WO2020107644A1 - 薄型背光模组及其制作方法 - Google Patents

薄型背光模组及其制作方法 Download PDF

Info

Publication number
WO2020107644A1
WO2020107644A1 PCT/CN2019/070257 CN2019070257W WO2020107644A1 WO 2020107644 A1 WO2020107644 A1 WO 2020107644A1 CN 2019070257 W CN2019070257 W CN 2019070257W WO 2020107644 A1 WO2020107644 A1 WO 2020107644A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
microstructures
microstructure
backlight module
fluorescent layer
Prior art date
Application number
PCT/CN2019/070257
Other languages
English (en)
French (fr)
Inventor
查国伟
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US16/336,105 priority Critical patent/US11112646B2/en
Publication of WO2020107644A1 publication Critical patent/WO2020107644A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133609Direct backlight including means for improving the color mixing, e.g. white
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side

Definitions

  • the invention relates to the technical field of flexible display, in particular to a thin backlight module and a manufacturing method thereof.
  • LEDs have been widely used in backlight modules for liquid crystal displays. Existing LED backlight modules are mainly divided into two types, one is edge-lit type), the other is direct-lit type.
  • the direct-lit LED backlight module has the advantage of a narrow bezel, and is widely used in the field of large-size display, but has the problem of increased thickness. If a small-size mini-LED is arranged at a smaller pitch, a smaller mixing distance can be obtained, and the possibility of achieving a small-size direct-type backlight source is light, thin, and narrow. . However, a smaller pitch means that a single backlight needs to use more mini-LEDs, thus causing a problem of increased cost.
  • the present invention provides a thin backlight module and a manufacturing method thereof, to solve the problem that the existing technology has an increased thickness and insufficient light mixing distance, and cannot maximize the front light of the light source.
  • the object of the present invention is to provide a thin backlight module and a manufacturing method thereof.
  • a guide layer for dispersing light from the light source is formed together, thereby enabling smaller light mixing Distance and thickness of ultra-thin backlight module.
  • the present invention provides a thin backlight module, including:
  • each of the light-emitting source arrays is disposed on the driving substrate;
  • a reflective layer disposed on the driving substrate and located between two adjacent light emitting sources
  • a fluorescent layer a plurality of surface microstructures are provided on the surface of the fluorescent layer, and each of the surface microstructures corresponds to each of the light emitting sources;
  • a diffusion layer provided on the fluorescent layer
  • a brightness enhancement layer provided on the diffusion layer
  • a plurality of particle microstructures each of the particle microstructures is disposed corresponding to each of the surface microstructures, wherein the particle microstructures and the surface microstructures together form a guide layer for dispersing light from the light-emitting source.
  • the size of each of the light-emitting sources is between 100-1000 microns ( ⁇ m), and the distance between two adjacent light-emitting sources is between 100-2000 microns ( ⁇ m).
  • the particle microstructure includes a concentration of haze particles, the concentration is between 10-90%, and the thickness of the particle microstructure is between 1-100 microns ( ⁇ m).
  • the center of the surface microstructure corresponds to the center of the light emitting source
  • the connection surface between the center of the surface microstructure and the surface of the fluorescent layer is a slope or an arc.
  • the length from the center of the surface microstructure to the surface of the fluorescent layer is 50-500 microns ( ⁇ m), and the thickness of the surface microstructure is 5-100 microns ( ⁇ m) .
  • the light-emitting source is a Mini LED or a Micro LED LED
  • the fluorescent layer includes one of a light-transmitting adhesive and phosphor particles, quantum dot particles or haze particles mixed with the light-transmitting adhesive
  • the driving substrate is a flexible circuit board (FPC) or a printed circuit board (PCB).
  • the present invention also provides a thin backlight module, including:
  • each of the light-emitting source arrays is disposed on the driving substrate;
  • a fluorescent layer a plurality of surface microstructures are provided on the surface of the fluorescent layer, and each of the surface microstructures corresponds to each of the light emitting sources;
  • a plurality of particle microstructures each of the particle microstructures is disposed corresponding to each of the surface microstructures, wherein the particle microstructures and the surface microstructures together form a guide layer for dispersing light from the light-emitting source.
  • the particle microstructure includes a concentration of haze particles, the concentration is between 10-90%, and the thickness of the particle microstructure is between 1-100 microns ( ⁇ m).
  • the center of the surface microstructure corresponds to the center of the light emitting source
  • the connection surface between the center of the surface microstructure and the surface of the fluorescent layer is a slope or an arc.
