WO2018233186A1 - 背光模组及显示装置 - Google Patents

背光模组及显示装置 Download PDF

Info

Publication number
WO2018233186A1
WO2018233186A1 PCT/CN2017/110162 CN2017110162W WO2018233186A1 WO 2018233186 A1 WO2018233186 A1 WO 2018233186A1 CN 2017110162 W CN2017110162 W CN 2017110162W WO 2018233186 A1 WO2018233186 A1 WO 2018233186A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
backlight module
phosphor
light source
guide plate
Prior art date
Application number
PCT/CN2017/110162
Other languages
English (en)
French (fr)
Inventor
邓天应
潘俊
陈细俊
强科文
Original Assignee
深圳Tcl新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳Tcl新技术有限公司 filed Critical 深圳Tcl新技术有限公司
Publication of WO2018233186A1 publication Critical patent/WO2018233186A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • C09K11/615Halogenides
    • C09K11/616Halogenides with alkali or alkaline earth metals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/0091Positioning aspects of the light source relative to the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to the field of liquid crystal display technology, and in particular, to a backlight module and a display device.
  • liquid crystal display televisions usually include a backlight module and a liquid crystal display panel.
  • the liquid crystal display panel itself does not emit light, and the backlight module is required to provide sufficient light source with uniform brightness and uniform distribution, so that the display panel can display images normally.
  • the light source provided on the backlight module is a white light source, and the traditional liquid crystal display panel is driven by the white light source for image display, wherein the white light source mainly has a mixture of three primary colors of red, green and blue.
  • the white light provided by the backlight module for the liquid crystal display panel has the following forms: 1.
  • the light source uses a blue chip and a YAG phosphor material, and the light emitted by the blue chip excites the YAG phosphor to make the light emitted by the YAG phosphor
  • the blue light forms white light; 2.
  • the light source uses a blue chip and a red and green mixed phosphor material, and the light emitted by the blue chip excites the red and green mixed phosphor to emit red light and green light, so that red light and green and blue light are mixed.
  • White light uses a blue chip and a red and green mixed phosphor material, and the light emitted by the blue chip excites the red and green mixed phosphor to emit red light and green light, so that red light and green and blue light are mixed.
  • the color purity of the light excited by the YAG phosphor and the red and green mixed phosphor is not high, and the purity of the formed white light is not good, and the super wide color gamut display of the liquid crystal display panel cannot be realized.
  • the main object of the present invention is to provide a backlight module, which aims to solve the problem of poor thermal reliability of quantum dots.
  • a backlight module provided by the present invention includes:
  • the light source being an LED light source formed of a blue chip and a phosphor
  • the light guide plate is located on a light exiting side of the light source, and the light guide plate is provided with a quantum dot on a light incident surface opposite to the light source;
  • the phosphor is a red phosphor and the quantum dots are green quantum dots, or the phosphor is a green phosphor and the quantum dots are red quantum dots, and the light emitted by the blue chip excites the LED light source.
  • the phosphor and the light emitted by the quantum dots on the light guide plate mix to form white light.
  • a plurality of microstructures are recessed on the light incident surface of the light guide plate, and the quantum dots are disposed in the microstructure.
  • microstructure is a V-groove structure or a conical structure.
  • quantum dots are mixed with glue and sprayed into the microstructure of the light incident surface.
  • the material used for the red phosphor is fluoride.
  • the material used for the red phosphor includes a Mn element in a fluoride luminescent material system.
  • the light guide plate has oppositely disposed reflective surfaces and light exiting surfaces, and the reflective surface and the light emitting surface are both perpendicular to the light incident surface, and the reflective surface is arranged with dots.
  • the dots are arranged on the reflective surface in proportion.
  • the density of the dots on the low-beam end of the reflective surface is smaller than the density at the high-end end of the reflective surface.
  • the dots are disposed on the reflective surface by printing, laser laser or hot pressing.
  • the invention further includes a reflective sheet, the reflective sheet being located on a side of the light reflecting surface of the light guide plate facing away from the light incident surface.
  • an optical film is disposed, and the optical film is located on a side of the light-emitting surface of the light guide plate.
  • the backlight module further includes a backlight module frame, a PCB board, a back board, and a heat sink.
  • the backlight module frame and the back board surround a cavity, and the heat sink is located in the cavity.
  • the PCB board is located on the heat sink.
  • the present invention further provides a display device, characterized in that the display device comprises the backlight module described above.
  • an LED light source formed by a blue chip and a red phosphor is used as a light source, a red phosphor and a green quantum dot are excited by a blue chip, or an LED light source formed by a blue chip and a green phosphor is used as a light source.
