazolyl, pyrazinyl, oxazolyl, phenyl-oxazolyl, isomerism Azyl, thiazolyl, furyl, thienyl, pyridyl, pyrimidinyl, benzothiazolyl, indolyl, benzimidazolyl, indolyl, isoquinolyl, quinoxalinyl, quinolinyl, 1 -naphthyl, 2-naphthyl, 4-biphenylyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 3-pyrazolyl, 2-imidazolyl, 4-imidazolyl, pyrazinyl, 2-oxazolyl
  • aryl groups when used in conjunction with other terms (e.g., aryloxy, arylthio, aralkyl), include aryl and heteroaryl rings as defined above.
  • aralkyl is intended to include those radicals to which an aryl group is attached to an alkyl group (eg, benzyl, phenethyl, pyridylmethyl, and the like), including wherein the carbon atom (eg, methylene) has been, for example, oxygen.
  • alkyl groups substituted by an atom such as phenoxymethyl, 2-pyridyloxymethyl 3-(1-naphthyloxy)propyl and the like.
  • leaving group refers to a functional group or atom which may be substituted by another functional group or atom by a substitution reaction (for example, an affinity substitution reaction).
  • substituent groups include triflate; chlorine, bromine, iodine; sulfonate groups such as mesylate, tosylate, p-bromobenzenesulfonate, p-toluenesulfonic acid Esters and the like; acyloxy groups such as acetoxy, trifluoroacetoxy and the like.
  • protecting group includes, but is not limited to, "amino protecting group", “hydroxy protecting group” or “thiol protecting group”.
  • amino protecting group refers to a protecting group suitable for preventing side reactions at the amino nitrogen position.
  • Representative amino protecting groups include, but are not limited to, formyl; acyl, such as alkanoyl (e.g., acetyl, trichloroacetyl or trifluoroacetyl); alkoxycarbonyl, e.g., tert-butoxycarbonyl (Boc) Arylmethoxycarbonyl, such as benzyloxycarbonyl (Cbz) and 9-fluorenylmethoxycarbonyl (Fmoc); arylmethyl, such as benzyl (Bn), trityl (Tr), 1, 1-di -(4'-methoxyphenyl)methyl; silyl groups such as trimethylsilyl (TMS) and tert-
  • hydroxy protecting group refers to a protecting group suitable for use in preventing hydroxy side reactions.
  • Representative hydroxy protecting groups include, but are not limited to, alkyl groups such as methyl, ethyl and t-butyl groups; acyl groups such as alkanoyl groups (e.g., acetyl); arylmethyl groups such as benzyl (Bn), Oxybenzyl (PMB), 9-fluorenylmethyl (Fm) and diphenylmethyl (diphenylmethyl, DPM); silyl groups such as trimethylsilyl (TMS) and tert-butyl Dimethylsilyl (TBS) and the like.
  • alkyl groups such as methyl, ethyl and t-butyl groups
  • acyl groups such as alkanoyl groups (e.g., acetyl)
  • arylmethyl groups such as benzyl (Bn), Oxybenzyl (PMB), 9-fluoreny
  • the solvent used in the present invention is commercially available.
  • Pd/C Pd/C catalyst palladium content 10w% HATU 2-(7-azobenzotriazole)-N,N,N',N'-tetramethyluron hexafluorophosphate DCM Dichloromethane THF Tetrahydrofuran Boc Tert-butoxycarbonyl, an amine protecting group Cbz Benzyloxycarbonyl, an amine protecting group DMF N,N-dimethylformamide TFA Trifluoroacetate EDCI 1-ethyl-(3-dimethylaminopropyl)carbonyldiimide hydrochloride HOBT 1-hydroxybenzotriazole
  • Solvents used in the present invention are commercially available and require no further purification.
  • the reaction is generally carried out under an inert nitrogen atmosphere in an anhydrous solvent.
  • Proton nuclear magnetic resonance data was recorded on a Bruker Avance III 400 (400 MHz) spectrometer with chemical shifts expressed in ppm (ppm) at the high field of tetramethylsilane. Mass spectra were determined on an Agilent 1200 Series Plus 6110 (&1956A).
  • LC/MS or Shimadzu MS contains a DAD: SPD-M20A (LC) and Shimadzu Micromass 2020 detector.
  • the mass spectrometer is equipped with an electrospray ionization source (ESI) operating in either positive or negative mode.
  • ESI electrospray ionization source
  • High performance liquid chromatography was performed using a Shimadzu LC20AB system equipped with a Shimadzu SIL-20A autosampler and a Shimadzu DAD: SPD-M20A detector, using a Xtimate C18 (3 m packing, 2.1 x 300 mm) column.
  • 0-60AB_6 min method Apply a linear gradient, start elution with 100% A (A is 0.0675% TFA in water), and end the elution with 60% B (B is 0.0625% TFA in MeCN solution). The whole process is 4.2 minutes, then eluted with 60% B for 1 minute.
  • the column was equilibrated for 0.8 minutes to reach 100:0 with a total run time of 6 minutes.
  • 10-80AB_6 min method Apply a linear gradient, start elution with 90% A (A is 0.0675% TFA in water), and end the elution with 80% B (B in 0.0625% TFA in acetonitrile). 4.2 minutes, then eluted with 80% B for 1 minute.
  • the column was equilibrated for 0.8 minutes to 90:10 with a total run time of 6 minutes.
  • the column temperature was 50 ° C and the flow rate was 0.8 mL/min.
  • the diode array detector has a scanning wavelength of 200-400 nm.
  • TLC Thin layer chromatography
  • a common solvent for flash column chromatography or thin layer chromatography is a mixture of dichloromethane/methanol, ethyl acetate/methanol and hexane/ethyl acetate.
  • Step A 1-1 (250.00 g, 2.97 mol) was dissolved in 2 liters of water, then NaNO 2 (250.01 g, 3.62 mol) was added. After the reaction system was cooled to zero degrees Celsius, AcOH (351.35 g, 5.85) was added dropwise over 30 minutes. Molar), the reaction system was stirred at 15 ° C for 16 hours. The mixture was extracted twice with EtOAc EtOAc.
  • Step B 1-2 (300.00 g, 2.65 mol) was dissolved in 1.2 liters of pyridine, cooled to zero degrees Celsius, p-toluenesulfonyl chloride (505.84 g, 2.65 mol) was added in portions, and the reaction system was stirred at 15 ° C for 16 After 2 hours, pour into 2 liters of ice water, precipitate a solid, filter, filter cake washed with ice water, and dried in vacuo to give the product 1-3.
  • Step C 1-3 (690.00 g, 2.58 mol) was dispersed in 2 L of ethanol, then ethyl mercaptoacetate (465.06 g, 3.87 mol) was added dropwise at 0 ° C, followed by morpholine (449.54 g, 5.16). Moore). The reaction system was stirred at 60 ° C for 40 hours, and then poured into 2 liters of ice water and stirred for half an hour. The precipitated solid was filtered, and the filter cake was washed with ice water and dried in vacuo to give the product 1-4.
  • Step D 1-4 (430.00 g, 2.00 mol) was added to concentrated hydrochloric acid (12M, 343.16 mL) and then warmed to 120. The reaction system was cooled to zero degrees Celsius, filtered, and the filter cake was dried in vacuo to give the product 1-5.
  • Step E 1-5 (196.00 g, 1.09 mol, hydrochloride salt) was dissolved in 770 ml of methanol, and then added dropwise SOCl 2 (250 g, 2.1 mol). After the dropwise addition was completed, the reaction system was stirred at 70 ° C for 2 hours. The solvent was removed under reduced pressure to give the product 1-6.
  • Step F Dissolve 1-6 (198.00 g, 1.02 mol, hydrochloride) in 800 ml of water and 800 ml of acetic acid, then add 100 ml of water droplets dissolved in KOCN (202.80 g, 2.50 mol) at zero degrees Celsius. Go in. The reaction system was stirred at 25 ° C for 2 hours, then cooled to zero degrees Celsius and stirred for another half an hour. The resulting precipitate was filtered, and the filter cake was washed with water and dried in vacuo to give the product 1-7.
  • Step G 1-7 (169.00 g, crude) was dissolved in 1.5 L of methanol and then NaOMe (90.75 g, 1.68 mol) was added portionwise at zero degrees Celsius. The mixture was stirred at 10 ° C for 16 hours, filtered, washed with 500 mL of methanol, dried in vacuo, and then the obtained solid was taken up in H 2 O / MeOH (1/1, 1 liter), cooled and acidified with formic acid. The precipitate was filtered and dried to give 1-8.
  • Step H 1-8 (12.00 g, 70.94 mmol) was added to POCl 3 (197.96 g, 1.29 mol), followed by dropwise addition of DIPEA (17.79 g, 137.62 mmol). The reaction system was stirred at 85 ° C for 6 hours. The reaction system was then concentrated to give Intermediate 1-9 which was taken directly to next.
  • Step A NH 3 ⁇ H 2 O (111.16 g, 539.14 mmol, 122.15 ml), sodium cyanide (9.58 g, 195.47 mmol) dissolved in water 28.00 ml), then cooled to 15 ° C in an ice bath Acetic acid (12.23 g, 203.67 mmol, 11.65 ml) was added. After the addition was completed, then 1-10 (20.00 g, 199.68 mmol, 24.69 ml) was added dropwise at 15 °C. The reaction system was stirred at 35 ° C for 12 hours, and the reaction solution was extracted three times with 150 ml of DCM. The combined organic phases were washed with brine (100 mL) brine
  • Step B 1-11 (22.00 g, 174.33 mmol), potassium carbonate (72.28 g, 522.98 mmol) was dissolved in tetrahydrofuran (200.00 ml) and H 2 O (40.00 mL) at zero degrees Celsius and then the CbzCl (38.66 g, 226.62 mmol, 32.22 ml) was added dropwise.
  • the reaction system was stirred at 25 ° C for 8 hours.
  • Ethyl acetate (100 ml) and water (50 ml) were added and partitioned. The organic phase was separated, washed with brine (100 ml), dried over anhydrous sodium sulfate.
  • Step C 1-12 (37.00 g, 120.81 mmol) and anhydrous cobalt chloride (31.37 g, 241.62 mmol) were dissolved in methanol (400.00 mL) and sodium borohydride (22.85 g, 604.05 mmol) was added to the reaction mixture in portions at 5-15 ° C over 2 hours. The reaction system was stirred at 15 ° C for 1 hour, then aqueous ammonia (20%, 500 ml) and ethyl acetate (1000 ml) were added and separated. The aqueous phase was extracted twice with 500 ml of ethyl acetate. The combined organic phases were washed with brine (3 mL EtOAc)
  • Step E 1-14 (29.00 g, 90.86 mmol) was dissolved in methanol (400.00 mL) and palladium carbon (2.90 g, 2.73 mmol, purity 10 w%). The reaction solution was replaced with hydrogen three times. The reaction system was stirred at 25 ° C for 12 hours under a hydrogen (25 Psi) atmosphere. The reaction solution was filtered, and the solvent was evaporated under reduced pressure to give product 1-15.
  • Step F 1-9 (1.40 g, crude) was dissolved in THF (5.00 mL), then 1-15 (1.17 g, 6.79 mmol) and DIPEA (3.51 g, 27.18 mmol). The reaction was stirred at 15 ° C for 2 hours, then poured into 0.5 mL aqueous HCI (10 mL). The combined organic phases were washed with 20 mL of brine and dried. The residue was subjected to column chromatography (SiO 2 , EtOAc /EtOAc /
  • Step H 1-17 (300.00 mg, 634.79 ⁇ mol) was dissolved in TFA (20.00 mL) then stirred at 30 ° C for one hour. The reaction system was concentrated, and the residue was purified by p-HPLC to afford Example 1.
  • Step A TEA (573.75 mg, 5.67 mmol) and dimethylformyl chloride (487.80 mg, 4.54 mmol) were added to 1-13 (1.00 g, 3.78 mmol) of DCM (10.00) at 10 °C. ML) solution. The mixture was stirred at 5 to 10 ° C for 12 hours. The solvent was evaporated to dryness under reduced pressure at 45 °C.
  • Step B At 15 ° C, Pd/C (100.00 mg) was added to a solution of 4-1 (1.00 g, 2.28 mmol) in methanol (50.00 mL) under nitrogen, and the resulting suspension was degassed under vacuum and used. Hydrogen was replaced several times. The mixture was stirred at 25 ° C under hydrogen (15 psi) for 10 hours. The mixture was filtered through celite, washed with EtOAc (EtOAc)EtOAc.
  • Step D 15% Celsius, DIPEA (114.99 mg, 889.74 micromoles) and 2,4-dimethoxybenzylamine (242.98 mg, 1.45 mmol) were added to 4-3 (110.00 mg, 296.58 micromoles) of THF. (2.00 ml) solution. The mixture was heated to 90 degrees Celsius and stirred for 16 hours. The mixture was diluted with aq. EtOAc (EtOAc) (EtOAc) The obtained crude product was purified by silica gel chromatography (EtOAc (EtOAc) LCMS (ESI) m/z: 6221.
  • Step E A solution of 4-4 (177.00 mg, 199.42 micromoles) of trifluoroacetic acid (3.00 mL) was stirred at 25 ° C for one hour. After the solvent was concentrated under reduced pressure at 45 ° C, the obtained crude material was purified by preparative HPLC.
  • Step A 1-13 (92.00 g, 348.01 mmol) was dissolved in DCM (1.5 L) then TEA (38.74, 3 g, 82.81 mmol) and Boc 2 O (75.95 g, 348.01 mmol). .
  • the reaction system was stirred at 25 ° C for 2 hours.
  • Step B 5-1 (118.00 g, 301.90 mmol) was dissolved in MeOH (2 L) then Pd / C (12 g). The reaction system was stirred at 30 ° C for 30 hours under a hydrogen atmosphere of 30 psi. It was then filtered, and the filter cake was washed with MeOH (500 mL).
  • Step E 5-4 (29 g, 54.65 mmol) was dissolved in TFA (200 ml) at 15 ° C, then the reaction was stirred for 1 hour, concentrated, and the residue was dissolved in methanol. Subsequent purification by p-HPLC gave Intermediate 5-5.
  • Step F N-tert-Butoxycarbonyl-L-proline (1.66 g, 7.64, 0.9 mmol) was dissolved in DCM (10 mL), then DIPEA (1.10 g, 8.49 mmol), EDCI ( 1.46 g, 7.64 mmol, HOBt (1.03 g, 7.64 mmol), cooled to minus 10 to 0 ° C, then added 5-5 (3 g, 8.49 mmol) and DIPEA (3.29 g, 25.47 mmol) A solution of mixed DCM (15 mL). The reaction system was stirred at this temperature for 2 hours. After completion of the reaction, the solvent was removed under reduced pressure and the residue was purified mjjjj
  • Step G 5-6 (2 g, 3.89 mmol) was dissolved in HCl / dioxane (20 mL). The reaction mixture was stirred at 10 ° C for 30 min and then concentrated to give Example 5.
  • 1 H NMR 400 MHz, CD 3 OD
  • LCMS m/z: 3821.
  • Example 6 can be obtained by referring to the production method of Example 5.
  • Step A Example 5 (100 mg, 240.39 [mu] mol) and 37% formaldehyde (58.52 mg, 721.18 [mu] mol) was dissolved in MeOH (1 mL), at 0 °C was added NaBH 3 CN (45.32 mg disposable, 721.18 micromolar). The reaction system was stirred at 0 ° C for 1 hour. The reaction solution was directly purified by preparative HPLC to give Example 7.
  • Example 8 To the formic acid (113.98 mg, 2.48 mmol), acetic anhydride (90.30 mg, 884.48 ⁇ mol) was added at 10 to 20 ° C, and the reaction mixture was stirred at 10 to 20 ° C for 0.5 hour. Then, a solution of 5-5 (250 mg, 707.59 ⁇ mol) and DIPEA (182.90 mg, 1.42 mmol) in dichloromethane (4 ml) was added dropwise at 10 to 20 °C. The reaction solution was stirred at 10 to 20 ° C for 14 hours, and the reaction mixture was concentrated. The residue was purified by preparative HPLC to give Example 8.
  • Step B 9-1 (1.7 g, 3.68 mmol) was dissolved in methanol (50 mL) and palladium carbon (303.57 mg, 285.26 micromoles, purity 10%) was added under nitrogen. The reaction solution was replaced with hydrogen three times. The reaction system was stirred at 25 ° C for 12 hours under a hydrogen (15 Psi) atmosphere. The reaction solution was filtered and the solvent was evaporated under reduced pressure to give 9-2.
  • Step D 9-3 (985 mg, 1.98 mmol) and DIPEA (256.11 mg, 1.98 mmol) were dissolved in dioxane (5 mL), then 2,4-dimethoxy was added at 15 degrees Celsius. Benzylamine (994.04 mg, 5.95 mmol). The reaction solution was stirred at 110 ° C for 12 hours. The reaction system was combined with water (10 ml) and ethyl acetate (50 ml). The organic phase was washed 4 times with 30 ml of hydrochloric acid (1 mol / liter), washed with 20 ml of brine, dried over anhydrous sodium sulfate
  • Step E A mixture of 9-4 (190 mg, 272.38 ⁇ mol) and trifluoroacetic acid (2.63 ml) was replaced with nitrogen three times and stirred at 25 ° C for one hour under a nitrogen atmosphere. The reaction solution was concentrated under reduced pressure to remove trifluoroacetic acid. The crude product was purified by preparative HPLC to give Example 9.
  • Examples 10, 11, and 12 can be obtained by referring to the production method of Example 9.
  • LCMS (ESI) m/z: 3521.
  • Example 12 was isolated by SFC (column: IC (250 mm * 30 mm, 10 ⁇ m); mobile phase: [0.1% NH 3 H 2 O IPA]; CO 2 %: 60%-%, 4.65 min; 100 min)
  • LCMS (ESI) m/z: 36:21.
  • Step A 5-4 (44.41 g, 83.68 micromoles) was dissolved in 250 mL dichloromethane and 50 mL water then DDQ (66.49 g, 292.90 micromoles). After stirring uniformly, the reaction solution was stirred at 25 ° C for 72 hours.
  • Step B SFC resolution of 13-1 (15 g, 39.42 ⁇ mol), SFC: column: IC (250 mm * 30 mm, 10 ⁇ m); mobile phase: [0.1% NH 3 H 2 O MEOH]; CO 2 % : 50%-50%, 6 min; 2400 min.
  • the enantiomers of retention time t 3.014 min were concentrated to give the pure optical isomer 13-2.
  • Step C 14-2 (5.73 g, 13.93 ⁇ mol) was dissolved in 30 mL of dioxane/HCl (4 mol), stirred at 25 ° C for 3 hours, and concentrated under reduced pressure to give 13-3.
  • Step D N-Boc-L-piperidine-2-carboxylic acid (72.36 mg, 315.60 ⁇ mol), EDCI (63.53 mg, 331.38 ⁇ mol), HOBt (44.78 mg, 331.38 ⁇ mol) and DIPEA (81.58 mg) , 631.21 ⁇ mol) dissolved in dichloromethane (10 ml), stirred at 25 ° C for 20 minutes, 13-3 (0.1 g, 315.60 ⁇ mol) was added at 0 ° C and stirring was continued for 3 hours and then added to 20 ml The organic layer was washed with 20 ml of brine, dried over anhydrous sodium
  • Step E 13-4 (0.145 g, 294.93 ⁇ mol) was dissolved in dioxane/HCl (4 mol) and stirred at 25 ° C for 3 h. After concentration under reduced pressure, it was subjected to p-HPLC to give Example 13.
  • the HEK-Blue TM hTLR7 (NO: hkb-htlr7) and HEK-Blue TM hTLR8 (NO: hkb-htlr8) cell line was purchased from InvivoGen Corporation. These two cell lines were constructed by stable co-transfection of human embryonic kidney 293 cell line with hTLR7 or hTLR8 and expression of a secreted alkaline phosphatase (SEAP) reporter gene, which secreted embryonic alkaline phosphatase (SEAP) reporter gene. It is regulated by the IFN- ⁇ promoter.
  • SEAP secreted alkaline phosphatase
  • the promoter is fused to the NF- ⁇ B and AP-1 binding sites, and hTLR7 or hTLR8 agonists activate NF- ⁇ B and AP-1 and induce the expression and secretion of secreted alkaline phosphatase (SEAP). Expressing the amount of detection reagent QUANTI-Blue TM SEAP, in order to identify agonistic activity of the compound and hTLR7 hTLR8 receptor.
  • SEAP secreted alkaline phosphatase
  • Cell viability assay The luciferase signal (RLU) was detected by a multi-function microplate reader according to the ATPlite 1Step instructions.
  • Cell viability assay The cell viability % calculation formula is as follows. % Cell viability value analysis using GraphPad Prism software, and dose response curves fitted compound, calculated values for the compound 50 cell CC.
  • Example 1 0.183 >15 >15
  • Example 1A 0.031 >15 >15
  • Example 1B 9.427 >15 >15
  • Example 2 0.435 >15 >15
  • Example 3 0.052 >15 >15
  • Example 4 0.415 >15 >15
  • Example 5 0.0273 >15 >15
  • Example 5B 0.0126 >15 >15
  • Example 6 0.1555 >15 >15
  • Example 7 0.0912 >15 >15
  • Example 8 0.250 >15 >15
  • Example 9A 0.0336 >15 >15
  • Example 10 0.138 >15 >15
  • Example 11B 0.0532 >15 >15
  • Example 12 0.0541 >15 >15
  • Example 12B 4.933 >15 >15
  • Example 13 0.0235 >15 >15
  • Example 14 0.0307 >15 >15
  • Example 15 0.0752 >15 0.07
  • the compounds of the present invention were induced to induce the expression levels of cytokines IL-12p40, IFN-gamma, TNF-alpha and IFN-alpha in human peripheral blood mononuclear cells (PBMC) for 24 hours.
  • PBMC peripheral blood mononuclear cells
  • TLR8 is a type of receptor in which the innate immune system senses exogenous pathogens, and recognizes foreign virus single-stranded RNA, causing the release of a series of cytokines such as TNF-alpha, IL-12, and IFN-gamma to cause resistance. Viral immune response, this experiment uses a potential compound of a TLR8 agonist to stimulate human PBMC, by detecting the levels of the above four cytokines to reflect the activation of the TLR8 receptor by the compound.
  • cytokines such as TNF-alpha, IL-12, and IFN-gamma
  • CBA Flow cytometry microarray
  • the compounds of the present invention can effectively induce the TLR8 pathway-specific cytokines IL-12p40, TNF-alpha and IFN-gamma at a drug concentration of 5 nM to 50 ⁇ M, and no significant induction of the TLR7-specific cytokine IFN-alpha was observed. It exhibits high TLR8 agonistic activity and high TLR8/TLR7 selectivity.
  • mice Sixteen female Balb/c mice were divided into two groups, 8 mice in each group, and 8 animals were randomly divided into 4 groups, and samples were collected at 2 breakpoints in each group. Two groups of animals were administered intravenously and orally with Example 9A.
  • Intravenous administration (1mpk) vehicle was performed with normal saline, liver tissue and whole blood samples (prepared plasma) were collected at 0.25, 0.5, 1, and 4 hours after administration; oral administration (5mpk) was 0.5% methyl Cellulose/0.2% Tween 80/99.3% water, liver tissue and whole blood samples (prepared plasma) were collected at the 0.25, 0.5, 1, and 4 hour endpoints after dosing. All samples were identified by LC-MS/MS method for the concentration of compound Example 9A in liver tissue and plasma. The results are shown in Table 3.
  • Example 9A has high liver exposure and very low plasma concentrations with liver-targeting properties.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Virology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一类新的异噻唑并[4,3-d]嘧啶-5,7-二胺衍生物,具体公开了式(I)所示化合物及其药学上可接受的盐。

