WO2018139687A1 - Led 모듈 - Google Patents

Led 모듈 Download PDF

Info

Publication number
WO2018139687A1
WO2018139687A1 PCT/KR2017/000852 KR2017000852W WO2018139687A1 WO 2018139687 A1 WO2018139687 A1 WO 2018139687A1 KR 2017000852 W KR2017000852 W KR 2017000852W WO 2018139687 A1 WO2018139687 A1 WO 2018139687A1
Authority
WO
WIPO (PCT)
Prior art keywords
bare chip
led bare
led
color conversion
conversion sheet
Prior art date
Application number
PCT/KR2017/000852
Other languages
English (en)
French (fr)
Inventor
고진욱
Original Assignee
주식회사 에스엘네트웍스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스엘네트웍스 filed Critical 주식회사 에스엘네트웍스
Priority to PCT/KR2017/000852 priority Critical patent/WO2018139687A1/ko
Priority to US16/479,173 priority patent/US20190355783A1/en
Publication of WO2018139687A1 publication Critical patent/WO2018139687A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to an LED module, and more particularly, to an LED module for illumination in which a phosphor sheet is attached to an LED bare chip without using an LED package molded with a phosphor on the LED bare chip.
  • a light emitting diode refers to a device that makes a small number of carriers (electrons or holes) injected by using a pn junction structure of a semiconductor and emits a predetermined light by recombination thereof, and red using GaAsP or the like. Green light emitting diodes using light emitting diodes, GaP and the like, and blue light emitting diodes using InGaN / AlGaN double hetero structure.
  • white light emitting devices combine white light emitting diode chips with phosphor molds to realize white light.
  • a phosphor is disposed on a light emitting diode chip emitting blue light, and white is obtained by blue light emission of the light emitting diode chip and yellow green or yellow light emission of the phosphor. That is, white light is realized by a combination of a blue light emitting diode chip made of a semiconductor component emitting a wavelength of 430 nm to 480 nm and a phosphor that generates yellow green and yellow light using blue light as an excitation source.
  • a white light emitting device for lighting has used a method in which a phosphor mold, which is formed by molding a light having a sufficiently high energy emitted from a high brightness blue LED bare chip and is placed on top of the LED bare chip, induces white.
  • a reflector is installed and a method of constructing a so-called LED package by injecting a phosphor resin into the reflector is used.
  • the problem of irregular luminescence brightness, high defect rate of the device, and poor color reproducibility due to the mixing ratio of the epoxy resin or silicone resin used at the time of application, thermal instability of the resin, and irregular deposition of the phosphor during curing are pointed out. It is true.
  • the present invention is to solve the above-described prior art, an object of the present invention is to provide an LED module that is easy to manufacture and has thermal durability and excellent color reproduction.
  • the LED module includes a substrate, at least one LED bare chip mounted on the substrate, and at least one color conversion sheet formed on the LED bare chip and including a phosphor;
  • the color conversion sheet is formed to cover at least one LED bare chip, and the height of the area corresponding to the LED bare chip in the color conversion sheet is different from the height of the area not corresponding to the LED bare chip in the color conversion sheet. do.
  • the LED module may further include at least one underfill layer formed to fill the space between the LED bare chip on the substrate and to surround the LED bare chip, the color conversion sheet is the under It may be attached to the top surface of the peeling layer or the top surface of the LED bare chip.
  • an area corresponding to the color conversion sheet may be formed to protrude convexly upward than an area not corresponding to the LED bare chip.
  • the LED module may include a light diffusion adhesive layer formed to fill a space between the LED bare chips on the substrate, and formed at least one to surround a side surface of the LED bare chip or to contact an upper surface of the LED bare chip. Further, between the color conversion sheet and the side of the LED bare chip, a buffer space or the lead portion in which the light diffusion adhesive layer is drawn into the lower portion of the LED bare chip may be formed.
  • a buffer space may be formed between the color conversion sheet and the side surface of the LED bare chip, the buffer space may be formed by pressing the color conversion sheet on the substrate.
  • the LED module may further include a light diffusion layer formed to fill a space between the LED bare chips on the substrate, and to surround a side surface of the LED bare chip or to contact an upper surface of the LED bare chip.
  • the light diffusion layer may transmit light emitted from the LED bare chip to a region where the color conversion sheet does not correspond to the LED bare chip.
  • the LED module may further include at least one sheet block formed to fill a space between the LED bare chips on the substrate, and a gap region may be formed between the sheet block and the LED bare chip.
  • a protrusion inserted into the gap region may be formed in an area corresponding to the gap region in the color conversion sheet.
  • the LED module may further include a light diffusing lens formed adjacent to a side of the LED bare chip on the substrate, and an area corresponding to the LED bare chip and an area corresponding to the light diffusing lens in the color conversion sheet. Is a main light emitting area, and a region that does not correspond to the LED bare chip and the light diffusing lens is the light emitted by the light diffusing lens is excited or moved inside the color conversion sheet to be excited and emitted Can be formed.
  • the LED module of the present invention has a color conversion sheet and does not have an LED package manufacturing process, the LED module can be more easily manufactured.
  • the color conversion sheet is provided in place of the phosphor mold, the phosphor mold is prevented from being deteriorated by heat, and thus white color can be reproduced excellently.
  • the underfill layer is formed in contact with the side of the LED bare chip is formed to efficiently discharge the heat formed in the LED bare chip can prevent the color conversion sheet from deteriorating.
  • FIG. 1 is a perspective view showing an LED module according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing an LED module according to a first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a process of manufacturing a color conversion sheet.
  • FIG. 4 is a cross-sectional view showing an LED module according to a second embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing an LED module according to a third embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing an LED module according to a fourth embodiment of the present invention.
  • FIG. 7 is a plan view illustrating an LED module according to a fifth embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing an LED module according to a fifth embodiment of the present invention.
  • FIG. 9 is a perspective view showing an LED module according to a sixth embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing an LED module according to a sixth embodiment of the present invention.
  • FIG. 11 is a cross-sectional view illustrating the operation of the LED module according to the sixth embodiment of the present invention.
  • FIG. 1 is a perspective view showing an LED module according to a first embodiment of the present invention
  • Figure 2 is a cross-sectional view showing an LED module according to a first embodiment of the present invention.
  • the LED module 101 includes a substrate 21, an LED bare chip 25, and a color conversion sheet 10.
  • substrate 21 can be any board
  • the substrate 21 may include alumina, quartz, calcium zirconate, forsterite, SiC, graphite, fusedsilica, Mullite, cordierite, zirconia, beryllia, aluminum nitride, low temperature co-fired ceramic (LTCC), and the like.
  • the substrate 21 may be formed of a straight, circular or polygonal plate.
  • the substrate 21 may be provided with a first wire 23 and a second wire 24 for supplying power to the LED bare chip 25. Can be.
  • the LED module 101 according to the first embodiment is electrically connected to the LED bare chip 25 and the substrate 21 through the soldering portion 27 and does not have a separate bonding wire.
  • the soldering part 27 electrically connects the LED bare chip 25 and the substrate 21.
  • the soldering part 27 electrically connects the terminal 26 formed on the LED bare chip 25 to the substrate 21.
  • the soldering part 27 may be formed by a surface mount technology (SMT).
  • the LED bare chip 25 is a blue light emitting LED chip, and may be formed of a semiconductor component emitting a wavelength of 430 nm to 480 nm. However, the LED bare chip 25 may be an LED bare chip that emits other color light, and the scope of the present invention is not limited to a specific LED bare chip, of course.
  • the LED module according to the first embodiment of the present invention is composed of at least one LED bare chip. This is because the LED module according to the present embodiment has a structure for the organic connection relationship between the LED bare chip 25 and the color conversion sheet 10 that are possible only with the LED module structure.
  • the LED module according to the first embodiment of the present invention does not have a structure in which a plurality of LED packages including a reflector on a conventional LED bare chip and a fluorescent molding layer are formed therebetween. Refrain from the package structure, and the LED light module of the highest quality with no shading according to the LED bare chip and the color conversion sheet 10 disposed thereon.
  • the color conversion sheet 10 is attached on the LED bare chip 25 to cover the plurality of LED bare chips 25.
  • One color conversion sheet 10 may be installed on the substrate 21 to cover all the LED bare chips 25 installed on the substrate 21.
  • the color conversion sheet 10 may be made of a unit (unibody).
  • the present invention is not limited thereto, and a plurality of color conversion sheets 10 may be installed on one substrate 21. However, even in this case, the color conversion sheet 10 may be installed to cover at least one LED bare chip 25.
  • a force is applied toward the substrate in the process of attaching the color conversion sheet 10 so that the height of the area corresponding to the LED bare chip 25 in the color conversion sheet 10 is the LED bare chip 25 in the color conversion sheet 10. It may be formed differently from the height of the region that does not correspond to. In more detail, the region corresponding to the LED bare chip 25 in the color conversion sheet 10 may be formed to protrude convexly upward than the non-corresponding region.
  • the color conversion sheet 10 may be made of only the first sheet 11 having the phosphor 15 or may further include a second sheet 12 having adhesiveness.
  • the second sheet 12 may also serve as an underfilling layer, a light diffusion adhesive layer, and a light diffusion layer, which will be described in other embodiments, which will be described in detail in each embodiment.
  • the first sheet 11 includes a first substrate 11a and a phosphor layer 11b coated on the first substrate 11a.
  • the first substrate 11a may be made of a resin, and the resin may be, but is not limited to, a silicone resin, an epoxy resin, a glass, a glass ceramic, a polyester resin, an acrylic resin, and a urethane resin.
  • thermosetting resins having transparency such as nylon resins, polyamide resins, polyimide resins, vinyl chloride resins, polycarbonate resins, polyethylene resins, teflon resins, polystyrene resins, polypropylene resins, and polyolefin resins.
  • the phosphor layer 11b may be manufactured by using a phosphor as a main component such that the wavelength excited and emitted by the blue light emitted from the LED bare chip 25 becomes an R or G series.