  • the green phosphor and the red quantum dots are excited by the blue chip, and the white light is formed by the blue light and the excited red light and the green light to provide a white light source for the display panel; and the red phosphor or the green phosphor in the LED light source is single
  • the color phosphor has a higher purity of the luminescent color when excited, so that the purity of the formed white light is high, and the display color gamut display effect of the display panel is achieved.
  • FIG. 1 is a schematic structural view of a backlight module of the present invention
  • FIG. 2 is a schematic structural view of a first embodiment of a light guide plate of a backlight module according to the present invention
  • FIG 3 is a schematic structural view of a second embodiment of a light guide plate of a backlight module according to the present invention.
  • Label name Label name 100 light source 200 Light guide 300 Quantum dot 210 Glossy surface 400 Optical diaphragm 211 Microstructure 500 A reflective sheet 220 Reflective surface 600 Backlight module border 230 Glossy surface 700 heat sink 800 Backplane 900 PCB board
  • the directional indication is only used to explain in a certain posture (as shown in the figure).
  • first”, “second”, etc. in the embodiments of the present invention, the description of the "first”, “second”, etc. is used for the purpose of description only, and is not to be construed as an Its relative importance or implicit indication of the number of technical features indicated.
  • features defining “first” and “second” may include at least one of the features, either explicitly or implicitly.
  • the technical solutions between the various embodiments may be combined with each other, but must be based on the realization of those skilled in the art, and when the combination of the technical solutions is contradictory or impossible to implement, it should be considered that the combination of the technical solutions does not exist. It is also within the scope of protection required by the present invention.
  • FIG. 1 is a schematic structural view of a backlight module of the present invention.
  • the present invention provides a backlight module including a light source 100 and a light guide plate 200, and the light guide plate 200 is located on the light exit side of the light source 100.
  • the light source 100 is an LED light source formed by a blue chip and a phosphor.
  • the light guide plate 200 is provided with a quantum dot 300 on the light incident surface 210 disposed opposite to the light source 100.
  • the phosphor is a red phosphor and the quantum dots are green quantum dots, or the phosphor is a green phosphor and the quantum dots are red quantum dots, and the light emitted by the blue chip excites the LED light source.
  • the phosphor and the light emitted by the quantum dots on the light guide plate 200 are mixed to form white light.
  • the technical solution of the present invention may adopt an LED light source formed by a blue chip and a red phosphor, or an LED light source formed by a blue chip and a green phosphor, when an LED light source formed by a blue chip and a red phosphor is used.
  • the light emitted by the blue chip excites the red phosphor and the green quantum dot 300 to emit red and green light, and the excited red light, green light and blue light emitted by the blue chip are mixed to form white light; similarly, when blue light is used
  • the chip and the green phosphor form an LED light source
  • the light emitted by the blue chip excites the green phosphor and the red quantum dot 300 to emit green light and red light
  • the blue light emitted by the excited green light, red light and blue chip Mix to form white light.
  • the monochromatic quantum dots 300 are used to generate white light in the form of excited monochromatic light.
  • the type and number of quantum dots 300 disposed on the light guide plate 200 are reduced, and the heat generation of the quantum dots when excited is reduced, and further Reduce the production cost of the backlight module.
  • the backlight module further includes a backlight module frame 600, a PCB board 900, a back board 800, and a heat sink 700.
  • the backlight module frame 600 and the back board 800 are combined into a cavity.
  • the heat sink 700 is located in the cavity and close to the inner wall of the cavity, and the PCB board 900 is located on the heat sink 700.
  • heat is dissipated through the heat sink 700 to ensure its use.
  • the light source 100 is disposed on the PCB board 900 and electrically connected to the light source 100 on the PCB board 900.
  • the optical component group is located at a relative position of the light exiting side of the light source 100.
  • the PCB board 900 controls the light source 100 to emit light, and the light emitted by the light source 100 passes through the light guide plate 200 to form white light and is emitted toward the display panel to enable the display panel to display the screen normally.
  • an LED light source formed by a blue chip and a red phosphor is used as a light source, and a red phosphor and a green quantum dot 300 are excited by a blue chip, or an LED light source formed by using a blue chip and a green phosphor is used as the light source 100.
  • the green phosphor and the red quantum dot 300 are excited by the blue chip, and then the white light is formed by the blue light and the excited red light and the green light to provide the white light source 100 for the display panel; and the red phosphor or the green fluorescent light in the LED light source
