WO2015089882A1 - 白光发光二极管及背光模块 - Google Patents

白光发光二极管及背光模块 Download PDF

Info

Publication number
WO2015089882A1
WO2015089882A1 PCT/CN2013/091007 CN2013091007W WO2015089882A1 WO 2015089882 A1 WO2015089882 A1 WO 2015089882A1 CN 2013091007 W CN2013091007 W CN 2013091007W WO 2015089882 A1 WO2015089882 A1 WO 2015089882A1
Authority
WO
WIPO (PCT)
Prior art keywords
blue
emitting diode
backlight module
light emitting
white light
Prior art date
Application number
PCT/CN2013/091007
Other languages
English (en)
French (fr)
Inventor
康志聪
苏赞加
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/235,803 priority Critical patent/US9224927B2/en
Publication of WO2015089882A1 publication Critical patent/WO2015089882A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]

Definitions

  • the present invention relates to a white light emitting diode, and more particularly to a white light emitting diode for a backlight module.
  • liquid crystal display utilizes the electro-optic effect of the liquid crystal, controls the transmittance and reflectivity of the liquid crystal cell through the circuit, and controls the intensity of the light transmission color resistance emitted by the backlight module to realize image display of different gray levels and different colors.
  • the backlight module provides a light source for the display and is a key component of the LCD.
  • LEDs Light-emitting diodes
  • the luminous efficiency of the LED can be improved, which is very helpful for the above-mentioned goal of reducing the cost. of.
  • TFT Cell's penetration spectrum is optimized with each other, and the same module white point chromaticity specification can be achieved. With the above method of improving LED efficiency, it is possible to achieve the cost reduction of the entire module.
  • White LEDs currently used in LCD backlight modules using blue chip (Blue) Chip) emits blue light and excites the yellow light emitted by the YAG (yttrium aluminum garnet)/silicate (silicate)/Nitride (nitride) phosphor, which is superimposed to present white light in human perception.
  • YAG yttrium aluminum garnet
  • silicate silicate
  • Nitride nitride
  • the blue light emitted by the blue chip has a peak wavelength (Wp) ranging from 440 to 445 nanometers (nm), and its spectrum corresponds to a dominant wavelength (Wd) ranging from 444 to 452.5 nanometers (nm), and Wd and Wp conversion and blue light.
  • Wp peak wavelength
  • Wd dominant wavelength
  • FWHM of chip chromatography full width at half maximum, Full Width of Half Maximum
  • Wp has a greater benefit at long wavelengths. From the perspective of brightness, the proportion of energy entering the human visual function increases, and to a certain extent, it will be reflected in the improvement of LED brightness.
  • the excitation efficiency of YAG phosphors varies with the wavelength of the excitation source, but in general, the optimal excitation wavelength is about 450 nm (the excitation spectra of different components of YAG will be slightly different from different suppliers).
  • Wp is continuously red-shifted from 440 nm to 450 nm, the excitation energy of YAG phosphor can be calculated to increase the efficiency of YAG excitation.
  • the LED is absorbed by the backlight (LGP, diaphragm), etc., and the proportion of blue luminance in the emitted spectrum is increased.
  • the blue portion will continue to increase, resulting in
  • the NTSC color gamut of the LCD module shows an increase in the blue ratio, which makes the overall light out of the module. In this case, the NTSC color gamut needs to be adjusted back to the original color.
  • the main object of the present invention is to provide a white light emitting diode which can increase its brightness (>10%) by the process of red shifting the blue light Wp of the blue chip.
  • this process of increasing the YAG concentration will also bring about the benefit of LED brightness enhancement.
  • a secondary object of the present invention is to provide a backlight module that can be fabricated by using the above-described white light emitting diode with a plurality of optical components (reflecting sheet, light guide plate/diffusion plate, diaphragm, etc.) to achieve a manufacturing cost reduction benefit and Increased optical energy efficiency.
  • An embodiment of the present invention provides a white light emitting diode, wherein the white light emitting diode comprises: a blue light chip; and an encapsulant layer doped with yttrium aluminum garnet (YAG) phosphor, wherein the blue light chip emits
  • YAG yttrium aluminum garnet
  • the blue light has a peak wavelength of 445 to 460 nanometers (nm), and the yellow light emitted by the yttrium aluminum garnet phosphor has a peak wavelength of 550 to 575 nm.
  • the doping concentration of the yttrium aluminum garnet phosphor in the encapsulant layer is 0.01-0.1% by mass of the phosphor mass ratio of the encapsulant.
  • the blue light spectrum of the blue chip corresponds to a dominant wavelength of 448 to 462.5 nanometers.
  • the blue light of the blue chip preferably has a peak wavelength of 445 to 455 nanometers.
  • another embodiment of the present invention provides a backlight module, wherein the backlight module includes the white light emitting diode described above.
  • the backlight module further includes a reflective sheet, a light guide plate, and a diffusion film.
  • the doping concentration of the yttrium aluminum garnet phosphor in the encapsulant layer is 0.01-0.1% by mass of the phosphor mass ratio of the encapsulant.
  • a liquid crystal module is further disposed on the backlight module, and the doping concentration is a penetration spectrum of a thin film transistor (TFT) substrate of the liquid crystal module, so that the The white point of the liquid crystal module reaches a target value.
  • TFT thin film transistor
  • the spectrum of the blue light emitted by the blue chip corresponds to a dominant wavelength of 448 to 462.5 nanometers, and the blue light of the blue chip has a peak wavelength of 445 to 455 nanometers.
