WO2020077615A1 - 一种背光模组和显示装置 - Google Patents

一种背光模组和显示装置 Download PDF

Info

Publication number
WO2020077615A1
WO2020077615A1 PCT/CN2018/111015 CN2018111015W WO2020077615A1 WO 2020077615 A1 WO2020077615 A1 WO 2020077615A1 CN 2018111015 W CN2018111015 W CN 2018111015W WO 2020077615 A1 WO2020077615 A1 WO 2020077615A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
optical film
composite
backlight module
Prior art date
Application number
PCT/CN2018/111015
Other languages
English (en)
French (fr)
Inventor
曹庆
刘瀚
潘业琥
Original Assignee
深圳市珏琥显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市珏琥显示技术有限公司 filed Critical 深圳市珏琥显示技术有限公司
Priority to PCT/CN2018/111015 priority Critical patent/WO2020077615A1/zh
Priority to CN201880001731.4A priority patent/CN111095088A/zh
Publication of WO2020077615A1 publication Critical patent/WO2020077615A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133609Direct backlight including means for improving the color mixing, e.g. white
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present application belongs to the field of display technology, and more specifically, relates to a backlight module and a display device.
  • Liquid crystal display technology is currently the mainstream display technology in the market, and has been widely used in the fields of mobile phones, tablet computers, personal computers, televisions, car displays, industrial control displays and so on.
  • the liquid crystal itself does not have the function of emitting light, therefore, a backlight module is usually required to provide a backlight source for it.
  • the current backlight module mainly uses multi-color white light-emitting diodes (Light Emitting Diode (LED) is used as a light source, and it is separated and combined using a multi-layer optical film structure such as a light guide plate, a diffusion film, and a light-increasing layer that are closely arranged in sequence.
  • the structure mainly includes two types of side entry type and direct type.
  • the white LED light source is located on one or both sides around the light guide plate, and the light enters the light guide plate from the side, and then exits from the upper surface of the light guide plate after being guided by the light guide plate Then, it enters the diffusion film and the light-increasing layer in turn, and finally illuminates the liquid crystal module.
  • the edge-lit backlight module can ensure that the overall thickness is thin after the light source is placed on the side, because the light guide distance is too long, it is easy to cause large power consumption and low light utilization rate. Among them, the light utilization rate is generally less than 50%.
  • the liquid crystal display assembled by the side-entry backlight module still has the disadvantages of low contrast, low screen ratio, and difficulty in handling the special-shaped screen.
  • the diffusion film is placed above the white LED, and the light enters the diffusion film, the light-increasing layer in sequence and finally illuminates the liquid crystal module.
  • the direct-type backlight module is usually designed with a multi-layer film structure, which easily causes the overall thickness of the backlight module to be thick.
  • the direct type backlight module basically does not have some problems in the side-type backlight module, there are many LEDs, poor uniformity of light color, complicated manufacturing process, high production cost, low production efficiency, low yield rate, etc. insufficient.
  • a backlight module is provided to solve the problem that the thickness of the backlight module is thick, the number of light sources is large, the uniformity of light mixing is poor, the production cost is high, and the yield is low, etc. technical problem.
  • a display device is provided to solve the technical problems of poor display effect of display products, difficulty in achieving ultra-thin design, high material cost, high production cost, and low production efficiency.
  • a backlight module in a first aspect, includes a circuit board, a plurality of monochromatic light-emitting units disposed on the circuit board, a transparent encapsulation layer covering the monochromatic light-emitting unit, and Sequentially covering the light-increasing layer and the light-shielding layer directly above the encapsulation layer; the backlight module further includes:
  • a composite functional structure having at least a light conversion function, is disposed between the encapsulation layer and the light enhancement layer and covers the encapsulation layer, realizes a light mixing function through reflection, and converts the monochromatic light emitted by the monochromatic light emitting unit Emitting polychromatic light;
  • the distance between two adjacent monochrome light emitting units is greater than or equal to 1.5 mm; the total thickness of the backlight module can reach less than 0.8 mm.
  • a display device includes the backlight module described above.
  • the backlight module provided by the embodiment of the present application includes a plurality of monochromatic light-emitting units provided on a circuit board, a transparent encapsulation layer covering the monochromatic light-emitting units, and a light-increasing layer and a light-shielding layer covering the encapsulation layer directly above
  • the backlight module also includes a composite functional structure disposed between the encapsulation layer and the light shielding layer and covering the encapsulation layer.
  • the embodiment of the present application uses a monochromatic light-emitting unit as a light source, and uses the light conversion function of the composite functional structure to finally convert monochromatic light (such as blue light) emitted by the monochromatic light-emitting unit into complex color light (such as white light) and emit it. It can reflect and scatter the light before it is emitted through the composite functional structure, improve the uniformity of the light color, and ensure that the distance between the adjacent two monochrome light-emitting units is greater than or equal to 1.5 mm, to help reduce the number of monochrome light-emitting units, thereby greatly reducing material costs;
  • monochromatic light such as blue light
  • complex color light such as white light
  • the composite functional structure can also have other optical functions, that is, the composite functional structure can combine multiple optical functions, so that it is beneficial to save a variety of optical films, thereby ensuring the backlight module's
  • the total thickness can reach less than 0.8 mm, which greatly reduces the thickness of the backlight module, which is conducive to achieving the ultra-thin design of the backlight module, simplifying the manufacturing process and saving the manufacturing cost when the display effect meets the demand.
  • the display device provided by the embodiment of the present application adopts the above-mentioned backlight module, the display uniformity is improved, the overall thickness is reduced, which is beneficial to realize the ultra-thin design, the material cost is reduced, the production cost is reduced, and the production efficiency is improved.
  • FIG. 1 is a schematic diagram of a first cross-sectional structure of a backlight module in Embodiment 1 of the present application;
  • FIG. 2 is a schematic diagram of a second cross-sectional structure of a backlight module in Embodiment 1 of the present application;
  • FIG. 3 is a schematic diagram of a third cross-sectional structure of a backlight module in Embodiment 1 of the present application;
  • FIG. 4 is a schematic cross-sectional structure diagram of a backlight module in Embodiment 2 of the present application.
  • FIG. 5 is a schematic cross-sectional structure diagram of a backlight module in Embodiment 3 of the present application.
  • FIG. 6 is a schematic cross-sectional structural diagram of a backlight module in Embodiment 4 of the present application.
  • 500-composite functional structure 510-composite light mixing film, 511-first optical film layer, 512-light mixing function layer, 5211-light mixing element; 520-composite optical film, 521-light conversion layer, 522-concentrating light Floor;
  • 530-composite light mixing optical film 531-second optical film layer, 532-light mixing functional layer, 533-light conversion layer, 534-concentrating layer; 540-third optical film layer;
  • the backlight module is mainly used in direct-lit backlight display devices, and of course, can also be used in other suitable structures or products.
  • the backlight module includes a circuit board 200, a monochromatic light-emitting unit 300, a packaging layer 400, a light-enhancing layer 600, a light-shielding layer 700 and a composite functional structure 500.
  • an outer frame 100 is provided on the outside of the circuit board 200 to facilitate protection of the circuit board 200 and installation of various components.
  • the circuit board 200 may be a flexible circuit board 200 or other types of circuit boards 200.
  • the monochromatic light-emitting unit 300 may be a monochromatic light-emitting diode (LED) chip or a monochromatic laser diode (LD) chip, and of course, other suitable light-emitting elements .
  • the monochromatic light emitting unit 300 is one of a blue LED chip, a violet LED chip, or an ultraviolet LED chip.
  • the encapsulation layer 400 covers the monochrome light-emitting unit 300 to encapsulate and protect the monochrome light-emitting unit 300.
  • the encapsulation layer 400 is transparent.
  • the light transmittance of the encapsulation layer 400 is greater than or equal to 90%, so that it is beneficial to improve the overall luminous brightness and the utilization rate of the light source;
  • the encapsulation layer 400 is usually mainly made of resin material or silicone material, which is conducive to reducing Cost of production.
  • the light-enhancing layer 600 covers directly above the encapsulation layer 400, which is beneficial to brighten the light emitted from the composite functional structure 500.
  • the light-enhancing layer 600 is a common light-enhancing film for brightening.
  • the light-enhancing layer 600 may be a single-layer light-enhancing or a multilayer light-enhancing combination, or it may be The combined layer structure of the multi-layer gloss enhancement and diffusion function can be determined according to the actual brightness requirements; correspondingly, the light shielding layer 700 covers directly above the encapsulation layer 400, and usually the light shielding layer 700, the light enhancement layer 600 and the encapsulation layer 400 are in this order Overwrite settings up and down.
  • the light-shielding layer 700 is a glue layer formed by light-shielding black glue, and can be used in an ultra-narrow frame structure.
  • the light-shielding layer 700 can also be other suitable structures or made of other suitable materials.
  • the composite functional structure 500 is disposed between the encapsulation layer 400 and the light enhancement layer 600 and covers the encapsulation layer 400.
  • the composite functional structure 500 can realize the light mixing function by reflecting and scattering the light passing through, so as to improve the uniformity of the light color and improve the display effect, thereby facilitating the reduction of each monochrome
  • the spacing between the light emitting units 300 is greater than or equal to 1.5 mm, in this way, it is convenient to greatly reduce the number of monochrome light-emitting units 300, thereby greatly saving raw materials and reducing the cost of the backlight module.
  • the composite functional structure 500 has at least a light conversion function.
  • the backlight module can finally convert the monochromatic light emitted by the monochromatic light-emitting unit 300 into polychromatic light through the light conversion function of the composite functional structure 500 and emit it.