  • the length from the center of the surface microstructure to the surface of the fluorescent layer is 50-500 microns ( ⁇ m), and the thickness of the surface microstructure is 5-100 microns ( ⁇ m) .
  • the light-emitting source is a Mini LED or a Micro LED LED
  • the fluorescent layer includes one of a light-transmitting adhesive and phosphor particles, quantum dot particles or haze particles mixed with the light-transmitting adhesive
  • the driving substrate is a flexible circuit board (FPC) or a printed circuit board (PCB).
  • the present invention also provides a method for manufacturing a thin backlight module, including the following steps:
  • a hot pressing film tool is used to fabricate each of the surface microstructures so that the connection surface from the center to the surface of the fluorescent layer is a slope or an arc surface, wherein the surface microstructure
  • the length from the center of the structure to the surface of the fluorescent layer is 50-500 microns ( ⁇ m), and the thickness of the surface microstructure is 5-100 microns ( ⁇ m).
  • a steel mesh process is used to coat or print a light-transmitting fluid material on the surface microstructure, wherein the concentration is between 10-90%, and the thickness of the particle microstructure Between 1-100 microns ( ⁇ m).
  • step S30 before step S30, it further includes preparing a plurality of reflective layers, each of which is formed between two adjacent light-emitting sources.
  • a surface microstructure is provided on the fluorescent layer by hot pressing above the light sources arranged in the array, and then particles containing a certain concentration of haze are provided on the surface microstructure by spraying or printing
  • the microstructure enhances the light diffusion effect, maximizes the purpose of directing the light from the light source to the surroundings, expanding the light shape, and reducing the mixed light thickness of the backlight module.
  • the manufacturing method of the surface microstructure and the haze particle microstructure is compatible with the existing LED packaging process, does not require the introduction of new equipment, and has the advantages of high cost saving, high brightness efficiency, and a smaller mixing distance. .
  • FIG. 1 is a schematic cross-sectional view of the thin backlight module of the present invention
  • FIG. 2 is a schematic diagram of the surface microstructure of the thin backlight module of the present invention.
  • FIG 3 is another schematic view of the surface microstructure of the thin backlight module of the present invention.
  • FIG. 4 is a schematic diagram of the guide layer of the thin backlight module of the present invention.
  • FIG. 5 is a flowchart of a method of manufacturing a thin backlight module of the present invention.
  • the present invention provides a thin backlight module, including a driving substrate 1, a plurality of light emitting sources 2, a fluorescent layer 3 and a plurality of particle microstructures 5.
  • the thin backlight module as shown in the figure is preferably a direct type backlight module, however, in other different embodiments, the thin backlight module may also be applied to a side-entry type or other suitable backlight module.
  • the linear light source lightbar that uses the related microstructure technology for the side-entry backlight can also be applied, which is also beneficial to reduce the light mixing distance, thereby achieving the effect of a narrow bezel.
  • Each of the light-emitting sources 2 is arranged on the driving substrate 1 in an array.
  • a plurality of surface microstructures 4 are provided on the surface of the fluorescent layer 3, and each of the surface microstructures 4 corresponds to each of the light emitting sources 2.
  • Each of the particle microstructures 5 is disposed corresponding to each of the surface microstructures 4, wherein the particle microstructures 5 and the surface microstructures 4 together form a guide layer 6 that disperses light from the light source 2.
  • the center of the surface microstructure 4 is arranged corresponding to the center of the light-emitting source 2, that is, symmetrically arranged corresponding to the center of the light-emitting source 2.
  • the connecting surface from the center of the surface microstructure 4 to the surface of the fluorescent layer 3 is a slope or an arc.
  • the inclined surface or arc surface formed by the surface microstructure 4 can effectively emit light to both sides, to avoid excessive light re-entering the light-emitting source 2 and causing secondary absorption.
  • the length 41 from the center of the surface microstructure 4 to the surface of the fluorescent layer 3 is generally approximately equal to half the side length of the light emitting source 2, that is, 50-500 microns ( ⁇ m), and the surface microstructure
  • the thickness 42 of 4 is 5-100 microns ( ⁇ m).
  • the particle microstructure 5 includes a certain concentration of haze particles (Haze Particles) are light-transmissive liquids in the form of droplets, which fully diffuse the light from the light-emitting source 2.
  • the concentration described herein is between 10-90%, and the thickness 52 of the particle microstructure 5 is between 1-100 microns ( ⁇ m).
  • the haze-forming particle microstructure 5 advantageously guides the light emitted by the light source 2 to the surroundings in an orderly manner, fully scatters the light, and enhances the overall light Light shape (Spatial distribution), effectively reducing the mixing distance.