  • the powder is a monochromatic phosphor, and the purity of the luminescent color emitted when excited is high, so that the purity of the formed white light is high, and the display color gamut display effect of the display panel is realized.
  • the quantum dot 300 is disposed on the light incident surface 210 of the light guide plate 200, and an air layer is radiated between the quantum dot 300 and the light source 100.
  • the heat released when the quantum dot 300 is excited can be quickly dissipated to reduce the quantum dot.
  • the temperature at which 300 is excited increases the thermal reliability of quantum dots 300.
  • a plurality of microstructures 211 are recessed on the light incident surface 210 of the light guide plate 200 , and the quantum dots 300 are disposed in the microstructures 211 .
  • the light emitted by the blue chip and the LED light source is emitted toward the light guide plate 200, and then is incident on the micro structure 211 of the light incident surface 210 of the light guide plate 200, and the light is concentrated and injected into the micro-structure 211.
  • the quantum dots 300 within the structure 211 are excited to excite the quantum dots 300 to emit red light (when the phosphor is a green phosphor) or green light (when the phosphor is a red phosphor).
  • a microstructure 211 is disposed on the light incident surface 210.
  • the light is refracted by the edge of the microstructure 211 and concentrated in the microstructure 211 to excite the quantum dot 300.
  • the microstructure 211 has a concentrating effect, which solves the problem that the number of LED light sources is small, and the excitation efficiency is low.
  • the microstructure 211 is a V-shaped groove structure or a conical structure, and the microstructure 211 is provided as a V-shaped groove or a cone.
  • These structures are simple and easy to produce. It can be understood that the microstructure 211 can also be a structure such as a slanted cone, a slanted V-shaped groove, a truncated cone, a cylinder, and a square.
  • the quantum dot 300 is mixed with glue and sprayed onto the light incident surface 210.
  • the material used for the red phosphor is fluoride.
  • the material used for the red phosphor includes a Mn element in a fluoride (KSF) luminescent material system, in an excited state 2E 4A2 is configured to the ground state Mn4+ ground state electron, the excited state: 4T1 4T2 2T1 2E sub-transition, the red light emitted by the red phosphor is 630nm when excited.
  • the 630 nm red light spectrum emission process is a process of 2E->4A2 electronic transition.
  • the light guide plate 200 has oppositely disposed reflective surfaces 220 and light exiting surfaces 230.
  • the reflective surfaces 220 and the light exiting surfaces 230 are perpendicular to the light incident surface 210, and the reflective surface 220 is arranged on the reflective surface 220. Dot points (not shown in the figure).
  • a dot is disposed on the reflective surface 220 such that when the light is irradiated onto the reflective surface 220, irregular reflection occurs, so that the light can be diffused and reflected by an arbitrary angle, and the dots are arranged to be arranged according to a certain ratio. So that the light achieves a uniform surface light source 100 effect during the reflection process.
  • the arrangement or size of the dots on the reflective surface 220 can be adjusted to achieve the desired effect.
  • the near-optical end density ratio is sparse, and the high-end end density ratio is dense to achieve the uniform surface light source 100.
  • the dots are disposed on the reflective surface 220 by printing, laser laser or hot pressing.
  • the main function of setting the dot is to make the reflective surface 220 no longer smooth.
  • other patterns can be used as long as the reflective surface 220 can be irregularly reflected, and can be printed, sprayed, lasered or hot pressed. Way to achieve.
  • the backlight module of the embodiment of the present invention further includes a reflective sheet 500, and the reflective sheet 500 is located on a side of the light reflecting surface 220 of the light guide plate 200 facing away from the light incident surface 210.
  • the reflective sheet 500 is disposed on the reflective surface 220, mainly to make the reflective surface 220 reflect the light source 100 more effectively.
  • an optical film 400 is disposed on the light emitting surface 230 side of the light guide plate 200. That is, the optical film 400 is located between the light guide plate 200 and the display panel, and the light emitted by the light source 100 passes through the light guide plate 200 and excites the quantum dots on the light guide plate 200 to form white light from the light exit surface of the light guide plate 200. The 230 is emitted and then passed through the optical film 400 and then directed to the display panel.
  • the optical film 400 functions to change the transmission angle direction of the light source 100, uniform image quality, and enhance the brightness of the backlight module in the backlight module.
  • CsPbX3 novel inorganic perovskite quantum dot 300 material
  • the first compound includes CdSe, CdTe, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, ZnS, ZnSe, ZnTe
  • the second compound includes GaN, GaP, GaAs, InN, InP, and InAs.
  • the embodiment of the invention further provides a display device, which comprises the above backlight module.
  • the specific structure of the backlight module refers to the above embodiment. Since the backlight module adopts all the technical solutions of all the above embodiments, at least all the beneficial effects brought by the technical solutions of the foregoing embodiments are not included herein. Narration.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

