WO2023184387A1 - 背光模组及其驱动方法、显示模组 - Google Patents

背光模组及其驱动方法、显示模组 Download PDF

Info

Publication number
WO2023184387A1
WO2023184387A1 PCT/CN2022/084527 CN2022084527W WO2023184387A1 WO 2023184387 A1 WO2023184387 A1 WO 2023184387A1 CN 2022084527 W CN2022084527 W CN 2022084527W WO 2023184387 A1 WO2023184387 A1 WO 2023184387A1
Authority
WO
WIPO (PCT)
Prior art keywords
compensation
light source
module
driving
backlight
Prior art date
Application number
PCT/CN2022/084527
Other languages
English (en)
French (fr)
Inventor
曲国健
蔡杨杨
周乔珂
陈亚伟
王晶
赵锬鸿
李刚
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/084527 priority Critical patent/WO2023184387A1/zh
Priority to CN202280000623.1A priority patent/CN117157700A/zh
Publication of WO2023184387A1 publication Critical patent/WO2023184387A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source

Definitions

  • the present application relates to the field of display technology, and in particular to a backlight module, a driving method thereof, and a display module.
  • the LCD module needs to increase the backlight brightness to meet the high brightness requirements.
  • LEDs Light Emitting Diodes
  • the LED drive current which inevitably leads to heating problems in the module. It usually takes 30 to 60 minutes for the display module to stabilize at room temperature. During the temperature rise period, the module will cause a chromaticity shift (mainly white screen performance), thus reducing the display quality.
  • a backlight module which is applied to a display module;
  • the backlight module includes: a backlight source and a backlight drive unit;
  • the backlight source includes: a white light source and a compensation light source, and the light emission wavelength of the white light source is The range is the first wavelength range, the light emission wavelength range of the compensation light source is the second wavelength range, and the second wavelength range is located in the first wavelength range;
  • the backlight drive unit includes: a main drive module and a compensation drive module ;
  • the main driving module is electrically connected to the white light source and the compensation driving module respectively, and is configured to select a compensation driving function corresponding to the current ambient temperature according to the current ambient temperature during the compensation period,
  • the compensation period refers to the period from the initial startup time to the thermal equilibrium time of the display module, and the compensation driving function includes the corresponding relationship between the driving current of the compensation power supply and the ambient temperature; according to the selected compensation A driving function that provides a compensation control signal to the compensation driving module;
  • the compensation driving module is configured to: obtain and provide a driving signal to the compensation light source according to the compensation control signal;
  • the compensation light source is configured to obtain the driving signal and emit light driven by the driving signal, so that the change value of the white point color coordinate of the display module during the compensation period is within a preset range.
  • the working efficiency ⁇ of the compensation light source satisfies:
  • t represents time
  • Tw is the thermal equilibrium time of the display module
  • A is the module impact factor
  • the compensation light source includes a blue light source
  • the compensation light source includes a blue light source and a red light source
  • the compensation light source includes a red light source, a green light source and a blue light source.
  • the compensation light source includes a blue light source
  • the white point color coordinates (x 0 , y 0 ) when the compensation light source is not activated satisfy:
  • ⁇ B is the influence factor of blue light on the x color coordinate
  • ⁇ B is the influence factor of blue light on the y color coordinate.
  • the compensation light source includes a blue light source and a red light source
  • the white point color coordinates (x0, y0) when the compensation light source is not activated satisfy:
  • ⁇ R and ⁇ B are respectively the intensity ratios of the red light source and the blue light source relative to the white light source
  • ⁇ R and ⁇ B are the influence factors of red light and blue light on the x-color coordinate respectively
  • ⁇ R and ⁇ B are respectively the red light and the influence factor of blue light on the y color coordinate.
  • the compensation light source includes a red light source, a green light source and a blue light source;
  • the white point color coordinates (x 0 , y 0 ) when the compensation light source is not activated satisfy:
  • ⁇ R , ⁇ G and ⁇ B are respectively the x-color coordinates of red light, green light and blue light.
  • Influence factors, ⁇ R , ⁇ G , ⁇ B are the influence factors of red light, green light and blue light on the y color coordinate respectively.
  • the backlight module further includes a light guide plate, and the white light source and the compensation light source are located on opposite sides of the light guide plate.
  • the backlight module further includes a diffusion plate and a reflective sheet, the white light source and the compensation light source are arranged between the diffusion plate and the reflective sheet, and the compensation light source is arranged between the white light source and the reflective sheet. side of the light source.
  • the white light source includes a plurality of white light emitting units
  • the compensation light source includes a plurality of compensation light emitting units
  • the number of the compensation light emitting units is smaller than the number of the white light emitting units.
  • the backlight module further includes a temperature monitoring unit, which is electrically connected to the main drive module;
  • the temperature monitoring unit is configured to collect ambient temperature and transmit ambient temperature information to the main drive module during the compensation period; the main drive module is further configured to obtain the ambient temperature information.
  • the backlight module further includes a heat dissipation unit, and the heat dissipation unit is electrically connected to the main drive module;
  • the main drive module is also configured to: transmit a first control signal to the heat dissipation unit when the ambient temperature is greater than a first set temperature; the first set temperature is less than the thermal equilibrium temperature of the display module ;
  • the heat dissipation unit is configured to turn on or increase the heat dissipation power according to the first control signal transmitted by the main drive module.
  • the main drive module is further configured to: transmit a second control signal to the heat dissipation unit when the ambient temperature is lower than the second set temperature; the second set temperature is lower than the first set temperature. set temperature;
  • the heat dissipation unit is configured to turn off or reduce the heat dissipation power according to the second control signal transmitted by the main drive module.
  • the preset range is -0.002 ⁇ +0.002.
  • the main driving module is further configured to preset multiple compensation driving functions, each of the compensation driving functions corresponding to different ambient temperatures.
  • the ambient temperatures corresponding to the plurality of compensation driving functions are ordered from small to large, and the absolute value range of the difference between adjacent ambient temperatures is 3 to 7°C.
  • a display module including: a display panel and the above-mentioned backlight module, where the backlight module is disposed on the backlight side of the display panel.
  • a driving method of a backlight module is provided.
  • the backlight module is applied to a display module.
  • the driving method includes:
  • the main drive module selects a compensation drive function corresponding to the current ambient temperature according to the current ambient temperature; wherein the compensation period refers to the period from the initial startup time to the thermal equilibrium moment of the display module, so
  • the compensation driving function includes the corresponding relationship between the driving current of the compensation power supply and the ambient temperature;
  • the main driving module provides a compensation control signal to the compensation driving module according to the selected compensation driving function
  • the compensation driving module obtains and provides a driving signal to the compensation light source according to the compensation control signal
  • the compensation light source acquires the driving signal and emits light when driven by the driving signal, so that the change value of the white point color coordinate of the display module during the compensation period is within a preset range.
  • the method further includes:
  • the main driving module presets a plurality of compensation driving functions, wherein each compensation driving function corresponds to a different ambient temperature.
  • the main drive module presets multiple compensation drive functions including:
  • establishing the compensation driving function includes:
  • the pre-correction compensation driving function is corrected according to the measured data to obtain the compensation driving function corresponding to the room temperature environment.
  • the backlight module also includes a temperature monitoring unit
  • the method further includes:
  • the temperature monitoring unit collects the ambient temperature and transmits ambient temperature information to the main drive module during the compensation period;
  • the main drive module obtains the ambient temperature information.
  • FIGS 1 and 2 schematically show the V-T curves of two liquid crystal displays
  • Figure 3 schematically shows a module structure diagram of a backlight module
  • Figure 4 schematically shows a simulated value of the chromaticity change of a red light source, a green light source and a blue light source respectively superimposed on the original backlight;
  • Figure 5 schematically shows the temperature rise curve of a light-emitting diode under different driving currents
  • Figure 6 schematically shows a chromaticity versus time curve of a white point color coordinate (x, y) driven at 80mA;
  • Figure 7 schematically shows a normalized spectrum diagram of an original backlight source
  • Figure 8 schematically shows the normalized spectrum diagram of an R, G, B monochromatic LED as a compensation light source
  • Figure 9 schematically shows a graph of the change of chromaticity over time when the adjusted color coordinate x and color coordinate y are driven at 80mA;
  • FIG. 10-11 schematically shows the structural diagrams of two backlight modules
  • Figure 12 schematically shows a schematic distribution diagram of a white light source and a compensation light source
  • Figure 13 schematically shows a schematic diagram of a driving method of a backlight module
  • Figure 14 schematically shows a schematic structural diagram of a display module
  • Figure 15 schematically shows a schematic diagram of another driving method of the backlight module
  • Figure 16 schematically shows a flow chart for establishing a compensation drive function.
  • the chromaticity shift caused by temperature changes mainly comes from two aspects, one is the backlight module, and the other is the Panel (display panel) itself.
  • the backlight module After the backlight is turned on, the light strip, as the main heat source, will start to generate heat, and the ambient temperature around the LED will gradually rise. Due to the characteristics of the LED, the chromaticity of the LED will behave differently under different ambient temperatures. After the Panel is lit, its own heat is limited and there will be no obvious temperature rise. However, with a backlight module with good heat dissipation, the temperature rise of the backlight will eventually lead to the temperature rise of the Panel, that is, the surface temperature of the Panel will increase with the temperature of the backlight.
  • the heat generated by the components on the PCB will further increase the panel temperature rise through heat conduction.
  • LEDs have extremely fast temperature rises and can reach a temperature close to thermal equilibrium in a short period of time. Therefore, the impact on the entire process is relatively small. It can be considered that the chromaticity of LEDs is relatively stable.
  • the white point color coordinate in 1min is (0.3265, 0.3135), and after 60 minutes, the white point color coordinate changes to (0.3216, 0.3049).
  • the corresponding module color temperature changes from 5816K to 6140K, and a white point drift occurs.
  • FIG. 1 is a simulation diagram of three VT curves between light transmittance (Tran) and voltage (Voltage) of VA-type displays. Among them, curves B1, B2, and B3 correspond to 25°C, 40°C, and 50°C respectively;
  • Figure 2 is Three VT curve simulation diagrams between light transmittance (Tran) and voltage (Voltage) of ADS-type displays.
  • curves C1, C2, and C3 correspond to 25°C, 40°C, and 50°C respectively.
  • the light transmittance of the liquid crystal display is different at different temperatures. Since the light transmittance of different wavelengths changes differently, the proportions of R (red light), G (green light), and B (blue light) components in white light change at different temperatures, resulting in changes in color temperature.
  • the backlight module 100 includes: a backlight source 1 and a backlight drive unit 2;