Description

作为TLR8激动剂的异噻唑并[4,3-d]嘧啶-5,7-二胺衍生物
本申请主张如下优先权:
CN201710476256.3,申请日2017,6,21。
技术领域
本发明涉及新的TLR8(Toll样受体8)激动剂异噻唑并[4,3-d]嘧啶-5,7-二胺衍生物,具体涉及式(I)所示化合物或其药学上可接受的盐以及包含此化合物或盐的药用组合物,以及式(I)所示化合物或其药学上可接受的盐和药用组合物在治疗肿瘤、病毒感染中的应用。
背景技术
Toll样受体(Toll-like receptors,TLR)是参与非特异性免疫(天然免疫)的一类重要蛋白质分子,也是连接非特异性免疫和特异性免疫的桥梁。TLR是单个的跨膜非催化性蛋白质,主要表达于一系列免疫细胞如树突细胞、巨噬细胞、单核细胞、T细胞、B细胞、NK细胞等。Toll样受体可以识别来源于微生物的具有保守结构的分子,当微生物突破机体的物理屏障,如皮肤、粘膜等时,TLR可以识别它们并激活机体产生免疫细胞应答。如TLR1,-2,-4,-5和-6主要识别胞外的刺激,如细菌的脂多糖,脂肽、鞭毛蛋白等,而TLR3,-7,-8,和-9在细胞内涵体中起作用,吞噬和包膜溶解后结合它们的配体,可识别微生物的核酸等。
在TLR不同亚型中,TLR8具有独特的功能:TLR8主要表达于单核细胞,巨噬细胞和髓样树突细胞中。TLR8的信号通路可以被细菌单链RNA,小分子激动剂和microRNAs活化。激活TLR8后导致产生Th1极性细胞因子,如IL-12,IL-18,TNF-a和IFN-γ和各种共刺激因子如CD80,CD86。这些细胞因子能激活和放大先天免疫和适应性免疫应答,并在涉及抗病毒、抗感染、自身免疫、肿瘤等疾病方面提供有益的治疗方案。例如,关于乙型肝炎,活化肝内抗原呈递细胞和其它免疫细胞上的TLR8可以激活IL-12等细胞因子,从而能激活被病毒耗尽的特异性T细胞和NK细胞,从而重建肝内的抗病毒免疫。
VentiRX制药公司的选择性TLR8激动剂VTX-2337首次在临床上用于不同肿瘤的评价,VTX-2337给药方式为皮下注射。另有专利WO2016141092报道了一系列选择性TLR8激动剂,如结构式1所示。
Figure PCTCN2018092088-appb-000001
发明内容
本发明提供式(I)所示化合物或其药学上可接受的盐,
Figure PCTCN2018092088-appb-000002
其中,
R 1选自:H、NH 2、CN、OH,或者选自任选被1、2或3个R取代的:C 1-5烷基或C 1-5杂烷基;
m选自:0或1;
L选自:单键或-CH 2-;
当m为1时,
R 2选自:H或C 1-5烷基,
R 3选自:H、C 1-6烷基、3~6元环烷基、苯基或5~6元杂芳基,
或者R 2和R 3连接在一起,形成任选被1、2或3个R取代的:4~7元杂环;
R 4选自H,或者选自任选被1、2或3个R取代的:C 1-6烷基;
R 5选自任选被1、2或3个R取代的:C 1-6烷基或3~6元环烷基;
所述4~7元杂环之“环”选自:单环、螺环或桥环;
R选自F、Cl、Br、I、OH、CN、NH 2、CH 3、CH 2F、CHF 2、CF 3
Figure PCTCN2018092088-appb-000003
“杂”表示杂原子或杂原子团,所述C 1-5杂烷基、5~6元杂芳基、4~7元杂环之“杂”,分别独立地选自:-O-、-S-、N、-NH-;
以上任何一种情况下,杂原子或杂原子团的数目分别独立地选自1、2或3。
在本发明的一些方案中,上述R 1选自:H、NH 2、CN、OH、C 1-3烷基或C 1-3杂烷基。
在本发明的一些方案中,上述R 1选自:H、NH 2、CH 3
Figure PCTCN2018092088-appb-000004
在本发明的一些方案中,上述R 2选自:H、CH 3
Figure PCTCN2018092088-appb-000005
在本发明的一些方案中,上述R 3选自:H、C 1-6烷基、3~6元环烷基、苯基。
在本发明的一些方案中,上述R 3选自:H、CH 3
Figure PCTCN2018092088-appb-000006
Figure PCTCN2018092088-appb-000007
在本发明的一些方案中,上述R 4选自H,或者选自任选被1、2或3个R取代的:C 3-5烷基。
在本发明的一些方案中,上述R 4选自:H或CH 3
在本发明的一些方案中,上述R 5选自:C 1-3烷基、环丙基。
在本发明的一些方案中,上述R 5选自:CH 3
在本发明的一些方案中,上述结构单元
Figure PCTCN2018092088-appb-000008
选自:
Figure PCTCN2018092088-appb-000009
Figure PCTCN2018092088-appb-000010
Figure PCTCN2018092088-appb-000011
R如上述定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2018092088-appb-000012
选自:
Figure PCTCN2018092088-appb-000013
Figure PCTCN2018092088-appb-000014
Figure PCTCN2018092088-appb-000015
R如上述定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2018092088-appb-000016
选自:
Figure PCTCN2018092088-appb-000017
Figure PCTCN2018092088-appb-000018
在本发明的一些方案中,上述结构单元
Figure PCTCN2018092088-appb-000019
选自:
Figure PCTCN2018092088-appb-000020
在本发明的一些方案中,上述结构单元
Figure PCTCN2018092088-appb-000021
选自:
Figure PCTCN2018092088-appb-000022
Figure PCTCN2018092088-appb-000023
在本发明的一些方案中,上述R 1选自:H、NH 2、CN、OH、C 1-3烷基或C 1-3杂烷基,其他变量如上述所定义。
在本发明的一些方案中,上述R 1选自:H、NH 2、CH 3
Figure PCTCN2018092088-appb-000024
其他变量如上述所定义。
在本发明的一些方案中,上述R 2选自:H、CH 3
Figure PCTCN2018092088-appb-000025
其他变量如上述所定义。
在本发明的一些方案中,上述R 3选自:H、C 1-6烷基、3~6元环烷基、苯基,其他变量如上述所定义。
在本发明的一些方案中,上述R 3选自:H、CH 3
Figure PCTCN2018092088-appb-000026
Figure PCTCN2018092088-appb-000027
其他变量如上述所定义。
在本发明的一些方案中,上述R 4选自H,或者选自任选被1、2或3个R取代的:C 3-5烷基,其他变量如上述所定义。
在本发明的一些方案中,上述R 4选自:H或CH 3,其他变量如上述所定义。
在本发明的一些方案中,上述R 5选自:C 1-3烷基、环丙基,其他变量如上述所定义。
在本发明的一些方案中,上述R 5选自:CH 3,其他变量如上述所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2018092088-appb-000028
选自:
Figure PCTCN2018092088-appb-000029
Figure PCTCN2018092088-appb-000030
Figure PCTCN2018092088-appb-000031
R如上述定义,其他变量如上述所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2018092088-appb-000032
选自:
Figure PCTCN2018092088-appb-000033
Figure PCTCN2018092088-appb-000034
Figure PCTCN2018092088-appb-000035
R如上述定义,其他变量如上述所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2018092088-appb-000036
选自:
Figure PCTCN2018092088-appb-000037
Figure PCTCN2018092088-appb-000038
Figure PCTCN2018092088-appb-000039
其他变量如上述所定 义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2018092088-appb-000040
选自:
Figure PCTCN2018092088-appb-000041
其他变量如上述所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2018092088-appb-000042
选自:
Figure PCTCN2018092088-appb-000043
Figure PCTCN2018092088-appb-000044
其他变量如上述所定义。
在本发明的一些方案中,上述化合物选自
Figure PCTCN2018092088-appb-000045
其中,R 1、R 2、R 3、R 4、R 5、L如上述所定义。
在本发明的一些方案中,上述化合物选自
Figure PCTCN2018092088-appb-000046
Figure PCTCN2018092088-appb-000047
其中,R 1、R 2、R 3、R 4、R 5、R如上述定义。
本发明还提供化合物或其药学上可接受的盐,其中,化合物选自
Figure PCTCN2018092088-appb-000048
Figure PCTCN2018092088-appb-000049
在本发明的一些方案中,上述化合物选自
Figure PCTCN2018092088-appb-000050
Figure PCTCN2018092088-appb-000051
Figure PCTCN2018092088-appb-000052
本发明还提供一种药物组合物,其含有治疗有效量的上述的化合物或其药学上可接受的盐和药学上可接受的载体。
本发明还提供上述的化合物或其药学上可接受的盐或上述的药物组合物在制备治疗肿瘤和病毒感染药物中的应用。
本发明还有一些方案是由上述各变量任意组合而来。
技术效果
本发明化合物以异噻唑并[4,3-d]嘧啶-5,7-二胺为母核,同时在侧链上引入了手性氨基,使得本发明化合物在具备较高诱导活性的同时还具有优异的选择性。人源PBMC细胞因子诱导实验显示,本发明化合物具有较高的TLR8通路特异性细胞因子(IL-12p40、TNF-a)诱导活性;小鼠的肝脏组织分布研究显示,本发明具有较高的肝脏药物暴露量,较高的肝血比。这些特异性质显示,本发明的化合物在药效,安全性方面相对于现有药物具有独特优势。本发明化合物,是可以口服的TLR8激动剂,符合便利的给药方式,良好依从医疗需求。同时,本发明的化合物具有靶向肝脏的特性,在降低因全身系统性暴露引起的免疫反应的副作用方面相对于现有药物更具优势。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物的中性形式接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机氨或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物的中性形式接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐(参见Berge et al.,"Pharmaceutical Salts",Journal of Pharmaceutical Science 66:1-19(1977))。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
优选地,以常规方式使盐与碱或酸接触,再分离母体化合物,由此再生化合物的中性形式。化合物的母体形式与其各种盐的形式的不同之处在于某些物理性质,例如在极性溶剂中的溶解度不同。
本文所用的“药学上可接受的盐”属于本发明化合物的衍生物,其中,通过与酸成盐或与碱成盐的方式修饰所述母体化合物。药学上可接受的盐的实例包括但不限于:碱基比如胺的无机酸或有机酸盐、酸根比如羧酸的碱金属或有机盐等等。药学上可接受的盐包括常规的无毒性的盐或母体化合物的季铵盐,例如无毒的无机酸或有机酸所形成的盐。常规的无毒性的盐包括但不限于那些衍生自无机酸和有机酸的盐,所述的无机酸或有机酸选自2-乙酰氧基苯甲酸、2-羟基乙磺酸、乙酸、抗坏血酸、苯磺酸、苯甲酸、碳酸氢根、碳酸、柠檬酸、依地酸、乙烷二磺酸、乙烷磺酸、富马酸、葡庚糖、葡糖酸、谷氨酸、乙醇酸、氢溴酸、盐酸、氢碘酸盐、羟基、羟萘、羟乙磺酸、乳酸、乳糖、十二烷基磺酸、马来酸、苹果酸、扁桃酸、甲烷磺酸、硝酸、草酸、双羟萘酸、泛酸、苯乙酸、磷酸、多聚半乳糖醛、丙酸、水杨酸、硬脂酸、亚乙酸、琥珀酸、氨基磺酸、对氨基苯磺酸、硫酸、单宁、酒石酸和对甲苯磺酸。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。一般地,优选醚、乙酸乙酯、乙醇、异丙醇或乙腈等非水介质。
除了盐的形式,本发明所提供的化合物还存在前药形式。本文所描述的化合物的前药容易地在生理条件下发生化学变化从而转化成本发明的化合物。此外,前体药物可以在体内环境中通过化学或生化方法被转换到本发明的化合物。
本发明的某些化合物可以以非溶剂化形式或者溶剂化形式存在,包括水合物形式。一般而言,溶剂化形式与非溶剂化的形式相当,都包含在本发明的范围之内。
本发明的某些化合物可以具有不对称碳原子(光学中心)或双键。外消旋体、非对映异构体、几何异构体和单个的异构体都包括在本发明的范围之内。
除非另有说明,除非另有说明,用楔形实线键
Figure PCTCN2018092088-appb-000053
和楔形虚线键
Figure PCTCN2018092088-appb-000054
表示一个立体中心的绝对构型,用波浪线
Figure PCTCN2018092088-appb-000055
表示楔形实线键
Figure PCTCN2018092088-appb-000056
或楔形虚线键
Figure PCTCN2018092088-appb-000057
用直形实线键
Figure PCTCN2018092088-appb-000058
和直形虚线键
Figure PCTCN2018092088-appb-000059
表示立体中心的相对构型。当本文所述化合物含有烯属双键或其它几何不对称中心,除非另有规定,它们包括E、Z几何异构体。同样地,所有的互变异构形式均包括在本发明的范围之内。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外, 对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
术语“药学上可接受的载体”是指能够递送本发明有效量活性物质、不干扰活性物质的生物活性并且对宿主或者患者无毒副作用的任何制剂或载体介质代表性的载体包括水、油、蔬菜和矿物质、膏基、洗剂基质、软膏基质等。这些基质包括悬浮剂、增粘剂、透皮促进剂等。它们的制剂为化妆品领域或局部药物领域的技术人员所周知。关于载体的其他信息,可以参考Remington:The Science and Practice of Pharmacy,21st Ed.,Lippincott,Williams & Wilkins(2005),该文献的内容通过引用的方式并入本文。
术语“赋形剂”通常是指配制有效的药物组合物所需要载体、稀释剂和/或介质。
针对药物或药理学活性剂而言,术语“有效量”或“治疗有效量”是指无毒的但能达到预期效果的药物或药剂的足够用量。对于本发明中的口服剂型,组合物中一种活性物质的“有效量”是指与该组合物中另一种活性物质联用时为了达到预期效果所需要的用量。有效量的确定因人而异,取决于受体的年龄和一般情况,也取决于具体的活性物质,个案中合适的有效量可以由本领域技术人员根据常规试验确定。
术语“活性成分”、“治疗剂”,“活性物质”或“活性剂”是指一种化学实体,它可以有效地治疗目标紊乱、疾病或病症。
“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR) 0-,表示该连接基团为单键。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。当一个取代基可以连接到一个环上的一个以上原子时,这种取代基可以与这个环上的任意原子相键合,例如,结构单元
Figure PCTCN2018092088-appb-000060
表示取代基R可在环己基或者环己二烯上的任意一个位置发生取代。当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时,这种取 代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure PCTCN2018092088-appb-000061
中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成