一种背光模组及显示装置,背光模组包括光源(100),光源(100)为由蓝色芯片和荧光粉形成的LED光源;导光板(200),导光板(200)位于光源(100)的出光侧,且导光板(200)与光源(100)相对设置的入光面(210)上设有量子点(300);荧光粉为红色荧光粉且量子点(300)为绿色量子点,或者,荧光粉为绿色荧光粉且量子点(300)为红色量子点,蓝色芯片发出的光激发LED光源内的荧光粉以及导光板(200)上的量子点(300)所发出的光混合形成白光。由于LED光源中的红色荧光粉或绿色荧光粉为单色荧光粉,被蓝色芯片发出的光激发时可得到色纯度较高的纯色光,以使蓝色芯片发出的光激发LED光源内的荧光粉以及导光板(200)上的量子点(300)所发出的光形成的白光色纯度高,实现显示面板广色域画质显示效果。

Description

背光模组及显示装置
技术领域
本发明涉及液晶显示技术领域,特别涉及一种背光模组及显示装置。
背景技术
随着社会的发展,电视已成为家庭中必不可少的电器设备,尤其是液晶显示电视,更是受到人们的青睐。现今,液晶显示电视通常包括背光模组和液晶显示面板,液晶显示面板本身不发光,需要背光模组提供充足的亮度与分布均匀的光源,从而使显示面板能够正常显示图像。而背光模组上提供的光源为白光光源,通过白光光源驱动传统的液晶显示面板进行图像显示,其中白光源主要有红色、绿色和蓝色三原色光混合而成。
目前,背光模组为液晶显示面板提供的白光具有以下几种形成方式:1、光源采用蓝光芯片和YAG荧光粉材料,通过蓝光芯片发出的光激发YAG荧光粉,使得YAG荧光粉发出的光与蓝光形成白光;2、光源采用蓝光芯片与红色和绿色混合的荧光粉材料,通过蓝光芯片发出的光激发红色和绿色混合的荧光粉发出红光和绿光,使得红光和绿色与蓝光混合形成白光。
然而,上述形成白光的方式中,YAG荧光粉以及红色和绿色混合的荧光粉被激发出的光的色纯度不高,所形成的白光纯度不佳,无法实现液晶显示面板超广色域显示。
发明内容
本发明的主要目的是提出一种背光模组,旨在解决量子点热可靠性差的问题。
为了实现上述目的,本发明提出的一种背光模组,包括:
光源,所述光源为由蓝色芯片和荧光粉形成的LED光源;
导光板,所述导光板位于所述光源的出光侧,且所述导光板与所述光源相对设置的入光面上设有量子点;
所述荧光粉为红色荧光粉且所述量子点为绿色量子点,或者,所述荧光粉为绿色荧光粉且所述量子点为红色量子点,所述蓝色芯片发出的光激发LED光源内的所述荧光粉以及所述导光板上的量子点所发出的光混合形成白光。
进一步地,所述导光板的入光面上凹设有若干个微型结构,所述量子点设置于所述微型结构内。
进一步地,所述微型结构为V型槽结构或圆锥结构。
进一步地,所述量子点与胶水混合后喷涂于所述入光面的微型结构内。
进一步地,所述红色荧光粉采用的材料为氟化物。
进一步地,所述红色荧光粉采用的材料包括氟化物发光材料体系中的Mn 元素。
进一步地,所述导光板具有相对设置的反光面和出光面,所述反光面与所述出光面均与所述入光面垂直,所述反光面上排布有网点。
进一步地,所述网点按照比例排布于所述反光面上。
进一步地,所述网点在所述反光面的近光端排布密度小于在所述反光面的远光端排布密度。
进一步地,所述网点通过印刷、激光镭射或热压方式设于所述反光面上。
进一步地,还包括反射片,所述反射片位于所述导光板的反光面背离所述入光面的一侧。
进一步地,还包括光学膜片,所述光学膜片位于所述导光板的出光面一侧。
进一步地,所述背光模组还包括背光模组边框、PCB板、背板以及散热器,所述背光模组边框与所述背板围合成一腔体,所述散热器位于所述腔体内,所述PCB板位于所述散热器上。
为了实现上述目的,本发明还提出一种显示装置,其特征在于,所述显示装置包括上述的背光模组。