  • the present embodiment corresponds to the case of configuring the color conversion sheet 10 for producing white light when the LED bare chip 25 outputs blue light, but the LED bare chip 25 outputs green light or red light. In this case, it is a matter of course that another phosphor may be used to make white light.
  • the phosphor layer 11b may be applied onto the first substrate 11a by a printing method using a slot die or a doctor blade.
  • the first sheet 11 is made of a ribbon shape wound on the roller and can be conveyed at a speed of 1 m / min to 15 m / min, and the first sheet 11 is cured while passing through a thermal curing section of 10 m or more. .
  • the second sheet 12 includes a second substrate 12a and an adhesive layer 12b formed on the second substrate 12a.
  • the second base 12a may be made of a resin having adhesive strength, and in particular, may be made of heat resistant transparent silicone.
  • the adhesive layer 12b may include a transparent adhesive such as a UV curable resin, a thermosetting resin, or a sealant.
  • the adhesive layer 12b may be applied onto the second substrate 12a by a printing method using a slot die or a doctor blade.
  • the hardness of the second sheet 12 is formed smaller than the hardness of the first sheet 11, the hardness of the second sheet 12 may be made of Shore A hardness of 5 or more and 20 or less.
  • the thickness of the second sheet 12 may be greater than 15 ⁇ m and smaller than the thickness of the LED bare chip 25.
  • the present invention is not limited thereto, and the second sheet 12 may have various structures.
  • the second sheet 12 may have a larger thermal conductivity than the first sheet 11.
  • the second sheet 12 may be made of polyimide resin, and the second sheet 12 may have improved thermal conductivity. It may include a metal oxide such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • the first sheet 11 and the second sheet 12 may be pressure-bonded by a roll to roll process.
  • the LED module according to the present embodiment to compress the color conversion sheet 10 to the substrate in the direction of the LED bare chip 25 to form a buffer space 28 between the side of the LED bare chip 25.
  • the height of the color conversion sheet 10 in the region corresponding to the LED bare chip 25 is formed at least equal to or greater than the height of the color conversion sheet 10 in the region not corresponding.
  • the LED bare chip and the corresponding region are relatively protruded upward, and the non-corresponding regions are formed such that concave convex patterns appearing relatively downward alternately.
  • the buffer space 28 is formed to extend in the circumferential direction of the LED bare chip 25 to surround the side surface of the LED bare chip 25.
  • the buffer space 28 may have a triangular channel shape and have a triangular longitudinal section. According to the buffer space 28, light emitted from the LED bare chip 25 is diffused in the buffer space 28, so that the dot visible phenomenon may be further reduced.
  • the LED module 101 according to the first embodiment does not have a fluorescent molding layer, does not have a package shape, and since the LED bare chip 25 is directly mounted on the substrate 21, the LED module significantly reduces the volume.
  • the manufacturing process can be significantly simplified, and instead of the fluorescent molding layer, the color conversion sheet 10 is installed to cover the plurality of LED bare chips 25, so that the fluorescent molding layer is deteriorated due to thermal effects.
  • the color reproducibility can be prevented from being reduced, and the dot visible phenomenon can be further reduced by diffusing light emitted from the LED bare chip in the buffer space as the buffer space is formed.
  • FIG. 4 is a cross-sectional view showing the LED module 102 according to the second embodiment of the present invention, the same reference numerals are assigned to the same components as those of the first embodiment, and the description of the same components is not repeated.
  • the LED module 102 further includes an underfilling layer 22a.
  • the underfill layer 22a fills the space between the LED bare chips 25 on the substrate, and is formed to surround the LED bare chips.
  • the underfill layer 22a may be formed by attaching a sheet having an elastic film shape on the substrate or injecting a liquid resin between the LED bare chips 25.
  • the underfill layer 22a may be formed of at least one of an epoxy resin, a polyimide resin, a UV curable resin that is a transparent adhesive component, a thermosetting resin, and a sealant.
  • the underfill layer 22a may be made of a light transmissive material that transmits light, or may be made of a white or silver material that reflects light.
  • One underfill layer 22a may be formed in a unibody while contacting the side surfaces of the plurality of LED bare chips 25, or a plurality of underfill layers 22a may be formed on a substrate. That is, it is possible to significantly reduce the process cost of preparing the underfilling layer 22a by providing an underfilling layer of unit size regardless of the size of the LED module and attaching it to the LED module.
  • the underfill layer 22a is formed to surround the outer circumference of the LED bare chips 25.
  • the underfill layer 22a may be formed to be in contact with the side surface of the LED bare chip 25 while surrounding the circumference of the LED bare chip or may be formed spaced apart from the side of the LED bare chip 25.
  • When formed to be in contact with the side of 25 may be formed to be in contact with a part of the side rather than the entire side.
  • the adhesive layer of the color conversion sheet 10 performs the function of the underfilling layer 22a as described below, when the color conversion sheet is pressed, the adhesive layer of the side portion of the lower side of the LED bare chip may be pressed. Since a buffer space may be generated, the buffer space may be formed to be in contact with the side of the LED bare chip 25 instead of the entire side.
  • the top height h1 of the underfill layer 22a may be formed to be the same as or lower than the top height h2 of the LED bare chip 25. That is, the color conversion sheet 10 is attached by applying pressure in the downward direction when attached, in order to remove the shading, the height of the color conversion sheet preferably forms a plane in the entire area, so when the color conversion sheet 10 is pressed It is preferable that the height h1 of the underfill layer 22a disposed below is equal to or lower than the height h2 of the LED bare chip 25. That is, the LED module according to an embodiment of the present invention is characterized in that the final thickness (height) of the underfilling layer is formed by pressing the entire color conversion sheet 10 attached thereto.
  • the distance h1 between the top surface of the underfill layer 22a and the substrate 21 is equal to or smaller than the distance h2 between the top surface of the LED bare chip 25 and the substrate 21.
  • the underfill layer 22a may be formed to expose only the top surface of the LED bare chips 25 and surround the side and bottom surfaces thereof.
  • the underfill layer 22a may planarize the surface on which the color conversion sheet 10 is attached so that the color conversion sheet 10 may be stably installed on the substrate 21 as well as the LED bare chip 25. ) And quickly releases heat generated from the substrate 21.
  • the color conversion sheet 10 is attached to the top surface of the LED bare chip 25 and the top surface of the underfill layer 22a to cover the plurality of LED bare chips 25.
  • One color conversion sheet 10 is formed of a unit (unibody) to cover all the LED bare chip 25 installed on the substrate 21, or one color conversion sheet 10 is at least one LED bare chip 25 It may be installed in plurality, not integrally to cover the. However, even in this case, the plurality of color conversion sheets 10 may be installed to cover all of the plurality of LED bare chips 25. That is, it is possible to significantly reduce the process cost of preparing the color conversion sheet 10 by having the color conversion sheet 10 of the unit size irrespective of the size of the LED module and attaching it separately to the LED module of the predetermined size. . At this time, one color conversion sheet 10 to cover at least two LED bare chip 25 will lower the process cost.
  • the color conversion sheet 10 may include a first sheet 11 having a phosphor and a second sheet 12 having adhesiveness.
  • the underfill layer 22a comprises at least one of a UV curable resin, a thermosetting resin, and a sealant, which are adhesive adhesives
  • the second sheet is not included. That is, the underfill layer 22a can function as an adhesive layer like the second sheet 12 of the color conversion sheet 10.
  • the heat generated from the LED bare chip 25 may be more easily discharged, and the color conversion sheet 10 may be more stably attached. Can be.
  • the adhesive layer 12 of the color conversion sheet 10 functions as the underfill layer 22a, the heat dissipation effect may be maximized while further reducing the process steps.
  • FIG. 5 is a cross-sectional view of the LED module 103 according to the third embodiment of the present invention.
  • the same reference numerals are assigned to the same components as those of the first embodiment, and the description of the same components is not repeated.
  • the light diffusion adhesive layer 22b is formed to fill the space between the LED bare chips 25.
  • the light diffusion adhesive layer 22b is preferably made of a film having elasticity for firm adhesion with the color conversion sheet 10 to be described later.
  • the light diffusion adhesive layer 22b is made of a light transmitting material that transmits light, and the surface where the light diffusion adhesive layer 22b is in contact with the substrate may be further coated with a white or silver material that reflects light.
  • the light diffusion adhesive layer 22b may be formed by injecting a liquid resin between the LED bare chips 25.
  • the light diffusion adhesive layer 22b may be made of an epoxy resin, or may be made of a polyimide resin.
  • the light diffusion adhesive layer 22b is formed to surround the side surface of the LED bare chip 25.
  • the light diffusion adhesive layer 22b may be formed to contact the side surface of the LED bare chip 25.
  • a portion of the side surface of the LED bare chip 25 may be in contact with the LED bare chip 25. In that case, the light diffusion efficiency is further increased.
  • the light diffusion adhesive layer 22b is initially arranged to surround the LED bare chip 25 so that the light diffusion adhesive layer 22b may be slightly spaced apart from the side of the LED bare chip 25, but then the side surface of the LED bare chip 25 may be pressed by compression. Can come in contact.
  • the light diffusion adhesive layer 22b corresponds to the emission light (a direction) of the LED bare chip 25 and the LED bare chip in the color conversion sheet 10 as shown in FIG. 5. It is to be discharged to the upper portion (b direction) of the non-region. Accordingly, it is possible to remarkably reduce the dot visible phenomenon or the shadow occurrence phenomenon of the illumination, which is a chronic problem of the LED lighting. In other words, a technique for inserting a lens for side light distribution has recently emerged. According to this embodiment, since the light diffusion adhesive layer 22b serves as a light guide plate, side light distribution is possible without expensive lens insertion to improve the quality of illumination. And lower production costs.
  • the LED module 102 according to the third embodiment can also be described as the second sheet in the first embodiment functioning as the light diffusion adhesive layer 22b. This can further lower process costs.
  • the light diffusion adhesive layer 22b planarizes the surface to which the color conversion sheet 10 is attached so that the color conversion sheet 10 may be stably installed on the substrate 21 as well as the LED bare chip 25. And quickly release heat generated from the substrate 21.
  • the light diffusion adhesive layer 22b and the color conversion sheet 10 are integrally formed and attached to the LED bare chip 25 to manufacture the LED module. Therefore, the light diffusion adhesive layer 22b is formed to be in contact with the upper surface of the LED bare chip 25, thereby forming a buffer space 28 between the side surface of the LED bare chip 25.