  • the white light emitting diode of the present invention can achieve the NTSC color gamut and white point of the LCD module by simply adjusting the peak value of the phosphor and its concentration, thereby reducing the manufacturing cost.
  • FIG. 1 is a schematic cross-sectional view showing a backlight module and a liquid crystal module of the present invention.
  • Fig. 3 is a comparison diagram of the spectrum of the white light emitting diode of the present invention before and after adjustment.
  • a backlight module 10 includes: at least one white light emitting diode 11 , a reflective sheet 12 , a light guide plate 13 , and a diffusion film 14 .
  • the LED 11 mainly includes a blue chip 111 and an encapsulant 112.
  • the encapsulant 112 (such as epoxy or silica gel) is doped with yttrium aluminum garnet phosphor 113, and the white LED 11 and a light strip formed by a printed circuit board Bar) may be disposed on at least one side of the light guide plate 13 or between the light guide plate 13 and the reflective sheet 12 to serve as a one-side or direct-type backlight module;
  • the liquid crystal module 20 further includes a liquid crystal module 20 including a thin film transistor (TFT) substrate 21, a color filter (CF) substrate 22, and a liquid crystal material layer 23, the liquid crystal material.
  • TFT thin film transistor
  • CF color filter
  • the layer 23 is located between the thin film transistor tube 21 and the color filter substrate 22, and the thin film transistor substrate 21 is generally located below the liquid crystal material layer 23 and the color filter substrate 22.
  • an embodiment of the present invention can separately provide a white light emitting diode 11 in which the peak wavelength (Wp) of blue light emitted by the blue chip 111 of the white light emitting diode 11 is set to be 445 to 460 nm ( Nm), preferably set between 445 and 460 nm, may be, for example, 448, 455 or 459 nm, but is not limited thereto.
  • the peak wavelength of yellow light emitted by the yttrium aluminum garnet (YAG) phosphor 113 doped in the encapsulant 112 is set to be 550 to 575 nm, and may be, for example, 555, 562 or 570 nm, but is not limited thereto. this.
  • the doping concentration of the yttrium aluminum garnet phosphor 113 in the encapsulant 112 is based on the mass ratio of the phosphor to the quality of the encapsulant. 0.01 to 0.1% by mass.
  • the dominant wavelength (Wd) corresponding to the spectrum of the blue light emitted by the blue chip 111 is preferably set at 448 to 462.5 nm, and may be, for example, 450 or 460 nm.
  • a backlight module 10 including the above-described white light emitting diode 11.
  • a reflective sheet 12 in order to improve the brightness or uniformity of the light emitted by the backlight module 10, a reflective sheet 12, a light guide plate 13 or a diffusion film 14 may be selectively included.
  • the doping concentration of the yttrium aluminum garnet phosphor 113 in the encapsulant 112 is based on the mass ratio of the phosphor to the quality of the encapsulant. a mass ratio of 0.01-0.1%, wherein the doping concentration can be adjusted with the penetration spectrum of the thin film transistor substrate 21 of the liquid crystal module 20, so that the NTSC color gamut and the white point of the backlight module 10 are reached.
  • a target value A target value.
  • the specific embodiment of the white light emitting diode and the backlight module according to the present invention can be exemplified by the following two technical solutions:
  • the peak wavelength Wp of the blue light emitted by the blue chip is controlled at 445-455 nm, that is, the dominant wavelength Wd of the spectrum is 448 to 462.5 nm, and then the peak of the yellow light emitted by the yttrium aluminum garnet phosphor is adjusted at 550. Between 575 nm and the concentration of the phosphor (0.01-0.1% by mass, The quality of the phosphor is better than the quality of the encapsulant.)
  • the spectrum of the LED corresponds to the value of each pixel.
  • the spectrum of the LED is multiplied by the penetration spectrum of the transistor to correspond to the value of 1 nm.
  • the white LED can be in the form of a direct type, a side-in type, and includes corresponding optical components (reflecting sheet, light guide plate/diffusion plate, diaphragm, etc.).
  • the change of the LED spectrum of Scheme 1 is shown in Figure 2.
  • the peak wavelength Wp of the blue light emitted by the blue chip is controlled to be 450 to 460 nm, that is, the dominant wavelength Wd of the spectrum is between 453 and 467.5 nm, and then the peak of the yellow light emitted by the yttrium aluminum garnet phosphor is adjusted.
  • Doping concentration of phosphor between 550-575 nm (0.01-0.1% mass ratio, The quality of the phosphor is better than the quality of the encapsulant.)
  • the spectrum of the LED corresponds to the value of each pixel.
  • the spectrum of the LED is multiplied by the penetration spectrum of the transistor to correspond to the value of 1 nm.
  • the LED when used in a backlight module, it can be in the form of a direct type, a side entry type, and includes corresponding optical components (reflecting sheet, light guide plate/diffusion plate, diaphragm, etc.).
  • the change of the LED spectrum of Scheme 2 is shown in Figure 3.
  • the dotted line refers to the spectrum change curve of the LED before adjustment; the solid line part refers to the adjusted spectrum curve of the LED.
  • the blue chip peak of the LED is red-shifted, which can increase the required LED chromaticity, that is, by increasing the concentration of the phosphor, and the brightness of the LED is obtained. Upgrade. .
  • the blue light of the blue chip Wp is 440 nm and 448 nm, as shown in Table 1 below, when Wp is red shifted by 8 nm, the brightness can be increased by at least 10% or more.
  • the blue light red shift process of the blue chip Wp together with the optimization of the backlight module, can increase the brightness of the white LED used (>10%), thereby bringing cost reduction benefits to the entire backlight module, and Increased visual/optical effects.

