WO2018233400A1 - 一种显示基板及其制作方法、显示器件 - Google Patents

一种显示基板及其制作方法、显示器件 Download PDF

Info

Publication number
WO2018233400A1
WO2018233400A1 PCT/CN2018/086705 CN2018086705W WO2018233400A1 WO 2018233400 A1 WO2018233400 A1 WO 2018233400A1 CN 2018086705 W CN2018086705 W CN 2018086705W WO 2018233400 A1 WO2018233400 A1 WO 2018233400A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
adjacent
pixel regions
drainage
display substrate
Prior art date
Application number
PCT/CN2018/086705
Other languages
English (en)
French (fr)
Inventor
袁广才
赵德江
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/342,381 priority Critical patent/US10886344B2/en
Publication of WO2018233400A1 publication Critical patent/WO2018233400A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a display substrate, a method of fabricating the same, and a display device.
  • organic electroluminescent devices Compared with liquid crystal display devices (LCDs), organic electroluminescent devices (OLEDs) have the advantages of self-luminescence, fast response, wide viewing angle, high brightness, colorful, thin and light, and are considered to be the next generation display technology.
  • a common layer structure is adopted, that is, a structure in which the functions are the same and the signals applied in the display process are the same in different pixel regions, and the same material is simultaneously formed by the inkjet printing process.
  • the inkjet printing process has high material utilization and is especially suitable for large size display devices.
  • the uniformity of inkjet printing is poor, and it is not easy to ensure the print quality of high-resolution products, and high-resolution printing cannot be achieved. If you want to improve the print resolution, you have to make a big improvement on the device, and the device is not stable.
  • the present disclosure provides a display substrate, a manufacturing method thereof, and a display device for solving the problem that the thickness uniformity of the common layer structure is limited by the size of the display product in the inkjet printing process for fabricating the common layer structure.
  • an embodiment of the present disclosure provides a display substrate including a substrate and a pixel defining layer disposed on the substrate, the pixel defining layer for defining a plurality of pixel regions, and the plurality of pixels
  • the area is divided into a plurality of pixel groups, and each pixel group is composed of a plurality of adjacent pixel regions;
  • the pixel defining layer includes a first pixel defining layer between adjacent two pixel regions, and a surface of the first pixel defining layer between at least partially adjacent two pixel regions A plurality of drainage strips are disposed, and the drainage strips extend from a side of the adjacent one of the pixel regions to a side of the adjacent one of the adjacent pixel regions, and a drainage groove is formed between the adjacent two drainage strips.
  • the drain groove is provided with a partition strip, and the partition strip is used to divide the drain groove into two parts in the extending direction of the drain groove;
  • the surface of the divider strip facing away from the substrate is lower than the surface of the adjacent drainage strip facing away from the substrate.
  • a display substrate as described above, wherein a plurality of drainage strips located between adjacent two pixel regions are disposed in parallel;
  • a plurality of drainage strips located between adjacent two pixel regions are equally spaced.
  • each pixel group is composed of a plurality of pixel regions located in the same row.
  • the pixel defining layer further comprises a second pixel defining layer between adjacent two rows of pixel regions, wherein the second pixel defining layer is disposed in the same layer as the first pixel defining layer .
  • a display device including the display substrate as described above, is also provided in an embodiment of the present disclosure.
  • the embodiment of the present disclosure further provides a method for manufacturing a display substrate as described above, including:
  • the same ink material is ink-jet printed in all pixel groups by using a nozzle, and each pixel group corresponds to at least one nozzle. Under the drainage of the drainage groove, the ink material is evenly distributed in all pixel regions of each pixel group.
  • FIG. 1 is a schematic structural view of a display substrate in an embodiment of the present disclosure
  • Figure 2 is a partial cross-sectional view taken along line A-A of Figure 1;
  • Figure 3 is a partial cross-sectional view taken along line B-B of Figure 1;
  • FIG. 4 is a schematic view showing a manufacturing process of a common layer structure of a display substrate in an embodiment of the present disclosure
  • FIGS. 5-8 are schematic diagrams showing a process of fabricating a first pixel defining layer 1 in an embodiment of the present disclosure
  • 9a is a schematic view showing the distribution of ink of inkjet printing on the entire display substrate when the common layer structure is formed in the related art
  • 9b is a schematic view showing the distribution of ink of inkjet printing on the entire display substrate when the common layer structure is formed in the embodiment of the present disclosure
  • Fig. 10 is a view showing the state of each pixel region at the maximum ejection amount in the embodiment of the present disclosure.
  • the present disclosure provides a display substrate including a pixel defining layer for defining a plurality of pixel regions.
  • the display substrate includes a common layer structure located in a plurality of adjacent pixel regions.
  • the common layer structure is formed by an inkjet printing process to improve material utilization, reduce cost, and has a high film formation rate and high production efficiency.
  • the present disclosure divides the adjacent plurality of pixel regions into a pixel group, and for each pixel group, the pixel defining layer includes a first pixel defining layer between adjacent two pixel regions, and a surface of the first pixel defining layer between at least partially adjacent two pixel regions is provided with a plurality of drainage strips extending from a side of the adjacent one of the pixel regions to another adjacent pixel On the side of the region, a drainage groove is formed between two adjacent drainage strips, so that when the same ink material is ink-jet printed in the pixel group by the nozzle, the ink is uniformly distributed in the pixel group under the shunting action of the drainage groove. In all the pixel regions, the thickness uniformity of the common layer structure of the pixel group is ensured, the printing quality is improved, and the display effect is improved.
  • the technical solution of the present disclosure improves the structure of the pixel defining layer, so that the inkjet printing process is suitable for the production of large, medium and small size display devices, and both can realize high-resolution inkjet printing and ensure the common layer structure.
  • Print quality overcomes the limitations of display product size for high resolution inkjet printing.
  • the resolution of inkjet printing in the present disclosure is the same as the resolution of the display product.
  • the technical solution of the present disclosure is applicable to a display device having a common layer structure in a plurality of adjacent pixel regions, for example, an OLED display device.
  • the technical solution of the present disclosure will be specifically described by taking the display substrate as an OLED display substrate as an example.