  • the buffer space 28 is formed to extend in the circumferential direction of the LED bare chip 25 to surround the side surface of the LED bare chip 25.
  • the buffer space 28 may have a triangular channel shape and have a triangular longitudinal section. According to the buffer space 28, light emitted from the LED bare chip 25 is diffused in the buffer space 28, so that the dot visible phenomenon may be further reduced.
  • the light diffusion adhesive layer 22b and the color conversion sheet 10 are integrally formed and the strength of the light diffusion adhesive layer 22b is further increased in the direction of the LED bare chip 25, the light diffusion adhesive layer 22b may be a LED bare chip ( An inlet 29 pushed into the bottom of 25 may be created.
  • the inlet 29 serves as a light guiding plate for transmitting light emitted from the LED bay chip 25, thereby further preventing loss of light emitted from the LED bare chip 25, thereby reducing the diffusion effect of the buffer space. Since the amount of light emitted from the space between the chips is increased, the shading phenomenon can be reduced.
  • FIG. 6 is a cross-sectional view of the LED module 104 according to the fourth embodiment of the present invention.
  • the same reference numerals are assigned to the same components as those of the first embodiment, and the description of the same components is not repeated.
  • the LED module 104 according to the fourth embodiment of the present invention further includes a light diffusion layer 22c and is formed to fill a space between the LED bare chips 25. At this time, it is preferable to be formed to a thickness thicker than the light diffusion adhesive layer in the third embodiment is configured to transmit more light.
  • the light diffusion layer 22c is preferably made of a film having elasticity for firm adhesion with the color conversion sheet 10 to be described later.
  • the light diffusing layer 22c is made of a light transmitting material that transmits light, and the surface where the light diffusing layer 22c is in contact with the substrate may be further coated with a white or silver material reflecting light.
  • the light diffusion layer 22c is formed to surround the side surface of the LED bare chip 25 or to contact the top surface of the LED bare chip 25. In this case, the light diffusion layer 22c may be formed to contact the side surface of the LED bare chip 25.
  • the light diffusing layer 22c is initially arranged to surround the LED bare chip 25 so that the light diffusing layer 22c may be slightly spaced apart from the side of the LED bare chip 25, but is later fitted with the side of the LED bare chip 25 by pressing. Can be reached.
  • the light diffusion layer 22c transfers the side emission light (a direction) of the LED bare chip 25 to a region that does not correspond to the LED bare chip in the color conversion sheet as shown in FIG. 6.
  • the area corresponding to the LED bare chip in the color conversion sheet 10 becomes the basic main light emitting area A
  • the area not corresponding to the LED bare chip 25 forms the sub light emitting area B.
  • the sub-emission area B receives both the light emitted from the top of the LED bare chip and transmitted to the side, and the light emitted from the side of the LED bare chip is reached. Since the light is simultaneously reached from the LED bare chip, the luminous flux similar to the main light emitting area A is realized. Accordingly, it is possible to remarkably reduce the dot visible phenomenon or the shadow occurrence phenomenon of the illumination, which is a chronic problem of the LED lighting.
  • the light diffusion layer 22c may planarize the surface to which the color conversion sheet 10 is attached so that the color conversion sheet 10 may be stably installed on the substrate 21, as well as the LED bare chip 25 and It serves to quickly release the heat generated in the substrate 21.
  • FIG. 7 is a plan view illustrating an LED module according to a fifth embodiment of the present invention
  • FIG. 8 is a cross-sectional view illustrating an LED module according to a fifth embodiment of the present invention.
  • the same reference numerals are assigned to the same components as in the first embodiment, and duplicate descriptions of the same components are not given.
  • the LED module 105 includes a seat block 22d.
  • the sheet block 22d is formed to fill the space between the LED bare chips 25.
  • the sheet block 22d may be integrally formed or formed in plural, and may be attached to each other by filling a space between the LED bare chips.
  • the sheet block 22d is preferably made of a film having elasticity for firm adhesion with the color conversion sheet 10 to be described later.
  • the sheet block 22d is made of a light-transmitting material that transmits light, and the surface of the sheet block 22d contacting the substrate may be further coated with a white or silver material reflecting light.
  • the sheet block 22d may be formed of at least one of a UV adhesive resin, a thermosetting resin, and a sealant, which are transparent adhesive components. However, it is of course not limited to any one material.
  • the seat block 22d transmits the light emitted by the LED bare chip 25 to a region where the color conversion sheet 10 does not correspond to the LED bare chip.
  • the seat block 22d may be formed to surround the side surface of the LED bare chip 25 or to contact the top surface of the LED bare chip 25. At this time, since the seat block 22d is attached to the LED bare chip 25 spaced apart from each other, a gap region 28 is formed between the seat block and the LED bare chip. In this case, the light scattering surface 31 is formed on one surface of the sheet block constituting the gap region 28. The light scattering surface 31 has a roughness of irregular surface roughness is formed. Accordingly, since the light transmitted to the sheet block 31 is scattered and transmitted, the color rendering property of the light excited by the color conversion sheet 10 (light emitted from a portion not corresponding to the LED bare chip) is further improved. Be sure to
  • the light that is initially emitted by the LED bare chip is reflected and transmitted to the side by the seat block, and the light that is initially emitted to the side of the LED bare chip, both reach the area between the LED bare chip, In this case, since the area between the LED bare chips is reached at the same time, the luminous flux similar to the light emitted from the upper part of the LED bare chips is realized. As a result, the color rendering properties can be improved, and furthermore, the dot show phenomenon or the shadow occurrence phenomenon of illumination, which are intrinsic problems of LED lighting, can be significantly reduced.
  • the sheet block 22d may planarize the surface to which the color conversion sheet 10 is attached so that the color conversion sheet 10 may be stably installed on the substrate 21, as well as the LED bare chip 25 and It serves to quickly release the heat generated in the substrate 21.
  • the protrusion 11 is formed in the gap region 28.
  • an upper surface of the seat block 22d is formed with a region equal to or lower than the upper surface of the LED bare chip 25.
  • the LED bare chip and the corresponding region may be formed to protrude relatively upward, and the non-corresponding region may be formed such that concave and convex patterns appearing relatively downward alternately.
  • the color conversion sheet 10 may be more stably attached, and the plurality of LED bare chips 25 may emit white light by one color conversion sheet 10.
  • the light emitted from the side of the LED bare chip is reflected by the protrusion 11 is more easily transmitted to the seat block 22d. Therefore, there is an effect that the above-mentioned shading is further prevented.
  • FIG. 9 is a perspective view showing an LED module according to a sixth embodiment of the present invention
  • Figure 10 is a sectional view showing an LED module according to a sixth embodiment of the present invention
  • Figure 11 is a sixth embodiment of the present invention It is sectional drawing explaining the action of the LED module by this.
  • the same reference numerals are assigned to the same components as in the first embodiment, and duplicate descriptions of the same components are not given.
  • the LED module 106 includes a substrate 21, an LED bare chip 25, a light diffusion lens 22e, and a color conversion sheet 10.
  • the light diffusion lens 20 may be formed using a material such as acrylic, polycarbonate, silicon, PET, etc. having excellent light transmittance and excellent moldability.
  • the light diffusion lens 20 may be formed on the side surfaces of the LED bare chips 25 to transmit light. Formed adjacently.
  • the LED generally has a directional angular width in which the amount of light emitted is higher toward the upper side, because it is necessary to adjust the irradiation range of the light using an additional lens in order to transmit the side of the light.
  • the light diffusion lens 22e is preferably made of a combination of a concave lens or a convex lens having a focal length within a setting range.
  • the light diffusion lens 22e may be formed adjacent to the side of the LED bare chip 25 or may be in contact with the side or the top surface to transmit the light to the side region spaced apart from the LED bare chip 25. Can be formed. However, as shown in FIG. 10, the light diffusion lens 22e may form a buffer space 28 that does not contact the side surface of the LED bare chip 25.
  • the buffer space 28 may have a triangular channel shape and have a triangular longitudinal section. Since light emitted from the LED bare chip 25 is diffused in the buffer space 28 and enters the light diffusion lens 22e according to the buffer space 28, the side lateral transmission efficiency of the light is further increased to further reduce shading. can do.
  • the color conversion sheet 10 is a sheet including a phosphor, and is attached on the substrate 21 or on the light diffusion lens 22e to cover at least one LED bare chip 25.
  • the color conversion sheet 10 may be attached to the upper surface of the light diffusion lens 22e or the substrate 21.
  • At least one color conversion sheet 10 may be installed on the substrate 21 to cover all the LED bare chips 25 installed on the substrate 21.
  • the color conversion sheet 10 serves to excite the light transmitted to the side by the light diffusion lens 22e described above, or to transmit the light transmitted to the side by the light diffusing lens 22e to the side to emit the excitation. do. As a result, light emission is performed even in a region not corresponding to the LED bare chip 25 and the light diffusion lens 22e.
  • an area in which the LED bare chip 25 and the light diffusing lens 22e are disposed forms a main light emitting area A.
  • the region of forms the sub light emitting region B.
  • the light diffusion lens 22e transmits the light emitted by the LED bare chip 25 to the side (a direction) and transmits the light to the color conversion sheet 10, and the light is emitted or again transmitted to the side to be LED. It is evenly distributed in the space between the bare chips 25.
  • the sub-emission area B is light that is initially reflected by the light emitted from the LED bare chip 25 and is transmitted to the side, light that is initially emitted by the LED bare chip 25 and the light diffusion lens.
  • the light transmitted to the side by 22e, the light transmitted in these three types, is moved again in the color conversion sheet 10, and the light reached is emitted after excitation (b direction) to form a light emitting region.
  • the LED module according to an embodiment of the present invention moves to the side before the light emitted by the LED bare chip 25 is first excited by the phosphor contained in the color conversion sheet 10 and finally the color conversion sheet ( It is excited by 10) and finally exits. Therefore, it is possible to implement the highest quality LED module for lighting that does not degrade the color rendering of light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)