  • the backlight source 1 includes: a white light source 11 and compensation light source 12, the light emission wavelength range of the white light source is the first wavelength range, the light emission wavelength range of the compensation light source is the second wavelength range, and the second wavelength range is within the first wavelength range;
  • the backlight drive unit 2 includes: a main drive module 21 and compensation drive module 22.
  • the main drive module is electrically connected to the white light source and the compensation drive module respectively, and is configured to select a compensation drive function corresponding to the current ambient temperature according to the current ambient temperature during the compensation period, where the compensation period refers to the display mode From the initial start-up moment to the thermal equilibrium moment, the compensation drive function includes the corresponding relationship between the drive current of the compensation power supply and the ambient temperature; according to the selected compensation drive function, a compensation control signal is provided to the compensation drive module.
  • the compensation driving module is configured to obtain and provide a driving signal to the compensation light source according to the compensation control signal.
  • the compensation light source is configured to obtain a driving signal and emit light driven by the driving signal, so that the change value of the white point color coordinate of the display module during the compensation period is within a preset range.
  • the above-mentioned backlight module may be a side-type or a direct-type, which is not limited here.
  • the edge-type backlight module also includes a light guide plate, and the backlight source is arranged on one side of the light guide plate.
  • the white light source and the compensation light source can be placed on opposite sides of the light guide plate; alternatively, the white light source and the compensation light source It can also be arranged on the same side of the light guide plate; of course, other arrangements are also possible, which are not limited here;
  • the direct-type backlight module also includes a diffusion plate and a reflective sheet, and the backlight source is arranged between the diffusion plate and the reflective sheet. At this time, The white light source and the compensation light source are arranged between the diffusion plate and the reflective sheet, and the compensation light source is arranged around the white light source.
  • the above-mentioned compensation light source may include a monochromatic light source, such as a blue light source, a red light source, a green light source, a yellow light source, etc.; or the above-mentioned compensation light source may also include a two-color light source, such as a blue light source and a red light source, of course. It can be two other color light sources; or, the above-mentioned compensation light source can also include three-color light sources, such as: blue light source, red light source and green light source. There is no limit here, and the details are determined according to the actual product.
  • the main drive module can include a SOC (System on Chip)
  • the compensation drive module can include a compensation driver chip.
  • the type of the compensation driver chip can include Chips such as microcontrollers, ARM (Advanced RISC Machines, advanced reduced instruction set computing machines) or FPGA (Field Programmable Gate Array, field programmable gate array) can be determined according to actual design requirements.
  • the above-mentioned main drive module can also be configured to control the white light source to emit light; during the compensation period, both the compensation light source and the white light source emit light, and the compensation light source can play a color temperature compensation role, thus greatly improving the performance of the display module between the initial startup time and the thermal equilibrium time. Chroma shift problem within the time period.
  • the specific form of the above compensation driving function is not limited, as long as it includes the corresponding relationship between the driving current of the compensation power supply and the ambient temperature.
  • the compensation drive function can be preset in the main drive module.
  • the above-mentioned compensation period refers to the period from the initial start-up time of the display module to the thermal equilibrium moment.
  • the initial start-up time includes the power-on time of the display module of the backlight module.
  • the thermal balance time refers to the time corresponding to the display module reaching the thermal equilibrium state. .
  • Thermal balance refers to the situation where the internal temperature of an object in contact with the outside world is uniform everywhere and equal to the outside temperature. In thermal equilibrium, there is no heat exchange between various parts of the object and between the object and the outside world.
  • the XYZ tristimulus value of a certain light source can be obtained by integrating the intensity of the light source over the entire spectrum and the spectral tristimulus value.
  • the same color temperature can correspond to multiple color coordinates, and the color temperature calculated from the same color coordinate is determined. Therefore, the color temperature of the white screen can be ensured to be stable by ensuring that the white point color coordinate is stable.
  • the change value of the white point color coordinate (x, y) of the above display module during the compensation period is the change value of x and the change value of y.
  • the preset range can be preset according to actual needs.
  • the white point color coordinate (x, y) The change value of the point color coordinate is within the acceptable range, and the color temperature of the white screen is stable. Calculate the color temperature CCT through the white point color coordinates (x, y).
  • the specific formula is as follows:
  • the color temperature of the white screen changes when the display module is turned on and operates stably (i.e., the thermal equilibrium state).
  • the chromaticity change or color temperature change under the white screen is the ratio of the different colors of light transmitted through it. Variety.
  • a compensation light source is set up to compensate for the light of corresponding chromaticity in the white light source, thereby greatly reducing the change in the proportion of light of corresponding chromaticity caused by temperature changes, thereby ensuring that the proportions of light of different colors remain stable. It greatly improves the chromaticity shift problem of display modules, improves product quality, and is conducive to optimizing the performance of high-brightness products.
  • the working efficiency (or luminous intensity) of the compensation light source also changes with time.
  • the working efficiency eta of the compensation light source satisfies:
  • t represents time
  • Tw is the thermal equilibrium time of the display module
  • A is the module impact factor
  • Tw is the same as the time of the compensation period, and the functional formula of the above-mentioned working efficiency ⁇ of the compensation light source can also be other functional formulas, and the details can be determined according to the corresponding structure.
  • the above-mentioned module impact factor A is a function related to time t, and the specific functional relationship is different due to different structural designs; the above-mentioned compensation light source works at the maximum working efficiency of 100% when the display module is initially started, and gradually decreases over time until it reaches thermal equilibrium. , the compensation light source stops working.
  • the compensation light source includes a blue light source; or the compensation light source includes a blue light source and a red light source; or the compensation light source includes a red light source, a green light source, and a blue light source; the specific selection can be based on actual conditions.
  • Figure 4 shows the simulated values of chromaticity changes of red light source, green light source and blue light source respectively superimposed on the original backlight source.
  • the luminous intensity of the original backlight source is 100% reference
  • 1% B, 1% R, 1 %G respectively represents a blue light source with 1% luminous intensity, a red light source with 1% luminous intensity, and a green light source with 1% luminous intensity.
  • the blue light source can decrease the x color coordinate and the y color coordinate
  • the red light source can increase the x color coordinate and decrease the y color coordinate
  • the green light source can decrease the x color coordinate and increase the y color coordinate.
  • the compensation light source includes a blue light source, and a monochromatic light source is used for compensation, which has a simple structure and low cost.
  • ⁇ B is the influence factor of blue light on the x color coordinate
  • ⁇ B is the influence factor of blue light on the y color coordinate.
  • the compensation light source includes a blue light source and a red light source; using a two-color light source for compensation, the compensation method is more flexible and has a wide range of applications.
  • the white point color coordinate (x, y) when the display module activates the white light source and the compensation light source during the compensation period and the white point color coordinate (x0, y0) when the display module activates the white light source and does not activate the compensation light source during the compensation period ) satisfy:
  • ⁇ R and ⁇ B are the influence factors of red light and blue light on the x color coordinate respectively
  • ⁇ R and ⁇ B are the influence factors of red light and blue light on the y color coordinate respectively. impact factors.
  • the compensation light source includes a red light source, a green light source and a blue light source; three-color light sources are used for compensation.
  • y 0 satisfies:
  • ⁇ R , ⁇ G and ⁇ B are respectively the influence factors of red light, green light and blue light on the x color coordinate
  • ⁇ R and ⁇ G , ⁇ B are the influence factors of red light, green light and blue light on the y color coordinate respectively.
  • the temperature rise curve of the light-emitting diode under different driving currents is shown in Figure 5.
  • the chromaticity change curve with time when the white point color coordinate (x, y) is driven at 80mA is shown in Figure 6.
  • the white point color coordinates are (0.3265, 0.3135), and the corresponding color temperature is 5816K; when it reaches thermal equilibrium, its white point color coordinates are (0.3209, 0.3039), and the corresponding color temperature is 6191K. That is, the color temperature dropped from 5816K to 6191K, and a chromaticity shift occurred.
  • curves A1, A2, A3, and A4 respectively represent the temperature rise curves under 80mA, 75mA, 70mA, 80mA, and 65mA driving currents; the abscissa represents time, in minutes. , the ordinate represents temperature, in degrees Celsius.
  • the color coordinates x and y are marked as Wx1 and Wy1 respectively when driving at 80mA.
  • the abscissa represents time in minutes, and the ordinate represents color coordinates without units.
  • the normalized spectrum diagram of the original backlight source of this product is shown in Figure 7.
  • R, G, and B monochromatic LEDs are used as the compensation light source
  • the normalized spectrum diagram is shown in Figure 8.
  • the abscissa represents the wavelength, in nanometers; the ordinate represents the normalized relative light intensity, without units.
  • the blue light source can reduce the x color coordinate and the y color coordinate
  • the red light source can increase the x color coordinate and decrease the y color coordinate
  • the green light source can decrease the x color coordinate and increase the y color coordinate. Therefore, 6-7% blue LED can be used to compensate.
  • red LEDs and blue LEDs can be used to adjust the color temperature. Refer to Figure 9.
  • the white point color coordinates corresponding to the initial startup are (0.3188, 0.3031), and the corresponding color temperature is 6331K; when thermal balance is reached, Its white point color coordinate is (0.3201,0.3039), and the corresponding color temperature is 6242K.
  • the x and y color coordinates change within ⁇ 0.002, which is consistent with the change range of conventional liquid crystal modules, indicating that the control method is effective.
  • the adjusted color coordinates x and y are marked as Wx1 and Wy1 respectively when driving at 80mA.
  • the abscissa represents time in minutes, and the ordinate represents color coordinates without units. .
  • the above-mentioned backlight module can be formed into an edge-type backlight module; optionally, as shown in Figure 10, the backlight module also includes a light guide plate 13, a white light source 11 and a compensation light source 12 placed on opposite sides of the light guide plate 13 .
  • the white light source and the compensation light source may each include multiple light-emitting diodes, and their number is not limited and can be selected according to actual conditions.
  • the above-mentioned backlight module can form a direct-type backlight module; optionally, as shown in Figures 11 and 12, the backlight module also includes a diffusion plate 14 and a reflective sheet 15.
  • the white light source 11 and the compensation light source 12 are arranged between the diffusion plate 14 and the reflection sheet 15, and the compensation light source 12 is arranged on the peripheral side of the white light source 11.