Figure PCTCN2018092088-appb-000062
也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成
Figure PCTCN2018092088-appb-000063
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
除非另有规定,术语“杂”表示杂原子或杂原子团(即含有杂原子的原子团),包括碳(C)和氢(H)以外的原子以及含有这些杂原子的原子团,例如包括氧(O)、氮(N)、硫(S)、硅(Si)、锗(Ge)、铝(Al)、硼(B)、-O-、-S-、=O、=S、-C(=O)O-、-C(=O)-、-C(=S)-、-S(=O)、-S(=O) 2-,以及任选被取代的-C(=O)N(H)-、-N(H)-、-C(=NH)-、-S(=O) 2N(H)-或-S(=O)N(H)-。
除非另有规定,“环”表示被取代或未被取代的环烷基、杂环烷基、环烯基、杂环烯基、环炔基、杂环炔基、芳基或杂芳基。所谓的环包括单环、联环、螺环、并环或桥环。环上原子的数目通常被定义为环的元数,例如,“5~7元环”是指环绕排列5~7个原子。除非另有规定,该环任选地包含1~3个杂原子。因此,“5~7元环”包括例如苯基、吡啶和哌啶基;另一方面,术语“5~7元杂环烷基环”包括吡啶基和哌啶基,但不包括苯基。术语“环”还包括含有至少一个环的环系,其中的每一个“环”均独立地符合上述定义。
除非另有规定,术语“杂环”或“杂环基”意指稳定的含杂原子或杂原子团的单环、双环或三环,它们可以是饱和的、部分不饱和的或不饱和的(芳族的),它们包含碳原子和1、2、3或4个独立地选自N、O和S的环杂原子,其中上述任意杂环可以稠合到一个苯环上形成双环。氮和硫杂原子可任选被氧化(即NO和S(O)p,p是1或2)。氮原子可以是被取代的或未取代的(即N或NR,其中R是H或本文已经定义过的其他取代基)。该杂环可以附着到任何杂原子或碳原子的侧基上从而形成稳定的结构。如果产生的化合物是稳定的,本文所述的杂环可以发生碳位或氮位上的取代。杂环中的氮原子任选地被季铵化。一个优选方案是,当杂环中S及O原子的总数超过1时,这些杂原子彼此不相邻。另一个优选方案是,杂环中S及O原子的总数不超过1。如本文所用,术语“芳族杂环基团”或“杂芳基”意指稳定的5、6、7元单环或双环或7、8、9或10元双环杂环基的芳香环,它包含碳原子和1、2、3或4个独立地选自N、O和S的环杂原子。氮原子可以是被取代的或未取代的(即N或NR,其中R是H或本文已经定义过的其他取代基)。氮和硫杂原子可任选被氧化(即NO和S(O)p,p是1或2)。值得注意的是,芳香杂环上S和O原子的总数不超过1。桥环也包含在杂环的定义中。当一个或多个原子(即C、O、N或S)连接两个不相邻的碳原子或氮原子时形成桥环。优选的桥环包括但不限于:一个碳原子、两个碳原子、一个氮原子、两个氮原子和一个碳-氮基。值得注意的是,一个桥总是将单环转换成三环。桥环中,环上的取代基也可以出现在桥上。
杂环化合物的实例包括但不限于:吖啶基、吖辛因基、苯并咪唑基、苯并呋喃基、苯并巯基呋喃基、苯并巯基苯基、苯并恶唑基、苯并恶唑啉基、苯并噻唑基、苯并三唑基、苯并四唑基、苯并异恶唑基、苯并异噻唑基、苯并咪唑啉基、咔唑基、4aH-咔唑基、咔啉基、苯并二氢吡喃基、色烯、噌啉基十氢喹啉基、2H,6H-1,5,2-二噻嗪基、二氢呋喃并[2,3-b]四氢呋喃基、呋喃基、呋咱基、咪唑烷基、咪唑啉基、咪唑基、1H-吲唑基、吲哚烯基、二氢吲哚基、中氮茚基、吲哚基、3H-吲哚基、异苯并呋喃基、异吲哚基、异二氢吲哚基、异喹啉基、异噻唑基、异恶唑基、亚甲二氧基苯基、吗啉基、萘啶基,八氢异喹啉基、恶二唑基、1,2,3-恶二唑基、1,2,4-恶二唑基、1,2,5-恶二唑基、1,3,4-恶二唑基、恶唑烷基、恶唑基、羟吲哚基、嘧啶基、菲啶基、菲咯啉基、吩嗪、吩噻嗪、苯并黄嘌呤基、酚恶嗪基、酞嗪基、哌嗪基、哌啶基、哌啶酮基、4-哌啶酮基、胡椒基、蝶啶基、嘌呤基、吡喃基、吡嗪基、吡唑烷基、吡唑啉基、吡唑基、哒嗪基、吡啶并恶唑、吡啶并咪唑、吡啶并噻唑、吡啶基、吡咯烷基、吡咯啉基、2H-吡咯基、吡咯基、喹唑啉基、喹啉基、4H-喹嗪基、喹喔啉基、奎宁环基、四氢呋喃基、四氢异喹啉基、四氢喹啉基、四唑基,6H-1,2,5-噻二嗪基、1,2,3-噻二唑基、1,2,4-噻二唑基、1,2,5-噻二唑基、1,3,4-噻二唑基、噻蒽基、噻唑基、异噻唑基噻吩基、噻吩并恶唑基、噻吩并噻唑基、噻吩并咪唑基、噻吩基、三嗪基、1H-1,2,3-三唑基、2H-1,2,3-三唑基、1H-1,2,4-三唑基、4H-1,2,4-三唑基和呫吨基。还包括稠环和螺环化合物。
除非另有规定,术语“烃基”或者其下位概念(比如烷基、烯基、炔基、芳基等等)本身或者作为另一取代基的一部分表示直链的、支链的或环状的烃原子团或其组合,可以是完全饱和的(如烷基)、单元或多元不饱和的(如烯基、炔基、芳基),可以是单取代或多取代的,可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基),可以包括二价或多价原子团,具有指定数量的碳原子(如C 1-C 12表示1至12个碳,C 1-12选自C 1、C 2、C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10、C 11和C 12;C 3-12选自C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10、C 11和C 12。)。“烃基”包括但不限于脂肪烃基和芳香烃基,所述脂肪烃基包括链状和环状,具体包括但不限于烷基、烯基、炔基,所述芳香烃基包括但不限于6-12元的芳香烃基,例如苯、萘等。在一些实施例中,术语“烃基”表示直链的或支链的原子团或它们的组合,可以是完全饱和的、单元或多元不饱和的,可以包括二价和多价原子团。饱和烃原子团的实例包括但不限于甲基、乙基、正丙基、异丙基、正丁基、叔丁基、异丁基、仲丁基、异丁基、环己基、(环己基)甲基、环丙基甲基,以及正戊基、正己基、正庚基、正辛基等原子团的同系物或异构体。不饱和烃基具有一个或多个双键或三键,其实例包括但不限于乙烯基、2-丙烯基、丁烯基、巴豆基、2-异戊烯基、2-(丁二烯基)、2,4-戊二烯基、3-(1,4-戊二烯基)、乙炔基、1-和3-丙炔基,3-丁炔基,以及更高级的同系物和异构体。
除非另有规定,术语“杂烃基”或者其下位概念(比如杂烷基、杂烯基、杂炔基、杂芳基等等)本身或者与另一术语联合表示稳定的直链的、支链的或环状的烃原子团或其组合,有一定数目的碳原子和至少一个杂原子组成。在一些实施例中,术语“杂烷基”本身或者与另一术语联合表示稳定的直链的、支链的烃原子团或其组合物,有一定数目的碳原子和至少一个杂原子组成。在一个典型实施例中,杂原子选自B、O、N和S,其中氮和硫原子任选地被氧化,氮杂原子任选地被季铵化。杂原子或杂原子团可以位于杂烃基的任何内部位置,包括该烃基附着于分子其余部分的位置,但术语“烷氧基”、“烷氨基”和“烷硫基”(或硫代烷氧基)属于惯用表达,是指分别通过一个氧原子、氨基或硫原子连接到分子的其余部 分的那些烷基基团。实例包括但不限于-CH 2-CH 2-O-CH 3、-CH 2-CH 2-NH-CH 3、-CH 2-CH 2-N(CH 3)-CH 3、-CH 2-S-CH 2-CH 3、-CH 2-CH 2、-S(O)-CH 3、-CH 2-CH 2-S(O) 2-CH 3、-CH=CH-O-CH 3、-CH 2-CH=N-OCH 3和–CH=CH-N(CH 3)-CH 3。至多两个杂原子可以是连续的,例如-CH 2-NH-OCH 3
除非另有规定,术语“环烃基”、“杂环烃基”或者其下位概念(比如芳基、杂芳基、环烷基、杂环烷基、环烯基、杂环烯基、环炔基、杂环炔基等等)本身或与其他术语联合分别表示环化的“烃基”、“杂烃基”。此外,就杂烃基或杂环烃基(比如杂烷基、杂环烷基)而言,杂原子可以占据该杂环附着于分子其余部分的位置。环烃基的实例包括但不限于环戊基、环己基、1-环己烯基、3-环己烯基、环庚基等。杂环基的非限制性实例包括1-(1,2,5,6-四氢吡啶基)、1-哌啶基、2-哌啶基,3-哌啶基、4-吗啉基、3-吗啉基、四氢呋喃-2-基、四氢呋喃吲哚-3-基、四氢噻吩-2-基、四氢噻吩-3-基,1-哌嗪基和2-哌嗪基。
除非另有规定,术语“烷基”用于表示直链或支链的饱和烃基,可以是单取代(如-CH 2F)或多取代的(如-CF 3),可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。烷基的例子包括甲基(Me),乙基(Et),丙基(如,n-丙基和异丙基),丁基(如,n-丁基,异丁基,s-丁基,t-丁基),戊基(如,n-戊基,异戊基,新戊基)等。
除非另有规定,“烯基”指在链的任何位点上具有一个或多个碳碳双键的烷基,可以是单取代或多取代的,可以是一价、二价或者多价。烯基的例子包括乙烯基,丙烯基,丁烯基,戊烯基,己烯基,丁间二烯基,戊间二烯基,己间二烯基等。
除非另有规定,“炔基”指在链的任何位点上具有一个或多个碳碳三键的烷基,可以是单取代或多取代的,可以是一价、二价或者多价。炔基的例子包括乙炔基,丙炔基,丁炔基,戊炔基等。
除非另有规定,环烷基包括任何稳定的环状或多环烃基,任何碳原子都是饱和的,可以是单取代或多取代的,可以是一价、二价或者多价。这些环烷基的实例包括,但不限于,环丙基、降冰片烷基、[2.2.2]二环辛烷、[4.4.0]二环癸烷等。
除非另有规定,环烯基包括任何稳定的环状或多环烃基,该烃基在环的任何位点含有一个或多个不饱和的碳-碳双键,可以是单取代或多取代的,可以是一价、二价或者多价。这些环烯基的实例包括,但不限于,环戊烯基、环己烯基等。
除非另有规定,环炔基包括任何稳定的环状或多环烃基,该烃基在环的任何位点含有一个或多个碳-碳三键,可以是单取代或多取代的,可以是一价、二价或者多价。
除非另有规定,术语“卤代素”或“卤素”本身或作为另一取代基的一部分表示氟、氯、溴或碘原子。此外,术语“卤代烷基”意在包括单卤代烷基和多卤代烷基。例如,术语“卤代(C 1-C 4)烷基”意在包括但不仅限于三氟甲基、2,2,2-三氟乙基、4-氯丁基和3-溴丙基等等。除非另有规定,卤代烷基的实例包括但不仅限于:三氟甲基、三氯甲基、五氟乙基,和五氯乙基。
“烷氧基”代表通过氧桥连接的具有特定数目碳原子的上述烷基,除非另有规定,C 1-6烷氧基包括C 1、C 2、C 3、C 4、C 5和C 6的烷氧基。烷氧基的例子包括但不限于:甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、仲丁氧基、叔丁氧基、正戊氧基和S-戊氧基。
除非另有规定,术语“芳基”表示多不饱和的芳族烃取代基,可以是单取代或多取代的,可以是一价、二价或者多价,它可以是单环或多环(比如1至3个环;其中至少一个环是芳族的),它们稠合在一起 或共价连接。术语“杂芳基”是指含有一至四个杂原子的芳基(或环)。在一个示范性实例中,杂原子选自B、N、O和S,其中氮和硫原子任选地被氧化,氮原子任选地被季铵化。杂芳基可通过杂原子连接到分子的其余部分。芳基或杂芳基的非限制性实施例包括苯基、萘基、联苯基、吡咯基、吡唑基、咪唑基、吡嗪基、恶唑基、苯基-恶唑基、异恶唑基、噻唑基、呋喃基、噻吩基、吡啶基、嘧啶基、苯并噻唑基、嘌呤基、苯并咪唑基、吲哚基、异喹啉基、喹喔啉基、喹啉基、1-萘基、2-萘基、4-联苯基、1-吡咯基、2-吡咯基、3-吡咯基、3-吡唑基、2-咪唑基、4-咪唑基、吡嗪基、2-恶唑基、4-恶唑基、2-苯基-4-恶唑基、5-恶唑基、3-异恶唑基、4-异恶唑基、5-异恶唑基、2-噻唑基、4-噻唑基、5-噻唑基、2-呋喃基、3-呋喃基、2-噻吩基、3-噻吩基、2-吡啶基、3-吡啶基、4-吡啶基、2-嘧啶基、4-嘧啶基、5-苯并噻唑基、嘌呤基、2-苯并咪唑基、5-吲哚基、1-异喹啉基、5-异喹啉基、2-喹喔啉基、5-喹喔啉基、3-喹啉基和6-喹啉基。上述任意一个芳基和杂芳基环系的取代基选自下文所述的可接受的取代基。
除非另有规定,芳基在与其他术语联合使用时(例如芳氧基、芳硫基、芳烷基)包括如上定义的芳基和杂芳基环。因此,术语“芳烷基”意在包括芳基附着于烷基的那些原子团(例如苄基、苯乙基、吡啶基甲基等),包括其中碳原子(如亚甲基)已经被例如氧原子代替的那些烷基,例如苯氧基甲基、2-吡啶氧甲基3-(1-萘氧基)丙基等。
术语“离去基团”是指可以被另一种官能团或原子通过取代反应(例如亲和取代反应)所取代的官能团或原子。例如,代表性的离去基团包括三氟甲磺酸酯;氯、溴、碘;磺酸酯基,如甲磺酸酯、甲苯磺酸酯、对溴苯磺酸酯、对甲苯磺酸酯等;酰氧基,如乙酰氧基、三氟乙酰氧基等等。
术语“保护基”包括但不限于“氨基保护基”、“羟基保护基”或“巯基保护基”。术语“氨基保护基”是指适合用于阻止氨基氮位上副反应的保护基团。代表性的氨基保护基包括但不限于:甲酰基;酰基,例如链烷酰基(如乙酰基、三氯乙酰基或三氟乙酰基);烷氧基羰基,如叔丁氧基羰基(Boc);芳基甲氧羰基,如苄氧羰基(Cbz)和9-芴甲氧羰基(Fmoc);芳基甲基,如苄基(Bn)、三苯甲基(Tr)、1,1-二-(4'-甲氧基苯基)甲基;甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。术语“羟基保护基”是指适合用于阻止羟基副反应的保护基。代表性羟基保护基包括但不限于:烷基,如甲基、乙基和叔丁基;酰基,例如链烷酰基(如乙酰基);芳基甲基,如苄基(Bn),对甲氧基苄基(PMB)、9-芴基甲基(Fm)和二苯基甲基(二苯甲基,DPM);甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。
本发明所使用的溶剂可经市售获得。
缩略词清单
Pd/C Pd/C催化剂,钯含量10w%
HATU 2-(7-偶氮苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯
DCM 二氯甲烷
THF 四氢呋喃
Boc 叔丁氧羰基,是一种胺保护基团
Cbz 苄氧羰基,是一种胺保护基团
DMF N,N-二甲基甲酰胺
TFA 三氟乙酸
EDCI 1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐
HOBT 1-羟基苯并三唑
eq 当量、等量
DCM 二氯甲烷
PE 石油醚
DMSO 二甲亚砜
EtOAc 乙酸乙酯
EtOH 乙醇
MeOH 甲醇
HOAc 乙酸
Tos 对甲苯磺酰基
DDQ 2,3-二氯-5,6-二氰对苯醌
NaBH 3CN 氰基硼氢化钠
Boc 2O 二叔丁基二碳酸酯
CbzCl 氯甲酸苄酯
DIPEA 二异丙基乙基胺
SOCl 2 氯化亚砜
i-PrOH 2-丙醇
SiO 2 100-200目硅胶粉,用于柱层析
SFC 超临界流体色谱
p-HPLC 制备高效液相色谱,用于化合物的纯化
化合物经手工或者
Figure PCTCN2018092088-appb-000064
软件命名,市售化合物采用供应商目录名称。
本发明所使用的溶剂可经市售获得且不需要进一步纯化。反应一般是在惰性氮气下、无水溶剂中进行的。质子核磁共振数据记录在Bruker Avance III 400(400MHz)分光仪上,化学位移以四甲基硅烷高场处的(ppm)表示。质谱是在安捷伦1200系列加6110(&1956A)上测定。LC/MS或Shimadzu MS包含一个DAD:SPD-M20A(LC)和Shimadzu Micromass 2020检测器。质谱仪配备有一个正或负模式下操作的电喷雾离子源(ESI)。
用配有Shimadzu SIL-20A自动进样器和日本岛津DAD:SPD-M20A探测器的岛津LC20AB系统进行高效液相色谱分析,采用Xtimate C18(3m填料,规格为2.1×300mm)色谱柱。0-60AB_6分钟的方法:应用线性梯度,以100%A(A为0.0675%TFA的水溶液)开始洗脱,并以60%B(B为0.0625%TFA的MeCN溶液)结束洗脱,整个过程为4.2分钟,然后以60%B洗脱1分钟。将色谱柱再平衡0.8分钟达到100:0,总运行时间为6分钟。10-80AB_6分钟的方法:应用线性梯度,以90%A(A为0.0675%TFA的水溶液)开始洗脱,并以80%B(B为0.0625%TFA的乙腈溶液)结束洗脱,整个过程为4.2分钟,然后以80%B洗脱1分钟。将色谱柱再平衡0.8分钟达到90:10,总运行时间为6分钟。柱温为50℃,流速为0.8mL/min。二极管阵列检测器扫描波长为200-400nm。
在Sanpont-group的硅胶GF254上进行薄层色谱分析(TLC),常用紫外光灯照射检出斑点,在某些情况下也采用其他方法检视斑点,在这些情况下,用碘(10g硅胶中加入约1g碘并彻底混合而成)、香草醛(溶解大约1g香草醛于100mL 10%H 2SO 4中制得)、茚三酮(从Aldrich购得)或特殊显色剂(彻底混合25g(NH 4)6Mo 7O 24·4H 2O、5g(NH 4)2Ce(IV)(NO 3)6、450mL H2O和50mL浓H 2SO 4而制得)展开薄层板,检视化合物。采用Still,W.C.;Kahn,M.;and Mitra,M.Journal of Organic Chemistry,1978,43,2923-2925.中所公开技术的类似方法,在Silicycle的40-63μm(230-400目)硅胶上进行快速柱色谱。快速柱色谱或薄层色谱的常用溶剂是二氯甲烷/甲醇、乙酸乙酯/甲醇和己烷/乙酸乙酯的混合物。