Abstract

一种白光发光二极管(11)及背光模块(10)。发光二极管(11)包含一蓝光芯片(111)以及一钇铝石榴石荧光粉(113),蓝光芯片(111)发出的蓝光的峰值波长介于445至460纳米,钇铝石榴石荧光粉(113)发出的黄光的峰值波长介于550至575纳米。通过蓝光芯片(111)的蓝光峰值波长红移过程,使其亮度提升。

Description

白光发光二极管及背光模块 技术领域
本发明是有关于一种白光发光二极管,特别是有关于一种用于背光模块的白光发光二极管。
背景技术
在现今的各种显示技术中,液晶显示作为一种成熟的技术被广泛接受。液晶显示器(LCD)利用了液晶的电光效应,通过电路控制液晶单元的透射率及反射率,调控背光模块发出的光透过色阻的强度,来实现不同灰阶和不同色彩的图像显示。背光模块为显示提供光源,是LCD的关键部件。
为了保持LCD的高质量显示(相同的亮度、均匀度、视角等规格),采用新的背光技术,达到更低的背光成本,同时提升背光模块产品的竞争力,是非常有必要的。
在各个部材对于效率提升方面,以发光二极管(LED)作为背光源占据重要的部分。对于LED来说,在同样的电流、电压驱动下,若能通过变更、改善LED的内部结构或芯片与荧光粉搭配等方式,来提升LED的发光效率,对于上述降低成本的目标是非常有帮助的。另外,通过LED发光频谱与TFT Cell的穿透频谱互相搭配优化,达成同样的模块白点色度规格下,搭配上述提升LED效率的方式,有可能也可以达成整个模块的成本降低。
在目前常用于LCD背光模块中的白光LED,利用蓝光芯片(Blue Chip)发出蓝光,以及激发YAG(钇铝石榴石)/Silicate(硅酸盐)/Nitride(氮化物)荧光粉所发出的黄光,二者叠加后在人眼感知中所呈现的是白光。
对于LCD背光模块用的LED,由于为符合(美国)国家电视标准委员会(National Television Standards Committee)制定的NTSC色域需求,LED的蓝光部分通常需要波长较短,目前普遍用于LCD背光模块的LED 蓝光芯片所发出的蓝光具备的峰值波长(Wp)范围大多为440-445纳米(nm),其频谱对应主波长(Wd)的范围为444-452.5纳米(nm),Wd与Wp的转换与蓝光芯片色谱的FWHM(半峰全宽,Full Width of Half Maximum)有关。
然而,Wp在长波长时所具有的效益较大。从亮度学的角度来看,其能量进入人眼视觉函数的比例增加,在一定程度上,会体现为LED亮度的提升。此外,YAG荧光粉的激发效率随激发源波长的不同而不同,但一般而言,其最佳激发波长在450纳米左右(不同供应商,不同组分的YAG的激发谱会略微不同),当Wp从440纳米不断红移至450纳米时,通过YAG荧光粉的激发谱可以计算出YAG受激发的效率能量亦在不断提升。最后,Wp红移后,LED经过背光部材(LGP、膜片)等的吸收,发出的频谱中蓝色亮度比例加大,同样的,通过电晶管后,蓝色的部分会继续增加,导致LCD模块的NTSC色域表现出蓝色比例增加,使模块整体出光偏蓝,此时需要调整NTSC色域回到原始色度。
故,有必要提供一种发光二极管,以解决现有技术所存在的问题。
技术问题
本发明的主要目的在于提供一种白光发光二极管,其可以通过蓝光芯片的蓝光Wp红移的过程,使其亮度提升(>10%)。此外,通过增加YAG荧光粉的比例来调整NTSC色域回到原始色度,而这个增加YAG浓度的过程,也会带来LED亮度提升的效益。