  • the composite functional structure 500 can also be combined with other various optical functions, for example, a light condensing function, a diffusion function, and a light condensing function and a diffusion function. In this way, it is advantageous to eliminate various optical film layers, thereby reducing the total thickness of the backlight module.
  • the total thickness of the backlight module can reach less than 0.8 mm.
  • the total thickness of the backlight module is greatly reduced compared to the general direct type backlight module, which is beneficial to the situation where the display effect meets the demand
  • the ultra-thin design of the backlight display product is correspondingly, which is also conducive to simplifying the manufacturing process, improving the yield and saving the manufacturing cost, and improving the market competitiveness of the backlight module and the display product using the backlight module.
  • the backlight module can achieve the thickness of the direct-lit backlight module to maintain the thickness range of the existing side-lit backlight module of the same size, and greatly reduce the cost of the direct-lit backlight module. It should also be noted that in practical applications, the spacing between two adjacent monochrome light-emitting units 300 will vary according to the different sizes or uses of the backlight module. The specific size or use of the backlight module corresponds to the total For the thickness, please refer to Table 1:
  • the total thickness of the backlight module can be less than 0.8 mm.
  • the distance between two adjacent monochrome light-emitting units 300 is greater than 1.5 mm. Therefore, the total thickness of the backlight module is greatly reduced, and the distance between adjacent two monochrome light-emitting units 300 is also greatly expanded. Thereby greatly reducing the material cost.
  • the composite functional structure 500 includes a composite light mixing film 510 and a composite optical film 520.
  • the composite optical film 520 and the composite light mixing film 510 are in an up-down coverage relationship between the encapsulation layer 400 and the light enhancement layer 600.
  • the composite functional structure 500 is mainly composed of the composite optical film 520 and the composite light mixing film 510 covering and combining up and down. The specific upper and lower positional relationship may be determined according to actual needs.
  • the composite light mixing film 510 includes a first optical film layer 511 and a light mixing function layer 512.
  • the first optical film layer 511 may be an optical base film (not shown) having an optical function.
  • the optical base film can be polyethylene terephthalate (Polyethylene Any one of terephthalate (PET) film, acrylic plastic (Acylics) film, polycarbonate (Polycarbonate, PC) film, diffusion film, gloss enhancement film or fluorescent film. Of course, in fact, it can also be a film with other functions.
  • the first optical film layer 511 may also be a composite optical film material having multiple optical functions.
  • the composite optical film 520 may be composed of at least two types of film materials such as PET film, PC film, diffusion film, brightness enhancement film, or fluorescent film.
  • the composite light mixing film 510 not only has a light mixing function, but also can have other optical functions.
  • the composite light mixing film 510 can be designed with optical base films of different functions according to actual needs. In this way, by using the composite light mixing film 510, some films with the same function can be omitted, so as to achieve super Thin design, save raw materials and reduce production costs.
  • the light mixing function layer 512 is disposed on the surface and / or inside the first optical film layer 511. Understandably, in the composite light mixing film 510, at least one light mixing function layer 512 is provided, and the specific number of layers may be determined according to actual needs. In this application, for convenience of introduction, the case of one light mixing function layer 512 is mainly used as an example for description. In addition, the light mixing function layer 512 is provided with a uniform surface to enhance light reflection and scattering. Specifically, the reflectance range of the uniform surface is 50-100%, and the transmittance range is 0-50%.
  • the composite light mixing film 510 mainly realizes the brightness and chromaticity of the light by reflecting and scattering the light on the premise of ensuring the light utilization rate
  • the homogenization, the uniform light effect is significantly improved, which is beneficial to achieve uniform light mixing in the case of an ultra-short distance and a large distance between the monochromatic light-emitting units 300.
  • the composite light mixing film 510 belongs to a new type of film material with uniform light function, which has a simple structure and a simple molding process compared to conventional light guide sheets, uniform light sheets and other film materials.
  • the uniform light surface is a reflection surface, which may specifically be a high reflection mirror surface or a high reflection scattering surface.
  • the reflective surface is formed by an opaque reflective layer laid out by multiple light mixing elements 5211.
  • the light mixing element 5211 is mainly formed of at least one structure or pattern in the form of dots, concave-convex structures, fills, or stripes, and is mainly used to reflect polychromatic light or monochromatic light.
  • the uniform surface may be formed by the dot structure, or may be formed by the dot pattern, or may be formed by a part of the dot structure and another part of the dot pattern.
  • the mixed arrangement may be formed by a mixed arrangement of a part of the dot structure, a part of the uneven structure, and a part of the stripe pattern.
  • the light mixing element 5211 may also be other suitable structures or patterns that play a role in uniform light.
  • the light mixing elements 5211 are evenly arranged.
  • the light mixing function layer 512 is usually located directly above the monochromatic light emitting unit 300, the arrangement density of the light mixing elements 5211 and the light mixing elements
  • the distance between 5211 and the monochrome light emitting unit 300 is inversely related. In other words, the closer to the position of the monochrome light emitting unit 300, the denser the arrangement of the light mixing elements 5211, and the further away from the position of the monochrome light emitting unit 300, the more sparse the arrangement of the light mixing elements 5211.
  • the composite optical film 520 includes a light conversion function structure, wherein the light conversion function structure has at least a light conversion function, so as to ensure that the composite optical film 520 has at least a light conversion function.
  • the composite optical film 520 is mainly used to finally convert the monochromatic light emitted by the monochromatic light emitting unit 300 into polychromatic light and emit, and in addition to the light conversion function, the composite optical film 520 can also compound a variety of other optical functions
  • the composite optical film 520 may have a light conversion function and a light diffusion function, or may have a light conversion function and a light collection function, or may have a light conversion function, a light diffusion function, and a light collection function.
  • the "other optical functions" referred to here are not limited to the light diffusion function and / or the light condensing function, but can also include, for example, the brightness enhancement function of the light enhancement film, the reflection function of the reflection film, the polarization function of the polarizing film, the filter The filter function of the optical film, etc.
  • the fluorescent glue encapsulating the monochromatic light-emitting unit 300 can be directly replaced with a transparent encapsulating glue. On this basis, it is also possible to dispense with the composite optical film 520.
  • the composite optical film 520 also has a light diffusion function.
  • the backlight module can also eliminate the diffusion film having the light diffusion function, thereby greatly reducing The thickness of the small backlight module.
  • the light conversion function structure is mainly used to convert the received monochromatic light into a color light different from the color of the monochromatic light, and the color light and the monochromatic light transmitted through the functional structure
  • the light is mixed into multiple colors and emitted. That is, after the monochromatic light hits the light conversion function structure and is received, a part of the monochromatic light can directly pass through the light conversion function structure, while another part of the monochromatic light is directly converted by the light conversion function structure into a color different from the monochromatic light Color light, so that the color light and the monochromatic light transmitted through the light conversion functional structure can finally be mixed into a composite light and emitted from the light conversion functional structure.
  • the backlight module does not need to directly use the white light source as the backlight source, which is beneficial to realize the diversified structure of the backlight module.
  • the light conversion functional structure is mainly used to convert the received monochromatic light into the first composite light with multiple different colors or wavelengths and to mix and mix the first composite light with the monochromatic light through the light conversion functional structure
  • the second compound light is emitted.
  • the composite optical film 520, the composite light mixing film 510, and the encapsulation layer 400 are sequentially arranged to cover up and down.
  • the light mixing function layer 512 is disposed on the outer surface of the first optical film layer 511 and abuts on the encapsulation layer 400.
  • the light conversion functional structure includes a light conversion layer 521 and a light condensing layer 522.
  • the light conversion layer 521 is disposed on the first optical film layer 511, and the light condensing layer 522 is disposed on the exit surface of the light conversion layer 521. More specifically, the light-increasing layer 600, the light-concentrating layer 522, the light conversion layer 521, the first optical film layer 511, the light mixing function layer 512, and the encapsulation layer 400 are sequentially arranged from top to bottom.
  • the blue light emitted by the monochromatic light emitting unit 300 passes through the encapsulation layer 400 and is incident on the composite light mixing film 510 , Is reflected back by the light mixing function layer 512 in the compound light mixing film 510, and the blue light can be uniformly mixed by repeated reflection and scattering, and finally the homogenized blue light reaches the compound optical film 520, and then passes through the compound optical film
  • the light conversion layer 521 of 520 converts blue light into yellow light, and allows the yellow light and the blue light passing through the light conversion layer 521 to recombine into white light, and then is concentrated by the light concentrating layer 522 and the light increasing layer 600 in the composite optical film 520 The light finally causes the white light to hit the liquid crystal in the liquid crystal cell vertically to realize the display.
  • the difference from the first specific implementation is that the composite light mixing film 510 and the composite optical film 520 are switched up and down, that is, the composite light mixing film 510, the composite optical film 520 and the encapsulation layer 400 are sequentially arranged to cover up and down.
  • the light conversion functional structure includes a light conversion layer 521 and a light-concentrating layer 522.
  • the light conversion layer 521 is disposed on the encapsulation layer 400, and the light condensing layer 522 is disposed on the exit surface of the light conversion layer 521.