在使用Gilson UV/VIS-156检测器的Gilson-281 Prep LC 322系统上进行制备色谱分析,所采用的色谱柱为Agella Venusil ASB Prep C18(5m填料,规格为150x21.2mm)、Phenomenex Gemini C18(5m填料,规格为150x30mm)、Boston Symmetrix C18(5m填料,规格为150x30mm)或Phenomenex Synergi C18(4m填料,规格为150x30mm)。在流速约为25mL/min时,用低梯度的乙腈/水(水中含有0.05%HCl、0.25%HCOOH或0.5%NH 3·H 2O)洗脱化合物,总运行时间为8-15分钟。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
实施例1(1A和1B)
Figure PCTCN2018092088-appb-000065
中间体1-9的制备
Figure PCTCN2018092088-appb-000066
步骤A:将1-1(250.00克,2.97摩尔)溶于2升水中,然后加入NaNO 2(250.01克,3.62摩尔),反应体系冷却到零摄氏度后在30分钟滴加AcOH(351.35克,5.85摩尔),滴加完毕反应体系在15摄氏度下搅拌16小时。用1升EtOAc萃取两次,合并的有机相用500毫升食盐水洗涤,无水硫酸钠干燥,减压除去溶剂得到产物1-2。
1HNMR(DMSO-d 6,400MHz):δ7.68(s,1H),7.17(s,1H)。
步骤B:将1-2(300.00克,2.65摩尔)溶于1.2升吡啶中,冷却到零摄氏度后分批加入对甲苯磺酰氯 (505.84克,2.65摩尔),反应体系在15摄氏度下搅拌16个小时,倒入2升冰水中,析出固体,过滤,滤饼用冰水洗涤,真空干燥得到产物1-3。
1HNMR(DMSO-d 6,400MHz):δ8.24(s,1H),8.19(s,1H),8.03(d,J=8.4Hz,2H),7.54(d,J=8.0Hz,2H),2.45(s,3H)。LCMS(ESI)m/z:268.0(M+1)。
步骤C:将1-3(690.00克,2.58摩尔)分散于2升乙醇中,然后在零摄氏度下滴加巯基乙酸乙酯(465.06克,3.87摩尔),接着再加入吗啡啉(449.54克,5.16摩尔)。反应体系在60摄氏度下搅拌40个小时,然后倒入2升冰水中搅拌半小时。析出的固体过滤,滤饼用冰水洗涤,真空干燥得到产物1-4。
1HNMR(DMSO-d 6,400MHz):δ8.13(s,1H),7.76(s,1H),6.84(s,2H),4.30(q,J=7.2Hz,2H),1.29(t,J=7.1Hz,3H)。LCMS(ESI)m/z:216.0(M+1)。
步骤D:将1-4(430.00克g,2.00摩尔)加入浓盐酸(12M,343.16mL)中,然后升温至120度搅拌5小时。反应体系冷却到零摄氏度后过滤,滤饼真空干燥得到产物1-5。
1HNMR(DMSO-d 6,,400MHz):δ8.79(s,1H)。
步骤E:将1-5(196.00克,1.09摩尔,盐酸盐)溶于770毫升甲醇中,然后滴加SOCl 2(250克,2.1摩尔)。滴加完毕,反应体系在70摄氏度下搅拌2个小时。减压除去溶剂得到产物1-6。
1HNMR(DMSO-d 6,400MHz):δ9.30(s,1H),4.03(s,3H)。
步骤F:将1-6(198.00克,1.02摩尔,盐酸盐)溶于800毫升水和800毫升乙酸中,然后在零摄氏度下将溶有KOCN(202.80克,2.50摩尔)的100毫升水滴加进去。反应体系在25摄氏度下搅拌2小时,然后冷却到零摄氏度再搅拌半小时,形成的沉淀过滤,滤饼用水洗涤后真空干燥得到产物1-7。
1HNMR(DMSO-d 6,400MHz):δ9.10(s,1H),9.03(s,1H),6.68(s,2H),3.90(s,3H)。
步骤G:将1-7(169.00g,粗品)溶于1.5升甲醇中,然后在零摄氏度下分批加入NaOMe(90.75克,1.68摩尔)。混合物在10摄氏度下搅拌16个小时,过滤,用500毫升甲醇洗涤,真空干燥,然后将得到的固体分散于H 2O/MeOH(1/1,1升),冷却,用甲酸酸化,形成的沉淀过滤,干燥得到1-8。
1HNMR(DMSO-d 6,400MHz):δ11.35(s,2H),8.43(s,1H)。
步骤H:将1-8(12.00克,70.94毫摩尔)加入到POCl 3(197.96克,1.29摩尔)中,然后滴加DIPEA(17.79克,137.62毫摩尔)。反应体系在85摄氏度下搅拌6小时。然后将反应体系浓缩得到中间体1-9,直接用于下一步。
中间体1-15的制备
Figure PCTCN2018092088-appb-000067
步骤A:将NH 3·H 2O(111.16克,539.14毫摩尔,122.15毫升),氰化钠(9.58克,195.47毫摩尔)溶于水 28.00毫升)中,然后冰浴冷却到15摄氏度下滴加乙酸(12.23克,203.67毫摩尔,11.65毫升)。加完后,然后在15摄氏度下滴加1-10(20.00克,199.68毫摩尔,24.69毫升)。反应体系在35摄氏度下搅拌12小时,反应液用150毫升DCM萃取三次。合并的有机相用100毫升食盐水洗涤,无水硫酸钠干燥,减压除去溶剂得到产物1-11。
1H NMR(400MHz,CDCl 3)δ1.69-1.64(m,2H),1.56-1.45(m,5H),1.44-1.36(m,2H),0.96(t,J=7.2Hz,3H)。
步骤B:将1-11(22.00克,174.33毫摩尔),碳酸钾(72.28克,522.98毫摩尔)溶于四氢呋喃(200.00毫升)和H 2O(40.00毫升)中,然后在零摄氏度下将CbzCl(38.66克,226.62毫摩尔,32.22毫升)滴加进去。反应体系在25摄氏度下搅拌8小时。反应体系加乙酸乙酯(100毫升)和水(50毫升)并分液。将有机相分开,用100毫升食盐水洗涤,无水硫酸钠干燥,减压除去溶剂得到粗品1-12。粗品用硅胶柱纯化(SiO 2,PE/EtOAc=1/0至20/1),得到产物1-12。
1H NMR(400MHz,CDCl 3)δ7.42-7.33(m,5H),5.23-5.11(m,2H),4.93(br s,1H),2.00-1.80(m,2H),1.70(s,3H),1.54-1.35(m,4H),1.00-0.92(m,3H)。LCMS(ESI)m/z:261.3(M+1)。
步骤C:将1-12(37.00克,120.81毫摩尔)和无水氯化钴(31.37克,241.62毫摩尔)溶于甲醇(400.00毫升),在氮气保护下,将硼氢化钠(22.85克,604.05毫摩尔)于2个小时内在5-15℃下分批加入到反应液。反应体系在15摄氏度下搅拌1小时,然后加入氨水(20%,500毫升)和乙酸乙酯(1000毫升)并分液。水相再用500毫升乙酸乙酯萃取2次。合并的有机相用300毫升食盐水洗涤,无水硫酸钠干燥,减压除去溶剂得到1-13。
1H NMR(400MHz,CDCl 3):δ7.31-7.20(m,5H),5.04-4.90(m,3H),2.87-2.57(m,2H),1.67-1.41(m,2H),1.31-1.08(m,7H),0.82(t,J=7.0Hz,3H)。LCMS(ESI)m/z:265.2(M+1)。
步骤D:将1-13(38.00克,143.74毫摩尔)和三乙胺(29.09克,287.49毫摩尔,39.85毫升)溶于DCM(200.00毫升),然后在零摄氏度下将乙酰氯(15.80克,201.24毫摩尔,14.36毫升)滴加进去。反应体系在15摄氏度下搅拌12小时。反应体系加水(30毫升)和二氯甲烷(50毫升)并分液。有机相用50毫升食盐水洗涤,无水硫酸钠干燥,过滤、减压除去溶剂得到粗品。粗品用硅胶柱纯化(SiO 2,PE/EtOAc=20/1到1/2),得到产物1-14。
1H NMR(400MHz,CDCl 3):δ7.43-7.32(m,5H),6.52(br s,1H),5.08(s,2H),4.93(br s,1H),3.60-3.36(m,2H),2.04-1.96(s,3H),1.80-1.66(m,1H),1.58-1.50(m,1H),1.34-1.22(m,7H),0.91(t,J=6.9Hz,3H)。
LCMS(ESI)m/z:307.2(M+1)。
步骤E:将1-14(29.00克,90.86毫摩尔)溶于甲醇(400.00毫升),在氮气保护下加入钯碳(2.90克,2.73毫摩尔,纯度10w%)。反应液用氢气置换3次。反应体系在氢气(25Psi)氛围下于25℃搅拌12小时。反应液过滤,减压除去溶剂得到产物1-15。
1H NMR(400MHz,CDCl 3):δ3.24-3.02(m,2H),2.03(s,3H),1.41-1.26(m,6H),1.06(s,3H),0.93(t,J=6.4Hz,3H)。
Figure PCTCN2018092088-appb-000068
步骤F:将1-9(1.40克,粗品)溶于THF(5.00毫升),然后在15摄氏度下分别加1-15(1.17克,6.79毫摩尔)和DIPEA(3.51克,27.18毫摩尔)。反应体系在15摄氏度搅拌2个小时,然后倒入0.5M盐酸水溶液(10毫升)中,用50毫升EtOAc萃取两次。合并的有机相用20毫升饱和食盐水洗涤,干燥。残余物经柱层析(SiO 2,PE/EtOAc=10/1至1/1)得到1-16。
1H NMR(400MHz,DMSO-d 6):δ9.42(s,1H),8.45-8.27(m,1H),8.12(m,1H),3.69(dd,J=6.0,13.8Hz,1H),2.13-1.97(m,1H),1.95-1.78(m,4H),1.41(s,3H),1.34-1.11(m,5H),0.93-0.74(m,3H)。
LCMS(ESI)m/z:206.0(M+1)。
步骤G:将1-16(1.10克,2.77毫摩尔)、DIPEA(1.07克,8.31毫摩尔)和2,4-二甲氧基苄胺(2.22g,13.30毫摩)依次加入到THF(50.00毫升)中,然后升温至80摄氏度搅拌16小时。反应体系浓缩后经柱层析(SiO 2,PE/EtOAc=5/1至1/1)纯化得到中间体1-17。LCMS(ESI)m/z:473.2(M+1)。
步骤H:将1-17(300.00毫克,634.79微摩尔)溶于TFA(20.00毫升),然后在30摄氏度搅拌1小时。反应体系浓缩,残余物经过p-HPLC纯化得到实施例1。
1HNMR(400MHz,CD 3OD)δ8.76(s,1H),3.94(d,J=14.1Hz,1H),3.52(d,J=14.1Hz,1H),2.29-2.16(m,1H),1.99(s,3H),1.56(s,3H),1.45-1.27(m,4H),1.00-0.87(m,3H)。LCMS(ESI)m/z:323.2(M+1)。
步骤I:实施例1经SFC(柱:AD(250mm*30mm,10μm);流动相:[0.1%NH 3·H 2O MeOH];CO 2%:25%-25%,3.6min;180min)分离得到实施例1A(t=2.056min),ee值(对映体过量):100%和实施例1B(t=2.259min),ee值(对映体过量):97.1%。
实施例1A: 1HNMR(400MHz,CD 3OD)δ8.80(s,1H),3.96(d,J=14.1Hz,1H),3.54(d,J=14.1Hz,1H),2.38-2.13(m,1H),2.08-1.87(m,4H),1.56(s,3H),1.45-1.30(m,4H),1.01-0.85(m,3H)。
LCMS(ESI)m/z:323.1(M+1)。
实施例1B: 1H NMR(400MHz,CD 3OD)δ8.80(s,1H),3.96(d,J=13.9Hz,1H),3.55(d,J=14.1Hz,1H),2.31-2.12(m,1H),2.07-1.88(m,4H),1.56(s,3H),1.45-1.25(m,4H),1.03-0.82(m,3H);
LCMS(ESI)m/z:323.2(M+1)。
实施例2,3参照实施例1的制备反应流程制得。
实施例2
Figure PCTCN2018092088-appb-000069
1H NMR(400MHz,CD 3OD)δ8.77(d,J=0.9Hz,1H),3.96(d,J=13.9Hz,1H),3.53(d,J=14.1Hz,1H),2.33-2.15(m,3H),2.02-1.89(m,1H),1.56(s,3H),1.45-1.25(m,4H),1.13(t,J=7.6Hz,3H),1.01-0.83(m,3H)。
LCMS(ESI)m/z:337.1(M+1)。
实施例3
Figure PCTCN2018092088-appb-000070
1H NMR(400MHz,CD 3OD)δ8.77(s,1H),3.95(d,J=14.1Hz,1H),3.52(d,J=14.1Hz,1H),2.28-2.17(m,1H),1.99(s,3H),1.98-1.90(m,1H),1.56(s,3H),1.44-1.29(m,6H),0.94-0.86(m,3H)。
LCMS(ESI)m/z:337.1(M+1)。
实施例4
Figure PCTCN2018092088-appb-000071
步骤A:在10摄氏度下,将TEA(573.75毫克,5.67毫摩尔)和二甲胺基甲酰氯(487.80毫克,4.54毫摩尔)加入到1-13(1.00克,3.78毫摩尔)的DCM(10.00毫升)溶液中。混合液5~10摄氏度搅拌12小时。将溶剂45摄氏度下,减压蒸干。所得粗品经硅胶柱层析纯化(石油醚/乙酸乙酯=10/1至2/1)得到 化合物4-1。 1H NMR(400MHz,CDCl 3)δ7.43-7.29(m,5H),5.72-5.44(m,1H),5.14-4.96(m,2H),3.50(dd,J=5.6,14.0Hz,1H),3.33(dd,J=5.8,13.9Hz,1H),2.91(s,6H),1.71-1.58(m,2H),1.38-1.24(m,7H),0.91(t,J=6.9Hz,3H)。LCMS(ESI)m/z:336.2(M+1)。
步骤B:15摄氏度下,将Pd/C(100.00毫克)于氮气保护下加入4-1(1.00克,2.28毫摩尔)的甲醇(50.00毫升)溶液中,所得悬浊液真空下脱气,并用氢气置换几次。混合物于25摄氏度氢气下(15psi)搅拌10小时。混合液通过硅藻土过滤,并用甲醇洗涤(80毫升),滤液45摄氏度下减压浓缩得化合物4-2。
1H NMR(400MHz,DMSO-d 6)δ6.08-5.59(m,1H),2.99-2.85(m,2H),2.80(s,6H),1.34-1.13(m,6H),0.92-0.81(m,6H)。
步骤C:15摄氏度下,将4-2(219.82毫克,1.09毫摩尔)和DIPEA(282.25毫克,2.18毫摩尔,381.42微升)加入1-9(500.00毫克,727.98微摩尔)的THF溶液(10.00毫升)中。混合液25摄氏度下搅拌16小时。混合液用氯化铵水溶液(10毫升)和乙酸乙酯(30毫升)稀释,有机层分离并于45摄氏度下减压浓缩。所得粗品经硅胶柱层析纯化(石油醚/乙酸乙酯=3:1)得到化合物4-3。
1H NMR(400MHz,CDCl 3)δ8.91(s,1H),7.74(s,1H),5.60(br t,J=5.9Hz,1H),3.76(dd,J=5.9,14.6Hz,1H),3.49(dd,J=6.2,14.5Hz,1H),2.99(s,6H),2.00(m,2H),1.54(s,3H),1.41-1.31(m,4H),0.96-0.87(m,3H)。
LCMS(ESI)m/z:371.1(M+1)。
步骤D:15摄氏度下,将DIPEA(114.99毫克,889.74微摩尔)和2,4-二甲氧基苄胺(242.98毫克,1.45毫摩尔)加入4-3(110.00毫克,296.58微摩尔)的THF(2.00毫升)溶液。混合液加热至90摄氏度并搅拌16小时。混合液用氯化铵水溶液(10毫升)和乙酸乙酯(30毫升)稀释,有机层分离并于45摄氏度下减压浓缩。所得粗品经硅胶薄层层析纯化(石油醚/乙酸乙酯=1:1)得4-4。LCMS(ESI)m/z:624.3(M+1)。步骤E:将4-4(177.00毫克,199.42微摩尔)的三氟乙酸(3.00毫升)溶液于25摄氏度下搅拌1小时。溶剂45摄氏度下减压浓缩后,所得粗品用制备HPLC纯化得实施例4。
1H NMR(400MHz,CD 3OD)δ8.79(s,1H),3.96(br d,J=13.8Hz,1H),3.55(br d,J=13.6Hz,1H),2.23(br s,1H),1.92(br s,1H),1.57(s,3H),1.37(br s,4H),0.94(br t,J=6.7Hz,3H)。LCMS(ESI)m/z:324.1(M+1)。
实施例5(5A和5B)
Figure PCTCN2018092088-appb-000072
Figure PCTCN2018092088-appb-000073
步骤A:将1-13(92.00克,348.01毫摩尔)溶解在DCM(1.5升)中,然后依次加入TEA(38.74,3克,82.81毫摩尔)和Boc 2O(75.95克,348.01毫摩尔)。反应体系在25摄氏度下搅拌2个小时。有机溶剂减压蒸馏除去,残余物经柱层析(SiO 2,PE/EtOAc=1/0至10/1)纯化得到中间体5-1。
1H NMR(400MHz,DMSO-d 6)δ7.44-7.19(m,5H),6.84-6.68(m,2H),5.05-4.89(s,2H),3.23-2.99(m,2H),1.72-1.56(m,1H),1.54-1.42(m,2H),1.41-1.31(m,11H),1.30-1.14(m,4H),0.84(br t,J=6.7Hz,3H)。LCMS(ESI)m/z:265.2[(M-100)+1]。