  • the light-emitting source 2 is a mini-LED, a micro-LED, or other small-sized light-emitting diodes. As the distance between the adjacent light-emitting sources 2 increases, the overall thickness of the backlight module decreases.
  • the fluorescent layer 3 includes one of a light-transmitting adhesive 31 and one of phosphor particles 32, quantum dot particles or haze particles mixed with the light-transmitting adhesive 31, wherein the light-transmitting adhesive 31 is, for example, organic silica gel.
  • the driving substrate 1 may be a flexible circuit board (FPC) or a printed circuit board (PCB), which can be changed as needed.
  • FIG. 1 it also includes a reflective layer 7, a diffusion layer 8 and a brightness enhancement layer 9.
  • the reflective layer 7 is disposed on the driving substrate 1 and is located between two adjacent light-emitting sources 2 to increase the refraction and recycling of light.
  • the diffusion layer 8 is provided on the fluorescent layer 3.
  • the brightness enhancement layer 9 is disposed on the diffusion layer 8.
  • the diffusion layer 8 and the brightness enhancement layer 9 are both conventional backlight module technologies, which will not be repeated here.
  • the size of each light-emitting source 2 is between 100-1000 microns ( ⁇ m), and the distance between two adjacent light-emitting sources 2 is between 100-2000 microns ( ⁇ m).
  • FIG. 5 is a flowchart of a method for manufacturing a thin backlight module of the present invention.
  • the present invention also provides a method for manufacturing a thin backlight module, including the following steps: S10, providing a driving substrate; S20, arranging a plurality of light sources in an array on the driving substrate; S30, in the Preparing a fluorescent layer on the light-emitting source, a plurality of surface microstructures are hot-pressed on the surface of the fluorescent layer, and each of the surface microstructures corresponds to each of the light-emitting sources; and S40.
  • a concentration of particle microstructures, the particle microstructures and the surface microstructures together form a guide layer for dispersing light from the light-emitting source.
  • the light source uses an ultra-thin surface light source, such as a blue mini-LED array, coated or inkjet printed on the light emitting surface of the mini-LED with a steel mesh masking process containing phosphor particles
  • Organic silicone material that is, fluorescent layer
  • the organic silicone material forms droplets on the surface of the mini-LED at high temperature and solidifies during the cooling process, solidifying into the light shape of the mini-LED (light emission shape) ) Is more able to expand.
  • step S30 a hot-pressing tool is used to fabricate each of the surface microstructures so that the connecting surface from the center to the surface of the fluorescent layer is a slope or an arc, wherein the center of the surface microstructures to the The length of the surface is 50-500 microns ( ⁇ m), and the thickness of the surface microstructure is 5-100 microns ( ⁇ m).
  • the fluorescent layer is filled with a light-transmitting material (such as organic silica gel, etc.) by a hot-pressing process, and at the same time, the surface microstructure is prepared by hot-pressing a film, wherein the light-transmitting material can infiltrate phosphor particles , Quantum dot particles, haze particles, etc., the particles excited by blue light or ultraviolet light will produce corresponding green light and red light to mix into white light.
  • a light-transmitting material such as organic silica gel, etc.
  • step S30 it further includes preparing a plurality of reflective layers, each of which is formed between two adjacent light-emitting sources.
  • the reflective layer may be manufactured by processes such as evaporation, sputtering or ion coating, and the material is preferably a metal or its alloy.
  • a steel mesh process is used to coat or print a light-transmitting fluid material on the surface microstructure, wherein the concentration is between 10-90%, and the thickness of the particle microstructure is between 1- 100 microns ( ⁇ m).
  • the particle microstructure surface can increase the light diffusion effect, and the light-transmitting fluid material will be cured after being formed.
  • the surface microstructure and the haze particle microstructure together form a guide layer for dispersing the light from the luminous source, the guide layer can enhance the light diffusion effect and its manufacturing method is compatible with the existing LED packaging process, and There is no need to introduce new production equipment, which has the advantages of cost saving, higher brightness efficiency and a smaller mixing distance.
  • the present invention uses an ultra-thin surface light source, such as a blue mini-LED array, to coat or ink-jet print the organic silicone material containing phosphor particles on the mini-LED light emitting surface through a steel mesh masking process.
  • the organic silicone material forms droplets on the surface of the mini-LED at high temperature and solidifies during the cooling process.
  • the light shape of the droplet-shaped mini-LED (light emission shape ) Can be deployed to effectively reduce the thickness of the backlight module.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种薄型背光模组及其制作方法,其中薄型背光模组包括驱动基板(1)、多个发光源(2)、荧光层(3)及多个粒子微结构(5);每一发光源(2)阵列布设于驱动基板(1)上;荧光层(3)表面设置有多个表面微结构(4),每一表面微结构(4)对应每一发光源(2);每一粒子微结构(5)对应每一表面微结构(4)设置,其中粒子微结构(5)与表面微结构(4)共同构成散射发光源(2)光线的引导层。可以实现更小的混光距离并达到超薄的背光模组厚度。