  • the first optical film layer 511 of the composite light mixing film 510 is disposed on the light-enhancing layer 600, and the other side abuts on the light-concentrating layer 522.
  • the light mixing function layer 512 of the composite light mixing film 510 is disposed on the inner surface of the first optical film layer 511 near the light conversion layer 521. Understandably, as shown in FIG. 2, the light-increasing layer 600, the first optical film layer 511, the light mixing function layer 512, the light-concentrating layer 522, the light conversion layer 521 and the encapsulation layer 400 are sequentially arranged from top to bottom, and the light mixing The functional layer 512 is built into the first optical film layer 511.
  • the blue light emitted by the monochromatic light-emitting unit 300 passes through the encapsulation layer 400 and is incident on the composite optical structure, wherein , First convert blue light into yellow light on the light conversion layer 521, and make the yellow light and the blue light passing through the light conversion layer 521 recombine into white light, and then condense the white light through the light concentration layer 522 to reach the composite light mixing film 510, It is reflected back by the light mixing function layer 512 in the composite light mixing film 510, and the white light can be uniformly mixed by repeated reflection and scattering.
  • the finally homogenized white light is condensed by the light-increasing layer 600 and vertically incident into the liquid crystal cell To achieve the display on the LCD.
  • the difference from the second specific implementation is that although in this specific implementation, the composite light mixing film 510, the composite optical film 520 and the package The layer 400 is still arranged up and down in sequence, but the light conversion function structure of the composite optical film 520 is changed.
  • the light conversion functional structure includes a light condensing layer 522 and a light conversion layer 521, wherein the light condensing layer 522 is disposed on the encapsulation layer 400, and the light conversion layer 521 is disposed on the light exit surface of the light concentrating layer 522 on.
  • the first optical film layer 511 of the composite light mixing film 510 is disposed on the light enhancement layer 600, and the light mixing function layer 512 of the composite light mixing film 510 is disposed on the outer surface of the other side of the first optical film layer 511 on. Understandably, as shown in FIG. 3, the light enhancement layer 600, the first optical film layer 511, the light mixing function layer 512, the light conversion layer 521, the light condensing layer 522, and the encapsulation layer 400 are sequentially arranged from top to bottom, and the light mixing The functional layer 512 is externally disposed on the first optical film layer 511.
  • the blue light incident on the composite optical structure first passes through the light-concentrating layer After the light is condensed in 522, blue light is converted into yellow light on the light conversion layer 521, and the yellow light and the blue light transmitted through the light conversion layer 521 are recombined into white light to directly reach the composite light mixing film 510.
  • the composite functional structure 500 includes a composite light mixing optical film 530.
  • one side of the composite light mixing optical film 530 is disposed on the light-enhancing layer 600 and the other side is disposed on the encapsulation layer 400. That is, different from the first embodiment, this embodiment directly combines the composite light mixing film 510 and the composite optical film 520 into a composite light mixing optical film 530, which can further reduce the thickness of the backlight module and is more beneficial to Realize ultra-thin design.
  • the composite light mixing optical film 530 has at least a light mixing function, a light conversion function, and a light focusing function.
  • the composite light mixing optical film 530 includes a second optical film layer 531, a light mixing function layer 532, a light conversion layer 533, and a light concentrating layer 534 that are sequentially arranged from bottom to top.
  • the light mixing function layer 532 is disposed on the surface and / or inside of the second optical film layer 531, and is provided with a uniform surface for enhancing light reflection and scattering.
  • the reflectance range of the uniform surface is 50-100%
  • the transmittance range is 0-50%.
  • the composite light mixing optical film 530 can achieve light brightness and color mainly by reflecting and scattering light while ensuring light utilization efficiency
  • the degree of uniformity is beneficial to improve the uniformity of light color in the case of an ultra-short distance and a large distance between the monochrome light-emitting units 300.
  • the light conversion layer 533 is disposed on the light exit surface of the second optical film layer 531.
  • One side of the light condensing layer 534 is disposed on the light exit surface of the light conversion layer 533, and the other side is disposed on the light enhancement layer 600.
  • the second optical film layer 531 may be the same as the first optical film layer 511 or may be different.
  • the second optical film layer 531 may be an optical base film having one optical function or a composite optical function film having multiple optical functions.
  • the second optical film layer 531 may be a PET film, a PC film, At least one of a film material such as a diffusion film, a brightness enhancement film, or a fluorescent film is compounded.
  • the composite functional structure 500 includes a third optical film layer 540 and a composite light mixing optical film 530.
  • the third optical film layer 540 is disposed on the encapsulation layer 400.
  • One side of the composite light mixing optical film 530 is disposed on the light-enhancing layer 600, and the other side is disposed on the encapsulation layer 400. That is, unlike Embodiment 1, in this embodiment, in addition to directly combining the composite light mixing film 510 and the composite optical film 520 into a composite light mixing optical film 530, a third optical film layer 540 is added.
  • the third optical film layer 540 is mainly used for condensing light, and the composite light mixing optical film 530 still has at least a light mixing function, a light conversion function, and a light focusing function.
  • the composite light mixing optical film 530 includes a light concentrating layer 534, a light mixing function layer 532, a second optical film layer 531, and a light conversion layer 533 that are sequentially arranged from bottom to top.
  • the light-concentrating layer 534 is disposed on the light exit surface of the third optical film layer 540.
  • the second optical film layer 531 is disposed on the light exit surface of the light condensing layer 534.
  • the light mixing function layer 532 is disposed on the surface and / or inside of the second optical film layer 531, and is provided with a uniform surface for enhancing light reflection and scattering. Among them, the reflectance range of the uniform surface is 50 to 100%, and the transmittance range is 0 to 50%.
  • the composite light mixing optical film 530 can achieve light brightness and color mainly by reflecting and scattering light while ensuring light utilization efficiency
  • the degree of uniformity is beneficial to improve the uniformity of light color in the case of an ultra-short distance and a large distance between the monochrome light-emitting units 300.
  • one side of the light conversion layer 533 is disposed on the light enhancement layer 600, and the other side is disposed on the light exit surface of the second optical film layer 531.
  • the blue light emitted by the monochromatic light-emitting unit 300 passes through the encapsulation layer 400 and is incident on the third optical film layer 540 to complete
  • the light is preliminarily condensed and then enters into the compound light mixing optical film 530, which is first reflected back by the light mixing functional structure layer, and the blue light can be uniformly mixed by repeated reflection and scattering, and the homogenized blue light reaches the light conversion layer 533
  • the blue light is converted into yellow light through the light conversion layer 533, and the yellow light and the blue light transmitted through the light conversion layer 533 are combined into white light, and then concentrated by the light-increasing layer 600, and finally the white light is vertically emitted into the liquid crystal cell To achieve the display on the LCD.
  • the composite functional structure 500 includes a composite light mixing optical film 530, wherein one side of the composite light mixing optical film 530 is disposed on the light-enhancing layer 600 and the other side is disposed on the encapsulation layer 400. That is, different from the first embodiment, this embodiment directly combines the composite light mixing film 510 and the composite optical film 520 into a composite light mixing optical film 530, which can further reduce the thickness of the backlight module and is more beneficial to Realize ultra-thin design. Understandably, the composite light mixing optical film 530 has at least a light mixing function, a light conversion function, and a light focusing function.
  • the composite light mixing optical film 530 includes a light conversion layer 533, a light mixing function layer 532, a second optical film layer 531, and a light condensing layer 534 that are sequentially arranged from bottom to top.
  • the light conversion layer 533 is disposed on the encapsulation layer 400.
  • the second optical film layer 531 is disposed on the light conversion layer 533.
  • the light mixing function layer 532 is disposed on the surface and / or inside of the second optical film layer 531, and is provided with a uniform surface for enhancing light reflection and scattering. Among them, the reflectance range of the uniform surface is 50 to 100%, and the transmittance range is 0 to 50%.
  • the composite light mixing optical film 530 can achieve light brightness and color mainly by reflecting and scattering light while ensuring light utilization efficiency
  • the degree of uniformity is beneficial to improve the uniformity of light color in the case of an ultra-short distance and a large distance between the monochrome light-emitting units 300.
  • one side of the light-concentrating layer 534 is provided on the second optical film layer 531 and the other side is provided on the light-enhancing layer 600.
  • the composite light mixing optical film 530 is used, and the main technical features are also substantially the same, except that the composite light mixing optical film in each embodiment
  • the internal structure of 530 is different, and the order of light processing is different.
  • one or more light diffusion sheets or light diffusion structures may be added between any two adjacent layers to further improve the light color uniformity.
  • the present application also provides a display device including the above-mentioned backlight module.
  • the display device further includes a display panel, and light emitted from the backlight module will be directed toward the display panel, so that the display panel can display images .
  • the display device is mainly a liquid crystal display device, which may be a liquid crystal television, a liquid crystal display, a notebook computer, a digital photo frame, a mobile phone, a navigator, a tablet computer, and other products or components with any display function.
  • the image displayed on the display panel of the display device has better light color uniformity, and the overall thickness is reduced, which is beneficial to achieve an ultra-thin design, reduce production costs, and simplify the production process. To increase production efficiency.