  • the structure of the pixel defining layer and the manufacturing process of the common layer structure are the same as those of the OLED display substrate.
  • FIG. 1 is a schematic structural view of a display substrate in the embodiment of the present disclosure
  • FIG. 2 is a partial cross-sectional view taken along line A-A of FIG. 1
  • FIG. 3 is a partial cross-sectional view taken along line B-B of FIG.
  • an OLED display substrate is provided in an embodiment of the present disclosure.
  • the display substrate includes a substrate 200 and a pixel defining layer disposed on the substrate 200, the pixel defining layer for defining a plurality of pixel regions 101, each of the pixel regions 101 including an OLED emitting a specific color of light to achieve full color display.
  • the OLED includes a cathode, an anode, and a light-emitting layer disposed between the cathode and the anode, and further includes a functional layer such as an electron injection layer, an electron transport layer, a hole injection layer, and a hole transport layer.
  • the cathodes of all the pixel regions 101 may have a common layer structure
  • the electron transport layers may have a common layer structure
  • the hole transport layers may have a common layer structure, as long as the functions are the same and the signals applied during the display process are the same, that is, the common layer structure .
  • the plurality of pixel regions 101 are divided into a plurality of pixel groups 100, each of which is composed of a plurality of adjacent pixel regions 101.
  • the pixel defining layer includes a first pixel defining layer 1 between adjacent two pixel regions 101, and the first pixel between at least partially adjacent two pixel regions 101
  • the surface of the defining layer 1 is provided with a plurality of drainage strips 2 extending from the side of the adjacent one of the pixel regions 101 to the side of the adjacent another pixel region 101, and the adjacent two drainages
  • a drain groove is formed between the strips 2.
  • the pixel area 101 of the display substrate is divided into a plurality of pixel groups 100, and a plurality of drainage strips 2 are disposed on the surface of the pixel defining layer between at least partially adjacent two pixel areas 101 of each pixel group 100.
  • a drainage groove is formed between the adjacent drainage strips 2 for shunting the ink to uniformly distribute the ink in all the pixel regions 101 of the pixel group 100, thereby ensuring the uniformity of the thickness of the common layer structure of the OLED display substrate and improving Print quality for improved display.
  • the technical solution of the present disclosure improves the structure of the pixel defining layer, so that the inkjet printing process is suitable for the fabrication of large, medium and small-sized OLED display devices, and both can realize high-resolution inkjet printing and ensure a common layer structure.
  • the print quality overcomes the limitations of display product size for high resolution inkjet printing.
  • the above technical solution can effectively increase the thickness of the common layer structure while ensuring good thickness uniformity of the common layer structure.
  • Top-emitting organic light-emitting diode has attracted wide attention in the field of organic flat panel display, especially in the field of microdisplay, due to its high resolution, large aperture ratio and flexible substrate selection.
  • the optical microcavity effect of TEOLED seriously inhibits the luminescence intensity and color purity of the device, and its effect on blue and white TEOLED is particularly serious, which makes the preparation of blue and white TEOLED difficult, and seriously affects device performance.
  • the suppression of blue light by the microcavity effect in TEOLED makes the intensity of blue light in the top emission white light insufficient, and the white light color is reddish.
  • the suppression of blue light by the microcavity effect in the TEOLED makes the luminous intensity of the blue TEOLED weak.
  • one of the methods is to enhance the blue light output intensity by multi-beam interference in the microcavity effect to improve the top emission white light color and blue light intensity.
  • Theoretical and experimental results show that when the thickness of the hole transport layer and/or the hole injection layer is 100 nm, the resonance wavelength of the microcavity is matched with the blue light, and the blue light output in the device is strong, so that a relatively balanced white light can be obtained, which is It is necessary to increase the thickness of the hole transport layer and/or the hole injection layer.
  • the application of the technical solution of the present disclosure can effectively increase the thickness of the hole injection layer and the hole transport layer of the TEOLED, and solve the problem that the luminous intensity and color purity of the TEOLED are affected by the microcavity effect.
  • FIG. 9a is a schematic view showing the distribution of ink of inkjet printing on the entire display substrate when the common layer structure is formed in the related art (the surface of the pixel defining layer is not provided with a drain strip);
  • FIG. 9b shows the spray of the common layer structure in the embodiment of the present disclosure.
  • the drain strip is not provided on the surface of the pixel defining layer, the ink is apt to bulge and cannot be uniformly distributed.
  • the depth of the drain groove is about 2000 nm, and the film thickness of each functional layer of the OLED is about 60 nm. Therefore, the drain groove can function as a shunt in the inkjet printing process of all common layer structures to ensure a common layer structure.
  • the thickness is uniform and the uniformity is good.
  • a non-common layer structure such as a light-emitting layer
  • a light-emitting layer for emitting light of a specific color may be vapor-deposited in the corresponding pixel region 101 by evaporation.
  • the drain groove can function as a shunt, it is necessary to ensure that the height of the surface of the ink for forming the common layer structure facing away from the substrate is higher than the height of the groove bottom of the drain groove. In order not to affect the fabrication of the next common layer structure, it is also necessary to ensure that the height of the ink for forming the common layer structure is lower than the height of the surface of the drain strip facing away from the substrate.
  • the depth of the drainage groove refers to the extension length of the drainage groove in a direction perpendicular to the plane of the substrate.
  • the height of the surface of the ink, the height of the groove bottom, and the height of the surface of the flow strip refer to the height of the surface relative to the surface of the substrate in a direction perpendicular to the plane of the substrate.
  • all the drainage strips 2 located between the adjacent two pixel regions 101 may be arranged in parallel.
  • the extension direction of the drainage strips 2 may be aligned with the arrangement direction of the corresponding adjacent two pixel regions 101. It is roughly parallel, and the angle between the two directions is preferably less than 10° to ensure the shunting effect.
  • all of the strips 2 located between adjacent two pixel regions 101 may also be equally spaced such that the shunt is more uniform.
  • a partitioning strip 3 can also be provided in the drainage channel, in the direction of extension of the drainage channel, the dividing strip 3 is used to divide the drainage channel into two parts, the separation strip 3 deviating from The surface of the substrate 200 is lower than the surface of the adjacent drain strip 2 facing away from the substrate 200.