本发明技术方案中,采用由蓝光芯片和红色荧光粉形成的LED光源作为光源,通过蓝色芯片激发红色荧光粉和绿色量子点,或者采用由蓝光芯片和绿色荧光粉形成的LED光源作为光源,通过蓝色芯片激发绿色荧光粉和红色量子点,进而由蓝光和被激发的红光和绿光形成白光,为显示面板提供白光光源;而由于LED光源中的红色荧光粉或绿色荧光粉为单色荧光粉,被激发的时候所发出发光色纯度较高,如此,使得所形成的白光色纯度高,实现显示面板广色域画质显示效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明背光模组的结构示意图;
图2为本发明背光模组导光板第一实施例的结构示意图;
图3为本发明背光模组导光板第二实施例的结构示意图。
附图标号说明:
标号 名称 标号 名称
100 光源 200 导光板
300 量子点 210 入光面
400 光学膜片 211 微型结构
500 反射片 220 反光面
600 背光模组边框 230 出光面
700 散热器 800 背板
900 PCB板
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
参见图1,图1为本发明背光模组的结构示意图。
本发明提出一种背光模组,包括光源100以及导光板200,所述导光板200位于所述光源100的出光侧。
所述光源100为由蓝色芯片和荧光粉形成的LED光源,所述导光板200与所述光源100相对设置的入光面210上设有量子点300。
所述荧光粉为红色荧光粉且所述量子点为绿色量子点,或者,所述荧光粉为绿色荧光粉且所述量子点为红色量子点,所述蓝色芯片发出的光激发LED光源内的所述荧光粉以及所述导光板200上的量子点所发出的光混合形成白光。
具体而言,本发明技术方案可以采用由蓝光芯片和红色荧光粉形成的LED光源,也可以采用由蓝光芯片和绿色荧光粉形成的LED光源,当采用蓝光芯片和红色荧光粉形成的LED光源时,蓝色芯片发出的光激发红色荧光粉和绿色量子点300发出红光和绿光,被激发出的红光、绿光和蓝色芯片所发出的蓝光混合形成白光;同样的,当采用蓝光芯片和绿色荧光粉形成的LED光源时,蓝色芯片发出的光激发绿色荧光粉和红色量子点300发出绿光和红光,被激发出的绿光、红光和蓝色芯片所发出的蓝光混合形成白光。本发明中,采用单色量子点300被激发单色光的形式产生白光,如此,设置于导光板200上的量子点300类型和数量减少,减少量子点被激发时热量产生的同时,还进而降低背光模组的生产成本。
更具体地,所述背光模组还包括背光模组边框600、PCB板900、背板800以及散热器700,所述背光模组边框600与所述背板800围合成一腔体,所述散热器700位于所述腔体内且靠近所述腔体的内壁,所述PCB板900位于所述散热器700上,所述PCB板900工作过程中,通过所述散热器700散热以保证其使用寿命,所述光源100设置于所述PCB板900上且与所述PCB板900上的光源100电路电连接,所述光学部件组位于所述光源100出光侧的相对位置。所述PCB板900控制所述光源100发出光,所述光源100发出的光经过导光板200后形成白光并向显示面板的方向发射上,以使显示面板能够正常显示画面。
本发明技术方案中,采用由蓝光芯片和红色荧光粉形成的LED光源作为光源,通过蓝色芯片激发红色荧光粉和绿色量子点300,或者采用蓝光芯片和绿色荧光粉形成的LED光源作为光源100,通过蓝色芯片激发绿色荧光粉和红色量子点300,进而由蓝光和被激发的红光和绿光形成白光,为显示面板提供白光光源100;而由于LED光源中的红色荧光粉或绿色荧光粉为单色荧光粉,被激发的时候所发出发光色纯度较高,如此,使得所形成的白光色纯度高,实现显示面板广色域画质显示效果。
此外,所述量子点300设置在导光板200的入光面210上,量子点300与光源100之间存在空气层散热,量子点300被激发时释放的热量能够快速被散发,以降低量子点300被激发时的温度,提高量子点300的热可靠性。