Abstract

一种背光模组和显示装置,背光模组包括多个单色发光单元(300)、透明的覆盖于单色发光单元(300)上的封装层(400)、覆盖于封装层(400)正上方的增光层(600)以及设置在封装层(400)和增光层(600)之间并覆盖封装层(400)的复合功能结构(500)。背光模组以单色发光单元(300)作为光源,通过复合功能结构(500)将单色光转换为复色光并对射出前的光线进行反射和散射,以此减少单色发光单元(300)的使用数量,从而降低物料成本;另外,复合功能结构(500)除了光转换功能外,还可复合其它的光学功能,由此利于减小背光模组的厚度,从而实现超薄化设计、简化制造工艺和降低制造成本。

Description

一种背光模组和显示装置 技术领域
本申请属于显示技术领域,更具体地说,是涉及一种背光模组和显示装置。
背景技术
液晶显示技术是目前市场上主流的显示技术,已在手机、平板电脑、个人计算机、电视机、车载显示器、工控显示器等领域中得到广泛应用。液晶自身不具备发光的功能,因此,通常需采用背光模组为其提供背光源。众所周知,目前的背光模组主要以复色光白光发光二极管(Light Emitting Diode,LED)作为光源,并使用依次紧密排列的如导光板、扩散膜、增光层等多层光学膜结构分离组合而成。结构形式主要包括侧入式和直下式这两种。
具体地,在侧入式背光模组的范例中,白光LED光源位于导光板周围的一侧或两侧上,光线从侧面进入到导光板,经导光板导光后从导光板的上表面出射,然后依次进入到扩散膜、增光层,最终照射到液晶模块上。然而,侧入式背光模组虽然将光源设置在侧边后能确保整体厚度较薄,但因其导光距离太长,容易导致功耗大、光利用率低,其中,光利用率一般小于50%。另外,由侧入式背光模组组装成的液晶显示器还存在对比度低、屏占比低以及异形屏难以处理等不足。
对应地,在直下式背光模组的范例中,扩散膜置于白光LED的上方,光线依次进入到扩散膜、增光层并最终照射到液晶模块上。然而,直下式背光模组因通常采用多层膜结构设计,容易造成背光模组的整体厚度较厚。另外,直下式背光模组虽然基本没有侧入式背光模组中的一些问题,但存在LED数量多,光色均匀性不佳,制作工艺繁杂,生产成本高、生产效率低、良品率低等不足。
技术问题
本申请实施例的目的在于:第一方面,提供一种背光模组,用以解决背光模组的厚度较厚、发光源数量多、混光均匀性不佳、生产成本高以及良品率低等技术问题。
第二方面,提供一种显示装置,用以解决显示产品的显示效果不佳、难以实现超薄化设计、物料成本高、生产成本高以及生产效率较低的技术问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供了一种背光模组,该背光模组包括电路板、多个设置于所述电路板上的单色发光单元、透明的覆盖于所述单色发光单元上的封装层以及依次覆盖于所述封装层正上方的增光层和遮光层;所述背光模组还包括:
复合功能结构,至少具有光转换功能,设置在所述封装层和所述增光层之间并覆盖所述封装层,通过反射实现混光功能并将所述单色发光单元发出的单色光转换为复色光射出;
相邻两所述单色发光单元之间的间距大于或等于1.5 mm;所述背光模组的总厚度能达到小于0.8 mm。
第二方面,提供了一种显示装置,该显示装置包括上述的背光模组。
有益效果
本申请实施例提供的背光模组,包括多个设置于电路板上的单色发光单元、透明的覆盖于单色发光单元上的封装层以及依次覆盖于封装层正上方的增光层和遮光层,该背光模组还包括设置在封装层和遮光层之间并覆盖封装层的复合功能结构。本申请实施例采用单色发光单元作为光源,应用复合功能结构的光转换功能将单色发光单元发出的单色光(如蓝光)最终转换为复色光(如白光)射出,重要的是,还可通过复合功能结构对射出前的光线进行反射和散射,提高光色均匀性,确保相邻两单色发光单元的间距大于或等于1.5 mm,以利于减少单色发光单元的使用数量,从而大幅降低物料成本;
另外,因复合功能结构除光转换功能外,还可有其它的光学功能,也即,复合功能结构可以复合多种光学功能,这样,利于省去多种光学膜层,从而确保背光模组的总厚度能达到小于0.8 mm,由此大大地减小了背光模组的厚度,利于在显示效果满足需求的情况下同时实现背光模组的超薄化设计、简化制造工艺及节省制造成本。
本申请实施例提供的显示装置,通过采用上述的背光模组,显示均匀性得到改善,整体厚度减小,利于实现超薄化设计,物料成本降低、生产成本降低,生产效率提高。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例一中背光模组的第一种截面结构示意图;
图2是本申请实施例一中背光模组的第二种截面结构示意图;
图3是本申请实施例一中背光模组的第三种截面结构示意图;
图4是本申请实施例二中背光模组的截面结构示意图;
图5是本申请实施例三中背光模组的截面结构示意图;
图6是本申请实施例四中背光模组的截面结构示意图。
其中,附图中的标号如下:
100-外框、200-电路板、300-单色发光单元、400-封装层;
500-复合功能结构、510-复合混光膜、511-第一光学膜层、512-混光功能层、5211-混光元素;520-复合光学膜、521-光转换层、522-聚光层;
530-复合混光光学膜、531-第二光学膜层、532-混光功能层、533-光转换层、534-聚光层;540-第三光学膜层;
600-增光层、700-遮光层。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接或者间接位于另一个部件上。当一个部件被称为“连接于”另一个部件,它可以直接或者间接连接至另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本专利的限制。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请所述的技术方案,以下结合具体附图及实施例对本申请提供的一种背光模组的实现进行详细说明。
需说明的是,该背光模组,主要用在直下式背光显示装置中,当然,还可用在其它合适的结构或产品中。
在本申请中,如图1至图6所示,该背光模组,包括电路板200、单色发光单元300、封装层400、增光层600、遮光层700以及复合功能结构500。通常,在电路板200的外侧设置有外框100,以方便保护电路板200和安装各零部件。其中,电路板200可以为柔性电路板200,也可为其它类型的电路板200。单色发光单元300具有多个,且各单色发光单元300设置在电路板200上。需说明的是,单色发光单元300可以为单色发光二极管(Light Emitting Diode,LED)晶片,也可以为单色激光二极管(Laser diode,LD)晶片,当然,还可以为其它合适的发光元件。具体在本申请中,单色发光单元300为蓝光LED晶片、紫光LED晶片或紫外光LED晶片中的一种。
再如图1至图6所示,封装层400覆盖于单色发光单元300上以封装保护单色发光单元300。为利于透光,封装层400是透明的。具体在本申请中,封装层400的透光率大于或等于90%,这样,利于提升总体发光亮度和光源的利用率;封装层400通常主要由树脂材料或硅胶材料制成,这样,利于降低生产成本。
再如图1至图6所示,增光层600覆盖于封装层400的正上方,这样,利于增亮从复合功能结构500中射出的光线。需说明的是,具体在本申请中,增光层600为普通的用于增亮的增光膜片,当然,实际上增光层600可以是单层增光,也可以是多层增光组合,还可以是多层增光和扩散功能的组合层结构,具体可根据实际的亮度需求而定;对应地,遮光层700覆盖于封装层400的正上方,且通常遮光层700、增光层600和封装层400依次上下覆盖设置。具体地,遮光层700为遮光黑胶形成的胶层,可以用于超窄边框结构中,当然实际上,遮光层700还可为其它合适的结构或由其它合适的材料制成。
再如图1至图6所示,复合功能结构500设置在封装层400和增光层600之间,并覆盖封装层400。这样,在封装层400和增光层600之间,该复合功能结构500可以对通过的光线通过反射和散射实现混光功能,以提高光色均匀性和改善显示效果,进而方便减小各单色发光单元300之间的间距。在本申请中,相邻两单色发光单元300之间的间距大于或等于1.5 mm,这样,方便大幅减少单色发光单元300的使用数量,从而极大地节省原材料和降低背光模组的成本。