  • the partitioning strip 3 can uniformly distribute the ink to both sides of the drainage trough, further contribute to uniform separation of the ink, and improve the thickness uniformity of the common layer structure.
  • the partition strip 3 can be the same distance from the corresponding two adjacent pixel regions 101, and the drain groove is divided into two parts, which is more advantageous for the ink to be evenly split to the two pixel regions 101 on both sides.
  • the separation bars 3 perpendicular to the drainage bars 2.
  • the separator in order to ensure that the separator can function as a split, it is necessary to ensure that the height of the surface of the ink for forming the common layer structure facing away from the substrate is higher than the height of the surface of the separator facing away from the substrate. In order not to affect the fabrication of the next common layer structure, it is also necessary to ensure that the height of the surface of the common layer structure formed away from the substrate after drying of the ink is lower than the height of the surface of the drain strip facing away from the substrate.
  • the height of the surface of the common layer structure and the height of the surface of the separator bar refer to the height of the surface relative to the surface of the substrate in a direction perpendicular to the plane of the substrate.
  • the pixel regions 101 are generally distributed in a matrix, including a plurality of rows of pixel regions and a plurality of columns of pixel regions, and a plurality of pixel regions 101 located in the same row are arranged along the first direction, and a plurality of pixel regions 101 located in the same column
  • the second direction is arranged, and the first direction and the second direction have an angle greater than zero.
  • the plurality of pixel regions 101 of each pixel group 100 can also be distributed in a matrix, which is convenient for division and has a simple structure. It should be noted that the concept of introducing rows and columns is only for convenience of description and does not have other limiting meanings.
  • a plurality of drainage strips 2 may be disposed on the surface of the first pixel defining layer 1 between all adjacent two pixel regions 101 in the first direction.
  • a drainage groove is formed between the adjacent two drainage strips 2, that is, for each pixel group 100, only the surface of the first pixel defining layer 1 is disposed between all adjacent two pixel regions 101 of the same pair.
  • the same row of pixel regions of each pixel group 100 can correspond to at least one nozzle to realize inkjet printing of a common layer structure, and can be ensured under the shunting function of the drainage channel
  • the ink is evenly distributed in all of the pixel regions 101 of the same row of pixel regions, thereby ensuring thickness uniformity of the common layer structure in the peer pixel region.
  • different rows of pixel regions correspond to different nozzles to achieve inkjet printing of a common layer structure.
  • the thickness uniformity of the common layer structure in each row of pixel regions By controlling the same amount of ink ejection in all rows of pixel regions, thickness uniformity of the common layer structure in all rows of pixel regions can be ensured, thereby ensuring the entire display substrate.
  • the uniformity of the thickness of the common layer structure improves the inkjet printing quality and enhances the display effect.
  • the plurality of drainage strips 2 located between the adjacent two pixel regions 101 are disposed in parallel. Specifically, all the drainage strips 2 extend substantially in the first direction and are at an angle to the first direction. It is preferably less than 10° and has a good shunting effect.
  • the plurality of drainage bars 2 located between the adjacent two pixel regions 101 can also be disposed at equal intervals.
  • a dividing strip 3 may also be provided in the drainage groove, the dividing strip 3 dividing the drainage groove into two parts in the first direction, and the surface of the dividing strip 3 facing away from the substrate 200 is low. Adjacent to the surface of the drainage strip 2 facing away from the substrate 200.
  • the partitioning strip 3 can uniformly distribute the ink to both sides of the drainage trough, further contribute to uniform separation of the ink, and improve the thickness uniformity of the common layer structure.
  • the separation strip 3 it is also possible to set the separation strip 3 to have the same distance from the corresponding two adjacent pixel regions 101, and divide the drainage groove into the same two portions, which is more advantageous for evenly distributing the ink to the two pixel regions 101 on both sides.
  • the separation bars 3 perpendicular to the drainage bars 2.
  • a plurality of drainage strips are disposed on a surface of a pixel defining layer; a drainage strip is disposed between two adjacent pixel regions in the first direction; and a drainage strip is disposed between the two adjacent pixel regions in the second direction A drain bar is disposed between the two adjacent pixel regions in the first direction, and a drain bar is disposed between the two adjacent pixel regions in the second direction.
  • each pixel group 100 is disposed by a plurality of pixel regions 101 located in the same row, that is, a plurality of pixel regions 101 arranged along the first direction constitute a pixel group 100 during the inkjet printing process.
  • each row of pixel regions 101 corresponds to at least one nozzle to inject and print the same material to all the pixel regions 101 of the row, and under the action of the shunting of the draining grooves, the inks 300 are uniformly distributed to ensure that all the pixel regions 101 in the same row are located.
  • the thickness of the common layer structure is uniform and the uniformity is good, as shown in FIG. Different rows of pixel regions correspond to different nozzles to achieve inkjet printing of a common layer structure.
  • the thickness uniformity of the common layer structure in each row of pixel regions By controlling the same amount of ink ejection in all rows of pixel regions, thickness uniformity of the common layer structure in all rows of pixel regions can be ensured, thereby ensuring the entire display substrate.
  • the uniformity of the thickness of the common layer structure improves the inkjet printing quality and enhances the display effect.
  • the maximum ink ejection amount per pixel area can be obtained by the following calculation formula:
  • is the chamfered point at the intersection of the ink and the plane of the substrate 200 at the maximum ejection amount
  • h is the height of the maximum ejection amount
  • d is the length of the short side of each pixel region.
  • the maximum ejection amount of each row of pixel regions (i.e., each pixel group 100) is approximately the sum of the maximum ejection amounts of all pixel regions of the row.
  • drain strip 2 may be disposed on the surface of the first pixel defining layer 1 between all adjacent two pixel regions 101 of the same pair to ensure that the ink is evenly distributed in all the pixel regions 101 of the same.
  • all the drainage strips 2 can extend in the first direction and are arranged in parallel.
  • a plurality of the strips 2 located between the adjacent two pixel regions 101 may be disposed at equal intervals.
  • a partitioning strip 3 perpendicular to the drainage strip 2 may be disposed in the drainage groove, which is more advantageous for evenly distributing the ink to the two pixel regions 101 on both sides.