本发明的次要目的在于提供一种背光模块,其可以经由上述白光发光二极管搭配多个光学部件(反射片、导光板/扩散板、膜片等)而制成,达成制造成本降低的效益以及光学能效的提高。
技术解决方案
本发明一实施例提供一种白光发光二极管,其中所述白光发光二极管包含:一蓝光芯片;以及一封装胶层,掺杂有钇铝石榴石(YAG)荧光粉,其中所述蓝光芯片所发出的蓝光的峰值波长介于445至460纳米(nm),所述钇铝石榴石荧光粉所发出的黄光的峰值波长介于550至575纳米。
在本发明的一实施例中,所述钇铝石榴石荧光粉在所述封装胶层中的掺杂浓度按荧光粉质量比封装胶质量为0.01-0.1%的质量比。
在本发明的一实施例中,所述蓝光芯片的蓝光的频谱对应的主波长介于448至462.5纳米。
在本发明的一实施例中,所述蓝光芯片的蓝光的峰值波长优选介于445至455纳米。
再者,本发明另一实施例提供一种背光模块,其特征在于,所述背光模块包含上述的白光发光二极管。
在本发明的一实施例中,所述背光模块另包含一反射片、一导光板以及一扩散膜片。
在本发明的一实施例中,所述钇铝石榴石荧光粉在所述封装胶层中的掺杂浓度按荧光粉质量比封装胶质量为0.01-0.1%的质量比。
在本发明的一实施例中,在所述背光模块上方另包含一液晶模块,所述掺杂浓度是搭配所述液晶模块的一薄膜电晶管(TFT)基板的穿透谱,使得所述液晶模块的白点到达一目标值。
在本发明的一实施例中,所述蓝光芯片所发出的蓝光的频谱对应的主波长介于448至462.5纳米,所述蓝光芯片的蓝光的峰值波长介于445至455纳米。
有益效果
与现有技术相比较,本发明的白光发光二极管,可以透过简单的调整荧光粉峰值及其浓度来达成LCD模块NTSC色域及白点的需求,可降低制造成本。
附图说明
图1是本发明的背光模块与液晶模块的剖面示意图。
图2是本发明的白光发光二极管的频谱于调整前后的比较图。
图3是本发明的白光发光二极管的频谱于调整前后的比较图。
本发明的最佳实施方式
为让本发明上述目的、特征及优点更明显易懂,下文特举本发明较佳实施例,并配合附图,作详细说明如下。再者,本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
请参照图1所示,其揭示本发明一实施例的一背光模块10,其包含:至少一白光发光二极管11、一反射片12、一导光板13以及一扩散膜片14,其中所述白光发光二极管11主要包含一蓝光芯片111以及一封装胶材112,所述封装胶材112(如环氧树脂或硅胶)中掺杂有钇铝石榴石荧光粉113,由所述白光发光二极管11及一印刷电路板所构成的灯条(light bar)可设于所述导光板13的至少一侧边,或是设于所述导光板13与反射片12之间,以做为一侧入式或直下式的背光模块;另外,在所述背光模块10上方另包含一液晶模块20,所述液晶模块20包含一薄膜电晶管(TFT)基板21、一彩色滤光片(CF)基板22及一液晶材料层23,所述液晶材料层23位于所述薄膜电晶管基板21及彩色滤光片基板22之间,所述薄膜电晶管基板21通常位于所述液晶材料层23及彩色滤光片基板22的下方。
在本发明中,本发明一实施例可单独提供一种白光发光二极管11,其中所述白光发光二极管11的蓝光芯片111所发出的蓝光的峰值波长(Wp)设定介于445至460纳米(nm),优选为设定介于445至460纳米,可例如是448、455或459纳米,但不限于此。所述封装胶材112中掺杂的钇铝石榴石(YAG)荧光粉113所发出的黄光的峰值波长设定介于550至575纳米,可例如是555、562或570纳米,但不限于此。所述钇铝石榴石荧光粉113在所述封装胶材112中的掺杂浓度按荧光粉质量比封装胶质量为 0.01-0.1%的质量比。此外,所述蓝光芯片111所发出的蓝光的频谱对应的主波长(Wd)优选的是设定介于448至462.5纳米,可例如是450或460纳米。