Abstract

본 발명은 제작이 용이하고 열적 내구성 및 우수한 색재현성을 갖는 LED 모듈을 제공한다. 본 발명의 일 측면에 따른 LED 모듈은 기판, 기판 상에 실장된 적어도 하나의 LED 베어칩, 및 상기 LED 베어칩 상에 형성되고, 형광체를 포함하는 적어도 하나의 색변환시트;를 포함하고, 상기 색변환시트는 적어도 하나의 LED 베어칩을 덮도록 형성되고, 상기 색변환시트에서 상기 LED 베어칩과 대응하는 영역의 높이는 상기 색변환시트에서 상기 LED 베어칩과 대응하지 않은 영역의 높이와 다르게 형성된다.

Description

LED 모듈
본 발명은 LED 모듈에 관한 것으로서, 보다 상세하게는 LED 베어칩에 형광체를 몰딩한 LED 패키지를 사용하지 않고, LED 베어칩에 형광체시트를 부착한 조명용 LED 모듈에 관한 것이다.
발광 다이오드(light emitting diode; LED)는 반도체의 p-n 접합 구조를 이용하여 주입된 소수 캐리어(전자 또는 정공)를 만들고 이들의 재결합에 의하여 소정의 빛을 발산하는 소자를 지칭하며, GaAsP 등을 이용한 적색 발광 다이오드, GaP 등을 이용한 녹색 발광 다이오드, InGaN/AlGaN 더블 헤테로(double hetero) 구조를 이용한 청색 발광 다이오드 등이 있다.
특히, 최근의 조명용 발광장치는 발광 다이오드 칩과 형광체 몰드를 결합하여 백색광을 구현한다. 예를 들어, 청색을 발광하는 발광다이오드 칩 상부에 형광체를 배치시켜 발광 다이오드 칩의 청색 발광과 형광체의 황록색 또는 황색 발광에 의해 백색을 얻고 있다. 즉, 430nm 내지 480㎚ 파장을 발광하는 반도체 성분으로 이루어진 청색 발광 다이오드 칩과 청색광을 여기원으로 하여 황록색 및 황색광을 발생시키는 형광체의 조합으로 백색광을 구현한다.
즉, 최근까지 조명용 백색 발광장치는 고휘도의 청색 LED 베어칩에서 방출되어 충분히 높은 에너지를 갖는 광을 그 LED 베어칩의 상부에 몰딩되어 배치된 형광체 몰드가 여기하여 백색을 유도하는 방법을 이용하였다.
그런데, 형광체 몰드를 형성하기 위하여는 리플랙터를 설치하고, 리플랙터 내에 형광체 수지를 주입하여 소위 LED 패키지를 구성하는 방법을 사용하는데, 이러한 LED 패키지는 제작 공정의 복잡성에 따른 원가 상승 뿐만 아니라 형광체의 도포 시에 사용되는 에폭시 수지 혹은 실리콘 수지의 혼합 비율, 이러한 수지의 열적 불안정성, 그리고 경화시 형광체의 불규칙한 퇴적 등으로 발광 휘도가 불규칙하고 소자의 불량률이 높고, 색 재현성이 떨어지는 문제가 계속적으로 지적되는 실정이다.
본 발명은 전술한 종래기술을 해결하기 위한 것으로서, 본 발명의 목적은 제작이 용이하고 열적 내구성 및 우수한 색재현성을 갖는 LED 모듈을 제공함에 있다.
본 발명의 일 측면에 따른 LED 모듈은 기판, 기판 상에 실장된 적어도 하나의 LED 베어칩, 및 상기 LED 베어칩 상에 형성되고, 형광체를 포함하는 적어도 하나의 색변환시트;를 포함하고, 상기 색변환시트는 적어도 하나의 LED 베어칩을 덮도록 형성되고, 상기 색변환시트에서 상기 LED 베어칩과 대응하는 영역의 높이는 상기 색변환시트에서 상기 LED 베어칩과 대응하지 않은 영역의 높이와 다르게 형성된다.
이때, 상기 LED 모듈은 상기 기판 상에서 상기 LED 베어칩 사이의 공간을 충진하고 상기 LED 베어칩의 둘레를 감싸도록 형성되는 적어도 하나의 언더필링층을 더 포함할 수 있는데, 상기 색변환시트는 상기 언더필링층의 상면 또는 상기 LED 베어칩의 상면에 부착될 수 있다.
또한, 상기 색변환시트가 상기 LED 베어칩과 대응하는 영역은 대응하지 않은 영역보다 상부로 볼록하게 돌출되어 형성될 수 있다.
또한, 상기 LED 모듈은 상기 기판 상에서 상기 LED 베어칩들 사이의 공간을 채우도록 형성되고, 상기 LED 베어칩의 측면을 감싸거나 또는 상기 LED 베어칩의 상면과 맞닿도록 적어도 하나로 형성되는 광확산접착층을 더 포함하고, 상기 색변환시트와 상기 LED 베어칩의 측면 사이에는 완충 공간 또는 상기 광확산접착층이 상기 LED 베어칩의 하부로 인입된 인입부가 형성될 수 있다.
또한, 상기 색변환시트와 상기 LED 베어칩의 측면 사이에는 완충공간이 형성될 수 있는데, 상기 완충공간은 상기 색변환시트를 상기 기판에 압착하는 것에 의해 형성될 수 있다.
또한, 상기 LED 모듈은 상기 기판 상에서 상기 LED 베어칩들 사이의 공간을 채우도록 형성되고, 상기 LED 베어칩의 측면을 감싸거나 또는 상기 LED 베어칩의 상면과 맞닿도록 형성되는 광확산층을 더 포함할 수 있는데, 상기 광확산층은 LED 베어칩이 발산하는 광을 색변환시트가 LED 베어칩과 대응하지 않는 영역에 전달할 수 있다.
또한, 상기 LED 모듈은 상기 기판 상에서 상기 LED 베어칩들 사이의 공간을 채우도록 형성되는 적어도 하나의 시트블록을 더 포함하고, 상기 시트블록과 상기 LED 베어칩 사이에는 갭 영역이 형성될 수 있다.
또한, 상기 색변환시트에서 상기 갭 영역에 대응하는 영역에는 상기 갭 영역으로 삽입되는 돌출부가 형성될 수 있다.
또한, 상기 LED 모듈은 상기 기판 상에서 상기 LED 베어칩의 측면에 인접하여 형성되는 광확산렌즈를 더 포함하고, 상기 색변환시트에서 상기 LED 베어칩에 대응하는 영역과 상기 광확산렌즈에 대응하는 영역은 메인발광영역을 형성하고, 상기 LED 베어칩 및 상기 광확산렌즈에 대응하지 않는 영역은 상기 광확산렌즈가 도달시킨 광이 여기 출사되거나 또는 상기 색변환시트 내부에서 이동하여 여기 출사되어 서브발광영역을 형성할 수 있다.
본 발명의 LED 모듈은 색변환시트를 구비하여 LED 패키지 제조 공정을 갖지 않으므로 보다 용이하게 LED 모듈을 제조할 수 있다.
또한, 형광체 몰드 대신에 색변환시트를 구비하므로 열에 의하여 형광체 몰드가 열화되는 것을 방지하여 우수하게 백색을 재현할 수 있다.
또한, LED 베어칩의 측면과 맞닿는 언더필링층이 형성되므로 LED 베어칩에서 형성된 열을 효율적으로 방출하여 색변환시트가 열화되는 것을 방지할 수 있다.
또한, LED 베어칩의 광을 측면으로 전달하여 기판 상에 LED 베어칩이 설치되지 않은 영역의 음영 발생을 획기적으로 줄일 수 있다.
도 1은 본 발명의 제1 실시예에 따른 LED 모듈을 도시한 사시도이다.
도 2는 본 발명의 제1 실시예에 따른 LED 모듈을 도시한 단면도이다.
도 3은 색변환 시트가 제조되는 공정을 나타낸 도면이다.
도 4는 본 발명의 제2 실시예에 따른 LED 모듈을 도시한 단면도이다.
도 5는 본 발명의 제3 실시예에 따른 LED 모듈을 도시한 단면도이다.
도 6은 본 발명의 제4 실시예에 따른 LED 모듈을 도시한 단면도이다.
도 7는 본 발명의 제5 실시예에 따른 LED 모듈을 도시한 평면도이다.
도 8는 본 발명의 제5 실시예에 따른 LED 모듈을 도시한 단면도이다.
도 9는 본 발명의 제6 실시예에 따른 LED 모듈을 도시한 사시도이다.
도 10는 본 발명의 제6 실시예에 따른 LED 모듈을 도시한 단면도이다.
도 11는 본 발명의 제6 실시예에 따른 LED 모듈의 작용을 설명하는 단면도이다.
이하, 첨부 도면을 참조하여 본 발명 및 본 발명의 바람직한 실시예를 상세하게 설명한다. 도 1은 본 발명의 제1 실시예에 따른 LED 모듈을 도시한 사시도이고, 도 2는 본 발명의 제1 실시예에 따른 LED 모듈을 도시한 단면도이다.
도 1 및 도 2를 참조하여 설명하면, 본 제1 실시예에 따른 LED 모듈(101)은 기판(21), LED 베어칩(25), 및 색변환시트(10)를 포함하여 이루어진다.
기판(21)은 LED 베어칩(25)을 고밀도로 실장할 수 있는 기판이면 어느 것이나 가능하다. 제한적이지는 않으나, 예를 들어, 이러한 기판(21)으로는 알루미나(alumina), 수정(quartz), 칼슘지르코네이트(calcium zirconate), 감람석(forsterite), SiC, 흑연, 용융실리카(fusedsilica), 뮬라이트(mullite), 근청석(cordierite), 지르코니아(zirconia), 베릴리아(beryllia), 및 질화알루미늄(aluminum nitride), LTCC(lowtemperature co-fired ceramic) 등을 들 수 있다.
기판(21)은 직선형, 원형 또는 다각형상의 판으로 이루어질 수 있으며, 기판(21)에는 LED 베어칩(25)에 전원을 공급하기 위한 제1와이어(23)와 제2와이어(24)가 설치될 수 있다. 본 제1실시예에 따른 LED 모듈(101)은 솔더링부(27)를 통해서 LED 베어칩(25)과 기판(21)이 전기적으로 연결되며 별도의 본딩 와이어를 갖지 않는다. 솔더링부(27)는 LED 베어칩(25)과 기판(21)을 전기적으로 연결하는데, 특히 LED 베어칩(25)에 형성된 단자(26)를 기판(21)에 전기적으로 연결한다. 솔더링부(27)는 표면실장 방식(SMT; Surface Mount Technology)으로 형성될 수 있다.