  • the pixel defining layer further comprises a second pixel defining layer 4 between adjacent two rows of pixel regions 101.
  • the height of the surface of the second pixel defining layer 4 facing away from the substrate 200 is set to be not lower than the height of the surface of the drain strip 2 facing away from the substrate 200 to ensure that cross-talk does not occur in the adjacent two rows of ink-jet printed ink.
  • the height of the surface of the second pixel defining layer 4 facing away from the substrate 200 coincides with the height of the surface of the drain strip 2 facing away from the substrate 200.
  • the second pixel defining layer 4 may be disposed in the same layer as the first pixel defining layer 1 to simplify the manufacturing process. As shown in FIG. 5 to FIG. 8, the specific process of fabricating the first pixel defining layer 1 and the second pixel defining layer 4 may be:
  • a first photosensitive film layer 201 is formed on the substrate 200, and the first photosensitive film layer 201 is exposed, and after development, the first sub-layer 10 and the second pixel of the first pixel defining layer 1 are formed.
  • a second photosensitive film layer 202 covering the first sub-layer 10 and the second sub-layer is formed, and the second photosensitive film layer 202 is exposed, and after development, on the first sub-layer 10.
  • a drain strip 2 is formed, and a third sub-layer 41 of the second pixel defining layer 4 is formed on the second sub-layer 40, as shown in FIGS. 3 and 8.
  • the first pixel defining layer 1 obtained by the above steps is composed of a first sub-layer 10 and a drain strip 2 on the first sub-layer 10, the second pixel defining layer 4 being composed of a second sub-layer 40 and a stacked
  • the third sub-layer 41 is composed, the first pixel defining layer 1 and the second pixel defining layer 4 are disposed in the same layer, the height of the second pixel defining layer 4 facing away from the surface of the substrate 200 and the surface of the drain strip 2 facing away from the substrate 200 Highly consistent.
  • the specific structure of the pixel structure may be:
  • the width of the second pixel defining layer 4 is 10um, and the distance between the adjacent two second pixel defining layers 4 is 316.5um;
  • the distance between the adjacent two first pixels defining the layer 1 is 105.5 um;
  • the width of the first pixel defining layer 1 is 35um
  • the length of the draining strip 2 is 20um
  • the spacing between the draining strip 2 and the adjacent two pixel regions 101 is 7.5um;
  • the width of the drainage strip 2 is 10 um;
  • the distance between adjacent two drainage strips 2 is 50 um in the column direction.
  • each row of pixel regions is divided into a pixel group, and by providing a drain strip, it is possible to form a common layer structure having uniform thickness in all pixel regions of the same by inkjet printing, and the uniformity is good.
  • thickness uniformity of the common layer structure of the entire display substrate can be ensured, and high-resolution inkjet printing can be realized.
  • the same layer forms a pixel defining layer of the entire display substrate, which simplifies the manufacturing process and reduces the cost.
  • each pixel group it is also possible to provide each pixel group to be composed of adjacent rows of pixel regions.
  • a drain strip only on the surface of the first pixel defining layer between all adjacent two pixel regions of the same row, in the inkjet printing process, each row of pixel regions corresponds to at least one nozzle, to All the pixel areas of the row are ink-jet printed with the same material, and the thickness of the common layer structure of all the pixel regions of the row is uniform, and the uniformity is good.
  • the second pixel defining layer between adjacent two rows of pixel regions may also be disposed in the same layer as the first pixel defining layer to simplify the fabrication process and ensure that pixel regions of different rows do not occur during inkjet printing. Crosstalk.
  • a display device comprising the display substrate as described above, capable of forming a common layer structure of the display substrate by an inkjet printing process, and ensuring thickness uniformity of the common layer structure, achieving high resolution inkjet Printing, while reducing the production cost while ensuring the display effect.
  • a method for manufacturing a display substrate as described above including:
  • the same ink material is ink-jet printed in all pixel groups by using a nozzle, and each pixel group corresponds to at least one nozzle. Under the drainage of the drainage groove, the ink material is evenly distributed in all pixel regions of each pixel group.
  • the ink which is ink-jet-printed in the pixel region is used to form a common layer structure in all the pixel regions of each pixel group, and since the ink distribution is uniform, the thickness uniformity of the common layer structure is ensured.
  • the thickness uniformity of the common layer structure of the entire display substrate can be ensured, and high-resolution inkjet printing can be realized, and the manufacturing cost can be reduced while ensuring the display effect.
  • each pixel group can be composed of all pixel regions located in the same row.
  • a pixel region of the display substrate is defined by a pixel defining layer comprising a first pixel defining layer between adjacent two pixel regions of each pixel group and a second between adjacent two rows of pixel regions The pixel defines the layer.
  • the step of forming the pixel defining layer specifically includes:
  • a first photosensitive film layer is formed on the substrate, and the first photosensitive film layer is exposed, and after development, a first sub-layer of the first pixel defining layer and a second sub-layer of the second pixel defining layer are formed;
  • a second photosensitive film layer covering the first sub-layer and the second sub-layer is formed, and the second photosensitive film layer is exposed, and after development, a drain strip is formed on the first sub-layer. Forming a third sub-layer of the second pixel defining layer on the second sub-layer.
  • the first pixel defining layer obtained by the above steps is composed of the first sub-layer and a drainage strip located on the first sub-layer
  • the second pixel defining layer is composed of a second sub-layer and a third layer
  • the sub-layer is composed, and the first pixel defining layer and the second pixel defining layer are disposed in the same layer, that is, the entire pixel defining layer of the display substrate is disposed in the same layer.
  • the two layer structures of the pixel defining layer are generally made of a resin material. Since the two resin layers are uniform in lyophobic properties, they are mutually repelled when the glue is applied, resulting in failure to properly apply the glue. In order to solve this problem, an HMDS process is added between the two resin layers to increase the adhesion between the two resin layers to prevent film peeling from occurring.
  • the specific principle is:
  • the HMDS process utilizes HMDS (hexamethyldisilazane) to remove the -OH group of the first resin layer and form a hydrophobic surface, increasing the adhesion of the first resin layer, thereby increasing the first resin layer and the thereon Adhesion between the second resin layers. That is, the adhesion of the first sub-layer of the first pixel defining layer and the drain strip is increased, and the adhesion of the second sub-layer and the third sub-layer of the second pixel defining layer is increased.
  • HMDS hexamethyldisilazane