  • Figure 12 only illustrates the example of the compensation light source being arranged around the white light source.
  • the compensation light source can also be arranged on one side or both sides of the white light source, etc., and there is no limit here; in addition, the compensation light source is arranged in a circle around the white light source. There is no limit to the number.
  • Figure 12 takes two circles as an example.
  • the white light source includes multiple white light emitting units
  • the compensation light source includes multiple compensation light emitting units.
  • the number of compensation light emitting units is smaller than the number of white light emitting units, thereby saving the number of light emitting units and reducing costs.
  • the white light emitting unit may be a white light emitting diode
  • the compensation light emitting unit may be a compensation light emitting diode.
  • the compensation light-emitting unit may include a blue light diode
  • the compensation light source includes a blue light source and a red light source
  • the compensation light-emitting unit may include a blue light diode and a red light diode
  • the compensation light emitting unit may include a blue light diode, a red light diode and a green light diode.
  • the backlight module also includes a temperature monitoring unit 3 , and the temperature monitoring unit 3 is electrically connected to the main drive module 21 .
  • the temperature monitoring unit is configured to: during the compensation period, collect the ambient temperature and transmit the ambient temperature information to the main drive module; the main drive module is also configured to: obtain the ambient temperature information.
  • This application collects the ambient temperature through a temperature monitoring unit, which is easy to implement and has a simple structure.
  • the above-mentioned temperature monitoring unit may include a temperature sensor, and of course may also be other temperature detection devices, which are not limited here.
  • the backlight module also includes a heat dissipation unit 4 , and the heat dissipation unit 4 is electrically connected to the main drive module 21 .
  • the main drive module is also configured to: transmit a first control signal to the heat dissipation unit when the ambient temperature is greater than a first set temperature; the first set temperature is less than the thermal equilibrium temperature of the display module.
  • the heat dissipation unit is configured to turn on or increase the heat dissipation power according to the first control signal transmitted by the main drive module.
  • the specific value of the above-mentioned first set temperature needs to be determined based on the actual product. For example, if the thermal equilibrium temperature of the display module at room temperature (25°C) is 50°C, the first set temperature can be set to 48°C to ensure reliable operation under different ambient temperatures.
  • the above-mentioned heat dissipation unit can always run, and under the control of the first control signal, the heat dissipation power is increased. If the heat dissipation unit includes a fan, the rotation speed can be increased to increase the heat dissipation power; or, the heat dissipation unit can be in the first state. It is turned on under the control of the control signal, that is, it is turned on only when the ambient temperature is greater than the first set temperature, so as to save the power of the whole machine.
  • the main drive module is also configured to: when the ambient temperature is lower than the second set temperature, transmit a second control signal to the heat dissipation unit; the second set temperature is lower than the first set temperature.
  • the heat dissipation unit is configured to: turn off or reduce the heat dissipation power according to the second control signal transmitted by the main drive module.
  • the specific value of the above second set temperature needs to be determined based on the actual product. For example, if the thermal equilibrium temperature of the display module at room temperature (25°C) is 50°C, the first set temperature can be set to 48°C. At this time, the second set temperature can be set to 45°C.
  • the above-mentioned heat dissipation unit can reduce the heat dissipation power under the control of the first control signal. If the heat dissipation unit includes a fan, the rotation speed can be reduced to increase the heat dissipation power. Alternatively, the heat dissipation unit can be turned off under the control of the second control signal, that is, when the ambient temperature is lower than the second set temperature, it stops operating to save the power of the entire machine.
  • the temperature sensor collects the ambient temperature and sends the ambient temperature information to the SOC; the SOC receives the ambient temperature information and makes judgments and comparisons; when the ambient temperature exceeds the first set temperature, the first control signal is sent to the fan ; After receiving the first control signal, the fan turns on or increases the speed; when the ambient temperature is lower than the second set temperature, sends a second control signal to the fan; after receiving the second control signal, the fan turns off or reduces the speed.
  • SOC System on Chip
  • the preset range is -0.002 ⁇ +0.002.
  • the change value of the white point color coordinate of the display module during the compensation period is within the preset range, which is consistent with the change range of conventional liquid crystal display modules, ensuring Stability of chromaticity and picture effects from just booting to stable operation.
  • the main drive module is also configured to preset multiple compensation drive functions, each compensation drive function corresponding to different ambient temperatures.
  • the ambient temperatures corresponding to the multiple compensation driving functions are sorted from small to large, and the absolute value range of the difference between adjacent ambient temperatures is 3 to 7°C. As an example, measurements can be taken every 5°C. It should be noted that if the actual ambient temperature is inconsistent with the temperature corresponding to the preset compensation drive function, for example: the actual ambient temperature is 34°C, and the temperatures corresponding to multiple compensation drive functions are 25°C, 30°C, 35°C, etc. , at this time, the compensation driving function corresponding to 35°C, which is closest to 34°C, is used for compensation.
  • An embodiment of the present application further provides a display module, as shown in FIG. 14 .
  • the display module includes a display panel 5 and the above-mentioned backlight module 100 .
  • the backlight module 100 is disposed on the backlight side of the display panel 5 .
  • the above-mentioned backlight module is configured to provide backlight to the display panel.
  • an edge-type backlight module is used for illustration.
  • the edge-type backlight module can also include other structures.
  • Figure 5 is only schematically illustrated.
  • a white light source 11, a compensation light source 12 and a light guide plate 13 are provided.
  • the specific structure of the display panel is not limited.
  • the display panel may include an array substrate 51 and a color filter substrate 52 arranged opposite each other. Of course, it may also include other structures, which will not be described in detail here. For details, please refer to the relevant Technology acquisition.
  • the type of the above display module is not limited. It can be TN (Twisted Nematic), VA (Vertical Alignment), IPS (In-Plane Switching) or ADS (Advanced). Super Dimension Switch (Advanced Super Dimension Field Switch) and other liquid crystal display devices, as well as any products or components with display functions such as televisions, digital cameras, mobile phones, tablets, etc. that include these display devices.
  • Embodiments of the present application also provide a driving method for the above-mentioned backlight module.
  • the backlight module is applied to a display module.
  • the driving method includes:
  • the main drive module selects the compensation drive function corresponding to the current ambient temperature according to the current ambient temperature; among them, the compensation period refers to the period from the initial startup time to the thermal equilibrium moment of the display module, and the compensation drive function includes compensation The corresponding relationship between the driving current of the power supply and the ambient temperature.
  • the main drive module provides the compensation control signal to the compensation drive module according to the selected compensation drive function.
  • the compensation driving module obtains and provides a driving signal to the compensation light source according to the compensation control signal.
  • the compensation light source acquires a driving signal and emits light driven by the driving signal, so that the change value of the white point color coordinate of the display module during the compensation period is within a preset range.
  • the light of corresponding chromaticity in the white light source can be compensated by the compensation light source, thereby greatly reducing the change in the proportion of the light of corresponding chromaticity caused by temperature changes, thereby ensuring different
  • the ratio of color lights remains stable, which greatly improves the chromaticity shift problem of display modules, improves product quality, and is conducive to performance optimization of high-brightness products.
  • This method is simple, easy to implement, and highly operable.
  • the driving method includes:
  • the temperature sensor obtains the ambient temperature.
  • SOC selects a specific compensation drive function based on the ambient temperature.
  • the LED Driver drives the LED according to the compensation drive function.
  • the above driving method also includes:
  • the main drive module presets multiple compensation drive functions, where each compensation drive function corresponds to different ambient temperatures.
  • step S10 is executed before the product leaves the factory, and multiple compensation driving functions are preset in the factory product.
  • S10 and the main drive module preset multiple compensation drive functions including:
  • S101, establishing the compensation driving function includes:
  • step S1011 the time required for the temperature to change from initial startup to thermal equilibrium (ie, thermal equilibrium time Tw) can be obtained.
  • the above-mentioned maximum chromaticity change value refers to the difference between the maximum value and the minimum value of the white point color coordinate x in the period from the initial startup to the thermal equilibrium, and the maximum value of the color coordinate y in the period from the initial startup to the thermal equilibrium. The difference from the minimum value.
  • the type of the compensation light source may include a monochromatic light source, such as a blue light source, a red light source or a green light source; or the compensation light source may also include a bicolor light source, such as a blue light source and a red light source; or the compensation light source may also Including three-color light sources, such as blue light source, red light source and green light source.
  • a monochromatic light source such as a blue light source, a red light source or a green light source
  • the compensation light source may also include a bicolor light source, such as a blue light source and a red light source
  • the compensation light source may also Including three-color light sources, such as blue light source, red light source and green light source.
  • the above driving method can be PWM driving or DC driving, which is not limited here.
  • the PWM drive controls the screen to flash alternately at a certain frequency, using the visual residual effect of the human eye to achieve a continuous display effect.
  • PWM dimming means continuous alternation of on, off, on, and off, and the LED brightness is changed by changing the alternation time.
  • DC drive controls the LED display brightness by adjusting the LED voltage or current, that is, by changing the power.
  • FIG. 16 is a simplified flow chart of the complete establishment steps of the above-mentioned step S101. Referring to Figure 16, multiple compensation driving functions can be placed in the board of the main driving module by executing steps S200-S204.
  • the backlight module further includes a temperature monitoring unit.
  • the method Before S1 and the main drive module select the compensation drive function corresponding to the current ambient temperature according to the current ambient temperature during the compensation period, the method also includes:
  • the temperature monitoring unit collects the ambient temperature and transmits the ambient temperature information to the main drive module during the compensation period.
  • the above temperature monitoring unit may include a temperature sensor. It should be noted that when the display module includes a heat dissipation unit, the temperature monitoring unit can also continue to collect the ambient temperature outside the compensation period, so that the main drive module can control the heat dissipation power of the heat dissipation unit.
  • the temperature monitoring unit's collection method and number of times outside the compensation period are not limited. For example, it can be collected in real time or at a certain interval, which can be selected according to the situation.
  • the main drive module obtains ambient temperature information.
  • the main drive module can obtain the current ambient temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

