WO2019071985A1 - 背光模组及显示装置 - Google Patents

背光模组及显示装置 Download PDF

Info

Publication number
WO2019071985A1
WO2019071985A1 PCT/CN2018/093742 CN2018093742W WO2019071985A1 WO 2019071985 A1 WO2019071985 A1 WO 2019071985A1 CN 2018093742 W CN2018093742 W CN 2018093742W WO 2019071985 A1 WO2019071985 A1 WO 2019071985A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
quantum dots
backlight module
guide plate
light source
Prior art date
Application number
PCT/CN2018/093742
Other languages
English (en)
French (fr)
Inventor
陈乃军
杨敏娜
强科文
潘俊
Original Assignee
深圳Tcl新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳Tcl新技术有限公司 filed Critical 深圳Tcl新技术有限公司
Publication of WO2019071985A1 publication Critical patent/WO2019071985A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present application relates to the field of electronic display technologies, and in particular, to a backlight module and a display device using the same.
  • a gamut is the sum of colors that a technical system can produce.
  • a blue chip is generally used to excite red and green quantum dot materials.
  • the existing mass-produced quantum dot TV backlight module generally adopts quantum dots sealed in a glass tube to form a quantum tube or encapsulated in a film to form a quantum film.
  • the quantum tube needs to evacuate the tube to prevent oxidation of the quantum dots, and the preparation process is complicated.
  • the quantum film needs to be provided with a barrier layer to cover the quantum dots to prevent oxidation of the quantum dots.
  • the quantum film provided with the barrier layer usually covers the optical film group, thereby increasing the thickness of the optical film group, which is disadvantageous for the thin design of the display device.
  • the main purpose of the present application is to provide a backlight module and a display device, which are intended to solve the technical problem that the backlight module is thick due to the arrangement of the quantum film in the prior backlight module.
  • a display module provided by the present application includes a light source assembly and a reflective sheet, a light guide plate and an optical film group disposed in sequence, and the light source assembly is configured to emit light directed to the light guide plate, and the reflective sheet is configured to be Light emitted from the light source assembly and the light guide plate is reflected to the light guide plate, and the reflection sheet is provided with a plurality of quantum dots, and the quantum dots are arranged to receive light emitted by the light source assembly to excite excitation light. The excitation light is mixed with light emitted by the light source assembly to form white light.
  • the optical film set includes a filter disposed on the light guide plate.
  • the light source assembly includes a plurality of LED lamp beads and a scattering lens coated on the LED lamp bead, the diffusing lens having a divergence angle greater than 120°.
  • the LED lamp bead is a violet lamp bead and/or a blue light bead
  • the quantum dot is a red quantum dot; or the quantum dot is a red quantum dot and a green quantum dot; or the quantum dot Red quantum dots, green quantum dots, and blue quantum dots.
  • the reflective sheet is a polyethylene terephthalate film containing titanium dioxide.
  • the reflective sheet is a polyethylene terephthalate film provided with a plurality of pore structures.
  • the quantum dots are inorganic perovskite quantum dots, and the chemical formula of the inorganic perovskite quantum dots is CsPbX 3 , wherein X is Cl, Br or I.
  • the quantum dots are organic-inorganic hybrid perovskite quantum dots, and the chemical formula of the inorganic perovskite quantum dots is CH 3 NH3PbX 3 or wherein X is Cl, Br or I.
  • the quantum dot is any one of a first compound formed from an element in Group II and Group IV or a second compound formed from an element in Group III and Group V. Made of materials;
  • a core-shell structure compound or a doped nanocrystalline material formed by coating at least one of the first compound and at least one of the second compounds;
  • it is made of a core-shell structure compound or a doped nanocrystal material formed by a plurality of the first compounds or a plurality of coatings of the second compounds.
  • the present application also provides a display device including a housing, a liquid crystal panel, and a backlight module as described above, the liquid crystal panel and the backlight module being housed in the housing.
  • the thickness of the optical film group is reduced by providing the quantum dot in the reflective sheet, due to the reflective sheet and the A space is required between the light guide plates for mixing light, and the increase of the thickness of the reflective sheet has less influence on the overall thickness of the display module.
  • the excitation light emitted by the quantum dot and the light emitted by the light source component can be mixed between the reflective sheet and the light guide plate, and the quantum film is disposed on one side of the light guide plate compared with the prior art.
  • the area for realizing light mixing in the present application is large, which is favorable for mixing of light, thereby obtaining uniform white light.
  • FIG. 1 is a partial cross-sectional structural view of an embodiment of a backlight module of the present application
  • FIG. 2 is a partial cross-sectional structural view of another embodiment of the backlight module of the present application.
  • FIG. 3 is a schematic diagram showing the optical principle of the backlight module shown in FIG. 1;
  • FIG. 4 is a schematic cross-sectional view showing an embodiment of a reflective sheet of the present application.
  • first”, “second”, and the like in this application are used for descriptive purposes only, and are not to be construed as indicating or implying their relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • fixed may be a fixed connection, or may be a detachable connection, or may be integrated; It may be a mechanical connection or an electrical connection; it may be directly connected or indirectly connected through an intermediate medium, and may be an internal connection of two elements or an interaction relationship of two elements unless explicitly defined otherwise.