另外,复合功能结构500至少具有光转换功能。在本申请中,该背光模组通过复合功能结构500的光转换功能,可以将单色发光单元300发出的单色光最终转换为复色光射出。可以理解地,复合功能结构500除了具有光转化功能外,还可以复合其它的多种光学功能,例如,聚光功能、扩散功能以及聚光功能和扩散功能等。这样,利于省去多种光学膜层,从而减小背光模组的总厚度。
在本申请中,背光模组的总厚度能达到小于0.8 mm,显然,相比一般的直下式背光模组,该背光模组的总厚度得到大幅减小,利于在显示效果满足需求的情况下同时实现背光显示产品的超薄化设计,对应地,也利于简化制造工艺、提高良品率和节省制造成本,提升该背光模组及使用该背光模组的显示产品的市场竞争力。
需说明的是,该背光模组可以实现直下式背光模组的厚度保持在现有同尺寸的侧入式背光模组的厚度范围,且大大地降低直下式背光模组的成本。还需说明的是,在实际应用中,相邻两单色发光单元300之间的间距会根据背光模组的不同尺寸或不同用途而有所不同,背光模组的具体尺寸或用途对应的总厚度情况可参看表1:
显示背光用途 单色发光单元间距 封装层厚度 背光总厚度
手机 1.50 mm~4 mm <0.3 mm <0.8 mm
平板电脑及车载显示 1.50 mm~5 mm <0.6 mm <1.2 mm
笔记本电脑 1.50 mm~5 mm <0.8 mm <2.5 mm
电脑显示器 1.50 mm~7 mm <1.2 mm <4 mm
TV 1.50 mm~20 mm <3 mm <5 mm
从表1中可明显看出,在常见的显示产品中,例如在手机中,其背光模组的总厚度可小于0.8 mm。另外,在各显示产品中,相邻两单色发光单元300的间距均大于1.5 mm,故此,该背光模组的总厚度大幅减小,相邻两单色发光单元300的间距也大幅扩大,从而大幅降低物料成本。
在本申请的实施例一中,如图1至图3所示,复合功能结构500包括复合混光膜510和复合光学膜520。其中,复合光学膜520与复合混光膜510在封装层400和增光层600之间为上下覆盖关系。换句话说,在封装层400和增光层600之间,复合功能结构500主要由复合光学膜520和复合混光膜510上下覆盖组合而成,具体的上下位置关系可根据实际需要而定。
在本实施例中,如图1至图3所示,复合混光膜510包括第一光学膜层511以及混光功能层512。其中,第一光学膜层511可以为具有一种光学功能的光学基膜(图未示)。通常,该光学基膜可以为聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)膜、丙烯酸塑料(Acylics)膜、聚碳酸酯(Polycarbonate,PC)膜、扩散膜、增光膜或荧光膜中的任意一种。当然,实际上,还可为其它功能的膜材。对应地,第一光学膜层511也可以为具有多种光学功能的复合光学膜材。通常,该复合光学膜520可以由PET膜、PC膜、扩散膜、增光膜或荧光膜等膜材中的至少两种复合而成。
由上显然,复合混光膜510不仅具有混光功能,还可以有其它的光学功能。具体在实际应用中,可根据实际需要选用不同功能的光学基膜来设计该复合混光膜510,这样,通过采用该复合混光膜510可以省去一些功能相同的膜材,以此实现超薄化设计、节省原材料和降低生产成本。
再如图1至图3所示,混光功能层512设置于第一光学膜层511的表面和/或内部。可以理解地,在复合混光膜510中,混光功能层512至少设置有一层,具体层数可依据实际需要而定。在本申请中,为方便介绍,主要以一层混光功能层512的情况为例进行说明。另外,混光功能层512设置有用以增强光线反射和散射的匀光面。具体地,匀光面的反射率范围为50~100%,透射率范围为0~50%。这样,光线照射到该匀光面上后可以被反射和散射,也即,该复合混光膜510在保证光利用率的前提下,主要通过对光线的反射和散射实现光线亮度和色度的均匀化,匀光效果得到显著提高,利于在超短距离和单色发光单元300的间距较大的情况下实现均匀混光。显然,相比常规的导光片、匀光片等膜材,该复合混光膜510属于一种新的具有匀光功能的膜材,结构简单,成型工艺简单。
需说明的是,匀光面即为一反射面,具体可以为高反射镜面或高反射散射面。其中,该反射面由多个混光元素5211布局出的不透明反射层形成。另外,混光元素5211主要由呈网点、凹凸结构、填充或条纹中的至少一种结构或图案形成,主要用以反射复色光或单色光。具体地,以其中一个混光元素5211为网点为例,匀光面可以全部由网点结构排布形成,也可以全部由网点图案排布形成,还可以由一部分的网点结构和另一部分的网点图案混合排布形成,还可以由一部分的网点结构、一部分的凹凸结构、一部分的条纹图案等混合排布形成。当然,实际上,混光元素5211还可以为其它合适的起匀光作用的结构或图案。另外,为达到更好的混光效果,通常,各混光元素5211呈均匀排布。
在本实施例中,如图1至图3所示,为方便改善匀光效果,混光功能层512通常位于单色发光单元300的正上方,混光元素5211的排布密度与混光元素5211和单色发光单元300的距离大小反向相关。换句话说,越靠近单色发光单元300的位置,混光元素5211的排布越密集,越远离单色发光单元300的位置,混光元素5211的排布越稀疏。
对应地,再如图1至图3所示,复合光学膜520包括光转换功能结构,其中,该光转换功能结构至少具有光转换功能,以此确保复合光学膜520至少具有光转换功能。可以理解地,复合光学膜520主要用以将单色发光单元300发出的单色光最终转换为复色光射出,并且复合光学膜520除了具有光转换功能外,还可复合多种其它的光学功能,如复合光学膜520可以具有光转换功能和光扩散功能,或者可以具有光转换功能和聚光功能,或者可以具有光转换功能、光扩散功能和聚光功能等。当然,实际上,这里所指的“其它的光学功能”不仅限于光扩散功能和/或聚光功能,还可以包括如增光膜的增光功能、反射膜的反射功能、偏光膜的偏光功能、滤光膜的滤光功能等。显然,该背光模组使用复合光学膜520后,可以直接将封装单色发光单元300的荧光胶直接更换为透明的封装胶,在此基础上,还可省去具有与该复合光学膜520的其它光学功能相同功能的其它光学膜。例如,该复合光学膜520除了光转换功能外,还具有光扩散功能,则使用复合光学膜520后,该背光模组还可以省去具有光扩散功能的扩散膜,由此,利于极大地减小背光模组的厚度。
需说明的是,在本申请中,光转换功能结构主要用以将接收的单色光线转换成与单色光线颜色不同的颜色光线,及将该颜色光线与透过光转换功能结构的单色光线混合成复色光线射出。也即,单色光线射到光转换功能结构被接收后,一部分单色光线可以直接透过光转换功能结构,同时另一部分单色光线被光转换功能结构直接转换成与单色光线颜色不同的颜色光线,这样,从光转换功能结构中透过的颜色光线和单色光线最终可以混合成复合光线从光转换功能结构中射出。以单色光线为蓝光为例,一部分蓝光直接从光转换功能结构透过,同时另一部分蓝光可以被光转换功能结构转换成黄光,这样,从光转换功能结构中透过的蓝光和黄光即可最终混合成白光从光转换功能结构中射出。由此,该背光模组无需直接采用白光光源作为背光源,利于实现背光模组的结构多样化。
或者,光转换功能结构主要用以将接收的单色光线转换成具有多种不同颜色或波长的第一复合光线及将及将第一复合光线与透过光转换功能结构的单色光线混合成第二复合光线射出。由此,利于制作出新的能同时出射不同颜色或波长光线背光产品,无需采用多种单色发光元件拼装,利于简化背光产品的结构。
在本实施例的第一种具体实施方式中,如图1所示,复合光学膜520、复合混光膜510和封装层400依次上下覆盖设置。具体地,再如图1所示,混光功能层512设置于第一光学膜层511的外表面上,并抵接在封装层400上。光转换功能结构包括光转换层521和聚光层522。其中,光转换层521设置于第一光学膜层511上,聚光层522设置于光转换层521的出射面上。更具体地,增光层600、聚光层522、光转换层521、第一光学膜层511、混光功能层512和封装层400依次由上至下覆盖设置。
由此可以理解地,在本具体实施方式中,以单色发光单元300为蓝光LED晶片为例,单色发光单元300发出的蓝光,透过封装层400后,入射到复合混光膜510上,被复合混光膜510中的混光功能层512反射回来,通过反复地反射和散射即可对蓝光进行均匀混光,最终均匀化后的蓝光达到复合光学膜520后,先经复合光学膜520的光转换层521将蓝光转换为黄光,并让黄光和透过光转换层521的蓝光复合成白光,然后再经复合光学膜520中的聚光层522以及增光层600先后进行聚光,最终使得白光垂直射到液晶盒内的液晶上以实现显示。