本申请提供了一种背光模组及其驱动方法、显示模组,涉及显示技术领域,能改善显示模组的色度偏移问题。背光模组包括:背光源和背光驱动单元;背光源包括:白光光源和补偿光源;背光驱动单元包括:主驱动模块和补偿驱动模块;主驱动模块分别与白光光源和补偿驱动模块电连接,且被配置为:在补偿时段内,根据当前环境温度,选取与当前环境温度对应的补偿驱动函数;根据已选取的补偿驱动函数,向补偿驱动模块提供补偿控制信号;补偿驱动模块被配置为:获取并根据补偿控制信号,向补偿光源提供驱动信号;补偿光源被配置为:获取驱动信号,并在驱动信号的驱动下发光,以使得显示模组在补偿时段内的白点色坐标的变化值在预设范围以内。

Description

背光模组及其驱动方法、显示模组 技术领域
本申请涉及显示技术领域,尤其涉及一种背光模组及其驱动方法、显示模组。
背景技术
用于医疗、影视制作、电子标牌等专业液晶显示模组,通常具有高亮度、高色域的特点。基于高色域的特点,彩膜厚度较厚,其面板透过率比较低,那么,液晶模组需要通过提升背光亮度以满足高亮度要求。而背光亮度的提升,需要增加LED(Light Emitting Diode,发光二极管)数量和提升LED驱动电流,这样不可避免带来模组的发热问题。显示模组在常温环境下到温度稳定通常需要30~60分钟时间,在温度上升期间就会引起模组的色度偏移(主要为白画面表现),从而降低显示品质。
发明内容
本申请的实施例采用如下技术方案:
一方面,提供了一种背光模组,应用于显示模组;所述背光模组包括:背光源和背光驱动单元;所述背光源包括:白光光源和补偿光源,所述白光光源的出光波长范围为第一波长范围,所述补偿光源的出光波长范围为第二波长范围,所述第二波长范围位于所述第一波长范围内;所述背光驱动单元包括:主驱动模块和补偿驱动模块;
其中,所述主驱动模块分别与所述白光光源和所述补偿驱动模块电连接,且被配置为:在补偿时段内,根据当前环境温度,选取与所述当前环境温度对应的补偿驱动函数,其中,所述补偿时段是指所述显示模组从初始启动时刻到热平衡时刻的时段,所述补偿驱动函数包括所述补偿电源的驱动电流与环境温度的对应关系;根据已选取的所述补偿驱动函数,向所述补偿驱动模块提供补偿控制信号;
所述补偿驱动模块被配置为:获取并根据所述补偿控制信号,向所述补偿光源提供驱动信号;
所述补偿光源被配置为:获取所述驱动信号,并在所述驱动信号的驱动下发光,以使得所述显示模组在所述补偿时段内的白点色坐标的变化值在预设范围以内。
可选的,所述补偿光源的工作效率η满足:
Figure PCTCN2022084527-appb-000001
其中,t代表时间,Tw为所述显示模组的热平衡时间,A为模组影响因子。
可选的,所述补偿光源包括蓝光光源;
或者,所述补偿光源包括蓝光光源和红光光源;
或者,所述补偿光源包括红光光源、绿光光源和蓝光光源。
可选的,所述补偿光源包括蓝光光源;
所述显示模组在所述补偿时段内启动所述白光光源和所述补偿光源时的白点色坐标(x,y)和所述显示模组在所述补偿时段内启动所述白光光源且未启动所述补偿光源时的白点色坐标(x 0,y 0)满足:
Figure PCTCN2022084527-appb-000002
Figure PCTCN2022084527-appb-000003
其中,
Figure PCTCN2022084527-appb-000004
为所述蓝光光源相对于所述白光光源的强度比值,δB为蓝光对x色坐标的影响因子,σB为蓝光对y色坐标的影响因子。
可选的,
Figure PCTCN2022084527-appb-000005
-0.08≤δB≤-0.01;-0.2≤σB≤-0.07。
可选的,所述补偿光源包括蓝光光源和红光光源;
所述显示模组在所述补偿时段内启动所述白光光源和所述补偿光源时的白点色坐标(x,y)和所述显示模组在所述补偿时段内启动所述白光光源且未启动所述补偿光源时的白点色坐标(x0,y0)满足:
Figure PCTCN2022084527-appb-000006
Figure PCTCN2022084527-appb-000007
其中,
Figure PCTCN2022084527-appb-000008
分别为所述红光光源和所述蓝光光源相对于所述白光光源的强度比值,δ R、δ B分别为红光和蓝光对x色坐标的影响因子,σ R、σ B分别为红光和蓝光对y色坐标的影响因子。
可选的,
Figure PCTCN2022084527-appb-000009
-0.08≤δ B≤-0.01、0.07≤δ R≤0.2;
-0.2≤σ B≤-0.07、-0.012≤σ R≤-0.005。
可选的,所述补偿光源包括红光光源、绿光光源和蓝光光源;
所述显示模组在所述补偿时段内启动所述白光光源和所述补偿光源时的白点色坐标(x,y)和所述显示模组在所述补偿时段内启动所述白光光源且未启动所述补偿光源时的白点色坐标(x 0,y 0)满足:
Figure PCTCN2022084527-appb-000010
Figure PCTCN2022084527-appb-000011
其中,
Figure PCTCN2022084527-appb-000012
分别为所述红光光源、所述绿光光源和所述蓝光光源相对于所述白光光源的强度比值,δ R、δ G、δ B分别为红光、绿光和蓝光对x色坐标的影响因子,σ R、σ G、σ B分别为红光、绿光和蓝光对y色坐标的影响因子。
可选的,
Figure PCTCN2022084527-appb-000013
0.07≤δ R≤0.2、-0.2≤δ G≤0.2、-0.08≤δ B≤-0.01;
-0.012≤σ R≤-0.005、0.15≤σ G≤0.3、-0.2≤σ B≤-0.07。
可选的,所述背光模组还包括导光板,所述白光光源和所述补偿光源分置于所述导光板中相对的两侧。
可选的,所述背光模组还包括扩散板和反射片,所述白光光源和所述补偿光源设置在所述扩散板和所述反射片之间、且所述补偿光源设置在所述白光光源的周侧。
可选的,所述白光光源包括多个白光发光单元,所述补偿光源包括多个补偿发光单元,所述补偿发光单元的数量小于所述白光发光单元的数量。
可选的,所述背光模组还包括温度监控单元,所述温度监控单元与所述主驱动模块电连接;
所述温度监控单元被配置为:在所述补偿时段内,采集环境温度并将环境温度信息传输至所述主驱动模块;所述主驱动模块还被配置为:获取所述环境温度信息。
可选的,所述背光模组还包括散热单元,所述散热单元与所述主驱动模块电连接;
所述主驱动模块还被配置为:在环境温度大于第一设定温度的情况下,向所述散热单元传输第一控制信号;所述第一设定温度小于所述显示模组的热平衡温度;
所述散热单元被配置为:根据所述主驱动模块传输的所述第一控制信号开启或者提高散热功率。
可选的,所述主驱动模块还被配置为:在环境温度小于第二设定温度的情况下,向所述散热单元传输第二控制信号;所述第二设定温度小于所述第一设定温度;
所述散热单元被配置为:根据所述主驱动模块传输的所述第二控制信号关闭或者降低散热功率。
可选的,所述预设范围为-0.002~+0.002。
可选的,所述主驱动模块还被配置为:预设多个所述补偿驱动函数,各所述补偿驱动函数对应不同的环境温度。
可选的,多个所述补偿驱动函数对应的环境温度按照从小到大依次排序,相邻所述环境温度之间的差值的绝对值范围为3~7℃。
另一方面,提供了一种显示模组,包括:显示面板和上述背光模组,所述背光模组设置在所述显示面板的背光侧。
又一方面,提供了一种背光模组的驱动方法,所述背光模组应用于显示模组,所述驱动方法包括:
主驱动模块在补偿时段内,根据当前环境温度,选取与所述当前环境温度对应的补偿驱动函数;其中,所述补偿时段是指所述显示模组从初始启动时刻到热平衡时刻的时段,所述补偿驱动函数包括补偿电源的驱动电流与环境温度的对应关系;
所述主驱动模块根据已选取的所述补偿驱动函数,向补偿驱动模块提供补偿控制信号;
所述补偿驱动模块获取并根据所述补偿控制信号,向所述补偿光源提供驱动信号;
所述补偿光源获取所述驱动信号,并在所述驱动信号的驱动下发光,以使得所述显示模组在所述补偿时段内的白点色坐标的变化值在预设范围以内。
可选的,在所述主驱动模块在补偿时段内,根据当前环境温度,选取与所述当前环境温度对应的补偿驱动函数之前,所述方法还包括:
所述主驱动模块预设多个所述补偿驱动函数,其中,各所述补偿驱动函数对应不同的环境温度。
可选的,所述主驱动模块预设多个所述补偿驱动函数包括:
建立多个所述补偿驱动函数;
将多个所述补偿驱动函数内置于所述主驱动模块;
可选的,建立所述补偿驱动函数包括:
模拟室温环境下所述显示模组的温度随时间变化的情况,得到室温环境下所述显示模组的温升曲线;
模拟所述显示模组在不同温度下对应的色度值,得到所述显示模组的温度与色度值之间的第一关系曲线;
根据最大色度变化值确定所述补偿光源的类型和驱动方式,得到所述显示模组的色度值与所述补偿光源的电流之间的第二关系曲线;
根据所述第一关系曲线和所述第二关系曲线确定修正前补偿驱动函数;
根据实测数据对所述修正前补偿驱动函数进行修正,得到室温环境对应的所述补偿驱动函数。
可选的,所述背光模组还包括温度监控单元;
在所述主驱动模块在补偿时段内,根据当前环境温度,选取与所述当前环境温度对应的补偿驱动函数之前,所述方法还包括:
所述温度监控单元在所述补偿时段内,采集环境温度并将环境温度信息传输至所述主驱动模块;
所述主驱动模块获取所述环境温度信息。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1和图2示意性地示出了两种液晶显示器的V-T曲线图;
图3示意性地示出了一种背光模组的模块结构示意图;
图4示意性地示出了一种在原背光源的基础上分别叠加红光光源、绿光光源和蓝光光源的色度变化模拟值;
图5示意性地示出了一种发光二极管在不同驱动电流下的温升曲线;
图6示意性地示出了一种白点色坐标(x,y)在80mA驱动时色度随时 间变化曲线;
图7示意性地示出了一种原背光源的归一化光谱图;
图8示意性地示出了一种R、G、B单色LED作为补偿光源的归一化光谱图;
图9示意性地示出了一种调整后的色坐标x和色坐标y在80mA驱动时色度随时间变化的曲线图;
图10-11示意性地示出了两种背光模组的结构示意图;
图12示意性地示出了一种白光光源和补偿光源的分布示意图;
图13示意性地示出了一种背光模组的驱动方法示意图;
图14示意性地示出了一种显示模组的结构示意图;
图15示意性地示出了另一种背光模组的驱动方法示意图;
图16示意性地示出了一种建立补偿驱动函数的流程图。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的实施例中,采用“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,仅为了清楚描述本申请实施例的技术方案,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。另外,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