再者,本发明另一实施例则提供一种背光模块10,包含上述的白光发光二极管11。在实际应用上,为了提高背光模块10出光的亮度或均匀度,可选择性地包含有一反射片12、一导光板13或一扩散膜片14。优选地,所述钇铝石榴石荧光粉113在所述封装胶材112中的掺杂浓度按荧光粉质量比封装胶质量为 0.01-0.1%的质量比,其中所述掺杂浓度可搭配所述液晶模块20的薄膜电晶管基板21的穿透谱来做调整,使得所述背光模块10的NTSC色域及白点到达一目标值。依照本发明的白光发光二极管及背光模块,其具体的实施方式可例示如下面两个技术方案:
方案一:
将蓝光芯片所发出的蓝光的峰值波长Wp控制在445-455纳米,亦即其频谱对应的主波长Wd在448至462.5纳米,接着调整钇铝石榴石荧光粉所发出的黄光的峰值在550至575纳米之间,以及荧光粉的浓度(0.01-0.1%的质量比, 荧光粉质量比封装胶质量)搭配电晶管的穿透谱,具体为,LED的频谱对应每1nm对应的值,去乘以电晶管的穿透谱对应每1nm的值,即可得到LCD模块对应的频谱。亦即,通过调整LED荧光粉的浓度,调整到不同的LED频谱,可以算出对应的LCD模块的频谱,最终达到符合LCD模块NTSC色域及白点的需求。此白光LED使用于LCD的背光模块时,其形式可为直下式、侧入式,并包含对应所需的光学部件(反射片、导光板/扩散板、膜片等)。方案一的LED频谱的变化如图2所示。
方案二:
将蓝光芯片所发出的蓝光的峰值波长Wp控制在450至460纳米,亦即其频谱对应的主波长Wd在453至467.5纳米之间,接着调整钇铝石榴石荧光粉所发出的黄光的峰值在550-575纳米之间,荧光粉的掺杂浓度(0.01-0.1%的质量比, 荧光粉质量比封装胶质量)搭配电晶管的穿透谱,具体为,LED的频谱对应每1nm对应的值,去乘以电晶管的穿透谱对应每1nm的值,即可得到LCD模块对应的频谱。亦即,通过调整LED荧光粉的浓度,调整到不同的LED频谱,可以算出对应的LCD模块的频谱,最终达到符合LCD模块NTSC色域及白点的需求。该LED使用于背光模块中时,其形式可为直下式、侧入式,并包含对应所需的光学部件(反射片、导光板/扩散板、膜片等)。方案二的LED频谱的变化如图3所示。
请参照图2至3,虚线部份是指调整前的LED频谱变化曲线;实线部份是指调整后的LED频谱变化曲线。由上述方案一及方案二的频谱变化曲线,可以发现,发光二极管的蓝色芯片峰值红移,可以使需求的LED色度提高,即藉由增加荧光粉的浓度达成,此时LED的亮度得到提升。。此外,依照本发明的白光发光二极管,在蓝光芯片Wp的蓝光为440纳米以及448纳米,如下表1所示,当Wp红移了8纳米时,亮度可以提升至少10%以上。
Figure PCTCN2013091007-appb-I000001
如上所述,通过蓝光芯片Wp的蓝光红移的过程,再搭配背光模块的优化,可以使所使用的白光LED亮度提升(>10%),从而为整个背光模块带来成本降低的效益,以及视觉/光学效果的提升。
本发明已由上述相关实施例加以描述,然而上述实施例仅为实施本发明的范例。必需指出的是,已公开的实施例并未限制本发明的范围。相反地,包含于权利要求书的精神及范围的修改及均等设置均包括于本发明的范围内。
本发明的实施方式
工业实用性
序列表自由内容