  • fix may be a fixed connection, or may be a detachable connection, or may be integrated; It may be a mechanical connection or an electrical connection; it may be directly connected or indirectly connected through an intermediate medium, and may be an internal connection of two elements or an interaction relationship of two elements unless explicitly defined otherwise.
  • specific meanings of the above terms in the present application can be understood on a case-by-case basis.
  • the present application proposes a backlight module 10.
  • the backlight module 10 includes a light source assembly 1, and a reflective sheet 3, a light guide plate 5, and an optical film group 7 disposed in sequence.
  • the light source assembly 1 is disposed to emit light that is incident on the light guide plate 5.
  • the reflective sheet 3 The light emitted from the light source unit 1 and the light guide plate 5 is reflected to the light guide plate 5.
  • the plurality of quantum dots 31 are disposed in the reflection sheet 3.
  • the quantum dots 31 are arranged to receive the light emitted by the light source assembly 1 to excite the excitation light and the excitation light.
  • the light emitted from the light source unit 1 is mixed to form white light.
  • the backlight module 10 can be a direct type backlight module or a side-in type backlight module 10.
  • FIG. 2 is a partial cross-sectional structural view of another embodiment of the backlight module 10 of the present application.
  • the backlight module 10 is a side-lit backlight module, and the reflective sheet 3, the light guide plate 5 and the optical film group 7 are sequentially spaced apart, and the light source assembly 1 is disposed on one side of the light guide plate 5, and the light source assembly 1 is emitted.
  • the light enters the light guide plate 5, and a part of the light is emitted from the reflection surface of the light guide plate 5 toward the reflection sheet 3, and a part of the light is emitted from the light exit surface of the light guide plate 5 to the optical film group 7.
  • the reflection sheet 3 Of the light that is incident on the reflection sheet 3, a part of the light is reflected by the reflection sheet 3 and enters the light guide plate 5, and a part of the light is used to excite the quantum dots 31 in the reflection sheet 3, thereby obtaining excitation light.
  • the light which is excited by the reflection sheet 3 and then enters the light guide plate 5 and the light emitted from the light source unit 1 are emitted from the light exit surface of the light guide plate 5, and are mixed to form white light.
  • the backlight module 10 is a direct type backlight module 10
  • the light source assembly 1 is disposed between the reflective sheet 3 and the light guide plate 5 .
  • the light emitted from the light source unit 1 enters the light guide plate 5, and a part of the light is emitted from the reflection surface of the light guide plate 5 toward the reflection sheet 3, and a part of the light is emitted from the light exit surface of the light guide plate 5 to the optical film group 7.
  • a part of the light is reflected by the reflection sheet 3 and enters the light guide plate 5, and a part of the light excites the quantum dots 31 in the reflection sheet 3 to obtain excitation light.
  • the light which is excited by the reflection sheet 3 and then enters the light guide plate 5 and the light emitted from the light source unit 1 are emitted from the light exit surface of the light guide plate 5, and are mixed to form white light.
  • the optical film group 7 can realize that the quantum dots 31 distributed in the reflection sheet 3 can be excited by this principle.
  • the thickness of the optical film group is reduced, and since a space is required between the reflection sheet 3 and the light guide plate 5 for mixing light, the reflection sheet is added.
  • the thickness of 3 has little effect on the overall thickness of the display module; the excitation light emitted by the quantum dot 31 and the light emitted by the light source assembly 1 can be mixed between the reflective sheet 3 and the light guide plate 5, compared to the prior art.
  • the area for realizing the light mixing in the present application is large, which is advantageous for the mixing of light, thereby obtaining uniform white light.
  • the backlight module 10 further includes a filter disposed on the light guide plate 5.
  • FIG. 3 is a schematic diagram of the optical principle of the backlight module 10 shown in FIG. 1 .
  • the dotted line with arrows in the figure represents light.
  • the backlight module 10 shown in the figure is a direct-lit backlight module.
  • the following is an optical principle in which the light source component 1 emits blue light and the quantum dot 31 is a red quantum dot 31 as an example.
  • those skilled in the art can set the illuminating color of the light source assembly 1 and the kind of the quantum dots 31 as needed.
  • the light source component 1 emits blue light, and a part of the blue light is directly transmitted to the optical film group 7 through the light guide plate 5; a part of the blue light is reflected by the reflective sheet 3 and then emitted to the light guide plate 5; a part of the blue light is used to excite the quantum dot 31 to emit red light, blue light and red light. Forming white light. As shown in the area indicated by the elliptical dotted line in FIG.
  • a weakly mixed light region A is formed between the light source unit 1 and the light guide plate 5, and a strong mixed light region B is formed between the reflective sheet 3 and the light guide plate 5, which is stronger than In the light mixing region B, the light source component 1 emits more light in the weakly mixed light region A, and less light is reflected by the reflection sheet 3, thereby easily causing uneven light mixing, so that the mixed light obtained in the weakly mixed light region A is obtained. Reddish or bluish.
  • the filter By setting the filter, the problem of uneven mixing of the weakly mixed light area A can be corrected.
  • a filter for filtering red light can be placed, so that the obtained mixed light is high.
  • White light of the color gamut when the mixed light obtained by the weak mixed light area A is bluish, a filter for filtering blue light can be placed, so that the obtained mixed light is white light of high color gamut.