温度变化引起的色度偏移主要是来自两个方面,一个是背光模组,一个是Panel(显示面板)本身。背光在点亮后,灯条作为主要的发热源会开始发热,LED周边的环境温度逐渐上升,由于LED特性关系,LED在不同环境温度下其色度表现不同。Panel点亮后自身发热有限,不会有明显的温升,但在散热较好的背光模组下,背光的温升最终会导致Panel的温升,即Panel表面温度会随着背光温度的升高而升高,同时PCB(Printed Circuit Board,印制电路板)上元器件的发热会通过热传导进一步增加Panel温升。而LED作为热源,温升极快,在较短时间内即可达接近热平衡的温度,故在整个过程中影响相对较小,可以认为LED的色度相对稳定。以18.4英寸的显示产品为例,室温环境下(25℃)点亮,温度稳定后背板灯条侧温度约在49~50℃, Panel中心表面温度约在45℃,模组上电启动初期与温升后液晶光学上表现是有较大差异的。其中,1min白点色坐标为(0.3265,0.3135),而在60分钟后白点色坐标变为(0.3216,0.3049),对应模组色温从5816K变化为6140K,出现了白点漂移。
不论是VA(Vertical Alignment,垂直取向)型还是ADS(Advanced Super Dimension Switch,高级超维场转换)型显示器,其液晶在不同温度下其光学特性会发生变化,即VT曲线和Vop在不同温度下会有不同表现,进而影响光学亮度及色度等。图1为VA型显示器的光透过率(Tran)与电压(Voltage)之间的三条VT曲线模拟图,其中,曲线B1、B2、B3分别对应25℃、40℃、50℃;图2为ADS型显示器的光透过率(Tran)与电压(Voltage)之间的三条VT曲线模拟图,其中,曲线C1、C2、C3分别对应25℃、40℃、50℃。参考图和图2所示,液晶显示器在不同温度下,光透过率不同。由于不同波长的光透过率变化不同,因此导致了不同温度下,白光中R(红光)、G(绿光)、B(蓝光)成分占比发生改变,从而导致色温发生变化。
在高亮产品中,由于发热严重,初始开机到稳定运行,整个机身会有比较高的温升,在热平衡之前,白画面下的画面色温会有较大变化,出现色度偏移现象。
基于上述,本申请的实施例提供了一种背光模组,应用于显示模组;参考图3所示,背光模组100包括:背光源1和背光驱动单元2;背光源1包括:白光光源11和补偿光源12,白光光源的出光波长范围为第一波长范围,补偿光源的出光波长范围为第二波长范围,第二波长范围位于第一波长范围内;背光驱动单元2包括:主驱动模块21和补偿驱动模块22。
其中,主驱动模块分别与白光光源和补偿驱动模块电连接,且被配置为:在补偿时段内,根据当前环境温度,选取与当前环境温度对应的补偿驱动函数,其中,补偿时段是指显示模组从初始启动时刻到热平衡时刻的时段,补偿驱动函数包括补偿电源的驱动电流与环境温度的对应关系;根据已选取的补偿驱动函数,向补偿驱动模块提供补偿控制信号。
补偿驱动模块被配置为:获取并根据补偿控制信号,向补偿光源提供驱动信号。
补偿光源被配置为:获取驱动信号,并在驱动信号的驱动下发光,以使得显示模组在补偿时段内的白点色坐标的变化值在预设范围以内。
上述背光模组可以是侧入式,或者还可以是直下式,这里不做限定。其 中,侧入式背光模组还包括导光板,背光源设置在导光板的一侧,此时,白光光源和补偿光源可以分置于导光板中相对的两侧;或者,白光光源和补偿光源还可以设置在导光板的同一侧;当然还可以其他设置方式,这里不做限定;直下式背光模组还包括扩散板和反射片,背光源设置在扩散板和反射片之间,此时,白光光源和补偿光源设置在扩散板和反射片之间、且补偿光源设置在白光光源的周侧。
上述补偿光源可以包括单色光源,例如:蓝光光源、红光光源、绿光光源或者黄色光源等等;或者,上述补偿光源还可以包括双色光源,例如:蓝光光源和红光光源,当然也可以是其他两种颜色光源;或者,上述补偿光源还可以包括三色光源,例如:蓝光光源、红光光源和绿光光源,这里不做限定,具体根据实际产品确定。
上述主驱动模块和补偿驱动模块的具体结构不做限定,示例的,主驱动模块可以包括SOC(System on Chip,片上系统),补偿驱动模块可以包括补偿驱动芯片,该补偿驱动芯片的类型可以包括单片机、ARM(Advanced RISC Machines,高级精简指令集运算机器)或者FPGA(Field Programmable Gate Array,现场可编程门阵列)等芯片,具体可以根据实际设计要求确定。
上述主驱动模块还可以被配置为控制白光光源发光;在补偿时段内,补偿光源和白光光源均发光,补偿光源能够起到色温补偿作用,从而大幅改善显示模组在初始启动时刻到热平衡时刻之间时段内的色度偏移问题。
上述补偿驱动函数的具体形式不做限定,只要包括补偿电源的驱动电流与环境温度的对应关系即可。该补偿驱动函数可以预设在主驱动模块中。
上述补偿时段是指显示模组从初始启动时刻到热平衡时刻的时段,其中,初始启动时刻即包括该背光模组的显示模组的开机时刻,热平衡时刻是指显示模组达到热平衡状态对应的时刻。热平衡是指同外界接触的物体,其内部温度各处均匀且等于外界温度的状况。在热平衡时,物体各部分以及物体同外界之间都没有热量交换。
根据色度学原理,在CIE1931 XYZ及CIE1964 XYZ标准色度系统中,某一光源的XYZ三刺激值可由整个光谱上盖光源的强度与光谱三刺激值积分得到。在色度学中,同一色温可以对应多个色坐标,而同一色坐标计算的色温确定,因此可以通过保证白点色坐标稳定即可保证白画面色温稳定。上述显示模组在补偿时段内的白点色坐标(x,y)的变化值即x的变化值和y的变化值,预设范围可以根据实际需求预设,在该预设范围内,白点色坐标 的变化值在可接受范围内,白画面色温稳定。通过白点色坐标(x,y)计算色温CCT,具体公式如下:
Figure PCTCN2022084527-appb-000014
相关技术中,显示模组在开机至稳定运行(即热平衡状态)的时段内发生白画面的色温变化,其中白色画面下的色度变化或者色温变化是其中透过的不同颜色光的比例发生了变化。本申请中,通过设置补偿光源,对白光光源中相应色度的光进行补偿,从而大幅减少因温度变化导致的相应色度的光的比例的变化值,进而保证不同颜色光的比例保持稳定,大幅改善显示模组的色度偏移问题,提升了产品品质,有利于高亮产品的性能优化。
由于显示模组的白点色坐标在补偿时段内的变化值随时间变化而变化,因此,补偿光源的工作效率(或者发光强度)也随时间的变化而变化。可选的,补偿光源的工作效率η满足:
Figure PCTCN2022084527-appb-000015
其中,t代表时间,Tw为显示模组的热平衡时间,A为模组影响因子。
上述Tw与补偿时段的时间相同,上述补偿光源的工作效率η的函数式还可以是其他函数式,具体可以根据相应的结构而定。
上述模组影响因子A为与时间t相关的函数,具体函数关系因不同结构设计而不同;上述补偿光源在显示模组初始启动是按照最大工作效率100%工作,随时间逐渐减小,到热平衡时,补偿光源停止工作。
可选的,为了便于实现,补偿光源包括蓝光光源;或者,补偿光源包括蓝光光源和红光光源;或者,补偿光源包括红光光源、绿光光源和蓝光光源;具体可以根据实际选定。图4为在原背光源的基础上分别叠加红光光源、绿光光源和蓝光光源的色度变化模拟值,其中,原背光源的发光强度为100%基准,1%B、1%R、1%G分别表示1%发光强度的蓝光光源、1%发光强度的红光光源、1%发光强度的绿光光源,其余数值含义可参考上述,这里不再一一说明。参考图4所示,蓝光光源可以减小x色坐标和y色坐标,红光光源可以增大x色坐标并减小y色坐标,绿光光源可以减小x色坐标并增大y色 坐标。
在一个或者多个实施例中,补偿光源包括蓝光光源,采用单色光源进行补偿,该结构简单,成本低。显示模组在补偿时段内启动白光光源和补偿光源时的白点色坐标(x,y)和显示模组在补偿时段内启动白光光源且未启动补偿光源时的白点色坐标(x 0,y 0)满足:
Figure PCTCN2022084527-appb-000016
Figure PCTCN2022084527-appb-000017
其中,
Figure PCTCN2022084527-appb-000018
为蓝光光源相对于白光光源的强度比值,δ B为蓝光对x色坐标的影响因子,σ B为蓝光对y色坐标的影响因子。
为了进一步保证补偿效果,通过大量模拟和实测得到:
Figure PCTCN2022084527-appb-000019
-0.08≤δ B≤-0.01;-0.2≤σ B≤-0.07。
在一个或者多个实施例中,补偿光源包括蓝光光源和红光光源;采用双色光源进行补偿,补偿方式更加灵活,适用范围广。显示模组在补偿时段内启动白光光源和补偿光源时的白点色坐标(x,y)和显示模组在补偿时段内启动白光光源且未启动补偿光源时的白点色坐标(x0,y0)满足:
Figure PCTCN2022084527-appb-000020
Figure PCTCN2022084527-appb-000021
其中,
Figure PCTCN2022084527-appb-000022
分别为红光光源和蓝光光源相对于白光光源的强度比值,δ R、δ B分别为红光和蓝光对x色坐标的影响因子,σ R、σ B分别为红光和蓝光对y色坐标的影响因子。
为了进一步保证补偿效果,通过大量模拟和实测得到:
Figure PCTCN2022084527-appb-000023
-0.08≤δ B≤-0.01、0.07≤δ R≤0.2;-0.2≤σ B≤-0.07、-0.012≤σ R≤-0.005。
在一个或者多个实施例中,补偿光源包括红光光源、绿光光源和蓝光光源;采用三色光源进行补偿。显示模组在补偿时段内启动白光光源和补偿光源时的白点色坐标(x,y)和显示模组在补偿时段内启动白光光源且未启动补偿光源时的白点色坐标(x 0,y 0)满足:
Figure PCTCN2022084527-appb-000024
Figure PCTCN2022084527-appb-000025
其中,
Figure PCTCN2022084527-appb-000026
分别为红光光源、绿光光源和蓝光光源相对于白光光源的强度比值,δ R、δ G、δ B分别为红光、绿光和蓝光对x色坐标的影响因子,σ R、σ G、σ B分别为红光、绿光和蓝光对y色坐标的影响因子。
为了进一步保证补偿效果,通过大量模拟和实测得到:
Figure PCTCN2022084527-appb-000027
0.07≤δ R≤0.2、-0.2≤δ G≤0.2、-0.08≤δ B≤-0.01;-0.012≤σ R≤-0.005、0.15≤σ G≤0.3、-0.2≤σ B≤-0.07。
以18.4英寸的广播产品为例说明补偿效果。发光二极管在不同驱动电流下的温升曲线如图5所示,白点色坐标(x,y)在80mA驱动时色度随时间变化曲线如图6所示,在未补偿的情况下,参考图6所示,刚启动时白点色坐标为(0.3265,0.3135),对应的色温为5816K;达到热平衡时,其白点色坐标为(0.3209,0.3039),对应的色温为6191K。即色温从5816K降低至6191K,出现了色度偏移现象。图5中,示出了四条温升曲线,其中,曲线A1、A2、A3、A4分别表示在80mA、75mA、70mA、80mA、65mA驱动电流下的温升曲线;横坐标代表时间,单位为分钟,纵坐标代表温度,单位摄氏度。图6中,色坐标x和色坐标y在80mA驱动时色度随时间变化曲线分别标记为Wx1和Wy1,其中,横坐标代表时间,单位为分钟,纵坐标代表色坐标,无单位。