步骤B:将5-1(118.00克,301.90毫摩尔)溶于MeOH(2升),然后加入Pd/C(12克)。反应体系在30psi的氢气氛围下30摄氏度搅拌72个小时。然后过滤,滤饼用MeOH(500毫升)洗涤,滤液浓缩得到中间体5-2。
1H NMR(400MHz,DMSO-d 6)δ6.61(br t,J=5.6Hz,1H),2.82(d,J=6.1Hz,2H),1.41-1.32(m,11H),1.31-1.13(m,4H),0.92-0.79(m,6H)。
步骤C:将5-2(26克,112.87毫摩尔),1-9(77.53克,粗品)和DIPEA(43.76克,338.62毫摩尔)在15摄氏度下溶解于THF(200毫升)中,反应体系在30摄氏度下搅拌16个小时。反应体系用1M稀盐酸调节pH=3-4。然后用400毫升DCM萃取两次,合并的有机相用500毫升饱和食盐水洗涤,干燥,浓缩。残余物经柱层析(SiO 2,PE/EtOAc=20/1至5/1)纯化得到5-3。
1H NMR(400MHz,DMSO-d 6)δ9.40(s,1H),8.00(s,1H),7.15(br t,J=6.1Hz,1H),3.60(br dd,J=6.1,14.0Hz,1H),3.22(br dd,J=6.6,14.0Hz,1H),2.16-2.01(m,1H),1.87-1.74(m,1H),1.39(s,2H),1.41-1.38(m,1H),1.35(s,9H),1.24(br s,6H),0.83(br t,J=6.7Hz,3H)。LCMS(ESI)m/z:400.1(M+1)。
步骤D:将5-3(22克,55.01毫摩尔)溶解于THF(200毫升)中,然后分别加入DIPEA(21.33克,165.03毫摩尔),2,4-二甲氧基苄胺(45.99克,275.04毫摩尔)。反应体系在90摄氏度下搅拌20个小时,然后加入1M稀盐酸调节PH=3-4,用100毫升DCM萃取三次,合并的有机相用100毫升饱和食盐水洗涤,干燥,浓缩得到中间体5-4。LCMS(ESI)m/z:531.3(M+1)。
步骤E:将5-4(29克,54.65毫摩尔)在15摄氏度下溶于TFA(200毫升),然后反应体系搅拌1个小时,浓缩,残余物用甲醇溶解,过滤除去不溶物,滤液浓缩后经p-HPLC制备纯化得到中间体5-5。 1H NMR(400MHz,CD 3OD)δ8.88(s,1H),4.04(br d,J=13.4Hz,1H),3.41(br d,J=13.3Hz,1H),2.50-2.31(dt,J=4.2,12.8Hz,1H),1.77(dt,J=4.2,12.8Hz,1H),1.65(s,3H),1.55-1.21(m,4H),0.94(t,J=7.1Hz,3H)。
LCMS(ESI)m/z:281.1(M+1)。
步骤F:将N-叔丁氧基羰基-L缬氨酸(1.66克,7.64,0.9毫摩尔)溶于DCM(10毫升)中,然后依次加入DIPEA(1.10克,8.49毫摩尔),EDCI(1.46克,7.64毫摩尔),HOBt(1.03克,7.64毫摩尔),冷却到零下10到0摄氏度,再滴加5-5(3克,8.49毫摩尔)和DIPEA(3.29克,25.47毫摩尔)混合的DCM(15毫升)溶液。反应体系在此温度下搅拌2个小时。反应完毕,溶剂减压除去,残余物经p-HPLC纯化,得到5-6。
步骤G:将5-6(2克,3.89毫摩尔)溶解于HCl/二氧六环(20毫升)中,反应体系在10摄氏度下搅拌30分钟后浓缩而得到实施例5。 1H NMR(400MHz,CD 3OD)δ8.79(d,J=1.0Hz,1H),8.62-8.43(m,1H),4.30(d,J=13.9Hz,0.5H),3.98-3.82(m,1H),3.75(t,J=5.4Hz,1H),3.47(d,J=13.9Hz,0.5H),2.41-2.08(m,2H),1.95-1.77(m,1H),1.56(d,J=3.5Hz,3H),1.46-1.25(m,4H),1.08-0.88(m,9H)。LCMS(ESI)m/z:380.2(M+1)。
步骤H:实施例5经SFC(柱:AD(250mm*30mm,10μm);流动相:[0.1%NH 3·H 2O IPA];CO 2%:35%-35%,5.8min;480min)分离得到两个构型的异构体,实施例5A(t=1.594min)、ee值(对映体过量):100%和实施例5B(t=2.593min)、ee值(对映体过量):98%。
实施例5A  1H NMR(400MHz,CD 3OD)δ8.65(s,1H),8.48(s,2H),4.25(d,J=13.9Hz,1H),3.62(br d,J=5.0Hz,1H),3.49(d,J=13.9Hz,1H),2.32-2.03(m,2H),1.96-1.80(m,1H),1.55(s,3H),1.46-1.26(m,4H),1.03-0.88(m,9H)。LCMS(ESI)m/z:380.2(M+1)。
实施例5B  1HNMR(400MHz,CD 3OD)δ8.76(s,1H),8.38(s,1H),3.89(q,J=13.9Hz,2H),3.73(d,J=5.4Hz,1H),2.39-2.08(m,2H),1.90-1.77(m,1H),1.57-1.30(m,7H),1.07-0.89(m,9H)。
LCMS(ESI)m/z:380.2(M+1)。
实施例6可参照实施例5的制备方法制得。
实施例6
Figure PCTCN2018092088-appb-000074
1H NMR(400MHz,CD 3OD)δ8.89-8.71(m,1H),4.08-3.93(m,1H),3.87-3.81(m,1H),3.60-3.45(m,1H),2.40-2.23(m,1H),1.95-1.76(m,3H),1.57(d,J=4.5Hz,3H),1.47-1.32(m,4H),1.05-0.90(m,6H)。
LCMS(ESI)m/z:366.3(M+1)。
实施例7
Figure PCTCN2018092088-appb-000075
步骤A:将实施例5(100毫克,240.39微摩尔)和37%的甲醛(58.52毫克,721.18微摩尔)溶于MeOH(1毫升),在0℃下一次性加入NaBH 3CN(45.32毫克,721.18微摩尔)。反应体系在0℃下搅拌1小时。反应液直接用制备HPLC纯化得到实施例7。
1H NMR(400MHz,CD 3OD)δ8.86(br d,J=6.0Hz,1H),8.78(d,J=2.5Hz,1H),8.70-8.42(m,1H),4.32-4.11(m,1H),3.80(br t,J=4.3Hz,1H),3.63-3.48(m,1H),2.96-2.78(m,6H),2.47-2.24(m,2H),2.00-1.81(m,1H),1.59(s,3H),1.48-1.27(m,4H),1.12-0.85(m,9H)。LCMS(ESI)m/z:408.3(M+1)。
实施例8
Figure PCTCN2018092088-appb-000076
在10~20摄氏度下,向甲酸(113.98毫克,2.48毫摩尔)中加入乙酸酐(90.30毫克,884.48微摩尔),反应液在10-20摄氏度下搅拌0.5小时。然后在10~20摄氏度下向反应体系中滴加5-5(250毫克,707.59微摩尔)和DIPEA(182.90毫克,1.42毫摩尔)的二氯甲烷(4毫升)溶液。反应液在10-20摄氏度下搅拌14小时,反应液减压浓缩。残余物经制备HPLC纯化得实施例8。
1H NMR(400MHz,CD 3OD)δ8.73(s,1H),8.40(br s,1H),8.11(s,1H),4.01(d,J=13.9Hz,1H),3.67(d,J=13.9Hz,1H),2.34-2.18(m,1H),1.91-1.79(m,1H),1.53(s,3H),1.41-1.32(m,4H),0.95-0.90(m,3H)。
LCMS(ESI)m/z:309.1(M+1)。
实施例9
Figure PCTCN2018092088-appb-000077
步骤A:将BOC-L-脯氨酸(894.99毫克,4.16毫摩尔),HATU(1.73克,4.54毫摩尔)溶于乙腈(10毫升),加入DIPEA(977.77毫克,7.56毫摩尔)。然后向混合液中加入1-13(1克,3.78毫摩尔)。反应液在15摄氏度搅拌0.5小时。向反应体系加水(30毫升)和二氯甲烷(50毫升)并分液。有机相用50毫升食盐水洗涤,无水硫酸钠干燥,减压除去溶剂得到粗品。粗品用硅胶柱纯化(SiO 2,PE/EtOAc=20/1到1/1),得到9-1。
步骤B:将9-1(1.7克,3.68毫摩尔)溶于甲醇(50毫升),在氮气保护下加入钯碳(303.57毫克,285.26微摩尔,纯度10%)。反应液用氢气置换3次。反应体系在氢气(15Psi)氛围下于25℃搅拌12小时。反应液过滤并减压除去溶剂,得到9-2。
步骤C:将9-2(1.1克,3.36毫摩尔)和DIPEA(1.30克,10.08毫摩尔)溶于THF(5.00毫升),然后于15摄氏度在氮气保护下加入1-9(2.77克,13.44毫摩尔)。反应液在15摄氏度搅拌1小时。反应体系加水(50毫升)和乙酸乙酯(100毫升)并分液。有机相用30毫升食盐水洗涤,无水硫酸钠干燥,减压除去溶剂得到粗品。粗品用硅胶柱纯化(SiO 2,PE/EtOAc=10/1到1/2),得到9-3。
步骤D:将9-3(985毫克,1.98毫摩尔)和DIPEA(256.11毫克,1.98毫摩尔)溶于二氧六环(5毫升),然后再15摄氏度下加入2,4-二甲氧基苄胺(994.04毫克,5.95毫摩尔)。反应液在110摄氏度搅拌12小时。反应体系加水(10毫升)和乙酸乙酯(50毫升)并分液。有机相用30毫升盐酸(1摩尔/升)洗涤4次,再用20毫升食盐水洗涤,无水硫酸钠干燥,减压除去溶剂得到9-4。
步骤E:将9-4(190毫克,272.38微摩尔)和三氟乙酸(2.63毫升)混合液用氮气置换3次,在氮气氛围下于25摄氏度搅拌1小时。反应液减压浓缩除去三氟乙酸。粗品用制备HPLC纯化得到实施例9。
1H NMR(400MHz,CD 3OD)δ8.82(s,1H),8.69-8.60(m,1H),4.37-4.30(m,1H),4.28-3.99(m,1H),3.88-3.54(m,1H),3.44-3.36(m,1H),2.53-2.26(m,2H),2.13-1.90(m,3H),1.87-1.75(m,1H),1.55(d,J=2.4 Hz,3H),1.50-1.25(m,4H),1.00-0.89(m,3H)。LCMS(ESI)m/z:378.2(M+1)。
实施例10,11,12可参照实施例9的制备方法制得。
实施例10
Figure PCTCN2018092088-appb-000078
1H NMR(400MHz,CD 3OD)δ8.82(s,1H),8.52-8.45(m,1H),4.13-4.04(m,1H),3.81-3.71(m,3H),2.39-2.25(m,1H),1.88-1.79(m,1H),1.55(s,3H),1.45-1.25(m,4H),0.99-0.88(m,3H)。
LCMS(ESI)m/z:338.2(M+1)。
实施例11(11A和11B)
Figure PCTCN2018092088-appb-000079
1H NMR(400MHz,CD 3OD)δ8.80(s,1H)8.42-8.60(m,1H)4.11-4.26(m,0.5H)3.99-4.02(m,0.5H)3.97(dd,J=7.40,2.89Hz,1H)3.74-3.86(m,0.5H)3.54-3.67(m,0.5H)2.23-2.38(m,1H)1.76-1.88(m,1H)1.53(d,J=5.52Hz,2H)1.45-1.51(m,1H)1.44-1.52(m,1H)1.48(dd,J=16.69,7.03Hz,2H)1.25-1.42(m,4H)0.92(t,J=6.78Hz,3H)。LCMS(ESI)m/z:352.3(M+1)。
实施例11经SFC(柱:IC(250mm*30mm,10μm);流动相:[0.1%NH 3H 2O ETOH];CO 2%:55%-55%,6.3min;150min)分离得到两个构型的异构体,分别得到实施例11A(t=2.306min)、ee值:92.29%和实施例11B(t=4.424min)、ee值:96.756%。
Figure PCTCN2018092088-appb-000080
实施例11A  1H NMR(400MHz,CD 3OD)δ8.70(s,1H)8.48(s,2H)4.15(d,J=13.94Hz,1H)3.86-3.96(m,1H)3.60(d,J=13.94Hz,1H)2.21-2.38(m,1H)1.73-1.90(m,1H)1.48-1.56(m,3H)1.43(d,J=7.09Hz,3H)1.25-1.40(m,4H)0.78-0.97(m,3H)。LCMS(ESI)m/z:352.3(M+1)。
实施例11B  1H NMR(400MHz,CD 3OD)δ8.71(s,1H)8.44(br s,1H)3.98(d,J=13.94Hz,1H)3.92(q,J=7.01Hz,1H)3.78(d,J=13.94Hz,1H)2.20-2.39(m,1H)1.73-1.89(m,1H)1.51(s,3H)1.47(d,J=7.09Hz,3H)1.26-1.45(m,4H)0.92(t,J=6.97Hz,3H)。
LCMS(ESI)m/z:352.3(M+1)。
实施例12(12A和12B)
Figure PCTCN2018092088-appb-000081
1H NMR(400MHz,CD 3OD)δ8.81-8.87(m,1H)8.84(s,1H)8.65-8.78(m,1H)8.43-8.61(m,1H)4.07-4.23(m,1H)3.96(br d,J=2.38Hz,1H)3.68(br dd,J=13.61,5.71Hz,1H)2.63(br d,J=10.54Hz,3H)2.23-2.46(m,1H)1.83(q,J=12.59Hz,3H)1.55-1.58(m,3H)1.21-1.44(m,4H)0.94(br t,J=5.77Hz,3H)。
LCMS(ESI)m/z:366.3(M+1)。
实施例12经SFC(柱:IC(250mm*30mm,10μm);流动相:[0.1%NH 3H 2O IPA];CO 2%:60%-%,4.65min;100min)分离得到两个构型的异构体,分别得到实施例12A(t=2.029min)、ee值:93.77%和实施例12B(t=2.810min)、ee值:98.246%。
Figure PCTCN2018092088-appb-000082
实施例12A  1H NMR(400MHz,CD 3OD)δ8.71(s,1H)8.49(s,2H)4.10(br d,J=13.93Hz,1H)3.80(q,J=6.78Hz,1H)3.65(br d,J=13.80Hz,1H)2.56(s,3H)2.15-2.41(m,1H)1.72-1.92(m,1H)1.52(s,3H)1.48(br d,J=6.78Hz,3H)1.23-1.44(m,4H)0.92(br t,J=6.71Hz,3H)。LCMS(ESI)m/z:366.3(M+1)。
实施例12B  1H NMR(400MHz,CD 3OD)δ8.71(s,1H)8.53(s,2H)4.13(br d,J=13.80Hz,1H)3.81(q,J=6.69Hz,1H)3.68(br d,J=13.93Hz,1H)2.52-2.70(m,3H)2.22-2.44(m,1H)1.68-1.93(m,1H)1.55(s,3H)1.45(br d,J=6.90Hz,3H)1.21-1.42(m,4H)0.94(br t,J=6.71Hz,3H)。
LCMS(ESI)m/z:366.3(M+1)。
实施例13
Figure PCTCN2018092088-appb-000083
Figure PCTCN2018092088-appb-000084
步骤A:将5-4(44.41克,83.68微摩尔)溶解于250毫升二氯甲烷和50毫升水中,然后加入DDQ(66.49克,292.90微摩尔)。搅拌均匀后,将反应液于25℃搅拌72小时。将二氯甲烷减压浓缩,然后加入1000毫升水,乙酸乙酯(400毫升*2)萃取,Na 2CO 3溶液(1摩尔,300毫升*2)洗,饱和食盐水(300毫升*2)洗,无水硫酸钠干燥,减压浓缩,柱层析纯化(SiO 2,PE/EtOAc/DCM=1/1/1到0/1/1)得13-1。
步骤B:将13-1(15克,39.42微摩尔)进行SFC拆分,SFC:柱:IC(250mm*30mm,10μm);流动相:[0.1%NH 3H 2O MEOH];CO 2%:50%-50%,6min;2400min。将保留时间t=3.014min的对映异构体浓缩后得纯光学异构体13-2。
1H NMR(400MHz,CD 3OD):δ8.39(s,1H)3.68-3.80(m,1H)3.37-3.50(m,1H)2.07-2.27(m,1H)1.73-1.93(m,1H)1.47(s,3H)1.42(s,9H)1.33(br s,4H)0.82-0.99(m,4H)。
步骤C:将14-2(5.73克,13.93微摩尔)溶解在30mL二氧六环/HCl(4摩尔)中,25℃下搅拌3小时,减压浓缩后得13-3。