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开涉及显示技术领域,公开了一种显示基板及其制作方法、显示器件。所述显示基板的像素区域被划分为多个像素组,并在每一像素组的至少部分相邻的两个像素区域之间的像素界定层的表面设置多条引流条,在相邻的引流条之间形成引流槽,用于对墨水进行分流,使墨水均匀分布在该像素组的所有像素区域内,通过控制所有像素组的喷墨量,能够保证整个显示基板的共同层结构的厚度均一性,实现高分辨率的喷墨打印,克服了显示产品的尺寸对高分辨率喷墨打印的限制。

Description

一种显示基板及其制作方法、显示器件
相关申请的交叉引用
本申请主张在2017年6月21日在中国提交的中国专利申请号No.201710474127.0的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,特别是涉及一种显示基板及其制作方法、显示器件。
背景技术
有机电致发光器件(OLED)相对于液晶显示器件(LCD)具有自发光、反应快、视角广、亮度高、色彩艳、轻薄等优点,被认为是下一代显示技术。
在OLED显示器件中,都会采用到共同层结构,即,不同像素区域中,功能相同且显示过程中施加的信号相同的结构,通过喷墨打印工艺同一材料同时形成。喷墨打印工艺的材料利用率高,尤其适用于大尺寸显示器件。但是,对于中小尺寸显示器件,喷墨打印的均一性较差,不容易保证高分辨率产品的打印质量,无法实现高分辨率的打印。如果要提高打印分辨率,就要对设备进行很大的改进,且设备运行不稳定。
发明内容
本公开提供一种显示基板及其制作方法、显示器件,用以解决在制作共同层结构的喷墨打印工艺中,共同层结构的厚度均一性受到显示产品尺寸限制的问题。
为解决上述技术问题,本公开实施例中提供一种显示基板,包括基底和设置在所述基底上的像素界定层,所述像素界定层用于限定多个像素区域,将所述多个像素区域划分为多个像素组,每一像素组由相邻的多个像素区域组成;
对于每一像素组,所述像素界定层包括位于相邻的两个像素区域之间的 第一像素界定层,至少部分相邻的两个像素区域之间的所述第一像素界定层的表面设置有多条引流条,所述引流条从相邻的其中一个像素区域的所在侧延伸至相邻的另一个像素区域的所在侧,相邻的两条引流条之间形成引流槽。
如上所述的显示基板,其中,所述引流槽中设置有分隔条,在所述引流槽的延伸方向上,所述分隔条用于将所述引流槽分割为两部分;
所述分隔条的背离所述基底的表面低于相邻的所述引流条的背离所述基底的表面。
如上所述的显示基板,其中,所述分隔条与对应的相邻两个像素区域的距离相同。
如上所述的显示基板,其中,位于相邻的两个像素区域之间的多条引流条平行设置;
位于相邻的两个像素区域之间的多条引流条等间距设置。
如上所述的显示基板,其中,所述分隔条与所述引流条垂直设置。
如上所述的显示基板,其中,每一像素组的多个像素区域呈矩阵分布,在第一方向上所有相邻的两个像素区域之间的所述第一像素界定层的表面均设置有多条引流条。
如上所述的显示基板,其中,每一像素组由位于同一行的多个像素区域组成。
如上所述的显示基板,其中,所述像素界定层还包括位于相邻两行像素区域之间的第二像素界定层,所述第二像素界定层与所述第一像素界定层同层设置。
本公开实施例中还提供一种显示器件,包括如上所述的显示基板。
本公开实施例中还提供一种如上所述的显示基板的制作方法,包括:
利用喷嘴在所有像素组内喷墨打印同一墨水材料,每一像素组至少对应一个喷嘴,在所述引流槽的引流作用下,使墨水材料均匀分布在每一像素组的所有像素区域内。
本公开的上述技术方案的有益效果如下:
上述技术方案中,通过将像素区域被划分为多个像素组,并在每一像素组的至少部分相邻的两个像素区域之间的像素界定层的表面设置多条引流条, 在相邻的引流条之间形成引流槽,用于对墨水进行分流,使墨水均匀分布在该像素组的所有像素区域内,通过控制所有像素组的喷墨量,能够保证整个显示基板的共同层结构的厚度均一性,实现高分辨率的喷墨打印,克服了显示产品的尺寸对高分辨率喷墨打印的限制。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示本公开实施例中显示基板的结构示意图;
图2表示图1沿A-A的局部剖视图;
图3表示图1沿B-B的局部剖视图;
图4表示本公开实施例中显示基板的共同层结构的制作过程示意图;
图5-图8表示本公开实施例中本公开实施例中第一像素界定层1的制作过程示意图;
图9a表示相关技术中形成共同层结构时喷墨打印的墨水在整个显示基板上的分布示意图;
图9b表示本公开实施例中形成共同层结构时喷墨打印的墨水在整个显示基板上的分布示意图;
图10表示本公开实施例中每一像素区域在最大喷墨量时的示意图。
具体实施方式
本公开提供一种显示基板,包括像素界定层,用于限定多个像素区域。所述显示基板包括位于相邻的多个像素区域内的共同层结构。通过喷墨打印工艺形成所述共同层结构,以提高材料利用率,降低成本,而且成膜速率快,生产效率高。
本公开通过将所述相邻的多个像素区域划分为一像素组,对于每一像素组,所述像素界定层包括位于相邻的两个像素区域之间的第一像素界定层, 并在至少部分相邻的两个像素区域之间的所述第一像素界定层的表面设置多条引流条,所述引流条从相邻的其中一个像素区域的所在侧延伸至相邻的另一个像素区域的所在侧,相邻的两条引流条之间形成引流槽,从而利用喷嘴在所述像素组内喷墨打印同一墨水材料时,在引流槽的分流作用下,墨水均匀分布在该像素组的所有像素区域内,保证该像素组的共同层结构的厚度均一性,提高打印质量,提升显示效果。
本公开的技术方案通过对像素界定层的结构进行改进,使得喷墨打印工艺适用于大、中、小尺寸显示器件的制作,而且均能够实现高分辨率的喷墨打印,保证共同层结构的打印质量,克服了显示产品的尺寸对高分辨率喷墨打印的限制。
本公开中喷墨打印的分辨率与显示产品的分辨率相同。
本公开的技术方案适用于相邻的多个像素区域内具有共同层结构的显示器件,例如:OLED显示器件。
下面将结合附图和实施例,对本公开的具体实施方式作进一步详细描述。以下实施例用于说明本公开,但不用来限制本公开的范围。
下面以所述显示基板为OLED显示基板为例,具体介绍本公开的技术方案。当本公开的技术方案应用于其他显示器件的显示基板时,其像素界定层的结构及共同层结构的制作过程与OLED显示基板相同。
图1表示本公开实施例中显示基板的结构示意图,图2表示图1沿A-A的局部剖视图,图3表示图1沿B-B的局部剖视图。
结合图1-图3所示,本公开实施例中提供一种OLED显示基板。所述显示基板包括基底200和设置在基底200上的像素界定层,所述像素界定层用于限定多个像素区域101,每一像素区域101包括发出特定颜色光线的OLED,实现全彩显示。OLED包括阴极、阳极以及设置在所述阴极和阳极之间的发光层,还包括电子注入层、电子传输层、空穴注入层、空穴传输层等功能层。其中,所有像素区域101的阴极可以为共同层结构,电子传输层可以为共同层结构,空穴传输层可以为共同层结构,只要功能相同且显示过程中施加的信号相同,即为共同层结构。
将所述多个像素区域101划分为多个像素组100,每一像素组100由相 邻的多个像素区域101组成。对于每一像素组100,所述像素界定层包括位于相邻的两个像素区域101之间的第一像素界定层1,至少部分相邻的两个像素区域101之间的所述第一像素界定层1的表面设置有多条引流条2,所述引流条2从相邻的其中一个像素区域101的所在侧延伸至相邻的另一个像素区域101的所在侧,相邻的两条引流条2之间形成引流槽。