  • those skilled in the art can also reduce the uneven mixing of the weak mixed light region A by using the reflective sheet 3 with high reflectivity, the light source assembly 1 with different illumination angles, changing the content of the quantum dots 31 in the reflective sheet 3, and the like. problem.
  • a person skilled in the art can understand the optical principle of the side-lit backlight module according to the optical principle of the above-mentioned direct type backlight module. When the backlight module 10 of the present application is a side-in type backlight module, the optical principle is not here. Let me repeat.
  • the light source component 1 is generally composed of a plurality of LED lamp beads, the light emitted by the LED lamp bead is a point light source, so that the light intensity of the area between the area facing the LED lamp bead and the adjacent two LED lamp bead is inconsistent. , leading to the phenomenon of light shadows.
  • a quantum film is disposed on one side of the light guide plate. If the light intensity of the light guide plate 5 is inconsistent, the light intensity of the excitation light excited by the quantum film may be inconsistent, resulting in uneven color of the obtained white light.
  • the technical solution in the present application by utilizing the property of the reflective sheet 3 having a reflective function, makes the obtained excitation light directions diverse, and reduces the intensity of the excitation light inconsistency, thereby making the obtained white light more uniform.
  • the light source assembly 1 includes a plurality of LED lamp beads 11 and a scattering lens 13 coated on the LED lamp bead 11, and the divergence angle of the scattering lens 13 is greater than 120°.
  • the divergence angle of the scattering lens 13 is specifically the illumination angle of the light emitted from the light source unit 1 after passing through the scattering lens 13.
  • the illumination angle of the single LED bead 11 can be increased by providing the scattering lens 13, so that the backlight module 10 is more uniformly mixed.
  • the LED lamp bead is a violet lamp bead and/or a blue lamp bead
  • the quantum dot 31 is a red quantum dot; or the quantum dot 31 is a red quantum dot and a green quantum dot; or the quantum dot 31 is a red quantum dot. , green quantum dots and blue quantum dots. It is advantageous to excite the quantum dots 31 to obtain excitation light by providing high-frequency light by emitting purple light beads and/or blue light beads.
  • the reflective sheet 3 is a polyethylene terephthalate film containing titanium dioxide.
  • the reflective sheet 3 is a polyethylene terephthalate film provided with a plurality of pore structures.
  • the reflective sheet 3 can be prepared by a multilayer film method, a blending method, or a micropore method.
  • a multilayer film method a plurality of quantum dots 31 are present in the reflective sheet 3 in the form of a quantum dot layer;
  • the reflective sheet 3 is prepared by a blending method, the reflective particles and the quantum dots 31 are added to the substrate.
  • the film is formed by an extruder, and the reflective particles and the quantum dots 31 are uniformly distributed in the substrate.
  • the reflective particles may be titanium dioxide, barium sulfate, calcium carbonate, etc., and the substrate is polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the reflection sheet 3 is prepared by the micropore method, a plurality of pore structures 33 are provided in the substrate, and the reflectance is improved by the difference in refractive index between the substrate and the pore structure 33.
  • the pore structure 33 may be a bubble or a microporous, and the pore structure 33 may be produced by a foaming agent, or by adding a component which is incompatible with the substrate in the substrate, or by adding hollow particles to the substrate. Produce and so on.
  • a part of the quantum dots 31 added during the manufacturing process exists in a part of the substrate and in the void structure 33.
  • Those skilled in the art can select the structure of the reflective sheet 3 to select the manner in which the quantum dots 31 are disposed in the reflective sheet 3. Alternatively, quantum dots 31 are present in the substrate to reduce oxidation of quantum dots 31.
  • the quantum dots 31 are inorganic perovskite quantum dots, and the chemical formula of the inorganic perovskite quantum dots is CsPbX 3 , wherein X is Cl, Br or I.
  • the inorganic perovskite quantum dots have high fluorescence quantum efficiency, adjustable fluorescence wavelength, and cover the entire visible light wave with narrow line width.
  • quantum dot 31 is an organic-inorganic hybrid perovskite quantum dot
  • the inorganic perovskite quantum dot has the formula CH 3 NH 3 PbX 3 or wherein X is Cl, Br or I.
  • the organic-inorganic hybrid perovskite quantum dot is a solution processable semiconductor material, which is manufactured at low cost, has high carrier mobility, and has a large light absorption coefficient, thereby realizing white light of a high color gamut of the backlight module. .
  • the quantum dot 31 is any one of a first compound formed of an element of Group II and Group IV or a second compound formed of an element of Group III and Group V. Made of a material;
  • the quantum dot 31 is made of a core-shell structure compound or a doped nanocrystalline material formed by coating at least one of the first compound and at least one of the second compounds;
  • the quantum dots 31 are made of a core-shell structure compound or a doped nanocrystal material formed by coating a plurality of the first compounds or a plurality of the second compounds.
  • the first compound may specifically be CdSe, CdTe, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, ZnS, ZnSe, ZnTe, and CdS
  • the second compound may specifically be GaN, GaP, GaAs, InN, InP, and InAs.
  • the application also provides a display device.
  • the display device includes a housing 40 , a liquid crystal panel 20 , and a backlight module 10 as described above.
  • the liquid crystal panel 20 and the backlight module 10 are received in the housing 40 .
  • the housing 40 forms a receiving space, and the liquid crystal panel 20 and the backlight module 10 are received in the receiving space, and the backlight module 10 emits white light to the liquid crystal panel 20 to display the color screen of the liquid crystal panel 20.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