LED 베어칩(25)은 청색 발광 LED 칩으로서, 430nm 내지 480nm의 파장을 발광하는 반도체 성분으로 이루어질 수 있다. 다만, LED 베어칩(25)은 다른 컬러광을 출사하는 LED 베어칩이 사용될 수 있으며, 본 발명의 범위가 특정 LED 베어칩으로 제한되는 것은 아님은 물론이다. 한편, 본 발명의 제1실시예에 따른 LED 모듈은 LED 베어칩이 적어도 하나로 이루어진다. 본 실시예에 따른 LED 모듈은 LED 모듈 구조에만 가능한 LED 베어칩(25), 및 색변환시트(10)의 유기적 연결관계에 대한 구조이기 때문이다. 나아가, 뒤에서 더욱 상세하게 설명하지만 본 발명의 제1실시예에 따른 LED 모듈은 종래의 LED 베어칩에 리플렉터를 설치하고 그 사이에 형광몰딩층을 형성한 LED 패키지가 복수로 구비된 구조가 아니라 LED 패키지 구조를 지양하고, LED 베어칩과 그 위에 배치된 색변환시트(10)에 따라 음영을 제거한 최고품질의 LED 조명 모듈에 대한 것이다.
색변환시트(10)는 복수개의 LED 베어칩(25)을 덮도록 LED 베어칩(25) 상에 부착된다. 기판(21)에는 하나의 색변환시트(10)가 기판(21)에 설치된 모든 LED 베어칩(25)을 덮도록 설치될 수 있다. 이때 색변환시트(10)는 일체(unibody)로 이루어질 수 있다. 다만, 본 발명이 이에 제한되는 것은 아니며 하나의 기판(21)에 복수의 색변환시트(10)가 설치될 수도 있다. 다만 이 경우에도 색변환시트(10)는 적어도 하나의 LED 베어칩(25)을 덮도록 설치될 수 있다.
이때 색변환시트(10)가 부착되는 과정에서 기판 쪽으로 힘이 인가되어 색변환시트(10)에서 LED 베어칩(25)과 대응하는 영역의 높이는 색변환시트(10)에서 LED 베어칩(25)과 대응하지 않은 영역의 높이와 다르게 형성될 수 있다. 더욱 상세하게 색변환시트(10)에서 LED 베어칩(25)과 대응하는 영역은 대응하지 않은 영역보다 상부로 볼록하게 돌출되어 형성될 수 있다.
도 3은 색변환시트가 제조되는 공정을 나타낸 도면이다. 도 3에 도시된 바와 같이 색변환시트(10)는 형광체(15)를 갖는 제1시트(11)만으로 이루어지거나, 접착성을 갖는 제2시트(12)를 더 포함하여 이루어질 수 있다. 이때, 제2시트(12)는 다른 실시예에서 설명할 언더필링층, 광확산접착층, 광확산층 등의 역할을 수행할 수도 있는데, 자세한 내용은 각 실시예에서 설명하도록 한다.
제1시트(11)는 제1기재(11a)와 제1기재(11a)에 도포된 형광체층(11b)을 포함한다. 제1기재(11a)는 수지로 이루어질 수 있으며, 상기 수지는, 제한적이지는 않으나, 예를 들어, 실리콘 수지, 에폭시 수지, 글래스, 글래스 세라믹(glass ceramic), 폴리에스테르 수지, 아크릴 수지, 우레탄 수지, 나일론 수지, 폴리아미드 수지, 폴리이미드 수지, 염화비닐 수지, 폴리카보네이트 수지, 폴리에틸렌 수지, 테프론 수지, 폴리스틸렌 수지, 폴리프로필렌 수지, 폴리올레핀 수지 등 투명성을 가진 열경화성 수지를 포함할 수 있다.
형광체층(11b)은 LED 베어칩(25)으로부터 출사된 청색광에 의해 여기되어 방출되는 파장이 R 또는 G계열이 되도록 하는 형광체를 주성분으로 하여 제조될 수 있다. 여기서, 본 실시예는 LED 베어칩(25)이 청색광을 출력하는 경우, 백색광을 만들기 위한 색변환시트(10)를 구성하는 경우에 해당하지만, LED 베어칩(25)이 녹색광 또는 적색광을 출력하는 경우 형광체는 백색광을 만들기 위해 다른 형광체가 사용될 수 있음은 물론이다.
형광체층(11b)은 슬롯다이 또는 닥터 블레이드를 이용하여 인쇄방식으로 제1기재(11a) 상에 도포될 수 있다. 이때, 제1시트(11)는 롤러에 감겨진 리본 형상으로 이루어지며 1m/min 내지 15m/min의 속도로 이송될 수 있으며, 제1시트(11)는 10m 이상의 열경화 구간을 지나면서 경화된다.
제2시트(12)는 제2기재(12a)와 제2기재(12a)에 형성된 접착층(12b)을 포함한다. 제2기재(12a)는 접착력을 갖는 수지로 이루어질 수 있으며, 특히 내열성 투명 실리콘으로 이루어질 수 있다. 접착층(12b)은 UV 경화성 수지, 열경화성 수지, 실란트 등 투명한 접착제를 포함할 수 있다.
접착층(12b)은 슬롯다이 또는 닥터 블레이드를 이용하여 인쇄방식으로 제2기재(12a) 상에 도포될 수 있다. 제2시트(12)의 경도는 제1시트(11)의 경도보다 더 작게 형성되며, 제2시트(12)의 경도는 쇼어 A(Shore A) 경도 5이상 20이하로 이루어질 수 있다. 또한, 제2시트(12)의 두께는 15㎛보다 크고, LED 베어칩(25)의 두께보다 작게 이루어질 수 있다. 다만 본 발명이 이에 제한되는 것은 아니며 제2시트(12)는 다양한 구조로 이루어질 수 있다.
제2시트(12)는 제1시트(11)보다 열전도성이 더 크게 형성되는데, 제2시트(12)는 폴리이미드계 수지로 이루어질 수 있으며 제2시트(12)는 열전도성이 향상될 수 있도록 ITO(indium tin oxide) 등의 금속산화물을 포함할 수 있다. 또한, 제1시트(11)와 제2시트(12)는 롤투롤(roll to roll) 공정에 의하여 가압 가열 접착될 수 있다.
한편, 본 실시예에 따른 LED 모듈은 이러한 색변환시트(10)를 LED 베어칩(25) 방향으로 기판에 압착하여 LED 베어칩(25)의 측면과의 사이에 완충 공간(28)을 형성할 수 있다. 이러한 압착에 의해 LED 베어칩(25)과 대응하는 영역에서의 색변환시트(10)의 높이는 대응하지 않는 영역의 색변환시트(10)의 높이와 최소한 같거나 또는 크게 형성시킨다. 다시 말해, LED 베어칩과 대응하는 영역은 상대적으로 상부로 돌출되고, 대응하지 않는 영역은 상대적으로 하부로 향하는 오목 볼록한 패턴이 교대로 나타나도록 형성한다.
완충 공간(28)은 LED 베어칩(25)의 둘레방향으로 이어져 LED 베어칩(25)의 측면을 감싸도록 형성된다. 또한, 완충 공간(28)은 삼각 채널 형태로 이루어져 삼각형의 종단면을 가질 수 있다. 이러한 완충 공간(28)에 따라 LED 베어칩(25)에서 발산된 빛이 완충 공간(28)에서 확산되어 도트 보임 현상이 더욱 감소될 수 있다.
본 제1 실시예에 따른 LED 모듈(101)은 형광몰딩층을 갖지 않고, 패키지 형태로 이루어지지 아니하며, LED 베어칩(25)이 기판(21)에 직접 실장되므로 LED 모듈이 부피를 현저히 감소시킬 수 있을 뿐만 아니라 제조 공정을 현저히 단순화할 수 있고, 또한, 형광몰딩층 대신 색변환시트(10)가 복수개의 LED 베어칩(25)을 덮도록 설치되므로 열적인 영향에 의하여 형광몰딩층이 열화되어 색재현성이 감소하는 것을 방지할 수 있으며, 완충 공간의 형성에 따라 LED 베어칩에서 발산된 빛을 완충 공간에서 확산시켜 도트 보임 현상을 더욱 감소시킬 수 있다.
이하, 본 발명의 제2 실시예를 설명한다. 도 4는 본 발명의 제2 실시예에 따른 LED 모듈(102)을 도시한 단면도인데, 제1 실시예와 동일한 구성에 대하여는 동일한 참조부호를 부여하였고 동일한 구성에 대해 중복설명은 지양한다.
본 발명의 제2 실시예에 따른 LED 모듈(102)은 언더필링층(22a)을 더 포함하여 이루어진다. 언더필링층(22a)은 기판 상에서 LED 베어칩들(25) 사이의 공간을 충진하고, LED 베어칩의 둘레를 감싸도록 형성된다. 언더필링층(22a)은 탄성을 갖는 필름 형태로 이루어진 시트를 기판 상에 부착하거나, 액상의 수지를 LED 베어칩들(25) 사이로 주입하여 형성할 수 있다. 또한, 언더필링층(22a)은 에폭시계 수지, 폴리이미드계 수지, 투명한 접착 성분인 UV 경화성 수지, 열경화성 수지 및 실란트 중 적어도 하나로 이루어질 수도 있다.
또한, 언더필링층(22a)은 빛을 투과시키는 광투과성 물질로 이루어질 수 있으며, 빛을 반사시키는 흰색 또는 은색 물질로 이루어질 수도 있다. 하나의 언더필링층(22a)은 복수개의 LED 베어칩(25)의 측면과 맞닿으며 일체(unibody)로 이루어지거나, 복수개의 언더필링층(22a)이 개별적으로 기판 상에 형성될 수 있다. 즉, LED 모듈의 사이즈와 무관하게 단위 크기의 언더필링층을 구비하고 이를 LED 모듈에 부착하도록 하여 언더필링층(22a)을 준비하는 공정 비용을 현저하게 낮추는 것이 가능하다.
언더필링층(22a)은 LED 베어칩(25)들의 외부 둘레를 감싸도록 형성된다. 이 경우에 언더필링층(22a)은 LED 베어칩의 둘레를 감싸면서 LED 베어칩(25)의 측면과 맞닿도록 형성되거나 LED 베어칩(25)의 측면과 이격되어 형성될 수 있는데, LED 베어칩(25)의 측면과 맞닿도록 형성되는 경우에는 측면 전체가 아니 측면 일부와 맞닿도록 형성될 수 있다. 왜나하면, 후술하는 것과 같이 색변환시트(10)의 접착층이 언더필링층(22a)의 기능을 수행하는 경우에는 색변환시트를 압착하면 접착층 중에서 LED 베어칩의 측면 하부 영역 부위의 접착층은 압착에 따른 완충공간이 생길 수 있기 때문에 LED 베어칩(25)의 측면과 맞닿도록 형성되는 경우에는 측면 전체가 아니 측면 일부와 맞닿도록 형성될 수 있다.