Description

薄型背光模组及其制作方法 技术领域
本发明涉及柔性显示技术领域,尤其涉及一种薄型背光模组及其制作方法。
背景技术
由于电子产品都朝着轻、薄、短、小的目标发展,薄型化概念已成为显示装置持续努力的方向。因薄型化的趋势,显示装置的厚度相应的受到限制,而显示装置薄型化与否的关键因素之一是背光模组的厚度。LED已经广泛用于液晶显示的背光模组,现有的LED背光模组主要分为两种型式,一是侧入式(edge-lit type),另一是直下式(direct-lit type)。
直下式LED背光模组具有窄边框的优点,在大尺寸显示领域得到广泛的应用,但却具有厚度增加的问题。若采用小尺寸的迷你发光二极体(mini-LED)以更小的间距(pitch)排列则可获得较小的混光距离,达到小尺寸直下式背光源实现轻、薄、窄的可能性。然而更小的间距意味着单一背光需要采用更多颗mini-LED,因而产生增加成本的问题。
此外,目前小尺寸显示器采用侧入式LED背光源,由于LED本身具有一定厚度,需要通过导光板等元件将光线均匀扩散,避免近光处产生热点(hotspot)现象,因此需要一定的混光距离。然而为了缩短混光距离实现降低厚度的需求,但通常降低混光距离又会伴随着背光效率的急剧衰减的问题,因此如何有效缩短混光距离、达到全面屏的需求,而且成本又不增加的情况是业者亟须挑战的课题。
技术问题
目前小尺寸显示器采用侧入式LED背光源,由于LED本身具有一定厚度,需要通过导光板等元件将光线均匀扩散,避免近光处产生热点(hotspot)现象,因此需要一定的混光距离。然而为了缩短混光距离实现降低厚度的需求,但通常降低混光距离又会伴随着背光效率的急剧衰减的问题,因此如何有效缩短混光距离、达到全面屏的需求,而且成本又不增加的情况是业者亟须挑战的课题。
技术解决方案
有鉴于此,本发明提供一种薄型背光模组及其制作方法,以解决现有技术所存在厚度增加,混光距离不足,无法实现将发光源的正面光线最大程度引出的问题。
本发明的目的在于提供一种薄型背光模组及其制作方法,通过在荧光层表面设置表面微结构与粒子微结构,共同构成散设发光源光线的引导层,从而能够实现更小的混光距离与超薄的背光模组厚度。
为达成本发明的前述目的,本发明提出一种薄型背光模组,包括:
驱动基板;
多个发光源,每一所述发光源阵列布设于所述驱动基板上;
反射层,设置于所述驱动基板上且位于二相邻的所述发光源之间;
荧光层,所述荧光层表面设置有多个表面微结构,每一所述表面微结构对应每一所述发光源;
扩散层,设置于所述荧光层上;
增亮层,设置于所述扩散层上;及
多个粒子微结构,每一所述粒子微结构对应每一所述表面微结构设置,其中所述粒子微结构与所述表面微结构共同构成散设所述发光源光线的引导层。
在本发明的一实施例中,每一所述发光源的尺寸介于100-1000微米(㎛),二相邻的所述发光源的间距介于100-2000微米(㎛)。
在本发明的一实施例中,所述粒子微结构包括一定浓度的雾度粒子,所述浓度介于10-90%,且所述粒子微结构的厚度介于1-100微米(㎛)。
在本发明的一实施例中,所述表面微结构的中心对应所述发光源的中心设置,且所述表面微结构的中心至所述荧光层的表面的连接面为斜面或弧面。
在本发明的一实施例中,所述表面微结构的中心至所述荧光层的表面的长度为50-500微米(㎛),且所述表面微结构的厚度为5-100微米(㎛)。
在本发明的一实施例中,所述发光源为迷你发光二极体(Mini LED)或微发光二极体(Micro LED),所述荧光层包括透光胶和与所述透光胶混合的荧光粉粒子、量子点颗粒或雾度粒子其中之一,所述驱动基板为柔性电路板(FPC)或印刷电路板(PCB)。
本发明还提供一种薄型背光模组,包括:
驱动基板;
多个发光源,每一所述发光源阵列布设于所述驱动基板上;
荧光层,所述荧光层表面设置有多个表面微结构,每一所述表面微结构对应每一所述发光源;及
多个粒子微结构,每一所述粒子微结构对应每一所述表面微结构设置,其中所述粒子微结构与所述表面微结构共同构成散设所述发光源光线的引导层。
在本发明的一实施例中,所述粒子微结构包括一定浓度的雾度粒子,所述浓度介于10-90%,且所述粒子微结构的厚度介于1-100微米(㎛)。
在本发明的一实施例中,所述表面微结构的中心对应所述发光源的中心设置,且所述表面微结构的中心至所述荧光层的表面的连接面为斜面或弧面。