本申请公开一种背光模组及显示装置,其中,该背光模组包括光源组件、依次设置的反射片、导光板和光学膜组,光源组件设置为发出射向所述导光板的光,所述反射片设置为将从所述光源组件和所述导光板射出的光反射至所述导光板,所述反射片内设有若干量子点,所述量子点设置为接受所述光源组件发出的光以激发获得激发光,所述激发光与所述光源组件发出的光混合形成白光。

Description

背光模组及显示装置
技术领域
本申请涉及电子显示技术领域,具体涉及一种背光模组和应用该背光模组的显示装置。
背景技术
色域是指一个技术系统能够产生的颜色的总和。在现有技术中,为了实现高色域背光,一般采用蓝色芯片激发红色和绿色量子点材料。现有量产的量子点电视背光模组一般采用将量子点封于玻璃管制成量子管或封装于膜片内制成量子膜,量子管需要将管内抽真空以防止量子点氧化,制备过程复杂;量子膜需要设置阻隔层包覆量子点,以防止量子点氧化,设有阻隔层的量子膜通常覆盖于光学膜组上,从而增加光学膜组的厚度,不利于显示装置薄型化设计。
因此,有必要提供一种新型的背光模组和显示装置,以解决上述技术问题。
申请内容
本申请的主要目的是提供一种背光模组及显示装置,旨在解决现有背光模组中因设置量子膜导致背光模组较厚的技术问题。
为实现上述目的,本申请提出的显示模组包括光源组件以及依次设置的反射片、导光板和光学膜组,光源组件设置为发出射向所述导光板的光,所述反射片设置为将从所述光源组件和所述导光板射出的光反射至所述导光板,所述反射片内设有若干量子点,所述量子点设置为接受所述光源组件发出的光以激发获得激发光,所述激发光与所述光源组件发出的光混合形成白光。
可选地,所述光学膜组包括设于所述导光板上的滤光片。
可选地,所述光源组件包括多个LED灯珠和包覆于所述LED灯珠上的散射透镜,所述散射透镜的发散角度大于120°。
可选地,所述LED灯珠为紫光灯珠和/或蓝光灯珠,所述量子点为红色量子点;或者,所述量子点为红色量子点和绿色量子点;或者,所述量子点为红色量子点、绿色量子点和蓝色量子点。
可选地,所述反射片为含有二氧化钛的聚对苯二甲酸乙二醇酯薄膜。
可选地,所述反射片为设有若干孔隙结构的聚对苯二甲酸乙二醇酯薄膜。
可选地,所述量子点为无机钙钛矿量子点,所述无机钙钛矿量子点的化学式为CsPbX3,式中X为Cl、Br或I。
可选地,所述量子点为有机-无机杂化钙钛矿量子点,所述无机钙钛矿量子点的化学式为CH3NH3PbX3或,式中X为Cl、Br或I。
可选地,所述量子点由第II族和第IV族中的元素形成的第一化合物中的任意一种或第III族和第V族中的元素形成的第二化合物中的任意一种材料制成;
或者,由所述第一化合物中的至少一种与所述第二化合物中的至少一种包覆形成的核壳结构化合物或者掺杂纳米晶材料制成;
或者,由所述第一化合物中的多种或所述第二化合物中的多种包覆形成的核壳结构化合物或者掺杂纳米晶材料制成。
本申请还提供了一种显示装置,所述显示装置包括壳体、液晶面板和如前述的背光模组,所述液晶面板和所述背光模组收容于所述壳体内。
相较于现有技术中的量子膜,本申请技术方案中,通过将所述量子点设于所述反射片中,从而减小所述光学膜组的厚度,由于所述反射片和所述导光板之间需要留有一定空间用于混光,所述增加所述反射片的厚度对所述显示模组的整体厚度影响较小。所述量子点发出的激发光和所述光源组件发出的光可在所述反射片和所述导光板之间实现混光,相较于现有技术中将量子膜设于导光板的一侧的技术方案,本申请中实现混光的区域较大,有利于光的混合,从而获得均匀的白光。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请背光模组一实施例的部分剖面结构示意图;
图2为本申请背光模组另一实施例的部分剖面结构示意图;
图3为图1所示的背光模组的光学原理示意图;
图4为本申请反射片一实施例的剖面结构示意图。
附图标号说明:
标号 名称 标号 名称
10 背光模组 1 光源组件
11 LED灯珠 13 散射透镜
3 反射片 31 量子点
33 孔隙结构 5 导光板
7 光学膜组 20 液晶面板
40 壳体