该产品的原背光源的归一化光谱图如图7所示,这里采用R、G、B单色LED作为补偿光源,其归一化光谱图如图8所示。图7和图8中,横坐标代表波长,单位为纳米;纵坐标代表归一化后的相对光强,无单位。结合图4可知,蓝光光源可以减小x色坐标和y色坐标,红光光源可以增大x色坐标并减小y色坐标,绿光光源可以减小x色坐标并增大y色坐标。因此,可以6-7%蓝色LED进行补偿。或者,还可以采用红色LED和蓝色LED进行色温调整,参考图9所示,在补偿后,初始启动对应的白点色坐标为(0.3188,0.3031),对应的色温为6331K;达到热平衡时,其白点色坐标为(0.3201,0.3039),对应的色温为6242K。在整个补偿阶段,x、y色坐标变化在±0.002以内,与常规液晶模组变化范围一致,说明该控制方法有效。图9中,调整后的色坐标x和色坐标y在80mA驱动时色度随时间变化曲线分别标记为Wx1和Wy1,其中,横坐标代表时间,单位为分钟,纵坐标代表色坐标,无单位。
为了减小体积,有利于轻量化,上述背光模组可以形成侧入式背光模组;可选的,参考图10所示,背光模组还包括导光板13,白光光源11和补偿光 源12分置于导光板13中相对的两侧。白光光源和补偿光源可以分别包括多个发光二极管,其数量不做限定,可以根据实际情况选择。
为了提高发光效果,尽可能地增强背光源的亮度,上述背光模组可以形成直下式背光模组;可选的,参考图11和图12所示,背光模组还包括扩散板14和反射片15,白光光源11和补偿光源12设置在扩散板14和反射片15之间、且补偿光源12设置在白光光源11的周侧。图12仅以补偿光源围绕白光光源一周设置为例进行绘示,当然,补偿光源还可以是设置在白光光源的一侧或者两侧等,这里不做限定;另外,补偿光源围绕白光光源的圈数不做限定,图12以两圈为例进行绘示。
可选的,白光光源包括多个白光发光单元,补偿光源包括多个补偿发光单元,补偿发光单元的数量小于白光发光单元的数量,从而节省发光单元的数量,以降低成本。
白光发光单元可以是白光发光二极管,补偿发光单元可以是补偿发光二极管。示例的,在补偿光源包括蓝光光源的情况下,补偿发光单元可以包括蓝光二极管;在补偿光源包括蓝光光源和红光光源的情况下,补偿发光单元可以包括蓝光二极管和红光二极管;在补偿光源包括红光光源、绿光光源和蓝光光源的情况下,补偿发光单元可以包括蓝光二极管、红光二极管和绿光二极管。
可选的,参考图3所示,背光模组还包括温度监控单元3,温度监控单元3与主驱动模块21电连接。
温度监控单元被配置为:在补偿时段内,采集环境温度并将环境温度信息传输至主驱动模块;主驱动模块还被配置为:获取环境温度信息。
本申请通过温度监控单元采集周围环境温度,便于实现且结构简单。上述温度监控单元可以包括温度传感器,当然还可以是其他温度检测器件,这里不做限定。
整机产品长时间运行后温度会增加,在高亮产品中尤为明显,为了确保整机产品信赖性条件以及显示色度稳定,需要对整机温度控制,可选的,参考图3所示,背光模组还包括散热单元4,散热单元4与主驱动模块21电连接。
主驱动模块还被配置为:在环境温度大于第一设定温度的情况下,向散热单元传输第一控制信号;第一设定温度小于显示模组的热平衡温度。
散热单元被配置为:根据主驱动模块传输的第一控制信号开启或者提高 散热功率。
上述第一设定温度的具体数值需要根据实际产品确定。示例的,若显示模组室温(25℃)环境下的热平衡温度为50摄氏度,则第一设定温度可以设置为48摄氏度,以确保在不同环境温度下的可靠运行。
需要说明的是,上述散热单元可以一直运行,在第一控制信号的控制下,提高散热功率,若散热单元包括风扇,则可以采用提高转速以提高散热功率;或者,该散热单元可以在第一控制信号的控制下开启,即仅在环境温度大于第一设定温度的情况下才开启运行,以节省整机功率。
为了减小整机运行功率,可选的,主驱动模块还被配置为:在环境温度小于第二设定温度的情况下,向散热单元传输第二控制信号;第二设定温度小于第一设定温度。
散热单元被配置为:根据主驱动模块传输的第二控制信号关闭或者降低散热功率。
上述第二设定温度的具体数值需要根据实际产品确定。示例的,若显示模组室温(25℃)环境下的热平衡温度为50摄氏度,则第一设定温度可以设置为48摄氏度,此时,第二设定温度可以设置为45摄氏度。
上述散热单元在第一控制信号的控制下,可以降低散热功率,若散热单元包括风扇,则可以采用降低转速以提高散热功率。或者,该散热单元可以在第二控制信号的控制下关闭,即在环境温度小于第二设定温度的情况下停止运行,以节省整机功率。
以散热单元包括风扇、温度监控单元可以包括温度传感器、主驱动模块包括SOC(System on Chip,片上系统)为例,说明驱动关系。参考图13所示,温度传感器采集环境温度,并将环境温度信息发送至SOC;SOC接受环境温度信息,并进行判断比较;在环境温度超过第一设定温度时,向风扇发送第一控制信号;风扇接收第一控制信号后打开或者提高转速;在环境温度低于第二设定温度时,向风扇发送第二控制信号;风扇接收第二控制信号后关闭或者降低转速。
可选的,预设范围为-0.002~+0.002,显示模组在补偿时段内的白点色坐标的变化值在该预设范围以内,这与常规液晶显示模组的变化范围一致,保证了刚开机至运行稳定时的色度和画面效果稳定性。
可选的,为了扩大产品的适应范围,主驱动模块还被配置为:预设多个补偿驱动函数,各补偿驱动函数对应不同的环境温度。
由于在不同环境温度下,温升表现会存在一定差异,因此,需要针对不同环境温度设计不同的补偿驱动函数,从而保证在不同环境温度下,该背光模组均可以实现色度补偿。
进一步可选的,多个补偿驱动函数对应的环境温度按照从小到大依次排序,相邻环境温度之间的差值的绝对值范围为3~7℃。示例的,可以每间隔5℃进行一次测量。需要说明的是,若实际环境温度与预设的补偿驱动函数对应的温度不一致,例如:实际环境温度为34℃,而多个补偿驱动函数对应的温度有25℃、30℃、35℃等等,此时采用与34℃最接近的35℃对应的补偿驱动函数进行补偿。
本申请的实施例另提供了一种显示模组,参考图14所示,该显示模组包括:显示面板5和上述的背光模组100,背光模组100设置在显示面板5的背光侧。
上述背光模组被配置为向显示面板提供背光,图5中以侧入式背光模组为了进行绘示,当然,侧入式背光模组还可以包括其他结构,图5仅示意性地绘示了白光光源11、补偿光源12和导光板13。显示面板的具体结构不做限定,参考图5所示,该显示面板可以包括相对设置的阵列基板51和彩膜基板52,当然,还可以包括其他结构,这里不再详细说明,具体可以参考相关技术获得。
上述显示模组的类型不做限定,其类型可以是TN(Twisted Nematic,扭曲向列)型、VA(Vertical Alignment,垂直取向)型、IPS(In-Plane Switching,平面转换)型或ADS(Advanced Super Dimension Switch,高级超维场转换)型等液晶显示装置以及包括这些显示装置的电视、数码相机、手机、平板电脑等任何具有显示功能的产品或者部件。
本申请的实施例还提供了一种如上述背光模组的驱动方法,背光模组应用于显示模组,驱动方法包括:
S1、主驱动模块在补偿时段内,根据当前环境温度,选取与当前环境温度对应的补偿驱动函数;其中,补偿时段是指显示模组从初始启动时刻到热平衡时刻的时段,补偿驱动函数包括补偿电源的驱动电流与环境温度的对应关系。
S2、主驱动模块根据已选取的补偿驱动函数,向补偿驱动模块提供补偿控制信号。
S3、补偿驱动模块获取并根据补偿控制信号,向补偿光源提供驱动信号。
S4、补偿光源获取驱动信号,并在驱动信号的驱动下发光,以使得显示模组在补偿时段内的白点色坐标的变化值在预设范围以内。
上述步骤中,各部件的相关说明可以参考前述实施例,这里不再赘述。
通过执行上述步骤S1-S4,可以在补偿阶段,通过补偿光源对白光光源中相应色度的光进行补偿,从而大幅减少因温度变化导致的相应色度的光的比例的变化值,进而保证不同颜色光的比例保持稳定,大幅改善显示模组的色度偏移问题,提升了产品品质,有利于高亮产品的性能优化。该方法简单易实现,可操作性强。
以补偿光源包括补偿LED、温度监控单元可以包括温度传感器、主驱动模块包括SOC(System on Chip,片上系统)、补偿驱动模块包括LED Driver(发光二极管驱动器)为例,说明驱动方法。参考图15所示,该驱动方法包括:
S100、开机启动。
S101、温度传感器获取环境温度。
S102、SOC根据环境温度选定特定补偿驱动函数。
S103、LED Driver按照补偿驱动函数驱动LED。
S104、红、绿、蓝补偿LED发光。
可选的,在S1、主驱动模块在补偿时段内,根据当前环境温度,选取与当前环境温度对应的补偿驱动函数之前,上述驱动方法还包括:
S10、主驱动模块预设多个补偿驱动函数,其中,各补偿驱动函数对应不同的环境温度。
需要说明的是,步骤S10在产品出厂前执行,出厂产品中已预设好多个补偿驱动函数。
进一步可选的,S10、主驱动模块预设多个补偿驱动函数包括:
S101、建立多个补偿驱动函数。
S102、将多个补偿驱动函数内置于主驱动模块。
进一步可选的,S101、建立补偿驱动函数包括:
S1011、模拟室温环境下显示模组的温度随时间变化的情况,得到室温环境下显示模组的温升曲线。
在步骤S1011中,可以得到温度从初始启动时至热平衡时所需要的时间(即热平衡时间Tw)。
S1012、模拟显示模组在不同温度下对应的色度值,得到显示模组的温 度与色度值之间的第一关系曲线。
S1013、根据最大色度变化值确定补偿光源的类型和驱动方式,得到显示模组的色度值与补偿光源的电流之间的第二关系曲线。
上述最大色度变化值是指白点色坐标x在从初始启动时至热平衡时的时段内最大值与最小值的差值、以及色坐标y在从初始启动时至热平衡时的时段内最大值与最小值的差值。
补偿光源的类型可以包括单色光源,例如:蓝光光源、红光光源或者绿光光源;或者,上述补偿光源还可以包括双色光源,例如:蓝光光源和红光光源;或者,上述补偿光源还可以包括三色光源,例如:蓝光光源、红光光源和绿光光源。
上述驱动方式可以是PWM驱动或者DC驱动,这里不做限定。PWM驱动通过控制屏幕在一定的频率上交替闪烁,利用人眼的视觉残留效应达到连续显示的效果。简单来说,PWM调光就是亮、灭、亮、灭不断交替,通过改变交替时间来改变LED亮度。DC驱动通过调整LED电压或电流,即通过改变功率的方式来控制LED显示亮度。
S1014、根据第一关系曲线和第二关系曲线确定修正前补偿驱动函数。
具体的确定方法可以参考相关技术获得,这里不再赘述。
S1015、根据实测数据对修正前补偿驱动函数进行修正,得到室温环境对应的补偿驱动函数。
需要说明的是,执行步骤S1011-S1015后,仅能得到室温环境对应的补偿驱动函数;其他环境温度对应的补偿驱动函数的建立步骤可以参考步骤S1011-S1015,这里不做赘述。图16为上述步骤S101的完整建立步骤的简化流程图,参考图16所示,通过执行步骤S200-S204可以将多个补偿驱动函数置于主驱动模块的板卡中。
在一个或者多个实施例中,背光模组还包括温度监控单元。
在S1、主驱动模块在补偿时段内,根据当前环境温度,选取与当前环境温度对应的补偿驱动函数之前,该方法还包括:
S5、温度监控单元在补偿时段内,采集环境温度并将环境温度信息传输至主驱动模块。
上述温度监控单元可以包括温度传感器。需要说明的是,在该显示模组包括散热单元的情况下,该温度监控单元还可以在补偿时段外,继续采集环境温度,以便于主驱动模块控制散热单元的散热功率。温度监控单元在补偿 时段外的采集方法和次数不做限定,示例的,可以实时采集,或者间隔一定时间采集,具体可以根据情况选择。
S6、主驱动模块获取环境温度信息。
通过执行步骤S5-S6,可以使得主驱动模块获得当前环境温度。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (24)