언더필링층(22a)의 상면 높이(h1)는 LED 베어칩(25)의 상면 높이(h2)와 동일하거나 더 낮게 형성될 수 있다. 즉, 색변환시트(10)는 부착 시 하부 방향으로 압력을 인가하여 부착되는데, 음영을 제거하기 위해서는 색변환시트의 높이가 전영역에서 평면을 이루는 것이 바람직하므로 색변환시트(10)의 압착 시에 그 아래에 배치된 언더필링층(22a)의 높이(h1)가 LED 베어칩(25)의 높이(h2)와 같거나 낮게 형성됨이 바람직하다. 즉, 본 발명의 일 실시예에 따른 LED 모듈은 언더필링층의 최종 두께(높이)가 색변환시트(10)가 부착된 전체의 압착에 의해 형성된다는 것이 특징이 된다.
이에 따라 언더필링층(22a)의 상면과 기판(21) 사이의 거리(h1)는 LED 베어칩(25)의 상면과 기판(21) 사이의 거리(h2)와 동일하거나 작게 된다. 또한, 언더필링층(22a)은 LED 베어칩(25)들의 상면만 노출시키고 측면과 하면을 감싸도록 형성될 수 있다.
이와 같이, 언더필링층(22a)은 색변환시트(10)가 부착되는 면을 평탄화하여 색변환시트(10)가 기판(21) 상에 안정적으로 설치될 수 있도록 할 뿐만 아니라 LED 베어칩(25) 및 기판(21)에서 발생하는 열을 신속하게 방출시키는 역할을 한다.
한편, 색변환시트(10)는 복수개의 LED 베어칩(25)을 덮도록 LED 베어칩(25)의 상면 및 언더필링층(22a)의 상면에 부착된다. 하나의 색변환시트(10)는 일체(unibody)로 이루어져 기판(21)에 설치된 모든 LED 베어칩(25)을 덮거나, 하나의 색변환시트(10)가 적어도 한개의 LED 베어칩(25)을 덮도록 일체가 아닌 복수개로 설치될 수 있다. 다만, 이 경우에도 복수의 색변환시트(10)는 복수개의 LED 베어칩(25)을 모두 덮도록 설치될 수 있다. 즉, LED 모듈의 사이즈와 무관하게 단위 크기의 색변환시트(10)를 구비하고 이를 소정 크기의 LED 모듈에 개별 부착하도록 하여 색변환시트(10)을 준비하는 공정 비용을 현저하게 낮추는 것이 가능하다. 이때, 하나의 색변환시트(10)가 적어도 두개의 LED 베어칩(25)을 덮는 것이 공정 비용을 보다 낮출 것이다.
한편, 색변환시트(10)는 형광체를 갖는 제1시트(11)와 접착성을 갖는 제2시트(12)를 포함하여 이루어질 수 있다. 그런데, 먼저 언급한 바와 같이 언더필링층(22a)이 접착성을 갖는 투명한 접착 성분인 UV 경화성 수지, 열경화성 수지 및 실란트 중 적어도 하나를 포함항여 이루어지는 경우에는 제2시트를 포함하지 않는 것이 바람직하다. 즉, 언더필링층(22a)이 색변환시트(10)의 제2시트(12)와 같은 접착층으로 기능하는 것이 가능하다.
본 발명의 제2 실시예와 같이 언더필링층(22a)이 형성되면, LED 베어칩(25)에서 발생한 열을 보다 용이하게 배출할 수 있을 뿐만 아니라 색변환시트(10)가 보다 안정적으로 부착될 수 있다. 또한, 색변환시트(10)의 접착층(12)이 언더필링층(22a)으로 기능하도록 하는 경우에는 공정 단계를 더욱 줄이면서 방열 효과를 극대화시킬 수 있다.
이하, 본 발명의 제3 실시예를 설명한다. 도 5는 본 발명의 제3 실시예에 따른 LED 모듈(103)을 도시한 단면도인데, 제1 실시예와 동일한 구성에 대하여는 동일한 참조부호를 부여하였고 동일한 구성에 대해 중복설명은 지양한다.
제3 실시예에서는 광확산접착층(22b)은 LED 베어칩들(25) 사이의 공간을 채우도록 형성된다. 광확산접착층(22b)은 후술할 색변환시트(10)와의 견고한 접착을 위해 탄성을 갖는 필름 형태로 이루어지는 것이 바람직하다. 이때, 광확산접착층(22b)은 빛을 투과시키는 광투과성 물질로 이루어지며, 광확산접착층(22b)이 기판과 맞닿는 면은 빛을 반사시키는 흰색 또는 은색 물질이 추가로 도포되어 이루어질 수 있다. 그런데, 광확산접착층(22b)은 액상의 수지를 LED 베어칩들(25) 사이로 주입하여 형성할 수도 있다. 이때, 광확산접착층(22b)은 에폭시계 수지로 이루어질 수 있으며, 폴리이미드계 수지로 이루어질 수도 있다.
광확산접착층(22b)은 LED 베어칩(25)의 측면을 감싸도록 형성된다. 더욱 상세하게 광확산접착층(22b)은 LED 베어칩(25)의 측면과 맞닿도록 형성될 수 있다. 도 5에서는 LED 베어칩(25) 측면 일부와 맞닿아 있지만 LED 베어칩(25)의 측면 전부와 맞닿도록 형성될 수도 있다. 그 경우 광확산 효율이 더욱 증대된다.
광확산접착층(22b)은 당초 LED 베어칩(25)의 주위를 둘러싸도록 배치되어 LED 베어칩(25)의 측면과 소폭 이격되어 배치될 수 있지만 이후 압착에 의해 LED 베어칩(25)의 측면과 맞닿을 수 있다.
특히, 본 제3 실시예에 따른 LED 모듈은 광확산접착층(22b)이 도 5에서와 같이 LED 베어칩(25)의 방출광(a방향)을 색변환시트(10)에서 LED 베어칩과 대응하지 않는 영역의 상부(b방향)로 방출되도록 한다. 이에 따라, LED 조명의 고질적 문제인 도트보임 현상 또는 조명의 음영 발생 현상을 현저하게 저감할 수 있다. 즉, 최근 측면 배광을 위해 렌즈를 삽입하는 기술이 등장하고 있는데, 본 실시예에 따르면 광확산접착층(22b)이 도광판의 역할을 수행하므로 고가의 렌즈 삽입 없이도 측면 배광을 가능케해 조명의 품질을 향상시키고 생산원가를 낮출 수 있다.
또한, 본 제3 실시예에 따른 LED 모듈(102)은 제1 실시예에서의 제2 시트가 광확산접착층(22b)으로 기능하는 것으로도 설명될 수 있다. 이에 따라 공정 비용을 더욱 낮출 수 있다.
또한, 광확산접착층(22b)은 색변환시트(10)가 부착되는 면을 평탄화하여 색변환시트(10)가 기판(21) 상에 안정적으로 설치될 수 있도록 할 뿐만 아니라 LED 베어칩(25) 및 기판(21)에서 발생하는 열을 신속하게 방출시키는 역할을 한다.
또한, 본 제3 실시예에 따른 LED 모듈(103)은, 광확산접착층(22b)과 색변환시트(10)를 일체로 형성하고, 이를 LED 베어칩(25) 방향으로 부착하여 LED 모듈을 제조하므로 광확산접착층(22b)이 LED 베어칩(25)의 상면과 맞닿도록 형성되면서, LED 베어칩(25)의 측면과의 사이에 완충 공간(28)을 형성한다. 완충 공간(28)은 LED 베어칩(25)의 둘레방향으로 이어져 LED 베어칩(25)의 측면을 감싸도록 형성된다. 또한, 완충 공간(28)은 삼각 채널 형태로 이루어져 삼각형의 종단면을 가질 수 있다. 이러한 완충 공간(28)에 따라 LED 베어칩(25)에서 발산된 빛이 완충 공간(28)에서 확산되어 도트 보임 현상이 더욱 감소될 수 있다.
또한, 광확산접착층(22b)과 색변환시트(10)를 일체로 형성하고, 이를 LED 베어칩(25) 방향으로 압착하는 강도를 더욱 증가하는 경우에는 광확산접착층(22b)이 LED 베어칩(25)의 하부로 밀려들어가는 인입부(29)가 생성될 수 있다. 인입부(29)는 LED 베이칩(25)에서 발산되는 빛의 전달 도광판 역할을 수행하므로 LED 베어칩(25)에서 발산된 빛의 손실을 더욱 막아주므로 상기한 완충 공간의 확산 효과가 저감되더라도 베어칩 사이의 공간에서 발광되는 광량을 증대시키게 되므로 음영 현상을 저감할 수 있다.
이하, 본 발명의 제4 실시예를 설명한다. 도 6는 본 발명의 제4 실시예에 따른 LED 모듈(104)을 도시한 단면도인데, 제1 실시예와 동일한 구성에 대하여는 동일한 참조부호를 부여하였고 동일한 구성에 대해 중복설명은 지양한다.
본 발명의 제4 실시예에 따른 LED 모듈(104)은 광확산층(22c)을 더 포함하여 이루어지고 LED 베어칩들(25) 사이의 공간을 채우도록 형성된다. 이때, 제3 실시예에서의 광확산접착층 보다 두꺼운 두께로 형성되어 보다 많은 빛을 전달하도록 구성됨이 바람직하다.
광확산층(22c)은 후술할 색변환시트(10)와의 견고한 접착을 위해 탄성을 갖는 필름 형태로 이루어지는 것이 바람직하다. 이때, 광확산층(22c)은 빛을 투과시키는 광투과성 물질로 이루어지며, 광확산층(22c)이 기판과 맞닿는 면은 빛을 반사시키는 흰색 또는 은색 물질이 추가로 도포되어 이루어질 수 있다.
이때, 광확산층(22c)은 LED 베어칩(25)의 측면을 감싸거나 LED 베어칩(25)의 상면과 맞닿도록 형성된다. 이때, 광확산층(22c)은 LED 베어칩(25)의 측면과 맞닿도록 형성될 수도 있다. 광확산층(22c)은 당초 LED 베어칩(25)의 주위를 둘러싸도록 배치되어 LED 베어칩(25)의 측면과 소폭 이격되어 배치될 수 있지만 이후 압착에 의해 LED 베어칩(25)의 측면과 맞닿을 수 있다.
특히, 본 실시예에 따른 LED 모듈은 광확산층(22c)이 도 6에서와 같이 LED 베어칩(25)의 측면 방출광(a방향)을 색변환시트에서 LED 베어칩과 대응하지 않는 영역으로 전달하여 그 상부(b방향)로 방출되도록 한다. 즉, 색변환시트(10)에서 LED 베어칩에 대응하는 영역이 기본적인 메인발광영역(A)이 되고, LED 베어칩(25)에 대응하지 않는 영역은 서브발광영역(B)을 형성하게 된다.