在本发明的一实施例中,所述表面微结构的中心至所述荧光层的表面的长度为50-500微米(㎛),且所述表面微结构的厚度为5-100微米(㎛)。
在本发明的一实施例中,所述发光源为迷你发光二极体(Mini LED)或微发光二极体(Micro LED),所述荧光层包括透光胶和与所述透光胶混合的荧光粉粒子、量子点颗粒或雾度粒子其中之一,所述驱动基板为柔性电路板(FPC)或印刷电路板(PCB)。
再者,本发明另提供一种薄型背光模组的制作方法,包括以下步骤:
S10、提供驱动基板;
S20、在所述驱动基板上阵列布设多个发光源;
S30、在所述发光源上制备荧光层,在所述荧光层的表面热压出多个表面微结构,每一所述表面微结构对应每一所述发光源;及
S40、在所述表面微结构上制备含有一浓度的粒子微结构,所述粒子微结构与所述表面微结构共同构成散设所述发光源光线的引导层。
在本发明的一实施例中,在步骤S30中,采用热压膜具将每一所述表面微结构制作成中心至所述荧光层表面的连接面为斜面或弧面,其中所述表面微结构的中心至所述荧光层的表面的长度为50-500微米(㎛),且所述表面微结构的厚度为5-100微米(㎛)。
在本发明的一实施例中,采用钢网工艺以涂布或印刷一透光流体材料于所述表面微结构上,其中所述浓度介于10-90%,且所述粒子微结构的厚度介于1-100微米(㎛)。
在本发明的一实施例中,在步骤S30之前,进一步包括制备多个反射层,每一所述反射层形成于二相邻的所述发光源之间。
有益效果
本发明还有如下功效,本发明在阵列布设的发光源上方,通过热压方式在荧光层上设置表面微结构,然后在表面微结构上通过喷涂或印刷的方式设置包含一定浓度雾度的粒子微结构,增强光线扩散作用,达到最大化程度将发光源的光线导向四周、扩大光形,以及降低背光模组混光厚度的目的。此外,所述表面微结构与雾度粒子微结构制作方法与现有LED 封装工艺相兼容,并不需要引入新的设备,具有高效节省成本、亮度效率较高且实现更小混光距离的优势。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明薄型背光模组的剖面示意图;
图2是本发明薄型背光模组的表面微结构的示意图;
图3是本发明薄型背光模组的表面微结构的另一示意图;
图4是本发明薄型背光模组的引导层的示意图;及
图5是本发明薄型背光模组的制作方法的流程图。
本发明的最佳实施方式
在具体实施方式中提及“实施例”意指结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的不同位置出现的相同用语并非必然被限制为相同的实施方式,而应当理解为与其它实施例互为独立的或备选的实施方式。在本发明提供的实施例所公开的技术方案启示下,本领域的普通技术人员应理解本发明所描述的实施例可具有其他符合本发明构思的技术方案结合或变化。
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如[上]、[下 ]、[前]、 [后]、 [左]、 [右]、 [内]、 [外]、 [侧面 ]、[竖直]、[水平]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是用以相同标号表示。
请参照图1至图4所示,本发明提供一种薄型背光模组,包括驱动基板1、多个发光源2、荧光层3及多个粒子微结构5。如图所示的薄型背光模组较佳为直下式背光模组,然而在其他不同的实施例中,薄型背光模组也可应用在侧入式或其他适合的背光模组中。具体而言,将相关微结构工艺用于侧入式背光的线光源lightbar也可以适用,同样有利于降低混光距离,从而实现窄边框的作用。
每一所述发光源2阵列布设于所述驱动基板1上。所述荧光层3表面设置有多个表面微结构4,每一所述表面微结构4对应每一所述发光源2。每一所述粒子微结构5对应每一所述表面微结构4设置,其中所述粒子微结构5与所述表面微结构4共同构成散设所述发光源2光线的引导层6。
在如图2至图4所示的实施例中,所述表面微结构4的中心对应所述发光源2的中心设置,即对应所述发光源2的中心呈对称设置。所述表面微结构4的中心至所述荧光层3的表面的连接面为斜面或弧面。所述表面微结构4所形成的斜面或弧面能够有效地将光线往两侧射出,避免光线过多的重新进入所述发光源2而造成二次吸收。