上述显示基板的像素区域101被划分为多个像素组100,并在每一像素组100的至少部分相邻的两个像素区域101之间的像素界定层的表面设置多条引流条2,在相邻的引流条2之间形成引流槽,用于对墨水进行分流,使墨水均匀分布在该像素组100的所有像素区域101内,保证OLED显示基板的共同层结构的厚度的均一性,提高打印质量,提升显示效果。
本公开的技术方案通过对像素界定层的结构进行改进,使得喷墨打印工艺适用于大、中、小尺寸的OLED显示器件的制作,均能够实现高分辨率的喷墨打印,保证共同层结构的打印质量,克服了显示产品的尺寸对高分辨率喷墨打印的限制。另外,上述技术方案在保证共同层结构的厚度均一性良好的同时,还可以有效增加共同层结构的厚度。
顶发射有机发光二极管(Top-emitting organic light-emitting diode,TEOLED),以其分辨率高、开口率大和衬底选择灵活等优势在有机平板显示领域,尤其是微显示领域受到广泛关注。但是,TEOLED的光学微腔效应严重抑制了器件的发光强度和色纯度,其对蓝色和白色TEOLED的影响尤其严重,造成了蓝、白光TEOLED制备困难,并严重影响了器件性能。对于白色TEOLED,因为TEOLED中微腔效应对蓝光的抑制使顶发射白光中蓝光的强度不够,白光色度偏红。而对于蓝色TEOLED,TEOLED中微腔效应对蓝光的抑制,使得蓝色TEOLED的发光强度较弱。为了解决上述技术问题,其中一个方法是:利用微腔效应中的多光束干涉增强蓝光输出强度,来改善顶发射白光色度和蓝光强度。理论和实验结果表明,当空穴传输层和/或空穴注入层的厚度为100nm时,微腔的共振波长与蓝光比较匹配,器件中的蓝光输出较强,能够获得比较平衡的白光,这就需要增加空穴传输层和/或空穴注入层的厚度。但相关技术中受到打印分辨率的影响,对于中小尺寸的显示器件,很难进一步增加空穴传输层和/或空穴注入层的厚度。而应用本公开的技术方 案,就能够有效增加TEOLED的空穴注入层和空穴传输层的厚度,解决TEOLED的发光强度和色纯度受到微腔效应影响的问题。
图9a表示相关技术中(像素界定层的表面未设置引流条)形成共同层结构时喷墨打印的墨水在整个显示基板上的分布示意图;图9b表示本公开实施例中形成共同层结构时喷墨打印的墨水在整个显示基板上的分布示意图。对比两个附图,很容易发现,通过采用本公开的技术方案对像素界定层进行改进,使得喷墨打印的墨水均匀分布在整个显示基板上,则墨水干燥后形成的共同层结构的厚度均一性良好。而未在像素界定层的表面设置引流条时,墨水容易鼓起,不能够均匀分布。
其中,引流槽的深度为2000nm左右,而OLED的每一功能层的膜厚为60nm左右,因此,引流槽在所有共同层结构的喷墨打印过程中均能够起到分流作用,保证共同层结构的厚度一致,均匀性良好。而对于非共同层结构,如:发光层,可以通过蒸镀的方式在对应的像素区域101蒸镀用于发出特定颜色光线的发光层。
容易理解的是,为了保证引流槽能够起到分流作用,需要保证用于形成共同层结构的墨水的背离基底的表面的高度要高于引流槽的槽底的高度。而为了不影响下一共同层结构的制作,还需要保证用于形成共同层结构的墨水的高度要低于引流条的背离基底的表面的高度。引流槽的深度是指在垂直于基底所在平面的方向上引流槽的延伸长度。墨水的表面的高度、槽底的高度、引流条的表面的高度是指在垂直于基底所在平面的方向上,相对于基底的表面的高度。
本实施例中,位于相邻两个像素区域101之间的所有引流条2可以平行设置,具体的,所述引流条2的延伸方向可以与对应的相邻两个像素区域101的排布方向大致平行,两个方向的夹角以小于10°为宜,以保证分流效果。
在一些可选的实施例中,位于相邻两个像素区域101之间的所有引流条2还可以等间距设置,使得分流更加均匀。
为了提高分流效果,还可以在引流槽中设置分隔条3,在所述引流槽的延伸方向上,所述分隔条3用于将所述引流槽分割为两部分,所述分隔条3的背离所述基底200的表面低于相邻的所述引流条2的背离所述基底200的 表面。分隔条3能够使墨水均匀向引流槽的两侧分流,更有助于墨水分离均匀,提高共同层结构的厚度均一性。
其中,所述分隔条3可以与对应的相邻两个像素区域101的距离相同,将引流槽分割为相同的两部分,更有利于墨水均匀分流至两侧的两个像素区域101。基于同样的目的,当位于相邻两个像素区域101之间的所有引流条2平行设置时,还可以设置分隔条3与引流条2垂直。
容易理解的是,为了保证分隔条能够起到分流作用,需要保证用于形成共同层结构的墨水的背离基底的表面高度要高于分隔条的背离基底的表面的高度。而为了不影响下一共同层结构的制作,还需要保证墨水干燥后形成的共同层结构的背离基底的表面的高度要低于引流条的背离基底的表面的高度。共同层结构的表面的高度、分隔条的表面的高度是指在垂直于基底所在平面的方向上,相对于基底的表面的高度。
对于显示基板,其像素区域101通常呈矩阵分布,包括多行像素区域和多列像素区域,位于同一行的多个像素区域101沿第一方向排布,位于同一列的多个像素区域101沿第二方向排布,且所述第一方向和第二方向之间具有大于零的夹角。则,每一像素组100的多个像素区域101也可以呈矩阵分布,方便划分,结构简单。需要说明的是,引入行、列的概念仅是为了便于描述,并不具有其它限定意义。
在一个具体的实施方式中,对于每一像素组100,可以在第一方向上所有相邻的两个像素区域101之间的第一像素界定层1的表面均设置多条引流条2,相邻的两条引流条2之间形成引流槽,即,对于每一像素组100,仅在同行的所有相邻的两个像素区域101之间的所述第一像素界定层1的表面均设置多条引流条2,在喷墨打印的过程中,每一像素组100的同一行像素区域可以对应至少一个喷嘴来实现共同层结构的喷墨打印,而且在引流槽的分流作用下,能够保证墨水均匀分布在所述同一行像素区域的所有像素区域101内,进而保证同行像素区域内的共同层结构的厚度均一性。对于一像素组100,不同行像素区域对应不同的喷嘴来实现共同层结构的喷墨打印。由于保证了每一行像素区域内共同层结构的厚度均一性,通过控制所有行像素区域内的喷墨量相同,即可保证所有行像素区域内共同层结构的厚度均一性,进而保 证整个显示基板的共同层结构的厚度均一性,提高喷墨打印质量,提升显示效果。
上述具体实施方式中,,位于相邻的两个像素区域101之间的多条引流条2平行设置,具体可以为:所有引流条2均大致沿第一方向延伸,与第一方向的夹角最好小于10°,具有较好的分流效果。
进一步地,位于相邻的两个像素区域101之间的多条引流条2还可以等间距设置。
该实施方式中,还可以在引流槽中设置分隔条3,所述分隔条3在所述第一方向上将所述引流槽分割为两部分,分隔条3的背离所述基底200的表面低于相邻的所述引流条2的背离所述基底200的表面。分隔条3能够使墨水均匀向引流槽的两侧分流,更有助于墨水分离均匀,提高共同层结构的厚度均一性。
进一步地,还可以设置分隔条3与对应的相邻两个像素区域101的距离相同,将引流槽分割为相同的两部分,更有利于墨水均匀分流至两侧的两个像素区域101。基于同样的目的,当位于相邻两个像素区域101之间的所有引流条2平行设置时,还可以设置分隔条3与引流条2垂直。
本领域技术人员很容易想到,上述具体实施方式中的结构仅是实现本公开技术方案的一种具体结构,例如:还可以在第二方向上所有相邻的两个像素之间的所述第一像素界定层的表面均设置多条引流条;在第一方向上部分相邻的两个像素区域之间设置引流条;在第二方向上部分相邻的两个像素区域之间设置引流条;在第一方向上部分相邻的两个像素区域之间设置引流条,并在第二方向上部分相邻的两个像素区域之间设置引流条。