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本申请中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
另外,本申请各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种背光模组10。
请参照图1,为本申请背光模组一实施例的部分剖面结构示意图。在本申请一实施例中,背光模组10包括光源组件1,以及依次设置的反射片3、导光板5和光学膜组7,光源组件1设置为发出射向导光板5的光,反射片3设置为将光源组件1和导光板5射出的光反射至导光板5,反射片3内设有若干量子点31,量子点31设置为接受光源组件1发出的光以激发获得激发光,激发光与光源组件1发出的光混合形成白光。
该背光模组10可以是直下式背光模组,也可以是侧入式背光模组10。请参阅图2,为本申请背光模组10另一实施例的部分剖面结构示意图。在该实施例中,背光模组10为侧入式背光模组,反射片3、导光板5和光学膜组7依次间隔设置,光源组件1设于导光板5的一侧,光源组件1发出的光进入导光板5,其中,一部分光从导光板5的反射面射向反射片3,一部分从导光板5的出光面射向光学膜组7。射向反射片3的光中,一部分经反射片3反射后进入导光板5,一部分光用于激发反射片3中的量子点31,从而获得激发光。激发光、经反射片3反射后进入导光板5的光和光源组件1发出的光一并从导光板5的出光面射出,并混合形成白光。
请再次参阅图1,在本实施例中,该背光模组10为直下式背光模组10,光源组件1设于反射片3和导光板5之间。从光源组件1发出的光进入导光板5,一部分光从导光板5的反射面射向反射片3,一部分从导光板5的出光面射向光学膜组7。射向反射片3的光中,一部分经反射片3反射后进入导光板5,一部分光激发反射片3中的量子点31,获得激发光。激发光、经反射片3反射后进入导光板5的光和光源组件1发出的光一并从导光板5的出光面射出,并混合形成白光。
具体地,光源组件1发出的光中,仅有小部分光可直接通过导光板5射向光学膜组7;大部分光需要通过反射片3多次反射后,才能从经过导光板5射向光学膜组7,通过这一原理,可实现反射片3中分布的量子点31均能被激发。
相较于量子膜,通过将量子点31设于反射片3中,从而减小光学膜组的厚度,由于反射片3和导光板5之间需要留有一定空间用于混光,增加反射片3的厚度对显示模组的整体厚度影响较小;量子点31发出的激发光和光源组件1发出的光可在反射片3和导光板5之间实现混光,相较于现有技术中将量子膜设于导光板的一侧的技术方案,本申请中实现混光的区域较大,有利于光的混合,从而获得均匀的白光。
在一实施例中,背光模组10还包括设于导光板5上的滤光片。
请参阅图3,为图1所示的背光模组10的光学原理示意图,图中带有箭头的虚线代表光线。图中所示的背光模组10为直下式背光模组,为描述方便,以下以光源组件1发出蓝光,量子点31为红色量子点31为例进行光学原理描述。当然,在实际应用中,本领域技术人员可根据需要设置光源组件1的发光颜色和量子点31的种类。
光源组件1发出蓝光,一部分蓝光直接通过导光板5射向光学膜组7;一部分蓝光通过反射片3反射后射向导光板5;一部分蓝光用于激发量子点31发出红光,蓝光和红光混合形成白光。如图3中椭圆虚线框中示意的区域,在光源组件1和导光板5之间形成弱混光区A,在反射片3和导光板5之间形成强混光区B,相较于强混光区B,弱混光区A内由光源组件1发出的光较多,经反射片3反射的光较少,从而容易造成混光不均匀,使得在弱混光区A获得的混合光偏红或偏蓝。通过设置滤光片可校正弱混光区A混光不均匀的问题,当弱混光区A获得的混合光偏红,则可放置过滤红光的滤光片,使得获得的混合光为高色域的白光;当弱混光区A获得的混合光偏蓝,则可放置过滤蓝光的滤光片,使得获得的混合光为高色域的白光。当然,本领域技术人员也可以通过采用高反射率的反射片3、不同发光角度的光源组件1、改变反射片3中量子点31的含量等方式减小弱混光区A混光不均匀的问题。本领域技术人员可根据上述直下式背光模组的光学原理以理解侧入式背光模组的光学原理,当本申请中的背光模组10为侧入式背光模组时的光学原理在此不再赘述。