步骤D:将N-Boc-L-哌啶-2-羧酸(72.36毫克,315.60微摩尔),EDCI(63.53毫克,331.38微摩尔),HOBt(44.78毫克,331.38微摩尔)以及DIPEA(81.58毫克,631.21微摩尔)溶解在二氯甲烷(10毫升)中,25℃下搅拌20分钟后,将13-3(0.1克,315.60微摩尔)于0℃下加入并继续搅拌3小时后加入20毫升水,萃取,有机相用20毫升饱和食盐水洗,无水硫酸钠干燥,浓缩得13-4。
步骤E:将13-4(0.145克,294.93微摩尔)溶解于二氧六环/HCl(4摩尔)中,25℃下搅拌3小时。减压浓缩后,将其进行p-HPLC得到实施例13。 1H NMR(400MHz,CD 3OD)δ8.68(s,1H)8.42(s,2H)3.98(d,J=13.93Hz,1H)3.69-3.84(m,2H)3.33-3.40(m,1H)2.97(td,J=12.52,2.95Hz,1H)2.24-2.36(m,1H)2.14(br d,J=11.17Hz,1H)1.75-1.96(m,3H)1.54-1.74(m,3H)1.50(s,3H)1.25-1.45(m,4H)0.86-0.96(m,3H)。LCMS(ESI)m/z:392.2(M+1)。
实施例9A,14,15,16,17,18,19,20,21,22,23,24,25,26,27参考实施例13的方法制得。
实施例9A
Figure PCTCN2018092088-appb-000085
1H NMR(400MHz,CD 3OD)δ8.77(s,1H),4.28(dd,J=6.1,8.1Hz,1H),4.03(d,J=14.1Hz,1H),3.81(d,J=14.1Hz,1H),3.44-3.34(m,1H),3.32-3.27(m,1H),2.48-2.25(m,2H),2.09-1.95(m,3H),1.89-1.78(m,1H),1.55(s,3H),1.48-1.24(m,4H),0.99-0.88(m,3H)。LCMS(ESI)m/z:378.1(M+1)。
实施例14
Figure PCTCN2018092088-appb-000086
1H NMR(400MHz,CD 3OD)δ8.70(s,1H),8.48(s,2H),4.12(d,J=13.9Hz,1H),3.71-3.50(m,2H),2.53(s,3H),2.38-2.23(m,1H),2.15(qd,J=6.5,12.8Hz,1H),1.95-1.82(m,1H),1.56(s,3H),1.46-1.25(m,4H),1.07-0.84(m,9H)。LCMS(ESI)m/z:394.3(M+1)。
实施例15
Figure PCTCN2018092088-appb-000087
1H NMR(400MHz,CD 3OD)δ8.81(s,1H)5.31-5.54(m,1H)4.55(dd,J=10.48,3.45Hz,1H)4.04(d,J=13.93Hz,1H)3.84-3.92(m,1H)3.76(ddd,J=18.89,13.49,1.76Hz,1H)3.48-3.64(m,1H)2.67-2.88(m,1H)2.30-2.56(m,2H)1.75-1.89(m,1H)1.54(s,3H)1.27-1.48(m,4H)0.90-0.99(m,3H)。
LCMS(ESI)m/z:396.2(M+1)。
实施例16
Figure PCTCN2018092088-appb-000088
1H NMR(400MHz,CD 3OD)δ8.81(s,1H)3.89(q,J=13.98Hz,2H)3.72-3.80(m,1H)2.23-2.38(m,1H)1.64-1.93(m,8H)1.57(s,3H)1.38(td,J=12.47,6.11Hz,4H)1.08-1.24(m,4H)0.91-0.96(m,3H)。
LCMS(ESI)m/z:420.2(M+1)。
实施例17
Figure PCTCN2018092088-appb-000089
1H NMR(400MHz,CD 3OD)δ8.80(s,1H)4.59(br s,1H)4.49(dd,J=10.54,7.40Hz,1H)4.05(d,J=13.93Hz,1H)3.79(d,J=13.93Hz,1H)3.36-3.45(m,2H)2.43-2.52(m,1H)2.27-2.37(m,1H)1.99-2.11(m,1H)1.78-1.90(m,1H)1.55(s,3H)1.33-1.47(m,4H)0.92-0.98(m,3H)。LCMS(ESI)m/z:394.2(M+1)。
实施例18
Figure PCTCN2018092088-appb-000090
1H NMR(400MHz,CD 3OD)δ8.77(s,1H)7.41-7.57(m,6H)4.96(s,1H)4.01(d,J=14.05Hz,1H)3.73(d,J=14.05Hz,1H)2.07-2.21(m,1H)1.59-1.75(m,1H)1.38-1.49(m,3H)1.20-1.38(m,4H)0.83-0.95(m,3H)。LCMS(ESI)m/z:414.2(M+1)。
实施例19
Figure PCTCN2018092088-appb-000091
1H NMR(400MHz,CD 3OD)δ8.76(s,1H)3.79-3.92(m,2H)3.60(s,1H)2.23-2.40(m,1H)1.79-1.95 (m,1H)1.57(s,3H)1.31-1.47(m,4H)1.06(s,9H)0.93(br t,J=6.84Hz,3H).LCMS(ESI)m/z:414.2(M+1)。LCMS(ESI)m/z:394.2(M+1)。
实施例20
Figure PCTCN2018092088-appb-000092
1H NMR(400MHz,CD 3OD)δ8.79(s,1H)4.63(t,J=8.41Hz,1H)4.05-4.14(m,1H)3.75-3.87(m,3H)2.87-3.05(m,1H)2.53-2.70(m,1H)2.25-2.41(m,1H)1.75-1.87(m,1H)1.54(s,3H)1.32-1.48(m,4H)0.91-0.99(m,3H)。LCMS(ESI)m/z:414.1(M+1)。
实施例21
Figure PCTCN2018092088-appb-000093
1H NMR(400MHz,CD 3OD)δ8.79(s,1H)4.46(dd,J=8.31,7.21Hz,1H)4.03(d,J=13.94Hz,1H)3.78-3.91(m,1H)3.18-3.31(m,2H)2.26-2.40(m,2H)2.03(dd,J=13.08,6.97Hz,1H)1.75-1.89(m,1H)1.54(s,3H)1.25-1.48(m,4H)0.90-0.98(m,3H)0.66-0.79(m,4H)。LCMS(ESI)m/z:404.2(M+1)。
实施例22
Figure PCTCN2018092088-appb-000094
1H NMR(400MHz,CD 3OD)δ8.81(s,1H)3.85-3.97(m,2H)3.27(d,J=9.90Hz,1H)2.26-2.42(m,1H)1.74-1.91(m,1H)1.55(s,3H)1.30-1.47(m,4H)1.09-1.23(m,1H)0.89-0.98(m,3H)0.66-0.83(m,3H)0.48-0.63(m,1H)。LCMS(ESI)m/z:378.2(M+1)。
实施例23
Figure PCTCN2018092088-appb-000095
1H NMR(400MHz,CD 3OD)δ8.78(s,1H)8.55(br t,J=6.24Hz,1H)4.46-4.55(m,1H)4.38(dd,J=10.15,4.16Hz,1H)3.94-4.06(m,1H)3.78-3.89(m,1H)3.32-3.39(m,2H)2.50-2.65(m,1H)2.24-2.40(m,1H)2.08-2.20(m,1H)1.74-1.88(m,1H)1.53(s,3H)1.26-1.45(m,4H)0.87-0.96(m,3H)。
LCMS(ESI)m/z:394.2(M+1)。
实施例24
Figure PCTCN2018092088-appb-000096
1H NMR(400MHz,CD 3OD)δ8.80(s,1H),4.28-4.10(m,2H),4.06-3.94(m,2H),3.86-3.64(m,3H),3.39-3.32(m,1H),3.29-3.19(m,1H),2.38-2.20(m,1H),1.89-1.71(m,1H),1.51(s,3H),1.45-1.21(m,4H),0.99-0.85(m,3H)。
LCMS(ESI)m/z:394.0(M+1)。
实施例25
Figure PCTCN2018092088-appb-000097
1H NMR(400MHz,CD 3OD)δ8.79(s,1H),4.20-4.07(m,1H),4.03-3.91(m,2H),3.89-3.80(m,1H),2.84(br s,1H),2.39-2.22(m,1H),1.92-1.75(m,4H),1.70-1.57(m,3H),1.53(s,3H),1.45-1.22(m,4H),0.99-0.84(m,3H)。
LCMS(ESI)m/z:404.0(M+1)。
实施例26
Figure PCTCN2018092088-appb-000098
1H NMR(400MHz,CD 3OD)δ8.85-8.73(m,1H),4.17-3.97(m,1H),3.89(s,1H),3.83-3.73(m,1H),2.47-2.12(m,2H),1.93-1.51(m,10H),1.50-1.25(m,7H),0.99-0.86(m,3H)。
LCMS(ESI)m/z:406.1(M+1)。
实施例27
Figure PCTCN2018092088-appb-000099
1H NMR(400MHz,CD 3OD)δ8.79(s,1H)4.04(d,J=14.05Hz,1H)3.59-3.68(m,1H)3.55(d,J=14.05Hz,1H)2.61(d,J=6.53Hz,2H)2.17-2.32(m,1H)1.87-2.01(m,1H)1.56(s,3H)1.33-1.42(m,4H)1.30(d,J=6.65Hz,3H)0.90-0.98(m,3H)。LCMS(ESI)m/z:366.2(M+1)。
实验例1:人Toll样受体7(TLR7)和人Toll样受体8(TLR8)体外受体结合活性筛选实验
本实验所用的HEK-Blue TM hTLR7(货号:hkb-htlr7)和HEK-Blue TM hTLR8(货号:hkb-htlr8)细胞株购于InvivoGen公司。这两个细胞株由人胚肾293细胞系稳定共转染hTLR7或hTLR8和诱导表达分泌型碱性磷酸酶(SEAP)报告基因所构建的,其中分泌型胚胎碱性磷酸酶(SEAP)报告基因由IFN-β启动子调控。该启动子与NF-κB和AP-1结合位点融合,hTLR7或hTLR8激动剂会激活NF-κB和AP-1,并诱导分泌型碱性磷酸酶(SEAP)的表达和分泌。用QUANTI-Blue TM试剂检测SEAP表达量,以此来鉴定化合物对hTLR7和hTLR8受体的激动活性。
实验步骤:
1.化合物按3倍梯度加入到细胞板中,共10个浓度,每个浓度双复孔。阴性对照孔每孔加入1μL DMSO。
2.从CO 2培养箱取出T150培养的细胞,弃去细胞培养上清,用杜氏磷酸盐缓冲液(DPBS)清洗细胞一次,加入约10ml培养液,然后轻拍细胞培养瓶使细胞脱壁,然后用移液器将细胞团轻轻吹打均匀。细胞计数,并将细胞悬液用培养液调整到500,000细胞/毫升。然后在含有化合物的96孔板中每孔加入100μl稀释后的细胞(50,000细胞/孔)。
3.将化合物和细胞在37℃、5%CO 2培养箱共孵育24小时。
4.化合物活性检测:取20μl诱导后每个孔的细胞上清液,加入到含有180μL QUANTI-Blue TM试剂的细胞培养板中,37℃孵育1小时之后,用多功能酶标仪检测每孔在650nm的光密度吸收值(OD 650)。
5.细胞活性检测:按照ATPlite 1Step说明书方法操作,荧光素酶信号(RLU)用多功能酶标仪检测。
6.数据分析:化合物活性:OD650值用GraphPad Prism软件分析,并拟合化合物剂量效应曲线,计算化合物的EC 50值。
7.细胞活性检测:细胞活性%计算公式如下。细胞活性%值用GraphPad Prism软件分析,并拟合化合物剂量效应曲线,计算化合物对细胞的CC 50值。
细胞活性%=RLU 化合物/RLU DMSO Control*100%
实验结果:如表1所示。
表1
受试化合物 人TLR8 EC 50(μM) 人TLR7 EC 50(μM) 人TLR8 CC 50(μM)
实施例1 0.183 >15 >15
实施例1A 0.031 >15 >15
实施例1B 9.427 >15 >15
实施例2 0.435 >15 >15
实施例3 0.052 >15 >15
实施例4 0.415 >15 >15
实施例5 0.0273 >15 >15
实施例5A 22.76 >15 >15
实施例5B 0.0126 >15 >15
实施例6 0.1555 >15 >15
实施例7 0.0912 >15 >15
实施例8 0.250 >15 >15
实施例9 0.0385 >15 >15
实施例9A 0.0336 >15 >15
实施例10 0.138 >15 >15
实施例11 0.0569 >15 >15
实施例11A 1.390 >15 >15
实施例11B 0.0532 >15 >15
实施例12 0.0541 >15 >15
实施例12A 0.0475 >15 >15
实施例12B 4.933 >15 >15
实施例13 0.0235 >15 >15
实施例14 0.0307 >15 >15
实施例15 0.0752 >15 >15
实施例16 0.0307 >15 >15
实施例17 0.0596 >15 >15
实施例18 0.0919 >15 >15
实施例19 0.0322 >15 >15
实施例20 0.7021 >15 >15
实施例21 0.0329 >15 >15
实施例22 0.0314 >15 >15
实施例23 0.1050 >15 >15
实施例24 0.0585 >15 >15
实施例25 0.0477 >15 >15
实施例26 0.0176 >15 >15
实施例27 0.0679 >15 >15
结论:本发明的代表性化合物在Toll样受体8体外结合活性实验中展示出很高的TLR8激动剂活性和很高的TLR8/7选择性。
实验例2:外周血单个核细胞实验方案
实验目的:
检测本发明化合物诱导人外周血单核细胞(PBMC)24小时细胞因子IL-12p40,IFN-gamma,TNF-alpha,IFN-alpha的表达水平。
实验原理:
TLR8是固有免疫系统感受外源性的病原体的一类受体,能够识别外源的病毒单链RNA,引起一系列细胞因子,如TNF-alpha,IL-12,IFN-gamma的释放以引起抗病毒免疫反应,本实验使用TLR8激动剂的潜在化合物刺激人PBMC,通过检测上述4种细胞因子的水平以反映化合物对TLR8受体的活化作用。
实验步骤:
1.采集健康志愿者新鲜血液,EDTA-K2抗凝管(货号:BD-8516542)抗凝;
2.Ficoll密度梯度离心,分离中间云雾层的PBMC细胞,含10%血清的RPMI1640(来源:Gibco,货号:224400-089)培养液洗2次,培养液重悬至10mL,Vi-cell细胞计数仪计数,调整细胞悬液浓度至2×106/ml;
3.用DMSO将化合物溶解至100mM,并分别用DMSO稀释至50mM,5mM,500μM,50μM,5μM,500nM,50nM,5nM,分别取2ul加至培养液998ul,配成化合物工作液,浓度分别为100μM,10μM,1μM,100nM,10nM,1nM,100pM,10pM;
4.U底96孔板中,每孔加入PBMC悬液100ul,以及化合物工作液100ul,孵育24小时,收上清-20℃冻存;
5.流式细胞小球微阵列术(CBA)检测上清中IL-12p40,TNF-alpha,IFN-gamma和IFN-alpha。
部分化合物的测试结果见下表2:
表2
Figure PCTCN2018092088-appb-000100
Figure PCTCN2018092088-appb-000101
结论:本发明化合物在5nM~50μM的药物浓度下,能够有效诱导TLR8通路特异性细胞因子IL-12p40、TNF-alpha和IFN-gamma,未观测到显著诱导TLR7通路特异性细胞因子IFN-alpha,展示出很高的TLR8激动活性和很高的TLR8/TLR7选择性。
实验例3:小鼠肝脏组织分布实验
试验用雌性Balb/c小鼠16只,分成2组,每组8只小鼠,8只动物再随机分为4个小组,每组2只断点采集样品。2组动物分别静脉注射给药和口服给药实施例9A。静脉注射给药(1mpk)溶媒采用生理盐水,在给药后的0.25,0.5,1,4小时终点采集肝组织和全血样品(制备血浆);口服给药(5mpk)溶媒采用0.5%甲基纤维素/0.2%吐温80/99.3%水,在给药后的0.25,0.5,1,4小时终点采集肝组织和全血样品(制备血浆)。所有样品采用LC-MS/MS方法,鉴定化合物实施例9A在肝组织及血浆中的浓度。结果如表3所示。
表3
Figure PCTCN2018092088-appb-000102
结论:实施例9A有很高的肝脏暴露量及很低的血浆浓度,具有靶向肝脏的特性。