作为一个优选的实施方式,设置每一像素组100由位于同一行的多个像素区域101组成,即,沿第一方向排布的多个像素区域101组成一像素组100,在喷墨打印过程中,每一行像素区域101对应至少一个喷嘴,以向该行的所有像素区域101喷墨打印同一材料,并在引流槽的分流作用下,使得墨水300均匀分布,保证位于同行的所有像素区域101内的共同层结构的厚度一致,均一性良好,参见图4所示。不同行像素区域对应不同的喷嘴来实现共同层结构的喷墨打印。由于保证了每一行像素区域内共同层结构的厚度均一性, 通过控制所有行像素区域内的喷墨量相同,即可保证所有行像素区域内共同层结构的厚度均一性,进而保证整个显示基板的共同层结构的厚度均一性,提高喷墨打印质量,提升显示效果。
其中,如图10所示,每一像素区域的最大喷墨量可以通过以下计算公式获得:
Figure PCTCN2018086705-appb-000001
上述公式中,θ为最大喷墨量时墨水与基底200所在平面的相交处的切角,h为最大喷墨量的高度,d为每一像素区域的短边长度。每一像素区域的最大喷墨量为保证墨水不会溢流的最大喷墨量。以800PPI、55英寸、4k分辨率的显示器件为例,θ=60°,计算得出h=11um,此时不会出现溢流。
则,每一行像素区域(即每一像素组100)的最大喷墨量大致为该行所有像素区域的最大喷墨量之和。
进一步地,可以在同行的所有相邻的两个像素区域101之间的第一像素界定层1的表面均设置引流条2,保证墨水均匀分布在同行的所有像素区域101内。
其中,所有引流条2可以均沿第一方向延伸,平行设置。位于相邻的两个像素区域101之间的多条引流条2可以等间距设置。
在引流槽中可以设置与引流条2垂直的分隔条3,更有利于墨水均匀分流至两侧的两个像素区域101。基于同样的目的,还可以设置分隔条3可以与对应的相邻两个像素区域101的距离相同。
为了限定多个像素区域101,所述像素界定层还包括位于相邻两行像素区域101之间的第二像素界定层4。并设置第二像素界定层4的背离基底200的表面的高度不低于引流条2的背离基底200的表面的高度,以保证在相邻两行喷墨打印的墨水不发生串扰。可选的,第二像素界定层4的背离基底200的表面的高度与引流条2的背离基底200的表面的高度一致。
所述第二像素界定层4可以与所述第一像素界定层1同层设置,以简化制作工艺。结合图5-图8所示,制作第一像素界定层1和第二像素界定层4的具体过程可以为:
首先,如图5所示,在基底200上形成第一感光膜层201,对第一感光膜层201进行曝光,显影后,形成第一像素界定层1的第一子层10和第二像 素界定层4的第二子层40,结合图3和图6所示,图3中第一子层10和第二子层40实为一体结构,分开示意仅是为了便于理解;
然后,如图7所示,形成覆盖所述第一子层10和第二子层的第二感光膜层202,对第二感光膜层202进行曝光,显影后,在第一子层10上形成引流条2,在第二子层40上形成第二像素界定层4的第三子层41,结合图3和图8所示。
通过上述步骤制得的第一像素界定层1由第一子层10和位于第一子层10上的引流条2组成,所述第二像素界定层4由层叠设置的第二子层40和第三子层41组成,第一像素界定层1和第二像素界定层4为同层设置,第二像素界定层4的背离基底200的表面的高度与引流条2的背离基底200的表面的高度一致。
以一像素区域101的尺寸为210*70um为例,所述像素结构的具体结构可以为:
在列方向上,第二像素界定层4的宽度为10um,相邻的两条第二像素界定层4之间的距离为316.5um;
在行方向上,相邻的两条第一像素界定层1之间的间隔距离为105.5um;
在行方向上,第一像素界定层1的宽度为35um,引流条2的长度为20um,引流条2与相邻的两个像素区域101之间的间隔距离均为7.5um;
在列方向上,引流条2的宽度为10um;
对于位于相邻的两个像素区域101的多个引流条,在列方向上,相邻的两个引流条2之间的间隔距离为50um。
上述优选实施方式将每一行像素区域划分为一像素组,通过设置引流条,能够利用喷墨打印在同行的所有像素区域形成厚度一致的共同层结构,均一性良好。通过控制所有行的喷墨量相同,能够保证整个显示基板的共同层结构的厚度均一性,实现高分辨率的喷墨打印。并同层形成整个显示基板的像素界定层,简化制作工艺,降低成本。
基于上述优选的实施方式,也可以设置每一像素组由相邻的多行像素区域组成。当然,也可以仅在同一行的所有的相邻两个像素区域之间的第一像素界定层的表面设置引流条,在喷墨打印过程中,每一行像素区域对应至少 一个喷嘴,以向该行的所有像素区域喷墨打印同一材料,实现该行的所有像素区域的共同层结构的厚度一致,均一性良好。同样,位于相邻两行像素区域之间的第二像素界定层也可以与第一像素界定层同层设置,以简化制作工艺,并保证在喷墨打印过程中不同行的像素区域不会发生串扰。
本实施例中还提供一种显示器件,包括如上所述的显示基板,能够通过喷墨打印工艺形成显示基板的共同层结构,并保证共同层结构的厚度均一性,实现高分辨率的喷墨打印,在保证显示效果的同时,降低制作成本。
本实施例中还提供一种如上所述的显示基板的制作方法,包括:
利用喷嘴在所有像素组内喷墨打印同一墨水材料,每一像素组至少对应一个喷嘴,在所述引流槽的引流作用下,使墨水材料均匀分布在每一像素组的所有像素区域内。
上述制作方法中,喷墨打印在像素区域内的墨水用于形成每一像素组的所有像素区域内的共同层结构,由于墨水分布均匀,保证共同层结构的厚度均一性。通过控制所有像素组内的喷墨量,能够保证整个显示基板的共同层结构的厚度均一性,实现高分辨率的喷墨打印,在保证显示效果的同时,降低制作成本。
其中,每一像素组可以由位于同一行的所有像素区域组成。显示基板的像素区域由像素界定层限定,所述像素界定层包括位于每一像素组的相邻两个像素区域之间的第一像素界定层和位于相邻两行像素区域之间的第二像素界定层。形成像素界定层的步骤具体包括:
首先,在基底上形成第一感光膜层,对所述第一感光膜层进行曝光,显影后,形成第一像素界定层的第一子层和第二像素界定层的第二子层;
然后,形成覆盖所述第一子层和第二子层的第二感光膜层,对所述第二感光膜层进行曝光,显影后,在所述第一子层上形成引流条,在所述第二子层上形成第二像素界定层的第三子层。
通过上述步骤制得的第一像素界定层由所述第一子层和位于所述第一子层上的引流条组成,所述第二像素界定层由层叠设置的第二子层和第三子层组成,第一像素界定层和第二像素界定层为同层设置,即,显示基板的整个像素界定层同层设置,在实现本公开技术方案的同时,还能够简化制作工艺。
其中,像素界定层的两个层结构通常均由树脂材料制得。由于两层树脂层在疏液特性上是一致的,因此在涂胶时会相互的排斥,导致无法正常涂胶。为了解决这个问题,在两层树脂层之间增加了HMDS工艺,以增加两层树脂层之间的粘附性,防止发生薄膜脱落。具体的原理为:
HMDS工艺利用HMDS(六甲基乙硅氮烷)去掉第一层树脂层的-OH基,并形成疏水表面,增加第一层树脂层的黏附能力,从而增加第一层树脂层与位于其上的第二树脂层之间的粘附性。即,增加了所述第一像素界定层的第一子层和引流条的粘附性,以及所述第二像素界定层的第二子层和第三子层的粘附性。
以上所述仅是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本公开的保护范围。