所述表面微结构4的中心至所述荧光层3的表面的长度41,通常近似等于所述发光源2的边长一半,亦即为50-500微米(㎛),且所述表面微结构4的厚度42为5-100微米(㎛)。所述粒子微结构5包括一定浓度的雾度粒子(Haze Particles)为液滴状的透光液体,使所述发光源2的光线充分扩散。在此所述的浓度介于10-90%,且所述粒子微结构5的厚度52介于1-100微米(㎛)。具雾度的所述粒子微结构5在与所述表面微结构4形成的引导层6,有利地将发光源2发出的光线更有序地导向四周,充分地将光线散射,增强整体光线的出光光形(Spatial distribution),有效降低混光距离。
在本发明的一实施例中,所述发光源2为迷你发光二极体(mini-LED)、微发光二极体(micro-LED)或其他小型发光二极体。当相邻的所述发光源2的间距越远,降低背光模组的整体厚度则会越明显。所述荧光层3包括透光胶31和与所述透光胶31混合的荧光粉粒子32、量子点颗粒或雾度粒子其中之一,其中透光胶31例如有机硅胶等。所述驱动基板1可为柔性电路板(FPC)或印刷电路板(PCB),视需要而改变。
此外,如图1所示,还包括反射层7、扩散层8及增亮层9。所述反射层7设置于所述驱动基板1上且位于二相邻的所述发光源2之间,以增加光线的折射回收利用。所述扩散层8设置于所述荧光层3上。所述增亮层9设置于所述扩散层8上,所述的扩散层8及增亮层9均为背光模组现有技术,在此不多加赘述。每一所述发光源2的尺寸介于100-1000微米(㎛),二相邻的所述发光源2的间距介于100-2000微米(㎛)。
请一并参考图5所示,为本发明薄型背光模组的制作方法的流程图。如图5所示,本发明另提供一种薄型背光模组的制作方法,包括以下步骤:S10、提供驱动基板;S20、在所述驱动基板上阵列布设多个发光源;S30、在所述发光源上制备荧光层,在所述荧光层的表面热压出多个表面微结构,每一所述表面微结构对应每一所述发光源;及S40、在所述表面微结构上制备含有一浓度的粒子微结构,所述粒子微结构与所述表面微结构共同构成散设所述发光源光线的引导层。
在步骤S20及S30中,所述发光源采用一种超薄面发光源,例如蓝光mini-LED阵列,通过钢网掩膜工艺在mini-LED出光面涂覆或喷墨打印含有荧光粉粒子等的有机硅胶材料 (即荧光层),所述有机硅胶材料在高温下mini-LED表面形成液滴状并且在降温过程中固化,固化成液滴状的mini-LED的光形(光线射出的形
Figure 72c0
)更能够展开。
在步骤S30中,采用热压膜具将每一所述表面微结构制作成中心至所述荧光层表面的连接面为斜面或弧面,其中所述表面微结构的中心至所述荧光层的表面的长度为50-500微米(㎛),且所述表面微结构的厚度为5-100微米(㎛)。具体而言,所述荧光层是通过以透光材料(例如有机硅胶等)以热压工艺填平,同时通过热压膜具制备所述表面微结构,其中透光材料中可渗入荧光粉粒子、量子点颗粒、雾度粒子等,所述粒子受到蓝光或紫外光的激发会产生对应的绿光和红光,以混合成白光。
此外,在步骤S30之前,进一步包括制备多个反射层,每一所述反射层形成于二相邻的所述发光源之间。所述反射层可以例如蒸鍍、濺鍍或離子被覆等工艺制作,材料优选为金属或其合金。在步骤S40中,采用钢网工艺以涂布或印刷一透光流体材料于所述表面微结构上,其中所述浓度介于10-90%,且所述粒子微结构的厚度介于1-100微米(㎛)。所述粒子微结构表面可增加光线扩散效果,且所述透光流体材料成型后会固化。
所述表面微结构与所述雾度粒子微结构共同构成散设所述发光源光线的引导层,所述引导层能够增强光线扩散作用且其制作方式与现有的LED 封装制程相兼容,并不需要引入新的制作设备,具有节省成本、亮度效率较高且实现更小混光距离的优势。
因此,本发明采用一种超薄面发光源,例如蓝光mini-LED阵列,通过钢网掩膜工艺在mini-LED出光面涂覆或喷墨打印含有荧光粉粒子等的有机硅胶材料,所述有机硅胶材料在高温下mini-LED表面形成液滴状并且在降温过程中固化。所述液滴状的mini-LED的光形(光线射出的形
Figure 72c0
)能够展开,使背光模组厚度有效降低。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (16)