进一步地,继续参照图2和图3,所述导光板200的入光面210上凹设有若干个微型结构211,所述量子点300设置于所述微型结构211内。所述蓝色芯片和荧光粉形成的LED光源发出的光往导光板200方向射出,进而射向导光板200入光面210的微型结构211,并在微型结构211的作用下将光聚集射入微型结构211内的量子点300,以激发所述量子点300发出红光(当荧光粉为绿色荧光粉时)或绿光(当荧光粉为红色荧光粉时)。本发明实施例中,在所述入光面210上设置微型结构211,光线射到微型结构211的边缘时被微型结构211的边缘折射并聚集于微型结构211内以激发量子点300,如此,所述微型结构211具有聚光作用,解决了LED光源数量少量子点300激发效率低问题。
可选地,所述微型结构211为V型槽结构或圆锥结构,所述微型结构211设置成V型槽或圆锥,这些结构简单,易于生产。可以理解的是,所述微型结构211还可以是斜圆锥、斜V形槽、圆台、圆柱以及方形等结构。
进一步地,所述量子点300与胶水混合后喷涂到入光面210上。
进一步地,所述红色荧光粉采用的材料为氟化物。具体而言,所述红色荧光粉采用的材料包括氟化物(KSF)发光材料体系中的Mn 元素,在激发态2E 向基态Mn4+基态电子组态4A2,激发态:4T1 4T2 2T1 2E 子跃迁,红色荧光粉被激发时所发出的红光波长为630nm, 630nm红光光谱发射过程是2E->4A2电子跃迁的过程。
进一步地,所述导光板200具有相对设置的反光面220和出光面230,所述反光面220与所述出光面230均与所述入光面210垂直,所述反光面220上排布有网点(图中未标注)。
在反光面220上设置网点,使得光在照射到反光面220时,会发生毫无规则的反射,使得光能够被任意角度的漫反射后出光,而通过将网点设置成按照一定比例排布的,使得光在反射过程中达到均匀的面光源100效果。在实际应用过程中,可根据制作工艺的难易度以及需要达到的面光源100的效果等,对反光面220上的网点的排布或大小进行调整,以达到自己所需要的效果,在本实施例中,优选在近光端密度比例稀疏,远光端密度比例密集,以达到均匀面光源100。
在实现方式上,所述网点通过印刷、激光镭射或热压的方式设于所述反光面220上。设置网点的主要作用是让反光面220不再光滑,在实际应用中,也可以是其它的图案,只要能让反光面220不规则反射光即可,可通过印刷、喷涂、镭射或热压等方式实现。
本发明实施例中的背光模组还包括反射片500,所述反射片500位于所述导光板200的反光面220背离所述入光面210的一侧。反射片500设置在反光面220上,主要是使得反光面220反射光源100的效果更好。
进一步地,还包括光学膜片400,所述光学膜片400位于所述导光板200的出光面230一侧。也即所述光学膜片400位于所述导光板200与显示面板之间,光源100发出的光,经过导光板200并在导光板200上激发量子点后,形成白光从导光板200的出光面230射出,进而经过光学膜片400后射向显示面板,光学膜片400在背光模组中起到改变光源100的传输角度方向、均匀画质和提升背光模组亮度的作用。
进一步地,本发明中的量子点300材料包括:新型无机钙钛矿量子点300材料(CsPbX3,其中X=Cl,Br,I )、第Ⅱ主族与第Ⅵ主族中的元素形成的第一化合物中的任意一种、第Ⅲ主族与第Ⅴ主族中的元素形成的第二化合物中的任意一种、第一化合物和/ 或第二化合物中的多种包覆形成的核壳结构化合物或者掺杂纳米晶。第一化合物包括CdSe、CdTe、MgS、MgSe、MgTe、CaS、CaSe、CaTe、SrS、SrSe、SrTe、BaS、BaSe、BaTe、ZnS、ZnSe、ZnTe 和CdS,第二化合物包括GaN、GaP、GaAs、InN、InP 和InAs。
本发明实施例还提出一种显示装置,所述显示装置包括上述的背光模组。该背光模组的具体结构参照上述实施例,由于本背光模组采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不一一赘述。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (14)