Claims (10)

  1. 一种显示基板,包括基底和设置在所述基底上的像素界定层,所述像素界定层用于限定多个像素区域,其中,将所述多个像素区域划分为多个像素组,每一像素组由相邻的多个像素区域组成;
    对于每一像素组,所述像素界定层包括位于相邻的两个像素区域之间的第一像素界定层,至少部分相邻的两个像素区域之间的所述第一像素界定层的表面设置有多条引流条,所述引流条从相邻的其中一个像素区域的所在侧延伸至相邻的另一个像素区域的所在侧,相邻的两条引流条之间形成引流槽。
  2. 根据权利要求1所述的显示基板,其中,所述引流槽中设置有分隔条,在所述引流槽的延伸方向上,所述分隔条用于将所述引流槽分割为两部分;
    所述分隔条的背离所述基底的表面低于相邻的所述引流条的背离所述基底的表面。
  3. 根据权利要求2所述的显示基板,其中,所述分隔条与对应的相邻两个像素区域的距离相同。
  4. 根据权利要求2所述的显示基板,其中,位于相邻的两个像素区域之间的多条引流条平行设置;
    位于相邻的两个像素区域之间的多条引流条等间距设置。
  5. 根据权利要求4所述的显示基板,其中,所述分隔条与所述引流条垂直设置。
  6. 根据权利要求1所述的显示基板,其中,每一像素组的多个像素区域呈矩阵分布,在第一方向上所有相邻的两个像素区域之间的所述第一像素界定层的表面均设置有多条引流条。
  7. 根据权利要求6所述的显示基板,其中,每一像素组由位于同一行的多个像素区域组成。
  8. 根据权利要求7所述的显示基板,其中,所述像素界定层还包括位于相邻两行像素区域之间的第二像素界定层,所述第二像素界定层与所述第一像素界定层同层设置。
  9. 一种显示器件,包括权利要求1-8任一项所述的显示基板。
  10. 一种权利要求1-8任一项所述的显示基板的制作方法,包括:
    利用喷嘴在所有像素组内喷墨打印同一墨水材料,每一像素组至少对应一个喷嘴,在所述引流槽的引流作用下,使墨水材料均匀分布在每一像素组的所有像素区域内。
PCT/CN2018/086705 2017-06-21 2018-05-14 一种显示基板及其制作方法、显示器件 WO2018233400A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/342,381 US10886344B2 (en) 2017-06-21 2018-05-14 Display substrate, manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710474127.0 2017-06-21
CN201710474127.0A CN107331681B (zh) 2017-06-21 2017-06-21 一种显示基板及其制作方法、显示器件

Publications (1)

Publication Number Publication Date
WO2018233400A1 true WO2018233400A1 (zh) 2018-12-27

Family

ID=60194180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086705 WO2018233400A1 (zh) 2017-06-21 2018-05-14 一种显示基板及其制作方法、显示器件

Country Status (3)

Country Link
US (1) US10886344B2 (zh)
CN (1) CN107331681B (zh)
WO (1) WO2018233400A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107331681B (zh) 2017-06-21 2020-04-10 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示器件
CN107887423B (zh) * 2017-11-14 2019-08-13 合肥鑫晟光电科技有限公司 一种显示面板、其制备方法及显示装置
CN108382092B (zh) * 2018-02-06 2020-03-06 北京京东方显示技术有限公司 导流板、喷墨打印方法、设备、显示基板及其制造方法、装置
KR102268603B1 (ko) * 2019-07-10 2021-06-22 세메스 주식회사 기판, 디스플레이 패널 및 기판 제조 방법
CN111312779B (zh) * 2020-02-27 2022-09-09 武汉华星光电半导体显示技术有限公司 一种用于优化喷墨打印封装制程的结构及方法、显示屏
CN113611723A (zh) * 2020-07-28 2021-11-05 广东聚华印刷显示技术有限公司 像素结构及显示器件
CN114068850B (zh) * 2020-12-12 2024-05-28 广东聚华印刷显示技术有限公司 用于喷墨打印的基板及其制备方法和应用
CN114267703A (zh) * 2021-12-14 2022-04-01 深圳市华星光电半导体显示技术有限公司 Oled显示器件制造方法以及oled显示器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007094256A (ja) * 2005-09-30 2007-04-12 Epson Imaging Devices Corp 液晶装置、電子機器、及び、液晶装置の製造方法
CN105826355A (zh) * 2016-05-03 2016-08-03 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置
CN106328679A (zh) * 2015-06-30 2017-01-11 乐金显示有限公司 有机发光二极管显示装置
CN107331681A (zh) * 2017-06-21 2017-11-07 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示器件

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7888867B2 (en) * 2007-12-28 2011-02-15 Panasonic Corporation Organic el device having bank with groove, organic el display panel, and method for manufacturing the organic el device
JP5624047B2 (ja) * 2010-06-30 2014-11-12 パナソニック株式会社 有機el表示パネルとその製造方法
JPWO2014049904A1 (ja) * 2012-09-25 2016-08-22 株式会社Joled El表示装置の製造方法、el表示装置の製造に用いられる転写基板
KR101972169B1 (ko) * 2012-10-05 2019-04-26 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조방법
KR102048870B1 (ko) * 2013-01-18 2019-11-27 삼성디스플레이 주식회사 유기 발광 표시 장치의 제조 방법 및 이에 사용되는 잉크젯 프린트 장치
CN103887261B (zh) * 2014-03-03 2016-08-31 京东方科技集团股份有限公司 一种柔性显示器及其制备方法
CN108353473B (zh) * 2015-11-16 2020-03-10 夏普株式会社 有机电致发光装置、有机电致发光装置的制造方法、照明装置和显示装置
JP6741431B2 (ja) * 2016-01-25 2020-08-19 株式会社Joled 表示パネル及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007094256A (ja) * 2005-09-30 2007-04-12 Epson Imaging Devices Corp 液晶装置、電子機器、及び、液晶装置の製造方法
CN106328679A (zh) * 2015-06-30 2017-01-11 乐金显示有限公司 有机发光二极管显示装置
CN105826355A (zh) * 2016-05-03 2016-08-03 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置
CN107331681A (zh) * 2017-06-21 2017-11-07 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示器件

Also Published As

Publication number Publication date
US10886344B2 (en) 2021-01-05
CN107331681B (zh) 2020-04-10
US20190333973A1 (en) 2019-10-31
CN107331681A (zh) 2017-11-07

Similar Documents

Publication Publication Date Title
WO2018233400A1 (zh) 一种显示基板及其制作方法、显示器件
US9768382B2 (en) Display substrate, its manufacturing method and display device
US7503823B2 (en) Method of producing an organic EL light-emitting device
US10784322B2 (en) Array substrate, manufacturing method, and display device
EP3343626B1 (en) Electroluminescent display device
KR102222998B1 (ko) 채널을 갖는 화소정의막이 구비된 유기발광 표시장치
KR20070106240A (ko) 유기전계 발광소자 및 그 제조방법
WO2021249158A1 (zh) 显示基板、其制作方法及显示装置
KR20170080459A (ko) 유기발광다이오드표시장치
WO2021174983A1 (zh) 显示面板、其制作方法及显示装置
CN109119550B (zh) 喷墨打印的方法、像素结构、oled基板、显示装置
CN113540188B (zh) 显示基板和显示面板
JP6539848B2 (ja) 表示パネルの製造方法
KR102587743B1 (ko) 유기발광다이오드표시장치
CN113937144A (zh) 显示面板及其制作方法、显示装置
WO2024055821A9 (zh) 显示基板及其制备方法、显示面板
CN111341807B (zh) 像素界定结构、oled显示面板
KR20160067544A (ko) 유기전계 발광소자 및 이의 제조방법
WO2012169033A1 (ja) 有機エレクトロルミネッセンスパネル及びその製造方法
US11744118B2 (en) Array substrate, method of fabricating array substrate, display panel, and method of fabricating display panel
WO2023173511A1 (zh) 显示面板
US20220384543A1 (en) Light emitting device
JP4321059B2 (ja) 画像表示素子及びその製造方法
US11289554B2 (en) Organic light emitting device and fabricating method thereof
CN113871440B (zh) 有机发光二极管基板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18821290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18821290

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/10/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18821290

Country of ref document: EP

Kind code of ref document: A1