  1. 一种薄型背光模组,包括:
    驱动基板;
    多个发光源,每一所述发光源阵列布设于所述驱动基板上;
    反射层,设置于所述驱动基板上且位于二相邻的所述发光源之间;
    荧光层,所述荧光层表面设置有多个表面微结构,每一所述表面微结构对应每一所述发光源;
    扩散层,设置于所述荧光层上;
    增亮层,设置于所述扩散层上;及
    多个粒子微结构,每一所述粒子微结构对应每一所述表面微结构设置,其中所述粒子微结构与所述表面微结构共同构成散设所述发光源光线的引导层。
  2. 如权利要求1所述的薄型背光模组,其中每一所述发光源的尺寸介于100-1000微米(㎛),二相邻的所述发光源的间距介于100-2000微米(㎛)。
  3. 如权利要求1所述的薄型背光模组,其中所述粒子微结构包括一定浓度的雾度粒子,所述浓度介于10-90%,且所述粒子微结构的厚度介于1-100微米(㎛)。
  4. 如权利要求1所述的薄型背光模组,其中所述表面微结构的中心对应所述发光源的中心设置,且所述表面微结构的中心至所述荧光层的表面的连接面为斜面或弧面。
  5. 如权利要求1所述的薄型背光模组,其中所述表面微结构的中心至所述荧光层的表面的长度为50-500微米(㎛),且所述表面微结构的厚度为5-100微米(㎛)。
  6. 如权利要求1所述的薄型背光模组,其中所述发光源为迷你发光二极体(Mini LED)或微发光二极体(Micro LED),所述荧光层包括透光胶和与所述透光胶混合的荧光粉粒子、量子点颗粒或雾度粒子其中之一,所述驱动基板为柔性电路板(FPC)或印刷电路板(PCB)。
  7. 一种薄型背光模组,包括:
    驱动基板;
    多个发光源,每一所述发光源阵列布设于所述驱动基板上;
    荧光层,所述荧光层表面设置有多个表面微结构,每一所述表面微结构对应每一所述发光源;及
    多个粒子微结构,每一所述粒子微结构对应每一所述表面微结构设置,其中所述粒子微结构与所述表面微结构共同构成散设所述发光源光线的引导层。
  8. 如权利要求7所述的薄型背光模组,其中所述粒子微结构包括一定浓度的雾度粒子,所述浓度介于10-90%,且所述粒子微结构的厚度介于1-100微米(㎛)。
  9. 如权利要求7所述的薄型背光模组,其中所述表面微结构的中心对应所述发光源的中心设置,且所述表面微结构的中心至所述荧光层的表面的连接面为斜面或弧面。
  10. 如权利要求7所述的薄型背光模组,其中所述表面微结构的中心至所述荧光层的表面的长度为50-500微米(㎛),且所述表面微结构的厚度为5-100微米(㎛)。
  11. 如权利要求7所述的薄型背光模组,其中所述发光源为迷你发光二极体(Mini LED)或微发光二极体(Micro LED),所述荧光层包括透光胶和与所述透光胶混合的荧光粉粒子、量子点颗粒或雾度粒子其中之一,所述驱动基板为柔性电路板(FPC)或印刷电路板(PCB)。
  12. 如权利要求7所述的薄型背光模组,还包括:
    反射层,设置于所述驱动基板上且位于二相邻的所述发光源之间;
    扩散层,设置于所述荧光层上;及
    增亮层,设置于所述扩散层上;
    其中每一所述发光源的尺寸介于100-1000微米(㎛),二相邻的所述发光源的间距介于100-2000微米(㎛)。
  13. 一种薄型背光模组的制作方法,包括以下步骤:
      S10、提供驱动基板;
      S20、在所述驱动基板上阵列布设多个发光源;
      S30、在所述发光源上制备荧光层,在所述荧光层的表面热压出多个表面微结构,每一所述表面微结构对应每一所述发光源;及
    S40、在所述表面微结构上制备含有一浓度的粒子微结构,所述粒子微结构与所述表面微结构共同构成散设所述发光源光线的引导层。
  14. 如权利要求13所述的薄型背光模组的制作方法,其中在步骤S30中,采用热压膜具将每一所述表面微结构制作成,中心至所述荧光层表面的连接面为斜面或弧面,其中所述表面微结构的中心至所述荧光层的表面的长度为50-500微米(㎛),且所述表面微结构的厚度为5-100微米(㎛)。
  15. 如权利要求13所述的薄型背光模组的制作方法,其中采用钢网工艺以涂布或印刷一透光流体材料于所述表面微结构上,其中所述浓度介于10-90%,且所述粒子微结构的厚度介于1-100微米(㎛)。
  16. 如权利要求13所述的薄型背光模组的制作方法,其中在步骤S30之前,进一步包括制备多个反射层,每一所述反射层形成于二相邻的所述发光源之间。
PCT/CN2019/070257 2018-11-28 2019-01-03 薄型背光模组及其制作方法 WO2020107644A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/336,105 US11112646B2 (en) 2018-11-28 2019-01-03 Thin backlight module and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811430360.XA CN109358450B (zh) 2018-11-28 2018-11-28 薄型背光模组及其制作方法
CN201811430360.X 2018-11-28