Claims (21)

  1. 式(I)所示化合物或其药学上可接受的盐,
    Figure PCTCN2018092088-appb-100001
    其中,
    R 1选自:H、NH 2、CN、OH,或者选自任选被1、2或3个R取代的:C 1-5烷基或C 1-5杂烷基;
    m选自:0或1;
    L选自:单键和-CH 2-;
    当m为1时,
    R 2选自:H或C 1-5烷基,
    R 3选自:H、C 1-6烷基、3~6元环烷基、苯基和5~6元杂芳基,
    或者R 2和R 3连接在一起,形成任选被1、2或3个R取代的4~7元杂环;
    R 4选自H,或者选自任选被1、2或3个R取代的C 1-6烷基;
    R 5选自任选被1、2或3个R取代的:C 1-6烷基或3~6元环烷基;
    所述4~7元杂环之“环”选自:单环、螺环或桥环;
    R选自F、Cl、Br、I、OH、CN、NH 2、CH 3、CH 2F、CHF 2、CF 3
    Figure PCTCN2018092088-appb-100002
    “杂”表示杂原子或杂原子团,所述C 1-5杂烷基、5~6元杂芳基、4~7元杂环之“杂”,分别独立地选自:-O-、-S-、N、-NH-;
    以上任何一种情况下,杂原子或杂原子团的数目分别独立地选自1、2或3。
  2. 根据权利要求1所述的化合物或其药学上可接受的盐,其中,R 1选自:H、NH 2、CN、OH、C 1-3烷基或C 1-3杂烷基。
  3. 根据权利要求2所述的化合物或其药学上可接受的盐,其中,R 1选自:H、NH 2、CH 3
    Figure PCTCN2018092088-appb-100003
  4. 根据权利要求1所述的化合物或其药学上可接受的盐,其中,R 2选自:H、CH 3
    Figure PCTCN2018092088-appb-100004
  5. 根据权利要求1所述的化合物或其药学上可接受的盐,其中,R 3选自:H、C 1-6烷基、3~6元环烷基、苯基。
  6. 根据权利要求5所述的化合物或其药学上可接受的盐,其中,R 3选自:H、CH 3
    Figure PCTCN2018092088-appb-100005
    Figure PCTCN2018092088-appb-100006
  7. 根据权利要求1所述的化合物或其药学上可接受的盐,其中,R 4选自H,或者选自任选被1、2或3个R取代的:C 3-5烷基。
  8. 根据权利要求7所述的化合物或其药学上可接受的盐,其中,R 4选自:H或CH 3
  9. 根据权利要求1所述的化合物或其药学上可接受的盐,其中,R 5选自:C 1-3烷基、环丙基。
  10. 根据权利要求9所述的化合物或其药学上可接受的盐,其中,R 5选自:CH 3
  11. 根据权利要求1所述的化合物或其药学上可接受的盐,m为1时,其中,结构单元
    Figure PCTCN2018092088-appb-100007
    选自:
    Figure PCTCN2018092088-appb-100008
    Figure PCTCN2018092088-appb-100009
    R具有如权利要求1所述定义。
  12. 根据权利要求11所述的化合物或其药学上可接受的盐,m为1时,其中,结构单元
    Figure PCTCN2018092088-appb-100010
    选自:
    Figure PCTCN2018092088-appb-100011
    R具有如权利要求11所述定义。
  13. 根据权利要求12所述的化合物或其药学上可接受的盐,m为1时,其中,结构单元
    Figure PCTCN2018092088-appb-100012
    选自:
    Figure PCTCN2018092088-appb-100013
  14. 根据权利要求1所述的化合物或其药学上可接受的盐,m为1时,其中,结构单元
    Figure PCTCN2018092088-appb-100014
    选 自:
    Figure PCTCN2018092088-appb-100015
  15. 根据根据权利要求13或14所述的化合物或其药学上可接受的盐,m为1时,其中,结构单元
    Figure PCTCN2018092088-appb-100016
    选自:
    Figure PCTCN2018092088-appb-100017
    Figure PCTCN2018092088-appb-100018
  16. 根据权利要求1~15任意一项所述的化合物或其药学上可接受的盐,其中,化合物选自
    Figure PCTCN2018092088-appb-100019
    其中,R 1、R 2、R 3、R 4、R 5、L如权利要求1~15所定义。
  17. 根据权利要求16所述的化合物或其药学上可接受的盐,其中,化合物选自
    Figure PCTCN2018092088-appb-100020
    Figure PCTCN2018092088-appb-100021
    其中,R 1、R 2、R 3、R 4、R 5、R如权利要求16所定义。
  18. 化合物或其药学上可接受的盐,其中,化合物选自
    Figure PCTCN2018092088-appb-100022
    Figure PCTCN2018092088-appb-100023
  19. 根据权利要求18所述的化合物或其药学上可接受的盐,其中,化合物选自
    Figure PCTCN2018092088-appb-100024
    Figure PCTCN2018092088-appb-100025
    Figure PCTCN2018092088-appb-100026
  20. 一种药物组合物,其含有治疗有效量的根据权利要求1~19任意一项所述的化合物或其药学上可接受的盐和药学上可接受的载体。
  21. 根据权利要求1~19任意一项所述的化合物或其药学上可接受的盐或根据权利要求20所述的药物组合物在制备治疗肿瘤和病毒感染药物中的应用。
PCT/CN2018/092088 2017-06-21 2018-06-21 作为TLR8激动剂的异噻唑并[4,3-d]嘧啶-5,7-二胺衍生物 WO2018233648A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710476256.3 2017-06-21
CN201710476256 2017-06-21