在本实施例的第二种具体实施方式中,如图2所示,与第一种具体实施方式不同的是,复合混光膜510和复合光学膜520调换上下位置,也即复合混光膜510、复合光学膜520和封装层400依次上下覆盖设置。具体地,再如图2所示,光转换功能结构包括光转换层521和聚光层522。其中,光转换层521设置于封装层400上,聚光层522设置于光转换层521的出射面上。对应地,复合混光膜510的第一光学膜层511的一侧设置于增光层600上,另一侧抵接于聚光层522。复合混光膜510的混光功能层512设置于第一光学膜层511靠近光转换层521一侧的内表面上。可以理解地,如图2所示,增光层600、第一光学膜层511、混光功能层512、聚光层522、光转换层521和封装层400依次由上至下覆盖设置,混光功能层512内置于第一光学膜层511内。
由此可以理解地,在本具体实施方式中,以单色发光单元300为蓝光LED晶片为例,单色发光单元300发出的蓝光,透过封装层400后,入射到复合光学结构上,其中,先在光转换层521上将蓝光转换成黄光,并让黄光和透过光转换层521的蓝光复合成白光,然后通过聚光层522进行聚光白光达到复合混光膜510上,被复合混光膜510中的混光功能层512反射回来,通过反复地反射和散射即可对白光进行均匀混光,最终均匀化后的白光经增光层600聚光后垂直入射到液晶盒内的液晶上以实现显示。
在本实施例的第三种具体实施方式中,如图3所示,与第二种具体实施方式不同的是,虽然在本具体实施方式中,复合混光膜510、复合光学膜520和封装层400仍然依次上下覆盖设置,但复合光学膜520的光转换功能结构有所改变。具体地,再如图3所示,光转换功能结构包括聚光层522和光转换层521,其中,聚光层522设置于封装层400上,光转换层521设置于聚光层522的出光面上。对应地,复合混光膜510的第一光学膜层511的一侧设置于增光层600上,复合混光膜510的混光功能层512设置于第一光学膜层511另一侧的外表面上。可以理解地,如图3所示,增光层600、第一光学膜层511、混光功能层512、光转换层521、聚光层522和封装层400依次由上至下覆盖设置,混光功能层512外置于第一光学膜层511上。
由此可以理解地,与第二种具体实施方式不同的是,在本具体实施方式中,以单色发光单元300为蓝光LED晶片为例,入射到复合光学结构上的蓝光先通过聚光层522聚光后,再在光转换层521上将蓝光转换成黄光,并让黄光和透过光转换层521的蓝光复合成白光直接达到复合混光膜510上。
在本申请的实施例二中,如图4所示,本实施例的主要技术特征与实施例一的大体相同,在此不作赘述,其中,本实施例与实施例一的主要区别在于:
复合功能结构500包括复合混光光学膜530。其中,复合混光光学膜530的一侧设置于增光层600上、另一侧设置于封装层400上。也即,与实施例一不同的是,本实施例直接将复合混光膜510和复合光学膜520复合成一张复合混光光学膜530,这样,可以进一步减小背光模组的厚度,更利于实现超薄化设计。可以理解地,该复合混光光学膜530至少具有混光功能、光转换功能和聚光功能。
再如图4所示,复合混光光学膜530包括依次由下至上覆盖设置的第二光学膜层531、混光功能层532、光转换层533和聚光层534。具体地,混光功能层532设置于第二光学膜层531的表面和/或内部,并设置有用以增强光线反射和散射的匀光面。具体地,匀光面的反射率范围为50~100%,透射率范围为0~50%。这样,照射到该匀光面上的光线大部分可以被反射和散射,使得该复合混光光学膜530可以在保证光利用率的前提下,主要通过对光线的反射和散射实现光线亮度和色度的均匀化,利于在超短距离和单色发光单元300的间距较大的情况下提高光色均匀性。再如图4所示,光转换层533设置于第二光学膜层531的出光面上。聚光层534的一侧设置于光转换层533的出光面上,另一侧设置于增光层600上。
需说明的是,在本实施例中,第二光学膜层531可以与第一光学膜层511相同,也可以不同。另外,第二光学膜层531可以为具有一种光学功能的光学基膜,也可以为具有多种光学功能的复合光学功能膜,通常,第二光学膜层531可以由PET膜、PC膜、扩散膜、增光膜或荧光膜等膜材中的至少一种复合而成。
在本申请的实施例三中,如图5所示,本实施例的主要技术特征与实施例一的大体相同,在此不作赘述,其中,本实施例与实施例一的主要区别在于:
复合功能结构500包括第三光学膜层540和复合混光光学膜530。其中,再如图5所示,第三光学膜层540设置于封装层400上。复合混光光学膜530的一侧设置于增光层600上,另一侧设置于封装层400上。也即,与实施例一不同的是,本实施例除了直接将复合混光膜510和复合光学膜520复合成一张复合混光光学膜530外,还增加了一层第三光学膜层540。其中,该第三光学膜层540主要用以聚光,复合混光光学膜530仍然至少具有混光功能、光转换功能和聚光功能。
再如图5所示,复合混光光学膜530包括依次由下至上覆盖设置的聚光层534、混光功能层532、第二光学膜层531和光转换层533。具体地,聚光层534设置于第三光学膜层540的出光面上。第二光学膜层531设置于聚光层534的出光面上。混光功能层532设置于第二光学膜层531的表面和/或内部,并设置有用以增强光线反射和散射的匀光面。其中,匀光面的反射率范围为50~100%,透射率范围为0~50%。这样,照射到该匀光面上的光线大部分可以被反射和散射,使得该复合混光光学膜530可以在保证光利用率的前提下,主要通过对光线的反射和散射实现光线亮度和色度的均匀化,利于在超短距离和单色发光单元300的间距较大的情况下提高光色均匀性。再如图5所示,光转换层533的一侧设置于增光层600上,另一侧设置于第二光学膜层531的出光面上。
可以理解地,在本实施例中,以单色发光单元300为蓝光LED晶片为例,单色发光单元300发出的蓝光,透过封装层400后,入射到第三光学膜层540上,完成初步聚光,然后进入到复合混光光学膜530中,先被混光功能结构层反射回来,通过反复地反射和散射即可对蓝光进行均匀混光,均匀化后的蓝光达到光转换层533后,经光转换层533将蓝光转换为黄光,并让黄光和透过光转换层533的蓝光复合成白光,然后再通过增光层600进行聚光,最终使得白光垂直射到液晶盒内的液晶上以实现显示。
在本申请的实施例四中,如图6所示,本实施例的主要技术特征与实施例一的大体相同,在此不作赘述,其中,本实施例与实施例一的主要区别在于:
复合功能结构500包括复合混光光学膜530,其中,复合混光光学膜530的一侧设置于增光层600上、另一侧设置于封装层400上。也即,与实施例一不同的是,本实施例直接将复合混光膜510和复合光学膜520复合成一张复合混光光学膜530,这样,可以进一步减小背光模组的厚度,更利于实现超薄化设计。可以理解地,该复合混光光学膜530至少具有混光功能、光转换功能和聚光功能。
再如图6所示,复合混光光学膜530包括依次由下至上覆盖设置的光转换层533、混光功能层532、第二光学膜层531和聚光层534。具体地,光转换层533设置于封装层400上。第二光学膜层531设置于光转换层533上。混光功能层532设置于第二光学膜层531的表面和/或内部,并设置有用以增强光线反射和散射的匀光面。其中,匀光面的反射率范围为50~100%,透射率范围为0~50%。这样,照射到该匀光面上的光线大部分可以被反射和散射,使得该复合混光光学膜530可以在保证光利用率的前提下,主要通过对光线的反射和散射实现光线亮度和色度的均匀化,利于在超短距离和单色发光单元300的间距较大的情况下提高光色均匀性。再如图6所示,聚光层534的一侧设置于第二光学膜层531的上,另一侧设置于增光层600上。
可以理解地,在本申请中,实施例二、实施例三和实施例四中,均有采用复合混光光学膜530,主要的技术特征也大体相同,只是各实施例中复合混光光学膜530的内部结构有所不同,对应地光线处理顺序有所不同。
需说明的是,在本申请的所有实施例中,可在任意相邻的两层之间增加一层或多层光扩散片或光扩散结构,以进一步提高光色均匀性。
本申请还提供一种显示装置,该显示装置包括上述的背光模组通常,该显示装置还包括显示面板,从背光模组射出的光线将射向显示面板,这样,显示面板即可显现出图像。其中,该显示装置主要为液晶显示装置,可以为液晶电视、液晶显示器、笔记本电脑、数码相框、手机、导航仪、平板电脑等具有任何显示功能的产品或部件。
显然,采用上述的背光模组后,该显示装置的显示面板显示的图像其光色均匀性更佳,整体的厚度减小,利于实现超薄化设计,生产成本降低,生产工艺简化,对应地,生产效率提高。
以上仅为本申请的优选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (14)