事实上,由于光源组件1一般为多个LED灯珠组成,LED灯珠发出的光为点光源,从而使得正对LED灯珠的区域与相邻两个LED灯珠之间的区域光强度不一致,导致灯影现象。现有技术中在导光板的一侧设置量子膜,如果射向导光板5的光强度不一致,通过量子膜激发得到的激发光的光强度也会不一致,从而导致获得的白光色彩不均匀。本申请中的技术方案,通过利用反射片3具有反射功能的性质,使得获得的激发光方向多样,减小激发光光强度不一致,从而使得获得的白光更均匀。
进一步地,光源组件1包括多个LED灯珠11和包覆于LED灯珠11上的散射透镜13,散射透镜13的发散角度大于120°。散射透镜13的发散角度具体为光源组件1发出的光经过散射透镜13后的光照角度。通过设置散射透镜13可增加单个LED灯珠11的照射角度,从而使得背光模组10混光更均匀。
再进一步地所述LED灯珠为紫光灯珠和/或蓝光灯珠,量子点31为红色量子点;或者,量子点31为红色量子点和绿色量子点;或者,量子点31为红色量子点、绿色量子点和蓝色量子点。通过设置紫光灯珠和/或蓝光灯珠发出高频光,有利于激发量子点31获得激发光。
在一实施例中,反射片3为含有二氧化钛的聚对苯二甲酸乙二醇酯薄膜。
在另一实施例中,反射片3为设有若干孔隙结构的聚对苯二甲酸乙二醇酯薄膜。
具体地,反射片3可以采用多层膜法、共混法或微孔法等方法制备。当使用多层膜法制备该反射片3,若干量子点31以量子点层的形式存在于反射片3中;当使用共混法制备该反射片3,将反射粒子和量子点31加入基材中,通过挤出机流涎成膜,反射粒子和量子点31均匀分布于基材中,反射粒子可以是二氧化钛、硫酸钡、碳酸钙等,基材为聚对苯二甲酸乙二醇酯(PET);请参阅图3,为本申请反射片一实施例的剖面结构示意图。当使用微孔法制备该反射片3,在基材中设置若干孔隙结构33,利用基材和孔隙结构33的折射率差异提高反射率。孔隙结构33可以是气泡或微孔,孔隙结构33可以通过发泡剂产生、或通过在基材中添加与基材不相容的成分拉伸获得、或通过在基材中添加中空粒子熔融挤出产生等。在制造过程中加入的量子点31中,一部分存在与基材中,一部分存在与空隙结构33中。本领域技术人员可以根据反射片3为何种结构,以选择采用何种方式在反射片3中设置量子点31。可选地,量子点31存在于基材中,以减小量子点31被氧化。
在一实施例中,量子点31为无机钙钛矿量子点,无机钙钛矿量子点的化学式为CsPbX3,式中X为Cl、Br或I。无机钙钛矿量子点的荧光量子效率高、荧光波长可调,且覆盖整个可见光波、线宽窄。
在另一实施例中,量子点31为有机-无机杂化钙钛矿量子点,无机钙钛矿量子点的化学式为CH3NH3PbX3或,式中X为Cl、Br或I。有机-无机杂化钙钛矿量子点是一种可溶液加工的半导体材料,其制造成低成本、载流子迁移率高、光吸收系数大,从而可实现背光模组发出高色域的白光。
在又一实施例中,量子点31由第II族和第IV族中的元素形成的第一化合物中的任意一种或第III族和第V族中的元素形成的第二化合物中的任意一种材料制成;
或者,量子点31由第一化合物中的至少一种与第二化合物中的至少一种包覆形成的核壳结构化合物或者掺杂纳米晶材料制成;
或者,量子点31由第一化合物中的多种或第二化合物中的多种包覆形成的核壳结构化合物或者掺杂纳米晶材料制成。其中,第一化合物具体可以是CdSe、CdTe、MgS、MgSe、MgTe、CaS、CaSe、CaTe、SrS、SrSe、SrTe、BaS、BaSe、BaTe、ZnS、ZnSe、ZnTe和CdS,第二化合物具体可以是GaN、GaP、GaAs、InN、InP和InAs。
本申请还提供了一种显示装置。请参阅图2,该显示装置包括壳体40、液晶面板20和如前述的背光模组10,液晶面板20和背光模组10收容于壳体40内。
具体地,壳体40形成一收容空间,液晶面板20和背光模组10收容于收容空间内,背光模组10发出白光射向液晶面板20,以使液晶面板20显示彩色画面。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (18)