  1. 一种背光模组,其中,应用于显示模组;所述背光模组包括:背光源和背光驱动单元;所述背光源包括:白光光源和补偿光源,所述白光光源的出光波长范围为第一波长范围,所述补偿光源的出光波长范围为第二波长范围,所述第二波长范围位于所述第一波长范围内;所述背光驱动单元包括:主驱动模块和补偿驱动模块;
    其中,所述主驱动模块分别与所述白光光源和所述补偿驱动模块电连接,且被配置为:在补偿时段内,根据当前环境温度,选取与所述当前环境温度对应的补偿驱动函数,其中,所述补偿时段是指所述显示模组从初始启动时刻到热平衡时刻的时段,所述补偿驱动函数包括所述补偿电源的驱动电流与环境温度的对应关系;根据已选取的所述补偿驱动函数,向所述补偿驱动模块提供补偿控制信号;
    所述补偿驱动模块被配置为:获取并根据所述补偿控制信号,向所述补偿光源提供驱动信号;
    所述补偿光源被配置为:获取所述驱动信号,并在所述驱动信号的驱动下发光,以使得所述显示模组在所述补偿时段内的白点色坐标的变化值在预设范围以内。
  2. 根据权利要求1所述的背光模组,其中,所述补偿光源的工作效率η满足:
    Figure PCTCN2022084527-appb-100001
    其中,t代表时间,Tw为所述显示模组的热平衡时间,A为模组影响因子。
  3. 根据权利要求1所述的背光模组,其中,所述补偿光源包括蓝光光源;
    或者,所述补偿光源包括蓝光光源和红光光源;
    或者,所述补偿光源包括红光光源、绿光光源和蓝光光源。
  4. 根据权利要求1所述的背光模组,其中,所述补偿光源包括蓝光光源;
    所述显示模组在所述补偿时段内启动所述白光光源和所述补偿光源时的白点色坐标(x,y)和所述显示模组在所述补偿时段内启动所述白光 光源且未启动所述补偿光源时的白点色坐标(x 0,y 0)满足:
    Figure PCTCN2022084527-appb-100002
    Figure PCTCN2022084527-appb-100003
    其中,
    Figure PCTCN2022084527-appb-100004
    为所述蓝光光源相对于所述白光光源的强度比值,δ B为蓝光对x色坐标的影响因子,σ B为蓝光对y色坐标的影响因子。
  5. 根据权利要求4所述的背光模组,其中,
    Figure PCTCN2022084527-appb-100005
    -0.08≤δ B≤-0.01;-0.2≤σ B≤-0.07。
  6. 根据权利要求1所述的背光模组,其中,所述补偿光源包括蓝光光源和红光光源;
    所述显示模组在所述补偿时段内启动所述白光光源和所述补偿光源时的白点色坐标(x,y)和所述显示模组在所述补偿时段内启动所述白光光源且未启动所述补偿光源时的白点色坐标(x0,y0)满足:
    Figure PCTCN2022084527-appb-100006
    Figure PCTCN2022084527-appb-100007
    其中,
    Figure PCTCN2022084527-appb-100008
    分别为所述红光光源和所述蓝光光源相对于所述白光光源的强度比值,δ R、δ B分别为红光和蓝光对x色坐标的影响因子,σ R、σ B分别为红光和蓝光对y色坐标的影响因子。
  7. 根据权利要求6所述的背光模组,其中,
    Figure PCTCN2022084527-appb-100009
    -0.08≤δ B≤-0.01、0.07≤δ R≤0.2;
    -0.2≤σ B≤-0.07、-0.012≤σ R≤-0.005。
  8. 根据权利要求1所述的背光模组,其中,所述补偿光源包括红光光源、绿光光源和蓝光光源;
    所述显示模组在所述补偿时段内启动所述白光光源和所述补偿光源时的白点色坐标(x,y)和所述显示模组在所述补偿时段内启动所述白光光源且未启动所述补偿光源时的白点色坐标(x 0,y 0)满足:
    Figure PCTCN2022084527-appb-100010
    Figure PCTCN2022084527-appb-100011
    其中,
    Figure PCTCN2022084527-appb-100012
    分别为所述红光光源、所述绿光光源和所述蓝光 光源相对于所述白光光源的强度比值,δ R、δ G、δ B分别为红光、绿光和蓝光对x色坐标的影响因子,σ R、σ G、σ B分别为红光、绿光和蓝光对y色坐标的影响因子。
  9. 根据权利要求8所述的背光模组,其中,
    Figure PCTCN2022084527-appb-100013
    0.07≤δ R≤0.2、-0.2≤δ G≤0.2、-0.08≤δ B≤-0.01;
    -0.012≤σ R≤-0.005、0.15≤σ G≤0.3、-0.2≤σ B≤-0.07。
  10. 根据权利要求1所述的背光模组,其中,所述背光模组还包括导光板,所述白光光源和所述补偿光源分置于所述导光板中相对的两侧。
  11. 根据权利要求1所述的背光模组,其中,所述背光模组还包括扩散板和反射片,所述白光光源和所述补偿光源设置在所述扩散板和所述反射片之间、且所述补偿光源设置在所述白光光源的周侧。
  12. 根据权利要求1所述的背光模组,其中,所述白光光源包括多个白光发光单元,所述补偿光源包括多个补偿发光单元,所述补偿发光单元的数量小于所述白光发光单元的数量。
  13. 根据权利要求1所述的背光模组,其中,所述背光模组还包括温度监控单元,所述温度监控单元与所述主驱动模块电连接;
    所述温度监控单元被配置为:在所述补偿时段内,采集环境温度并将环境温度信息传输至所述主驱动模块;所述主驱动模块还被配置为:获取所述环境温度信息。
  14. 根据权利要求13所述的背光模组,其中,所述背光模组还包括散热单元,所述散热单元与所述主驱动模块电连接;
    所述主驱动模块还被配置为:在环境温度大于第一设定温度的情况下,向所述散热单元传输第一控制信号;所述第一设定温度小于所述显示模组的热平衡温度;
    所述散热单元被配置为:根据所述主驱动模块传输的所述第一控制信号开启或者提高散热功率。
  15. 根据权利要求14所述的背光模组,其中,所述主驱动模块还被配置为:在环境温度小于第二设定温度的情况下,向所述散热单元传输第二控制信号;所述第二设定温度小于所述第一设定温度;
    所述散热单元被配置为:根据所述主驱动模块传输的所述第二控制信号关闭或者降低散热功率。
  16. 根据权利要求1所述的背光模组,其中,所述预设范围为-0.002~ +0.002。
  17. 根据权利要求1所述的背光模组,其中,所述主驱动模块还被配置为:预设多个所述补偿驱动函数,各所述补偿驱动函数对应不同的环境温度。
  18. 根据权利要求17所述的背光模组,其中,多个所述补偿驱动函数对应的环境温度按照从小到大依次排序,相邻所述环境温度之间的差值的绝对值范围为3~7℃。
  19. 一种显示模组,其中,包括:显示面板和权利要求1-18任一项所述的背光模组,所述背光模组设置在所述显示面板的背光侧。
  20. 一种如权利要求1-18任一项所述的背光模组的驱动方法,其中,所述背光模组应用于显示模组,所述驱动方法包括:
    主驱动模块在补偿时段内,根据当前环境温度,选取与所述当前环境温度对应的补偿驱动函数;其中,所述补偿时段是指所述显示模组从初始启动时刻到热平衡时刻的时段,所述补偿驱动函数包括补偿电源的驱动电流与环境温度的对应关系;
    所述主驱动模块根据已选取的所述补偿驱动函数,向补偿驱动模块提供补偿控制信号;
    所述补偿驱动模块获取并根据所述补偿控制信号,向所述补偿光源提供驱动信号;
    所述补偿光源获取所述驱动信号,并在所述驱动信号的驱动下发光,以使得所述显示模组在所述补偿时段内的白点色坐标的变化值在预设范围以内。
  21. 根据权利要求20所述的方法,其中,在所述主驱动模块在补偿时段内,根据当前环境温度,选取与所述当前环境温度对应的补偿驱动函数之前,所述方法还包括:
    所述主驱动模块预设多个所述补偿驱动函数,其中,各所述补偿驱动函数对应不同的环境温度。
  22. 根据权利要求21所述的方法,其中,所述主驱动模块预设多个所述补偿驱动函数包括:
    建立多个所述补偿驱动函数;
    将多个所述补偿驱动函数内置于所述主驱动模块;
  23. 根据权利要求22所述的方法,其中,建立所述补偿驱动函数包 括:
    模拟室温环境下所述显示模组的温度随时间变化的情况,得到室温环境下所述显示模组的温升曲线;
    模拟所述显示模组在不同温度下对应的色度值,得到所述显示模组的温度与色度值之间的第一关系曲线;
    根据最大色度变化值确定所述补偿光源的类型和驱动方式,得到所述显示模组的色度值与所述补偿光源的电流之间的第二关系曲线;
    根据所述第一关系曲线和所述第二关系曲线确定修正前补偿驱动函数;
    根据实测数据对所述修正前补偿驱动函数进行修正,得到室温环境对应的所述补偿驱动函数。
  24. 根据权利要求20所述的方法,其中,所述背光模组还包括温度监控单元;
    在所述主驱动模块在补偿时段内,根据当前环境温度,选取与所述当前环境温度对应的补偿驱动函数之前,所述方法还包括:
    所述温度监控单元在所述补偿时段内,采集环境温度并将环境温度信息传输至所述主驱动模块;
    所述主驱动模块获取所述环境温度信息。
PCT/CN2022/084527 2022-03-31 2022-03-31 背光模组及其驱动方法、显示模组 WO2023184387A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/084527 WO2023184387A1 (zh) 2022-03-31 2022-03-31 背光模组及其驱动方法、显示模组
CN202280000623.1A CN117157700A (zh) 2022-03-31 2022-03-31 背光模组及其驱动方法、显示模组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/084527 WO2023184387A1 (zh) 2022-03-31 2022-03-31 背光模组及其驱动方法、显示模组