  1. 背光模组,其特征在于,所述背光模组包括电路板、多个设置于所述电路板上的单色发光单元、透明的覆盖于所述单色发光单元上的封装层以及依次覆盖于所述封装层正上方的增光层和遮光层;所述背光模组还包括:
    复合功能结构,至少具有光转换功能,设置在所述封装层和所述增光层之间并覆盖所述封装层,通过反射实现混光功能并将所述单色发光单元发出的单色光转换为复色光射出;
    相邻两所述单色发光单元之间的间距大于或等于1.5 mm;所述背光模组的总厚度能达到小于0.8 mm。
  2. 根据权利要求1所述的背光模组,其特征在于,所述复合功能结构包括复合混光膜和复合光学膜,所述复合光学膜与所述复合混光膜在所述封装层和所述增光层之间为上下覆盖关系;
    所述复合混光膜包括:
    第一光学膜层;以及,
    混光功能层,设置于所述第一光学膜层的表面和/或内部,设置有用以增强光线反射和散射的匀光面;所述匀光面的反射率范围为50~100%,透射率范围为0~50%;
    所述复合光学膜包括至少具有光转换功能的光转换功能结构。
  3. 根据权利要求2所述的背光模组,其特征在于,所述复合光学膜、所述复合混光膜和所述封装层依次上下覆盖设置;所述混光功能层设置于所述第一光学膜层的外表面上,并抵接在所述封装层上;
    所述光转换功能结构包括设置于所述第一光学膜层上的光转换层和设置于所述光转换层的出射面上的聚光层。
  4. 根据权利要求2所述的背光模组,其特征在于,所述复合混光膜、所述复合光学膜和所述封装层依次上下覆盖设置;所述光转换功能结构包括设置于所述封装层上的光转换层和设置于所述光转换层的出射面上的聚光层;
    所述第一光学膜层的一侧设置于所述增光层上,另一侧抵接于所述聚光层;所述混光功能层设置于所述第一光学膜层靠近所述光转换层一侧的内表面上。
  5. 根据权利要求2所述的背光模组,其特征在于,所述复合混光膜、所述复合光学膜和所述封装层依次上下覆盖设置;所述光转换功能结构包括设置于所述封装层上的聚光层和设置于所述聚光层的出光面上的光转换层;
    所述第一光学膜层的一侧设置于所述增光层上;所述混光功能层设置于所述第一光学膜层另一侧的外表面上。
  6. 根据权利要求1所述的背光模组,其特征在于,所述复合功能结构包括一侧设置于所述增光层上、另一侧设置于所述封装层上的复合混光光学膜;
    所述复合混光光学膜包括:
    第二光学膜层;
    混光功能层,设置于所述第二光学膜层的表面和/或内部,设置有用以增强光线反射和散射的匀光面;其中,所述匀光面的反射率范围为50~100%,透射率范围为0~50%;
    光转换层,设置于所述第二光学膜层的出光面上;以及,
    聚光层,一侧设置于所述光转换层的出光面上,另一侧设置于所述增光层上。
  7. 根据权利要求1所述的背光模组,其特征在于,所述复合功能结构包括:
    第三光学膜层,设置于所述封装层上;
    复合混光光学膜,一侧设置于所述增光层上,另一侧设置于所述封装层上;
    所述复合混光光学膜包括:
    聚光层,设置于所述第三光学膜层的出光面上;
    第二光学膜层,设置于所述聚光层的出光面上;
    混光功能层,设置于所述第二光学膜层的表面和/或内部,设置有用以增强光线反射和散射的匀光面;其中,所述匀光面的反射率范围为50~100%,透射率范围为0~50%;
    光转换层,一侧设置于所述增光层上,另一侧设置于所述第二光学膜层的出光面上。
  8. 根据权利要求1所述的背光模组,其特征在于,所述复合功能结构包括一侧设置于所述增光层上、另一侧设置于所述封装层上的复合混光光学膜;
    所述复合混光光学膜包括:
    光转换层,设置于所述封装层上;
    第二光学膜层,设置于所述光转换层上;
    混光功能层,设置于所述第二光学膜层的表面和/或内部,设置有用以增强光线反射和散射的匀光面;其中,所述匀光面的反射率范围为50~100%,透射率范围为0~50%;
    聚光层,一侧设置于所述第二光学膜层的上,另一侧设置于所述增光层上。
  9. 根据权利要求2至8任一项所述的背光模组,其特征在于,所述匀光面为由多个混光元素布局出的不透明反射层形成的反射面;
    所述混光元素,用以反射复色光或单色光,由呈网点、凹凸结构、填充或条纹中的至少一种结构或图案形成。
  10. 根据权利要求9所述的背光模组,其特征在于,所述混光功能层位于所述单色发光单元的正上方,所述混光元素的排布密度与所述混光元素和所述单色发光单元的距离大小反向相关。
  11. 根据权利要求1所述的背光模组,其特征在于:所述单色发光单元为蓝光芯片、紫光芯片或紫外光芯片中的一种。
  12. 根据权利要求1所述的背光模组,其特征在于:所述封装层主要由树脂材料或硅胶材料形成;所述封装层的透过率大于或等于90%。
  13. 根据权利要求1所述的背光模组,其特征在于:所述电路板为柔性电路板。
  14. 显示装置,其特征在于:所述显示装置包括根据权利要求1至13任一项所述背光模组。
PCT/CN2018/111015 2018-10-19 2018-10-19 一种背光模组和显示装置 WO2020077615A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/111015 WO2020077615A1 (zh) 2018-10-19 2018-10-19 一种背光模组和显示装置
CN201880001731.4A CN111095088A (zh) 2018-10-19 2018-10-19 一种背光模组和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/111015 WO2020077615A1 (zh) 2018-10-19 2018-10-19 一种背光模组和显示装置