Claims (13)

  1. 一种白光发光二极管,其包含:
    一蓝光芯片;以及
    一封装胶层,掺杂有钇铝石榴石荧光粉,
    其中所述蓝光芯片所发出的蓝光的频谱对应的主波长介于448至462.5纳米,所述钇铝石榴石荧光粉所发出的黄光的峰值波长介于550至575纳米,且在所述封装胶层中的掺杂浓度按荧光粉质量比封装胶质量为0.01-0.1%的质量比。
  2. 如权利要求1所述的白光发光二极管,其中所述蓝光芯片的蓝光的峰值波长介于445至460纳米。
  3. 如权利要求3所述的白光发光二极管,其中所述蓝光芯片的蓝光的峰值波长介于445至455纳米。
  4. 一种白光发光二极管,其包含:
    一蓝光芯片;以及
    一封装胶层,掺杂有钇铝石榴石荧光粉,
    其中所述蓝光芯片所发出的蓝光的峰值波长介于445至460纳米,所述钇铝石榴石荧光粉所发出的黄光的峰值波长介于550至575纳米。
  5. 如权利要求4所述的白光发光二极管,其中所述钇铝石榴石荧光粉在所述封装胶层中的掺杂浓度按荧光粉质量比封装胶质量为 0.01-0.1%的质量比。
  6. 如权利要求4所述的白光发光二极管,其中所述蓝光芯片的蓝光的频谱对应的主波长介于448至462.5纳米。
  7. 如权利要求4所述的白光发光二极管,其中所述蓝光芯片的蓝光的峰值波长介于445至455纳米。
  8. 一种背光模块,其包含如权利要求1所述的白光发光二极管。
  9. 如权利要求8所述的背光模块,其中所述背光模块另包含一反射片、一导光板以及一扩散膜片。
  10. 如权利要求9所述的背光模块,其中在所述背光模块上方另包含一液晶模块,所述掺杂浓度是搭配所述液晶模块的一薄膜电晶管基板的穿透谱,使得所述液晶模块的白点到达一目标值。
  11. 如权利要求8所述的背光模块,其中所述钇铝石榴石荧光粉在所述封装胶层中的掺杂浓度按荧光粉质量比封装胶质量为0.01-0.1%的质量比。
  12. 如权利要求11所述的背光模块,其中在所述背光模块上方另包含一液晶模块,所述掺杂浓度是搭配所述液晶模块的一薄膜电晶管基板的穿透谱,使得所述液晶模块的白点到达一目标值。
  13. 如权利要求8所述的背光模块,其中所述蓝光芯片所发出的蓝光的频谱对应的主波长介于448至462.5纳米,所述蓝光芯片的蓝光的峰值波长介于445至455纳米。
PCT/CN2013/091007 2013-12-17 2013-12-31 白光发光二极管及背光模块 WO2015089882A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/235,803 US9224927B2 (en) 2013-12-17 2013-12-31 White light emitting diode and backlight module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310695057.3 2013-12-17
CN201310695057.3A CN103700756B (zh) 2013-12-17 2013-12-17 白光发光二极管及背光模块