  1. 一种背光模组,其包括光源组件以及依次设置的反射片、导光板和光学膜组,光源组件设置为发出射向所述导光板的光,所述反射片设置为将所述光源组件和所述导光板射出的光反射至所述导光板,其中,所述反射片内设有若干量子点,所述量子点设置为接受所述光源组件发出的光以激发获得激发光,所述激发光与所述光源组件发出的光混合形成白光。
  2. 如权利要求1所述的背光模组,其中,所述光学膜组包括设于所述导光板上的滤光片。
  3. 如权利要求1所述的背光模组,其中,所述光源组件包括多个LED灯珠和包覆于所述LED灯珠上的散射透镜,所述散射透镜的发散角度大于120°。
  4. 如权利要求3所述的背光模组,其中,所述LED灯珠为紫光灯珠和/或蓝光灯珠,所述量子点为红色量子点;或者,所述量子点为红色量子点和绿色量子点;或者,所述量子点为红色量子点、绿色量子点和蓝色量子点。
  5. 如权利要求1所述的背光模组,其中,所述反射片为设有若干孔隙结构的聚对苯二甲酸乙二醇酯薄膜。
  6. 如权利要求1所述的背光模组,其中,所述反射片为含有二氧化钛的聚对苯二甲酸乙二醇酯薄膜。
  7. 如权利要求1所述的背光模组,其中,所述量子点为无机钙钛矿量子点,所述无机钙钛矿量子点的化学式为CsPbX3,式中X为Cl、Br或I。
  8. 如权利要求1所述的背光模组,其中,所述量子点为有机-无机杂化钙钛矿量子点,所述无机钙钛矿量子点的化学式为CH3NH3PbX3或,式中X为Cl、Br或I。
  9. 如权利要求1所述的背光模组,其中,所述量子点由第II族和第IV族中的元素形成的第一化合物中的任意一种或第III族和第V族中的元素形成的第二化合物中的任意一种材料制成;
    或者,由所述第一化合物中的至少一种与所述第二化合物中的至少一种包覆形成的核壳结构化合物或者掺杂纳米晶材料制成;
    或者,由所述第一化合物中的多种或所述第二化合物中的多种包覆形成的核壳结构化合物或者掺杂纳米晶材料制成。
  10. 一种显示装置,其中,所述显示装置包括壳体、液晶面板和背光模组,所述液晶面板和所述背光模组收容于所述壳体内,所述背光模组包括光源组件以及依次设置的反射片、导光板和光学膜组,光源组件设置为发出射向所述导光板的光,所述反射片设置为将所述光源组件和所述导光板射出的光反射至所述导光板,所述反射片内设有若干量子点,所述量子点设置为接受所述光源组件发出的光以激发获得激发光,所述激发光与所述光源组件发出的光混合形成白光。
  11. 如权利要求10所述的显示装置,其中,所述光学膜组包括设于所述导光板上的滤光片。
  12. 如权利要求10所述的显示装置,其中,所述光源组件包括多个LED灯珠和包覆于所述LED灯珠上的散射透镜,所述散射透镜的发散角度大于120°。
  13. 如权利要求12所述的显示装置,其中,所述LED灯珠为紫光灯珠和/或蓝光灯珠,所述量子点为红色量子点;或者,所述量子点为红色量子点和绿色量子点;或者,所述量子点为红色量子点、绿色量子点和蓝色量子点。
  14. 如权利要求10所述的显示装置,其中,所述反射片为设有若干孔隙结构的聚对苯二甲酸乙二醇酯薄膜。
  15. 如权利要求10所述的显示装置,其中,所述反射片为含有二氧化钛的聚对苯二甲酸乙二醇酯薄膜。
  16. 如权利要求10所述的显示装置,其中,所述量子点为无机钙钛矿量子点,所述无机钙钛矿量子点的化学式为CsPbX3,式中X为Cl、Br或I。
  17. 如权利要求10所述的显示装置,其中,所述量子点为有机-无机杂化钙钛矿量子点,所述无机钙钛矿量子点的化学式为CH3NH3PbX3或,式中X为Cl、Br或I。
  18. 如权利要求10所述的显示装置,其中,所述量子点由第II族和第IV族中的元素形成的第一化合物中的任意一种或第III族和第V族中的元素形成的第二化合物中的任意一种材料制成;
    或者,由所述第一化合物中的至少一种与所述第二化合物中的至少一种包覆形成的核壳结构化合物或者掺杂纳米晶材料制成;
    或者,由所述第一化合物中的多种或所述第二化合物中的多种包覆形成的核壳结构化合物或者掺杂纳米晶材料制成。
PCT/CN2018/093742 2017-10-11 2018-06-29 背光模组及显示装置 WO2019071985A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710951799.6A CN108051948A (zh) 2017-10-11 2017-10-11 背光模组及显示装置
CN201710951799.6 2017-10-11