Publications (1)

Publication Number Publication Date
WO2020077615A1 true WO2020077615A1 (zh) 2020-04-23

Family

ID=70284437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111015 WO2020077615A1 (zh) 2018-10-19 2018-10-19 一种背光模组和显示装置

Country Status (2)

Country Link
CN (1) CN111095088A (zh)
WO (1) WO2020077615A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112086014B (zh) * 2020-09-16 2022-03-08 武汉华星光电技术有限公司 背光模组及显示装置
TWI759173B (zh) * 2021-04-16 2022-03-21 友達光電股份有限公司 顯示模組及包含其之顯示裝置
CN114779521A (zh) * 2021-12-13 2022-07-22 深圳市华鼎星科技有限公司 点阵式背光模组以及应用点阵式背光模组的显示屏
CN116343584A (zh) 2021-12-22 2023-06-27 瑞轩科技股份有限公司 显示器的背光模块
TWI805291B (zh) * 2021-12-22 2023-06-11 瑞軒科技股份有限公司 顯示器的背光模組
CN114415421A (zh) * 2022-01-27 2022-04-29 武汉华星光电技术有限公司 显示面板及显示装置
CN115220261A (zh) * 2022-06-09 2022-10-21 武汉华星光电技术有限公司 背光模组及显示模组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100244058A1 (en) * 2009-03-25 2010-09-30 Coretronic Corporation Light emitting diode package
CN104006334A (zh) * 2014-05-20 2014-08-27 京东方科技集团股份有限公司 一种背光模组及显示装置
CN104298001A (zh) * 2014-10-10 2015-01-21 深圳市华星光电技术有限公司 直下式背光模组及其制造方法
CN108153049A (zh) * 2017-12-29 2018-06-12 宁波东辉光电科技有限公司 一种直下式背光光学膜片结构
CN108254970A (zh) * 2017-12-29 2018-07-06 宁波东辉光电科技有限公司 一种直下式光学背光膜片结构
CN108257948A (zh) * 2017-12-29 2018-07-06 广东晶科电子股份有限公司 白光发光二极管及背光模组

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI324275B (en) * 2005-11-25 2010-05-01 Au Optronics Corp Backlight module with a multi-layer micro-optical brightness enhancement film
JP2008170496A (ja) * 2007-01-09 2008-07-24 ▲ぎょく▼瀚科技股▲ふん▼有限公司 蛍光層を備えたバックライトモジュール及び表示装置
US7808581B2 (en) * 2008-01-18 2010-10-05 Teledyne Lighting And Display Products, Inc. Low profile backlight apparatus
TW201033647A (en) * 2009-03-10 2010-09-16 Ind Tech Res Inst Composite optical film and flat light source module
WO2012035759A1 (ja) * 2010-09-14 2012-03-22 パナソニック株式会社 バックライト装置、およびそのバックライト装置を用いた液晶表示装置、およびそれらに用いる発光ダイオード
US8477266B2 (en) * 2011-02-18 2013-07-02 Extend Optronics Corp. Display backlight module and method for the same
TWI547736B (zh) * 2011-11-16 2016-09-01 友達光電股份有限公司 複合光學膜及應用其之背光模組
TWI574085B (zh) * 2014-09-11 2017-03-11 友達光電股份有限公司 具光均勻化設計之背光模組
US10274168B2 (en) * 2016-07-20 2019-04-30 Nichia Corporation Light emitting device
CN106980208B (zh) * 2017-05-18 2023-04-14 常州丰盛光电科技股份有限公司 光可控型量子点背光源
CN108089370A (zh) * 2017-11-24 2018-05-29 宁波东旭成新材料科技有限公司 一种无阻隔的量子点膜的制备方法
CN108227300A (zh) * 2017-12-29 2018-06-29 宁波东辉光电科技有限公司 一种直下式背光光学结构
CN108227299A (zh) * 2017-12-29 2018-06-29 宁波东辉光电科技有限公司 一种直下式背光结构
CN108089376A (zh) * 2017-12-29 2018-05-29 宁波东辉光电科技有限公司 一种直下式背光膜片结构
CN208953836U (zh) * 2018-10-19 2019-06-07 深圳市珏琥显示技术有限公司 一种背光模组和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100244058A1 (en) * 2009-03-25 2010-09-30 Coretronic Corporation Light emitting diode package
CN104006334A (zh) * 2014-05-20 2014-08-27 京东方科技集团股份有限公司 一种背光模组及显示装置
CN104298001A (zh) * 2014-10-10 2015-01-21 深圳市华星光电技术有限公司 直下式背光模组及其制造方法
CN108153049A (zh) * 2017-12-29 2018-06-12 宁波东辉光电科技有限公司 一种直下式背光光学膜片结构
CN108254970A (zh) * 2017-12-29 2018-07-06 宁波东辉光电科技有限公司 一种直下式光学背光膜片结构
CN108257948A (zh) * 2017-12-29 2018-07-06 广东晶科电子股份有限公司 白光发光二极管及背光模组

Also Published As

Publication number Publication date
CN111095088A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
CN109725458B (zh) 背光单元及包括背光单元的液晶显示装置
WO2020077615A1 (zh) 一种背光模组和显示装置
US10845641B2 (en) Direct backlight module and liquid crystal display device
CN111399280B (zh) 一种显示装置
US9140426B2 (en) Backlight unit and display apparatus using the same
US7465082B2 (en) Planar light-source device
CN106019697A (zh) 显示装置
WO2020056912A1 (zh) 背光模组
CN110928038A (zh) 一种背光模组、显示装置及液晶电视
WO2021047030A1 (zh) 一种背光模组及其制备方法、显示装置
US11320696B2 (en) Backlight module, display, and mobile terminal
WO2022088590A1 (zh) 一种显示装置
US11796859B2 (en) Display apparatus with micro light emitting diode light board
WO2023160643A1 (zh) 显示模组和显示装置
US11822183B2 (en) Display apparatus
CN114089561A (zh) 一种显示装置
CN214751236U (zh) 一种显示装置
KR101632674B1 (ko) 반사판 및 이를 포함하는 액정표시장치
CN115407551B (zh) 一种显示装置
KR101998123B1 (ko) 발광다이오드 및 이를 포함한 액정표시장치
CN115407550B (zh) 一种显示装置
JP5509325B2 (ja) 光学部材の製造方法
KR20120134828A (ko) 백라이트 유닛 및 그를 이용한 디스플레이 장치
KR102649049B1 (ko) 액정표시장치
WO2012169439A1 (ja) 照明装置、表示装置、及びテレビ受信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937398

Country of ref document: EP

Kind code of ref document: A1