Publications (1)

Publication Number Publication Date
WO2023184387A1 true WO2023184387A1 (zh) 2023-10-05

Family

ID=88198681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084527 WO2023184387A1 (zh) 2022-03-31 2022-03-31 背光模组及其驱动方法、显示模组

Country Status (2)

Country Link
CN (1) CN117157700A (zh)
WO (1) WO2023184387A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134194A (ja) * 2005-11-11 2007-05-31 Citizen Watch Co Ltd 発光素子制御装置、発光素子バックライト装置、液晶表示装置、及びホワイトバランス制御方法
CN102376271A (zh) * 2010-07-13 2012-03-14 苹果公司 用于背光中白点控制的led选择
CN103889101A (zh) * 2012-12-24 2014-06-25 鸿富锦精密工业(深圳)有限公司 色温调节方法及使用该方法的照明装置
CN106597753A (zh) * 2017-02-28 2017-04-26 深圳市华星光电技术有限公司 一种背光模组
CN113015298A (zh) * 2021-02-26 2021-06-22 中煤科工集团重庆研究院有限公司 一种适用于宽温度范围的分布式光纤光源控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134194A (ja) * 2005-11-11 2007-05-31 Citizen Watch Co Ltd 発光素子制御装置、発光素子バックライト装置、液晶表示装置、及びホワイトバランス制御方法
CN102376271A (zh) * 2010-07-13 2012-03-14 苹果公司 用于背光中白点控制的led选择
CN103889101A (zh) * 2012-12-24 2014-06-25 鸿富锦精密工业(深圳)有限公司 色温调节方法及使用该方法的照明装置
CN106597753A (zh) * 2017-02-28 2017-04-26 深圳市华星光电技术有限公司 一种背光模组
CN113015298A (zh) * 2021-02-26 2021-06-22 中煤科工集团重庆研究院有限公司 一种适用于宽温度范围的分布式光纤光源控制系统

Also Published As

Publication number Publication date
CN117157700A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
JP4714297B2 (ja) 表示装置
US9949342B2 (en) Backlight, control method thereof and display device
CN100492478C (zh) 控制多个光源的亮度值的显示设备和控制该设备的方法
US20100321414A1 (en) Display device
CN100442122C (zh) 平板型液晶显示器的背光系统
RU2467366C1 (ru) Жидкокристаллическое устройство отображения
CN101290744B (zh) 背光模块的亮度补偿装置与方法
CN101222797B (zh) 可调节色域之发光二极管背光系统和方法
WO2015096237A1 (zh) 液晶显示装置及其背光源和调光方法
EP2557453A1 (en) Color image display device and control method thereof
CN103440826B (zh) 一种显示装置
US8400393B2 (en) Method of controlling backlight module, backlight controller and display device using the same
US8294660B2 (en) Blacklight unit and display device including the same
CN103218980A (zh) 一种色温调节方法、色温调节装置及显示装置
US11145263B2 (en) Display apparatus and driving method thereof
CN207096637U (zh) 一种led液晶显示器的背光模组
US10276081B2 (en) Display device with color and luminance characterization and compensation methods
CN101697272A (zh) 一种液晶显示设备白平衡校正装置及校正方法
KR101090751B1 (ko) 배광장치를 포함하는 액정표시장치
CN110873982A (zh) 数字背光源系统及控制方法、液晶显示装置及控制方法
CN101737670A (zh) 直下式与侧光式相混合的混合式背光源
WO2023184387A1 (zh) 背光模组及其驱动方法、显示模组
TWI426498B (zh) 顯示器及顯示器之顏色調整方法
Ohtsuki et al. 40.5 L: Late‐News Paper: 18.1‐inch XGA TFT‐LCD with Wide Color Reproduction using High Power LED‐Backlighting
CN100489608C (zh) 液晶显示面板及使其红绿蓝三色发光的伽马曲线重合的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18021920

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934227

Country of ref document: EP

Kind code of ref document: A1