Publications (1)

Publication Number Publication Date
WO2015089882A1 true WO2015089882A1 (zh) 2015-06-25

Family

ID=50362224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/091007 WO2015089882A1 (zh) 2013-12-17 2013-12-31 白光发光二极管及背光模块

Country Status (3)

Country Link
US (1) US9224927B2 (zh)
CN (1) CN103700756B (zh)
WO (1) WO2015089882A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104006334A (zh) 2014-05-20 2014-08-27 京东方科技集团股份有限公司 一种背光模组及显示装置
CN104537954A (zh) * 2014-11-24 2015-04-22 苏州佳世达电通有限公司 平面显示装置及背光产生方法
CN105892145B (zh) * 2016-04-05 2020-07-03 武汉华星光电技术有限公司 一种显示器及其显示模组
CN108257948B (zh) * 2017-12-29 2024-03-26 广东晶科电子股份有限公司 白光发光二极管及背光模组
CN112103383B (zh) * 2019-06-17 2022-06-03 李崇华 白光发光二极管及包含其的背光模块与显示设备
CN113903847A (zh) * 2020-07-06 2022-01-07 纬联电子科技(中山)有限公司 发光二极管封装结构及其制作方法与显示装置
CN113156703A (zh) * 2021-04-22 2021-07-23 深圳市华星光电半导体显示技术有限公司 背光模组及量子点显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1612365A (zh) * 2003-10-30 2005-05-04 新世纪光电股份有限公司 具有宽频谱的氮化铝铟镓发光二极管及固态白光器件
CN1912451A (zh) * 2006-08-21 2007-02-14 伟志智能有限公司 高散热超薄高效led白灯
CN1927996A (zh) * 2006-09-08 2007-03-14 北京宇极科技发展有限公司 一种荧光粉材料及其制备方法和白光led电光源
CN101560390A (zh) * 2009-05-21 2009-10-21 中国科学院长春光学精密机械与物理研究所 基于蓝光激发的黄色荧光粉及其应用
CN101956949A (zh) * 2009-04-08 2011-01-26 里德安吉公司 具有单独的光线转换层的含有多个发光二极管照明装置
US20110221330A1 (en) * 2010-03-09 2011-09-15 Cree, Inc. High cri lighting device with added long-wavelength blue color
US20120319142A1 (en) * 2011-06-15 2012-12-20 Cree, Inc. Gel underfill layers for light emitting diodes and methods of fabricating same
JP5168880B2 (ja) * 2006-10-31 2013-03-27 東芝ライテック株式会社 発光装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100480442B1 (ko) * 2002-08-17 2005-04-06 한국과학기술연구원 미량도핑에 의한 고효율 백색 유기 발광 물질 및 이를이용한 전기발광소자
JPWO2006107105A1 (ja) * 2005-04-01 2008-10-02 ソニー株式会社 バックライト装置、液晶表示装置及び光偏向シート
US7731377B2 (en) * 2006-03-21 2010-06-08 Semiconductor Energy Laboratory Co., Ltd. Backlight device and display device
US7821194B2 (en) * 2006-04-18 2010-10-26 Cree, Inc. Solid state lighting devices including light mixtures
US9012937B2 (en) * 2007-10-10 2015-04-21 Cree, Inc. Multiple conversion material light emitting diode package and method of fabricating same
CN102124263B (zh) * 2008-06-25 2013-07-24 克里公司 包括光混合的固态照明装置
US8791642B2 (en) * 2011-03-03 2014-07-29 Cree, Inc. Semiconductor light emitting devices having selectable and/or adjustable color points and related methods