Publications (1)

Publication Number Publication Date
WO2019071985A1 true WO2019071985A1 (zh) 2019-04-18

Family

ID=62118636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093742 WO2019071985A1 (zh) 2017-10-11 2018-06-29 背光模组及显示装置

Country Status (2)

Country Link
CN (1) CN108051948A (zh)
WO (1) WO2019071985A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108051948A (zh) * 2017-10-11 2018-05-18 深圳Tcl新技术有限公司 背光模组及显示装置
CN110837191A (zh) * 2018-08-16 2020-02-25 深圳Tcl新技术有限公司 一种液晶显示背光模组
CN111061087A (zh) * 2018-10-16 2020-04-24 深圳Tcl新技术有限公司 一种分体式量子点透镜及背光模组
US11365347B2 (en) 2019-06-06 2022-06-21 Nano And Advanced Materials Institute Limited Method for preparation of perovskite quantum dot (PQD)/polymer/ceramic ternary complex
WO2021042386A1 (zh) * 2019-09-06 2021-03-11 重庆康佳光电技术研究院有限公司 一种led模块及led阵列模组
CN112305816A (zh) * 2020-11-06 2021-02-02 深圳Tcl新技术有限公司 一种复合膜片、背光模组以及显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140036203A1 (en) * 2012-07-31 2014-02-06 Apple Inc. Light mixture for a display utilizing quantum dots
WO2016142212A1 (en) * 2015-03-09 2016-09-15 Koninklijke Philips N.V. A color point variable light emitting apparatus
JP2016194996A (ja) * 2015-03-31 2016-11-17 大日本印刷株式会社 バックライト装置および表示装置
WO2016186158A1 (ja) * 2015-05-20 2016-11-24 東レ株式会社 照明装置、及び表示装置
CN106772769A (zh) * 2016-12-31 2017-05-31 惠科股份有限公司 背光模块及其应用的显示设备与导光板的制造方法
CN107180908A (zh) * 2017-06-27 2017-09-19 深圳Tcl新技术有限公司 一种led、背光模组及液晶显示装置
CN107884986A (zh) * 2016-09-30 2018-04-06 三星电子株式会社 具有量子点单元的显示装置
CN108051948A (zh) * 2017-10-11 2018-05-18 深圳Tcl新技术有限公司 背光模组及显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104344328B (zh) * 2014-10-22 2016-05-25 汕头超声显示器(二厂)有限公司 一种用于高色域液晶显示器的背光模组及其制造方法
CN106054449A (zh) * 2016-06-23 2016-10-26 深圳市华星光电技术有限公司 Lcd显示装置、基于量子点的背光模组及其制作方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140036203A1 (en) * 2012-07-31 2014-02-06 Apple Inc. Light mixture for a display utilizing quantum dots
WO2016142212A1 (en) * 2015-03-09 2016-09-15 Koninklijke Philips N.V. A color point variable light emitting apparatus
JP2016194996A (ja) * 2015-03-31 2016-11-17 大日本印刷株式会社 バックライト装置および表示装置
WO2016186158A1 (ja) * 2015-05-20 2016-11-24 東レ株式会社 照明装置、及び表示装置
CN107884986A (zh) * 2016-09-30 2018-04-06 三星电子株式会社 具有量子点单元的显示装置
CN106772769A (zh) * 2016-12-31 2017-05-31 惠科股份有限公司 背光模块及其应用的显示设备与导光板的制造方法
CN107180908A (zh) * 2017-06-27 2017-09-19 深圳Tcl新技术有限公司 一种led、背光模组及液晶显示装置
CN108051948A (zh) * 2017-10-11 2018-05-18 深圳Tcl新技术有限公司 背光模组及显示装置

Also Published As

Publication number Publication date
CN108051948A (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
WO2019071985A1 (zh) 背光模组及显示装置
KR101460155B1 (ko) 백라이트 유닛 및 이를 구비한 액정 디스플레이 장치
WO2019062237A1 (zh) 背光模组及显示装置
WO2014117400A1 (zh) 背光模组及液晶显示装置
CN108549178A (zh) 液晶背光模组及显示装置
WO2017156902A1 (zh) 量子点背光模组及液晶电视
EP3620834A1 (en) Light conversion film for use in backlight module, backlight module, and display device
KR20140032811A (ko) 백라이트 유닛 및 이를 구비한 액정 디스플레이 장치
US20170067604A1 (en) Quantum dot light-emitting device and display device
KR101742625B1 (ko) 액정표시장치
US10591776B2 (en) Backlight module and a display device
WO2018233187A1 (zh) 背光模组及显示装置
TW200525220A (en) Backlight module
WO2018233186A1 (zh) 背光模组及显示装置
US20120281155A1 (en) Light source unit, lighting device, display device and television receiver
US11643358B2 (en) Optical glass, preparation method thereof, backlight module and display module
CN209858903U (zh) 一种复合光学膜、背光装置和显示装置
WO2012099332A2 (en) Optical member, display device including the same, and method for manufacturing the same
WO2020077615A1 (zh) 一种背光模组和显示装置
WO2018192228A1 (zh) Led灯源、灯条及显示装置
WO2018192208A1 (zh) Led灯源、灯条及显示装置
WO2019062239A1 (zh) 背光模组及显示装置
CN209624946U (zh) 一种直下式背光模组及电视机
WO2023207329A1 (zh) 一种光学模组、拼接显示装置
CN113504669A (zh) 混合式背光模组和显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18866432

Country of ref document: EP

Kind code of ref document: A1