  1. 一种背光模组,其特征在于,包括:
    光源,所述光源为由蓝色芯片和荧光粉形成的LED光源;
    导光板,所述导光板位于所述光源的出光侧,且所述导光板与所述光源相对设置的入光面上设有量子点;
    所述荧光粉为红色荧光粉且所述量子点为绿色量子点,或者,所述荧光粉为绿色荧光粉且所述量子点为红色量子点,所述蓝色芯片发出的光激发LED光源内的所述荧光粉以及所述导光板上的量子点所发出的光混合形成白光。
  2. 如权利要求1所述的背光模组,其特征在于,所述导光板的入光面上凹设有若干个微型结构,所述量子点设置于所述微型结构内。
  3. 如权利要求2所述的背光模组,其特征在于,所述微型结构为V型槽结构或圆锥结构。
  4. 如权利要求2所述的背光模组,其特征在于,所述量子点与胶水混合后喷涂于所述入光面的微型结构内。
  5. 如权利要求1所述的背光模组,其特征在于,所述红色荧光粉采用的材料为氟化物。
  6. 如权利要求5所述的背光模组,其特征在于,所述红色荧光粉采用的材料包括氟化物发光材料体系中的Mn 元素。
  7. 如权利要求1所述的背光模组,其特征在于,所述导光板具有相对设置的反光面和出光面,所述反光面与所述出光面均与所述入光面垂直,所述反光面上排布有网点。
  8. 如权利要求7所述的背光模组,其特征在于,所述网点按照比例排布于所述反光面上。
  9. 如权利要求8所述的背光模组,其特征在于,所述网点在所述反光面的近光端排布密度小于在所述反光面的远光端排布密度。
  10. 如权利要求7所述的背光模组,其特征在于,所述网点通过印刷、激光镭射或热压方式设于所述反光面上。
  11. 如权利要求7所述的背光模组,其特征在于,还包括反射片,所述反射片位于所述导光板的反光面背离所述入光面的一侧。
  12. 如权利要求5所述的背光模组,其特征在于,还包括光学膜片,所述光学膜片位于所述导光板的出光面一侧。
  13. 如权利要求1所述的背光模组,其特征在于,所述背光模组还包括背光模组边框、PCB板、背板以及散热器,所述背光模组边框与所述背板围合成一腔体,所述散热器位于所述腔体内,所述PCB板位于所述散热器上。
  14. 一种显示装置,其特征在于,包括如权利要求1-13任意一项所述的背光模组。
PCT/CN2017/110162 2017-06-22 2017-11-09 背光模组及显示装置 WO2018233186A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720743601.0U CN206863417U (zh) 2017-06-22 2017-06-22 背光模组及显示装置
CN201720743601.0 2017-06-22