Publications (1)

Publication Number Publication Date
WO2018233648A1 true WO2018233648A1 (zh) 2018-12-27

Family

ID=64735914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092088 WO2018233648A1 (zh) 2017-06-21 2018-06-21 作为TLR8激动剂的异噻唑并[4,3-d]嘧啶-5,7-二胺衍生物

Country Status (1)

Country Link
WO (1) WO2018233648A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162705A1 (ko) 2019-02-08 2020-08-13 성균관대학교산학협력단 톨-유사 수용체 7 또는 8 작용자와 콜레스테롤의 결합체 및 그 용도
WO2021000755A1 (zh) 2019-07-01 2021-01-07 清华大学 Tlr8的小分子调节剂
WO2021031960A1 (zh) 2019-08-19 2021-02-25 上海挚盟医药科技有限公司 一类2-氨基嘧啶类化合物及其药物组合物和用途
WO2021177679A1 (ko) 2020-03-02 2021-09-10 성균관대학교산학협력단 병원균 외벽 성분 기반 생병원체 모방 나노 입자 및 그 제조 방법
WO2022031011A1 (ko) 2020-08-04 2022-02-10 성균관대학교산학협력단 동력학적으로 작용하는 아주번트 앙상블
WO2022031021A1 (ko) 2020-08-04 2022-02-10 성균관대학교산학협력단 동력학적 제어가 가능한 아주번트를 포함하는 mrna 백신
WO2022031057A1 (ko) 2020-08-04 2022-02-10 성균관대학교산학협력단 활성화 부위가 일시적으로 비활성화된 톨-유사 수용체 7 또는 8 작용자와 기능성 약물의 결합체 및 그 용도

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006105056A2 (en) * 2005-03-28 2006-10-05 Fmc Corporation Insecticidal 2,4-diaminoquinazolines and related derivatives
CN101120005A (zh) * 2004-12-17 2008-02-06 阿斯利康(瑞典)有限公司 用于调节趋化因子受体活性的噻唑并嘧啶化合物
CN102186479A (zh) * 2008-09-10 2011-09-14 凯利普西斯公司 用于治疗疾病的组胺受体的氨基嘧啶抑制剂
CN102395592A (zh) * 2009-03-23 2012-03-28 格兰马克药品股份有限公司 作为trpa1调节剂的异噻唑并嘧啶二酮衍生物
WO2016141092A1 (en) * 2015-03-04 2016-09-09 Gilead Sciences, Inc. Toll-like receptor modulating 4,6-diamino-pyrido[3,2-d]pyrimidine compounds
WO2016180743A1 (en) * 2015-05-12 2016-11-17 F. Hoffmann-La Roche Ag Novel substituted aminothiazolopyrimidinedione for the treatment and prophylaxis of virus infection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101120005A (zh) * 2004-12-17 2008-02-06 阿斯利康(瑞典)有限公司 用于调节趋化因子受体活性的噻唑并嘧啶化合物
WO2006105056A2 (en) * 2005-03-28 2006-10-05 Fmc Corporation Insecticidal 2,4-diaminoquinazolines and related derivatives
CN102186479A (zh) * 2008-09-10 2011-09-14 凯利普西斯公司 用于治疗疾病的组胺受体的氨基嘧啶抑制剂
CN102395592A (zh) * 2009-03-23 2012-03-28 格兰马克药品股份有限公司 作为trpa1调节剂的异噻唑并嘧啶二酮衍生物
WO2016141092A1 (en) * 2015-03-04 2016-09-09 Gilead Sciences, Inc. Toll-like receptor modulating 4,6-diamino-pyrido[3,2-d]pyrimidine compounds
WO2016180743A1 (en) * 2015-05-12 2016-11-17 F. Hoffmann-La Roche Ag Novel substituted aminothiazolopyrimidinedione for the treatment and prophylaxis of virus infection

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162705A1 (ko) 2019-02-08 2020-08-13 성균관대학교산학협력단 톨-유사 수용체 7 또는 8 작용자와 콜레스테롤의 결합체 및 그 용도
WO2021000755A1 (zh) 2019-07-01 2021-01-07 清华大学 Tlr8的小分子调节剂
WO2021031960A1 (zh) 2019-08-19 2021-02-25 上海挚盟医药科技有限公司 一类2-氨基嘧啶类化合物及其药物组合物和用途
WO2021177679A1 (ko) 2020-03-02 2021-09-10 성균관대학교산학협력단 병원균 외벽 성분 기반 생병원체 모방 나노 입자 및 그 제조 방법
WO2022031011A1 (ko) 2020-08-04 2022-02-10 성균관대학교산학협력단 동력학적으로 작용하는 아주번트 앙상블
WO2022031021A1 (ko) 2020-08-04 2022-02-10 성균관대학교산학협력단 동력학적 제어가 가능한 아주번트를 포함하는 mrna 백신
WO2022031057A1 (ko) 2020-08-04 2022-02-10 성균관대학교산학협력단 활성화 부위가 일시적으로 비활성화된 톨-유사 수용체 7 또는 8 작용자와 기능성 약물의 결합체 및 그 용도

Similar Documents

Publication Publication Date Title
WO2018233648A1 (zh) 作为TLR8激动剂的异噻唑并[4,3-d]嘧啶-5,7-二胺衍生物
JP6838773B2 (ja) 抗インフルエンザウイルスのピリミジニル誘導体
JP7237010B2 (ja) Hdac6選択的阻害剤およびその製造方法と使用
WO2018108064A1 (zh) 作为第四代egfr激酶抑制剂的螺环芳基磷氧化合物
JP2019529386A5 (zh)
WO2019085933A1 (zh) 作为Wee1抑制剂的大环类化合物及其应用
US10414718B2 (en) Dezocine analogue
WO2018192493A1 (zh) 作为pcsk9抑制剂的哌啶类化合物
JP7083836B2 (ja) アゼチジン誘導体
EP3567028B1 (en) Biphenyl compound as ccr2/ccr5 receptor antagonist
WO2019072235A1 (zh) 2,6-二氧杂螺[4,5]癸烷类衍生物、其制备方法及其在医药上的应用
CN112110897B (zh) 一种氘代克里唑蒂尼及其衍生物的制备方法
CN111635373B (zh) 多环磺酰胺类RORγ调节剂
JP2019522059A (ja) S1p1アゴニスト及びその応用
EP3719013B1 (en) Pyrimidine sulfamide derivative and preparation method and medical application thereof
EP3738961B1 (en) Heterocyclic compound as csf-1r inhibitor and use thereof
RU2772274C2 (ru) Селективные ингибиторы hdac6, способ их получения и их применение
WO2017202376A1 (zh) 磺酰胺衍生物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18821461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18821461

Country of ref document: EP

Kind code of ref document: A1