서브발광영역(B)은 당초 LED 베어칩이 상부로 출사한 광이 반사되어 측면으로 전달되어 도달되는 광과, 당초 LED 베어칩이 측면으로 출사한 광이 모두 도달되는데, 도 6에서와 같이 주위의 LED 베어칩에서 동시에 도달되므로 메인발광영역(A)과 유사한 광속을 구현하게 된다. 이에 따라, LED 조명의 고질적 문제인 도트보임 현상 또는 조명의 음영 발생 현상을 현저하게 저감할 수 있다.
또한, 광확산층(22c)은 색변환시트(10)가 부착되는 면을 평탄화하여 색변환시트(10)가 기판(21) 상에 안정적으로 설치될 수 있도록 할 뿐만 아니라 LED 베어칩(25) 및 기판(21)에서 발생하는 열을 신속하게 방출시키는 역할을 한다.
이하, 본 발명의 제5 실시예를 설명한다. 도 7는 본 발명의 제5 실시예에 따른 LED 모듈을 도시한 평면도이고, 도 8는 본 발명의 제5 실시예에 따른 LED 모듈을 도시한 단면도이다. 이때, 제1 실시예와 동일한 구성에 대하여는 동일한 참조부호를 부여하였고 동일한 구성에 대해 중복설명은 지양한다.
본 발명의 제5 실시예에 따른 LED 모듈(105)는 시트블록(22d)을 포함한다. 시트블록(22d)은 LED 베어칩들(25) 사이의 공간을 채우도록 형성된다. 이때, 시트블록(22d)은 일체로 형성되거나 복수개로 형성되어 LED 베어칩들 간의 공간을 충진하는 방법으로 각각 부착될 수 있다. 시트블록(22d)은 후술할 색변환시트(10)와의 견고한 접착을 위해 탄성을 갖는 필름 형태로 이루어지는 것이 바람직하다. 이때, 시트블록(22d)은 빛을 투과시키는 광투과성 물질로 이루어지며, 시트블록(22d)이 기판과 맞닿는 면은 빛을 반사시키는 흰색 또는 은색 물질이 추가로 도포되어 이루어질 수 있다.
또한, 시트블록(22d)은 투명한 접착 성분인 UV 경화성 수지, 열경화성 수지 및 실란트 중 적어도 하나로 이루어질 수도 있다. 그러나, 어느 하나의 물질에 한정되지 않음은 물론이다. 이에 시트블록(22d)은 LED 베어칩(25)이 발산하는 광을 색변환시트(10)가 LED 베어칩과 대응하지 않는 영역에 까지 전달하는 역할을 수행한다.
시트블록(22d)은 LED 베어칩(25)의 측면을 감싸거나 LED 베어칩(25)의 상면과 맞닿도록 형성될 수 있다. 이때, 시트블록(22d)은 LED 베어칩(25)과 이격되어 부착되므로 시트블록과 상기 LED 베어칩 사이에는 갭 영역(28)이 형성된다. 이때, 갭 영역(28)을 구성하는 시트블록의 일면에는 광산란면(31)이 형성된다. 광산란면(31)은 불규칙한 표면 조도의 거칠기가 형성된다. 이에 따라, 시트블록(31)에 전달되는 광은 산란되어 전달되게 되므로 추후 색변환시트(10)에서 여기되어 방출되는 광(LED 베어칩과 대응되지 않는 부위에서 방출되는 광)의 연색성이 더욱 향상되도록 한다.
또한, 시트블록에 의해 당초 LED 베어칩이 상부로 출사한 광이 반사되어 측면으로 전달되어 도달되는 광과, 당초 LED 베어칩이 측면으로 출사한 광이 모두 LED 베어칩 사이의 영역에 도달되고, 이때 주위의 LED 베어칩에서 동시에 상기 사이의 영역에 도달되므로 LED 베어칩 상부로 출사되는 광과 유사한 광속을 구현하게 된다. 이에 따라, 연색성이 향상되고, 나아가 LED 조명의 고질적 문제인 도트보임 현상 또는 조명의 음영 발생 현상을 현저하게 저감할 수 있다.
또한, 시트블록(22d)은 색변환시트(10)가 부착되는 면을 평탄화하여 색변환시트(10)가 기판(21) 상에 안정적으로 설치될 수 있도록 할 뿐만 아니라 LED 베어칩(25) 및 기판(21)에서 발생하는 열을 신속하게 방출시키는 역할을 한다.
한편, 제5 실시예에 따른 LED 모듈은 색변환시트(10)를 LED 베어칩(25) 방향으로 기판에 압착하므로 갭 영역(28)에 돌출부(11)가 형성된다. 이때, 이러한 압착에 의해 시트블록(22d)의 상면은 LED 베어칩(25)의 상면과 같거나 더 낮게 형성되는 영역이 존재하게 된다. 다시 말해, LED 베어칩과 대응하는 영역은 상대적으로 상부로 돌출되고, 대응하지 않는 영역은 상대적으로 하부로 향하는 오목 볼록한 패턴이 교대로 나타나도록 형성될 수 있다. 이러한, 돌출부(11)가 형성되면 색변환시트(10)가 보다 안정적으로 부착될 수 있으며, 복수 개의 LED 베어칩(25)이 하나의 색변환시트(10)에 의하여 백색광을 출사할 수 있다. 또한, LED 베어칩의 측면에서 출사된 광은 돌출부(11)에 의해 반사되어 시트블록(22d)으로 보다 쉽게 전달된다. 따라서, 전술한 음영 발생이 더욱 방지되는 효과가 있다.
이하, 본 발명의 제6 실시예를 설명한다. 도 9는 본 발명의 제6 실시예에 따른 LED 모듈을 도시한 사시도이고, 도 10는 본 발명의 제6 실시예에 따른 LED 모듈을 도시한 단면도이며, 도 11는 본 발명의 제6 실시예에 따른 LED 모듈의 작용을 설명하는 단면도이다. 이때, 제1 실시예와 동일한 구성에 대하여는 동일한 참조부호를 부여하였고 동일한 구성에 대해 중복설명은 지양한다.
본 발명의 제6 실시예에 따른 LED 모듈(106)은 기판(21), LED 베어칩(25), 광확산렌즈(22e), 및 색변환시트(10)를 포함하여 이루어진다.
광확산렌즈(20)는 광 투과성이 우수하고 성형성이 우수한 아크릴, 폴리카보네이트, 실리콘, PET 등의 소재를 이용하여 형성할 수 있는데, 광의 측면 전달을 위해 LED 베어칩들(25)의 측면에 인접하여 형성된다. 즉, LED는 일반적으로 상부쪽으로 보다 발광 양이 많게 되는 지향각폭을 가지게 되는데 광의 측면 전달을 위해서는 부가적인 렌즈를 사용하여 광의 조사범위를 조정할 필요가 있기 때문이다. 이때, 광확산렌즈(22e)는 설정범위 내의 초첨거리를 갖는 오목렌즈 또는 볼록렌즈의 조합으로 이루어지는 것이 바람직하다.
도 10을 참조하면, 광확산렌즈(22e)가 광을 LED 베어칩(25)과 이격된 측면 영역까지 전달하기 위해 LED 베어칩(25)의 측면에 인접하여 형성되거나, 측면 또는 상면과 맞닿도록 형성될 수 있다. 그런데, 도 10에서와 같이 광확산렌즈(22e)는 LED 베어칩(25)의 측면과 맞닿지 않는 완충 공간(28)을 형성할 수 있다. 완충 공간(28)은 삼각 채널 형태로 이루어져 삼각형의 종단면을 가질 수 있다. 이러한 완충 공간(28)에 따라 LED 베어칩(25)에서 발산된 빛이 완충 공간(28)에서 확산된 후 광확산렌즈(22e)로 진입하므로 광의 측면 전달 효율을 더욱 높이게 되어 음영발생을 더욱 저감할 수 있다.
색변환시트(10)는 형광체를 포함하는 시트로서, 적어도 하나의 LED 베어칩(25)을 덮도록 기판(21) 상에 또는 광확산렌즈(22e) 상에 부착된다. 더욱 상세하게 색변환시트(10)는 광확산렌즈(22e)의 상면 또는 기판(21)과 부착될 수 있다. 기판(21)에는 적어도 하나의 색변환시트(10)가 기판(21)에 설치된 모든 LED 베어칩(25)을 덮도록 설치될 수 있다.
한편, 색변환시트(10)는 전술한 광확산렌즈(22e)가 측면으로 전달한 광을 여기 출사하거나, 광확산렌즈(22e)가 측면으로 전달한 광을 더욱 측면으로 전달하여 여기 출사하는 역할을 수행한다. 이에 따라, LED 베어칩(25) 및 광확산렌즈(22e)에 대응하지 않는 영역에서도 발광이 이루어지도록 한다.
이하, 본 발명의 제6 실시예에 따른 LED 모듈(106)의 작용을 설명한다. 도 11을 참조하면, 본 발명의 제6 실시예에 따른 LED 모듈(106)은 LED 베어칩(25)과 광확산렌즈(22e)가 배치된 영역이 메인 발광 영역(A)을 형성하고, 이외의 영역이 서브 발광 영역(B)을 형성한다. 즉, 광확산렌즈(22e)가 LED 베어칩(25)이 방출한 광을 측면으로(a방향) 전달하여 색변환시트(10)에 전달하고, 이 광은 방출되거나 다시 더욱 측면으로 전달되어 LED 베어칩(25)들 사이의 공간에 고르게 분포하게 된다.
즉, 서브발광영역(B)은 당초 LED 베어칩(25)이 상부로 출사한 광이 반사되어 측면으로 전달되어 도달되는 광, 당초 LED 베어칩(25)이 측면으로 출사한 광, 광확산렌즈(22e)에 의해 측면으로 전달되는 광, 이러한 세가지 타입으로 전달된 광이 다시 색변환시트(10)에서 이동하여 도달된 광이 여기 후 출사되어(b방향) 발광 영역을 형성한다.
이때, 도면에서와 같이 주위의 LED 베어칩에서 출사된 광이 동시에 서브 발광 영역(B)에 도달되므로 메인 발광 영역(A)과 유사한 광속을 구현하게 되어 음열 발생 현상을 현저하게 저감하게 된다. 또한, 본 발명의 일 실시예에 따른 LED 모듈은 LED 베어칩(25)이 최초 출사한 광이 색변환시트(10)에 포함된 형광체에 의해 여기되기 전에 측면으로 이동하고 마지막으로 색변환시트(10)에 의해 여기되어 최종 출사하게 된다. 따라서, 광의 연색성이 저하되지 않는 최고 품질의 조명용 LED 모듈 구현이 가능하게 된다.
이상과 같이, 본 명세서와 도면에는 본 발명의 바람직한 실시예에 대하여 개시하였으며, 비록 특정 용어들이 사용되었으나, 이는 단지 본 발명의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예 외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.