Publications (1)

Publication Number Publication Date
WO2018233186A1 true WO2018233186A1 (zh) 2018-12-27

Family

ID=60827890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110162 WO2018233186A1 (zh) 2017-06-22 2017-11-09 背光模组及显示装置

Country Status (2)

Country Link
CN (1) CN206863417U (zh)
WO (1) WO2018233186A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109669231A (zh) * 2019-03-01 2019-04-23 京东方科技集团股份有限公司 一种背光模组和智能穿戴显示装置
CN113744626A (zh) * 2021-08-26 2021-12-03 常州亚玛顿股份有限公司 一种量子点扩散板、背光模组及显示装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948853A (zh) * 2020-08-20 2020-11-17 安徽芯瑞达科技股份有限公司 一种用于背光领域的侧入式高色域led模组
CN112162435B (zh) * 2020-11-13 2022-04-08 福州大学 一种侧入式量子点背光模组结构
CN112908976A (zh) * 2021-03-03 2021-06-04 惠州视维新技术有限公司 一种背光架构制造方法及显示装置制造方法
CN113437055B (zh) * 2021-06-28 2022-07-29 惠州视维新技术有限公司 一种led发光结构、背光模组及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204345536U (zh) * 2014-12-26 2015-05-20 翰博高新材料(合肥)股份有限公司 一种侧入式背光模组的量子点材料导光板
CN105202483A (zh) * 2014-06-20 2015-12-30 业鑫科技顾问股份有限公司 背光模组及显示设备
CN106125398A (zh) * 2016-07-25 2016-11-16 广东普加福光电科技有限公司 一种新型量子点液晶背光源
JP2017016925A (ja) * 2015-07-02 2017-01-19 大日本印刷株式会社 バックライト及び液晶表示装置
CN205958891U (zh) * 2016-07-08 2017-02-15 苏州星烁纳米科技有限公司 背光模组和显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105202483A (zh) * 2014-06-20 2015-12-30 业鑫科技顾问股份有限公司 背光模组及显示设备
CN204345536U (zh) * 2014-12-26 2015-05-20 翰博高新材料(合肥)股份有限公司 一种侧入式背光模组的量子点材料导光板
JP2017016925A (ja) * 2015-07-02 2017-01-19 大日本印刷株式会社 バックライト及び液晶表示装置
CN205958891U (zh) * 2016-07-08 2017-02-15 苏州星烁纳米科技有限公司 背光模组和显示装置
CN106125398A (zh) * 2016-07-25 2016-11-16 广东普加福光电科技有限公司 一种新型量子点液晶背光源

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109669231A (zh) * 2019-03-01 2019-04-23 京东方科技集团股份有限公司 一种背光模组和智能穿戴显示装置
CN113744626A (zh) * 2021-08-26 2021-12-03 常州亚玛顿股份有限公司 一种量子点扩散板、背光模组及显示装置

Also Published As

Publication number Publication date
CN206863417U (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
WO2018233186A1 (zh) 背光模组及显示装置
WO2017156902A1 (zh) 量子点背光模组及液晶电视
WO2012008692A2 (en) Display device
WO2020155813A1 (zh) 背光模组和显示装置
KR101460155B1 (ko) 백라이트 유닛 및 이를 구비한 액정 디스플레이 장치
WO2014117400A1 (zh) 背光模组及液晶显示装置
WO2013069878A1 (en) Optical sheet, display device and light emitting device having the same
WO2012005489A2 (en) Display device
WO2013009016A2 (en) Optical member, display device having the same and method for fabricating the same
WO2013032128A1 (en) Optical member, display device, and light emitting device having the same
WO2018233187A1 (zh) 背光模组及显示装置
WO2017206366A1 (zh) 背光模组和显示设备
KR20120021731A (ko) 양자점을 사용한 백라이트 유닛용 부재 및 그 제조 방법
WO2018188151A1 (zh) Led灯源及其制造方法、背光模组
WO2019071985A1 (zh) 背光模组及显示装置
CN108051952B (zh) 一种出光均匀的高色域直下式背光模组及其制作方法
WO2015089882A1 (zh) 白光发光二极管及背光模块
WO2018233199A1 (zh) Led、背光模组以及液晶显示装置
JP2008543041A (ja) Ledを備える照明システム
WO2021133122A1 (en) Quantum dot complex and display apparatus including the same
WO2017193779A1 (zh) 色轮、光源系统及投影装置
WO2019062237A1 (zh) 背光模组及显示装置
WO2018192228A1 (zh) Led灯源、灯条及显示装置
WO2020107644A1 (zh) 薄型背光模组及其制作方法
WO2018139687A1 (ko) Led 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915182

Country of ref document: EP

Kind code of ref document: A1