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1612365A (zh) * 2003-10-30 2005-05-04 新世纪光电股份有限公司 具有宽频谱的氮化铝铟镓发光二极管及固态白光器件
CN1912451A (zh) * 2006-08-21 2007-02-14 伟志智能有限公司 高散热超薄高效led白灯
CN1927996A (zh) * 2006-09-08 2007-03-14 北京宇极科技发展有限公司 一种荧光粉材料及其制备方法和白光led电光源
JP5168880B2 (ja) * 2006-10-31 2013-03-27 東芝ライテック株式会社 発光装置
CN101956949A (zh) * 2009-04-08 2011-01-26 里德安吉公司 具有单独的光线转换层的含有多个发光二极管照明装置
CN101560390A (zh) * 2009-05-21 2009-10-21 中国科学院长春光学精密机械与物理研究所 基于蓝光激发的黄色荧光粉及其应用
US20110221330A1 (en) * 2010-03-09 2011-09-15 Cree, Inc. High cri lighting device with added long-wavelength blue color
US20120319142A1 (en) * 2011-06-15 2012-12-20 Cree, Inc. Gel underfill layers for light emitting diodes and methods of fabricating same

Also Published As

Publication number Publication date
US20150194575A1 (en) 2015-07-09
US9224927B2 (en) 2015-12-29
CN103700756A (zh) 2014-04-02
CN103700756B (zh) 2017-02-08

Similar Documents

Publication Publication Date Title
WO2015089882A1 (zh) 白光发光二极管及背光模块
US8928220B2 (en) White light emitting device and display apparatus
KR101460155B1 (ko) 백라이트 유닛 및 이를 구비한 액정 디스플레이 장치
US8269411B2 (en) Display device with quantum dot phosphor and manufacturing method thereof
US20200011508A1 (en) Method and apparatus to enhance spectral purity of a light source
WO2014117400A1 (zh) 背光模组及液晶显示装置
US9156734B2 (en) Method for manufacturing fluorescent powder substrate and liquid crystal module using fluorescent powder substrate
US7486354B2 (en) Backlight module of a liquid crystal display, display device, method of improving color gamut of a display device
WO2016011691A1 (zh) 高色域液晶显示模组结构
WO2017156902A1 (zh) 量子点背光模组及液晶电视
KR101742625B1 (ko) 액정표시장치
WO2016074267A1 (zh) 背光模块及液晶显示装置
TW201022801A (en) Liquid crystal display
US8289479B2 (en) Liquid crystal display comprising red, green, blue, and yellow color filters having chromaticity on a CIE1931 chromaticity diagram
WO2016155054A1 (zh) 激光背光灯组件、背光模组及显示装置
KR100824716B1 (ko) 엘이디 칩온보드 타입의 면광원모듈과 이를 이용한액정표시장치
US8421966B2 (en) Liquid crystal display comprising red, green, blue, and yellow sub-pixels having chromaticity on a CIE1931 chromaticity diagram wherein the sub-pixels have different areas
TWI521266B (zh) 液晶顯示器
WO2018196348A1 (zh) 背光模组和显示装置
US20140071655A1 (en) Direct Backlight Module
US9791738B2 (en) Method and backlight module that achieve high color satuationof LCD (liquid crystal display) device
TWI691765B (zh) 顯示裝置
TW201303447A (zh) 背光模組與使用其之液晶顯示器
JP3813145B2 (ja) 光構造体および偏光子
WO2023184387A1 (zh) 背光模组及其驱动方法、显示模组

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14235803

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13899453

Country of ref document: EP

Kind code of ref document: A1