Publications (1)

Publication Number Publication Date
WO2020107644A1 true WO2020107644A1 (zh) 2020-06-04

Family

ID=65343021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070257 WO2020107644A1 (zh) 2018-11-28 2019-01-03 薄型背光模组及其制作方法

Country Status (3)

Country Link
US (1) US11112646B2 (zh)
CN (1) CN109358450B (zh)
WO (1) WO2020107644A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110231736B (zh) * 2019-05-29 2020-10-16 惠州市华星光电技术有限公司 背光结构和显示面板
CN110174802A (zh) * 2019-06-03 2019-08-27 惠州市华星光电技术有限公司 一种量子点led背光源及其制备方法
CN212009227U (zh) * 2019-07-16 2020-11-24 中强光电股份有限公司 光源模块
CN112987391A (zh) * 2019-12-16 2021-06-18 中强光电股份有限公司 光源模块及显示设备
CN113126362A (zh) * 2019-12-31 2021-07-16 Tcl集团股份有限公司 光源板、背光源的制作方法、钢网及背光模组
CN111929949B (zh) * 2020-08-18 2023-07-14 京东方科技集团股份有限公司 Led背光结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936489A (zh) * 2010-09-03 2011-01-05 深圳市华星光电技术有限公司 背光模块及其光学组件
US20120127755A1 (en) * 2010-11-22 2012-05-24 Coretronic Corporation Light guide plate and backlight module
JP2017076482A (ja) * 2015-10-13 2017-04-20 大日本印刷株式会社 光波長変換シート、バックライト装置、および画像表示装置
CN206804905U (zh) * 2017-06-14 2017-12-26 深圳Tcl新技术有限公司 增亮膜及背光模组
CN108732816A (zh) * 2018-05-22 2018-11-02 武汉华星光电技术有限公司 面光源背光模组及液晶显示面板
CN108845461A (zh) * 2018-08-31 2018-11-20 武汉华星光电技术有限公司 背光模组及液晶显示装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631628B2 (ja) * 2005-09-13 2011-02-16 日本電気株式会社 照明装置及び表示装置
JP4280283B2 (ja) * 2006-01-27 2009-06-17 株式会社オプトデザイン 面照明光源装置及びこれを用いた面照明装置
CN101514801A (zh) * 2008-02-22 2009-08-26 富士迈半导体精密工业(上海)有限公司 照明装置
TWI378578B (en) * 2009-03-25 2012-12-01 Coretronic Corp Light emitting diode package
JP5306044B2 (ja) * 2009-04-30 2013-10-02 株式会社ジャパンディスプレイ 液晶表示装置及び照明装置
EP2470947B1 (en) * 2009-08-27 2016-03-30 LG Electronics Inc. Optical assembly, backlight unit and display apparatus thereof
KR20120074825A (ko) * 2010-12-28 2012-07-06 엘지전자 주식회사 디스플레이 장치
US20120250350A1 (en) * 2011-03-30 2012-10-04 Mangeun Kim Display apparatus
KR101657954B1 (ko) * 2014-02-05 2016-09-21 삼성디스플레이 주식회사 백라이트 어셈블리 및 이를 포함하는 표시 장치
KR20160031621A (ko) * 2014-09-12 2016-03-23 삼성디스플레이 주식회사 광 발생 부재 및 그것을 포함하는 표시 장치
CN105044815A (zh) * 2015-08-12 2015-11-11 深圳市华星光电技术有限公司 导光板和背光模组
CN206892502U (zh) * 2016-11-23 2018-01-16 华南理工大学 一种高散射性超疏水量子点膜
JP6857297B2 (ja) * 2016-12-22 2021-04-14 日亜化学工業株式会社 導光板、面光源装置、表示装置及び電子機器
CN108303819B (zh) * 2017-01-12 2020-11-24 京东方科技集团股份有限公司 背光源及其制造方法、导光板及其制造方法及显示装置
CN115963661A (zh) * 2017-10-24 2023-04-14 华为技术有限公司 背光模组、显示屏及终端
CN108488693A (zh) * 2018-03-28 2018-09-04 武汉华星光电技术有限公司 Mini LED背光模组及荧光膜层的制作方法
CN209265141U (zh) * 2018-11-28 2019-08-16 武汉华星光电技术有限公司 薄型背光模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936489A (zh) * 2010-09-03 2011-01-05 深圳市华星光电技术有限公司 背光模块及其光学组件
US20120127755A1 (en) * 2010-11-22 2012-05-24 Coretronic Corporation Light guide plate and backlight module
JP2017076482A (ja) * 2015-10-13 2017-04-20 大日本印刷株式会社 光波長変換シート、バックライト装置、および画像表示装置
CN206804905U (zh) * 2017-06-14 2017-12-26 深圳Tcl新技术有限公司 增亮膜及背光模组
CN108732816A (zh) * 2018-05-22 2018-11-02 武汉华星光电技术有限公司 面光源背光模组及液晶显示面板
CN108845461A (zh) * 2018-08-31 2018-11-20 武汉华星光电技术有限公司 背光模组及液晶显示装置

Also Published As

Publication number Publication date
CN109358450A (zh) 2019-02-19
CN109358450B (zh) 2023-12-01
US11112646B2 (en) 2021-09-07
US20210181577A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
WO2020107644A1 (zh) 薄型背光模组及其制作方法
US20060072339A1 (en) Backlight module
WO2021051787A1 (zh) 一种显示装置及背光模组
KR100699266B1 (ko) 백라이트 유닛과 이를 포함하는 표시장치
CN108732816B (zh) 面光源背光模组及液晶显示面板
WO2018120502A1 (zh) 背光模块及显示装置
US11320695B2 (en) Backlight and liquid crystal display
US20220163185A1 (en) Light Emitting Device, Display Device, And Lighting Device
CN101324725B (zh) 液晶显示设备与背光装置
US20190302529A1 (en) Backlight module and display device
US20190025647A1 (en) Direct type backlight module and liquid crystal display
WO2014040306A1 (zh) 直下式背光模组
WO2020056912A1 (zh) 背光模组
EP2369375B1 (en) Backlight unit with a light guide plate
WO2017156902A1 (zh) 量子点背光模组及液晶电视
KR101779606B1 (ko) 일체형 광변환시트, 이를 구비한 백라이트유닛 및 액정표시장치 모듈
CN108732817A (zh) 背光模组及显示装置
TWI301922B (en) Backlight module of light emitting diode
CN114077096A (zh) 光学膜、背光单元及液晶显示装置
US9835784B2 (en) Illuminating device comprising quantum dot tube, backlight module, and LCD
KR20130010373A (ko) 광학 부재 및 이를 포함하는 표시장치
WO2016155115A1 (zh) 导光板及具有该导光板的背光模块和液晶显示器
CN209265141U (zh) 薄型背光模组
KR20100002460A (ko) 백라이트 유닛 및 이의 제조방법
US10726772B2 (en) Display device, backlight module and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19891040

Country of ref document: EP

Kind code of ref document: A1