Claims (11)

  1. 기판,
    기판 상에 실장된 적어도 하나의 LED 베어칩; 및
    상기 LED 베어칩 상에 형성되고, 형광체를 포함하는 적어도 하나의 색변환시트;를 포함하고,
    상기 색변환시트는 적어도 하나의 LED 베어칩을 덮도록 형성되고, 상기 색변환시트에서 상기 LED 베어칩과 대응하는 영역의 높이는 상기 색변환시트에서 상기 LED 베어칩과 대응하지 않은 영역의 높이와 다르게 형성된 것을 특징으로 하는 LED 모듈.
  2. 제1항에 있어서,
    상기 LED 모듈은 상기 기판 상에서 상기 LED 베어칩 사이의 공간을 충진하고 상기 LED 베어칩의 둘레를 감싸도록 형성되는 적어도 하나의 언더필링층을 더 포함하는 것을 특징으로 하는 LED 모듈.
  3. 제2항에 있어서,
    상기 색변환시트는 상기 언더필링층의 상면 또는 상기 LED 베어칩의 상면에 부착되는 것을 특징으로 하는 LED 모듈.
  4. 제1항에 있어서,
    상기 색변환시트가 상기 LED 베어칩과 대응하는 영역은 대응하지 않은 영역보다 상부로 볼록하게 돌출되어 형성된 것을 특징으로 하는 LED 모듈.
  5. 제1항에 있어서,
    상기 LED 모듈은 상기 기판 상에서 상기 LED 베어칩들 사이의 공간을 채우도록 형성되고, 상기 LED 베어칩의 측면을 감싸거나 또는 상기 LED 베어칩의 상면과 맞닿도록 적어도 하나로 형성되는 광확산접착층을 더 포함하고, 상기 색변환시트와 상기 LED 베어칩의 측면 사이에는 완충 공간 또는 상기 광확산접착층이 상기 LED 베어칩의 하부로 인입된 인입부가 형성된 것을 특징으로 하는 광확산 접착층을 갖는 LED 모듈
  6. 제1항에 있어서,
    상기 색변환시트와 상기 LED 베어칩의 측면 사이에는 완충공간이 형성된 것을 특징으로 하는 LED 모듈.
  7. 제6항에 있어서,
    상기 완충공간은 상기 색변환시트를 상기 기판에 압착하는 것에 의해 형성된 것을 특징으로 하는 LED 모듈.
  8. 제1항에 있어서,
    상기 LED 모듈은 상기 기판 상에서 상기 LED 베어칩들 사이의 공간을 채우도록 형성되고, 상기 LED 베어칩의 측면을 감싸거나 또는 상기 LED 베어칩의 상면과 맞닿도록 형성되는 광확산층을 더 포함하고, 상기 광확산층은 LED 베어칩이 발산하는 광을 색변환시트가 LED 베어칩과 대응하지 않는 영역에 전달하는 것을 특징으로 하는 광확산층을 갖는 조명용 LED 모듈.
  9. 제1항에 있어서,
    상기 LED 모듈은 상기 기판 상에서 상기 LED 베어칩들 사이의 공간을 채우도록 형성되는 적어도 하나의 시트블록을 더 포함하고, 상기 시트블록과 상기 LED 베어칩 사이에는 갭 영역이 형성된 것을 특징으로 하는 LED 모듈.
  10. 제1항에 있어서,
    상기 색변환시트에서 상기 갭 영역에 대응하는 영역에는 상기 갭 영역으로 삽입되는 돌출부가 형성된 것을 특징으로 하는 LED 모듈.
  11. 제1항에 있어서,
    상기 LED 모듈은 상기 기판 상에서 상기 LED 베어칩의 측면에 인접하여 형성되는 광확산렌즈를 더 포함하고, 상기 색변환시트에서 상기 LED 베어칩에 대응하는 영역과 상기 광확산렌즈에 대응하는 영역은 메인발광영역을 형성하고, 상기 LED 베어칩 및 상기 광확산렌즈에 대응하지 않는 영역은 상기 광확산렌즈가 도달시킨 광이 여기 출사되거나 또는 상기 색변환시트 내부에서 이동하여 여기 출사되어 서브발광영역을 형성하는 것을 특징으로 하는 조명용 LED 모듈.
PCT/KR2017/000852 2017-01-25 2017-01-25 Led 모듈 WO2018139687A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2017/000852 WO2018139687A1 (ko) 2017-01-25 2017-01-25 Led 모듈
US16/479,173 US20190355783A1 (en) 2017-01-25 2017-01-25 Led module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/000852 WO2018139687A1 (ko) 2017-01-25 2017-01-25 Led 모듈

Publications (1)

Publication Number Publication Date
WO2018139687A1 true WO2018139687A1 (ko) 2018-08-02

Family

ID=62979495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000852 WO2018139687A1 (ko) 2017-01-25 2017-01-25 Led 모듈

Country Status (2)

Country Link
US (1) US20190355783A1 (ko)
WO (1) WO2018139687A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556470A (zh) * 2019-09-16 2019-12-10 錼创显示科技股份有限公司 微型半导体芯片、微型半导体组件结构、以及转移装置
CN110600602A (zh) * 2019-09-16 2019-12-20 錼创显示科技股份有限公司 微型半导体芯片、微型半导体元件结构、以及显示元件
US10998475B2 (en) 2019-09-16 2021-05-04 PlayNitride Display Co., Ltd. Micro semiconductor chip, micro semiconductor structure, and display device
US11296259B2 (en) 2019-09-16 2022-04-05 PlayNitride Display Co., Ltd. Micro semiconductor chip, micro semiconductor structure, and transfer device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD1000400S1 (en) * 2021-04-16 2023-10-03 Creeled, Inc. Light emitting diode package

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080076054A (ko) * 2007-02-14 2008-08-20 한국광기술원 확산판을 구비한 멀티칩 led 패키지 및 그의 제조방법
KR20110112544A (ko) * 2010-04-07 2011-10-13 엘지전자 주식회사 백라이트 유닛 및 디스플레이 장치
KR20120044726A (ko) * 2010-10-28 2012-05-08 엘지이노텍 주식회사 발광소자
KR20160018662A (ko) * 2013-06-06 2016-02-17 코닌클리케 필립스 엔.브이. 형광체 시트로 라미네이팅된 발광 다이오드와 그 제조 방법
JP2016171146A (ja) * 2015-03-11 2016-09-23 パナソニックIpマネジメント株式会社 発光装置、発光装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080076054A (ko) * 2007-02-14 2008-08-20 한국광기술원 확산판을 구비한 멀티칩 led 패키지 및 그의 제조방법
KR20110112544A (ko) * 2010-04-07 2011-10-13 엘지전자 주식회사 백라이트 유닛 및 디스플레이 장치
KR20120044726A (ko) * 2010-10-28 2012-05-08 엘지이노텍 주식회사 발광소자
KR20160018662A (ko) * 2013-06-06 2016-02-17 코닌클리케 필립스 엔.브이. 형광체 시트로 라미네이팅된 발광 다이오드와 그 제조 방법
JP2016171146A (ja) * 2015-03-11 2016-09-23 パナソニックIpマネジメント株式会社 発光装置、発光装置の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556470A (zh) * 2019-09-16 2019-12-10 錼创显示科技股份有限公司 微型半导体芯片、微型半导体组件结构、以及转移装置
CN110600602A (zh) * 2019-09-16 2019-12-20 錼创显示科技股份有限公司 微型半导体芯片、微型半导体元件结构、以及显示元件
CN110556470B (zh) * 2019-09-16 2021-04-20 錼创显示科技股份有限公司 微型半导体芯片、微型半导体组件结构、以及转移装置
US10998475B2 (en) 2019-09-16 2021-05-04 PlayNitride Display Co., Ltd. Micro semiconductor chip, micro semiconductor structure, and display device
US11296259B2 (en) 2019-09-16 2022-04-05 PlayNitride Display Co., Ltd. Micro semiconductor chip, micro semiconductor structure, and transfer device

Also Published As

Publication number Publication date
US20190355783A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
WO2018139687A1 (ko) Led 모듈
US11043620B2 (en) Light emitting device
JP6339161B2 (ja) 発光素子パッケージ
US7736044B2 (en) Indirect lighting device for light guide illumination
WO2016080768A1 (ko) 발광 장치 및 이를 포함하는 차량용 램프
WO2016190644A1 (ko) 발광 장치 및 이를 포함하는 차량용 램프
WO2013151387A1 (ko) 반도체 소자 구조물을 제조하는 방법
JP2012099544A (ja) 発光装置の製造方法
CN102024805A (zh) 照明装置
JP2000022222A (ja) 発光ダイオード
WO2013122358A1 (ko) 렌즈를 갖는 발광 모듈
CN106887507B (zh) 发光装置及其制造方法
KR101701738B1 (ko) 형광몰딩층을 갖지 않는 led 모듈의 제조 방법
KR20110078482A (ko) 멀티 칩 엘이디 패키지 및 그 제조방법
JP2015092622A (ja) 発光装置
KR20180074968A (ko) 형광몰딩층을 갖지 않는 led 모듈
KR20180081636A (ko) 광확산 접착층을 갖는 led 모듈
KR102211319B1 (ko) Led 모듈
WO2020022544A1 (ko) 반도체 발광소자를 이용한 차량용 램프
WO2016080769A1 (ko) 발광 장치
KR101701746B1 (ko) 패키지를 갖지 않는 led 조명
KR101701740B1 (ko) 형광몰딩층을 갖지 않는 led 모듈
KR20190008392A (ko) 완충공간을 갖는 led 모듈
KR20180117570A (ko) 서브 발광 영역을 갖는 조명용 led 모듈
WO2020209587A1 (ko) 조명 모듈 및 이를 구비한 조명장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893592

Country of ref document: EP

Kind code of ref document: A1