WO2018230428A1 - Acid group-containing (meth)acrylate resin and resin material for solder resists - Google Patents

Acid group-containing (meth)acrylate resin and resin material for solder resists Download PDF

Info

Publication number
WO2018230428A1
WO2018230428A1 PCT/JP2018/021824 JP2018021824W WO2018230428A1 WO 2018230428 A1 WO2018230428 A1 WO 2018230428A1 JP 2018021824 W JP2018021824 W JP 2018021824W WO 2018230428 A1 WO2018230428 A1 WO 2018230428A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acid
group
acrylate
resin
Prior art date
Application number
PCT/JP2018/021824
Other languages
French (fr)
Japanese (ja)
Inventor
康介 桑田
高橋 誠治
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2019525361A priority Critical patent/JP6669311B2/en
Publication of WO2018230428A1 publication Critical patent/WO2018230428A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds

Definitions

  • the present invention provides an acid group-containing (meth) acrylate resin having high heat resistance in a cured product and excellent in developability and solvent solubility, a curable resin composition containing the acid group, and an insulating material comprising the curable resin composition
  • the present invention relates to a solder resist resin material and a resist member.
  • solder resist resin materials As a resin material for a solder resist for a printed wiring board, an acid group-containing epoxy acrylate resin obtained by reacting an acid anhydride after an epoxy resin is acrylated with acrylic acid is widely used. Performance requirements for solder resist resin materials include curing with a small amount of exposure, excellent alkali developability, excellent heat resistance and strength, flexibility, elongation, dielectric properties, substrate adhesion, etc. in cured products, etc. There are various things.
  • a branched polyimide resin obtained by reacting pentaerythritol triacrylate with a polyimide resin which is a reaction product of isocyanurate-modified isophorone diisocyanate and trimellitic anhydride is known.
  • the branched polyimide resin described in Patent Document 1 has a feature that is excellent in heat resistance in a cured product, but has low alkali solubility, and does not sufficiently satisfy the required performance as a resin material for solder resist.
  • the problem to be solved by the present invention is an acid group-containing (meth) acrylate resin having high heat resistance in a cured product and excellent in developability and solvent solubility, a curable resin composition containing the acid group, and the curing It is in providing the insulating material which consists of a conductive resin composition, the resin material for solder resists, and a resist member.
  • a (meth) acryloyl group-containing amideimide resin using an alicyclic polycarboxylic acid or its anhydride as a polycarboxylic acid raw material has a heat resistance in a cured product.
  • the present invention has been completed by finding that it has both the property and developability.
  • the present invention is an acid group-containing (meth) acrylate resin comprising an amideimide resin (A) having an acid group or an acid anhydride group and a hydroxy (meth) acrylate compound (B) as essential reaction raw materials
  • the amide-imide resin (A) uses a polyisocyanate compound (a1) and a polycarboxylic acid or acid anhydride (a2) as essential reaction raw materials, and the polycarboxylic acid or acid anhydride (a2) is alicyclic.
  • the present invention relates to an acid group-containing (meth) acrylate resin characterized by comprising polycarboxylic acid or an anhydride thereof as an essential component.
  • the present invention further relates to a curable resin composition containing the acid group-containing (meth) acrylate resin and a photopolymerization initiator.
  • the present invention further relates to a cured product of the curable resin composition.
  • the present invention further relates to an insulating material comprising the curable resin composition.
  • the present invention further relates to a solder resist resin material comprising the curable resin composition.
  • the present invention further relates to a resist member made of the resin material for solder resist.
  • the cured product comprises an acid group-containing (meth) acrylate resin having high heat resistance and excellent developability and solvent solubility, a curable resin composition containing the acid group, and the curable resin composition.
  • An insulating material, a resin material for solder resist, and a resist member can be provided.
  • FIG. 1 is a GPC chart of the acid group-containing (meth) acrylate resin (1) obtained in Example 1.
  • FIG. 1 is a GPC chart of the acid group-containing (meth) acrylate resin (1) obtained in Example 1.
  • the acid group-containing (meth) acrylate resin of the present invention is an acid group-containing (meta) group comprising an amideimide resin (A) having an acid group or an acid anhydride group and a hydroxy (meth) acrylate compound (B) as essential reaction materials.
  • Acrylate resin wherein the amide-imide resin (A) comprises a polyisocyanate compound (a1) and a polycarboxylic acid or acid anhydride (a2) as essential reaction raw materials, and the polycarboxylic acid or acid anhydride thereof.
  • (A2) has alicyclic polycarboxylic acid or its anhydride as an essential component.
  • the (meth) acrylate resin refers to a resin having an acryloyl group, a methacryloyl group, or both in the molecule.
  • the (meth) acryloyl group means one or both of an acryloyl group and a methacryloyl group, and (meth) acrylate is a general term for acrylate and methacrylate.
  • the amidoimide resin (A) having an acid group or an acid anhydride group may have only one of an acid group or an acid anhydride group, or may have both. Among them, it is preferable to have an acid anhydride group from the viewpoint of reactivity with the hydroxy (meth) acrylate compound (B) and reaction control, and it is preferable to have both an acid group and an acid anhydride group. .
  • the acid value of the amideimide resin (A) is preferably in the range of 60 to 250 mgKOH / g under neutral conditions, that is, under conditions where the acid anhydride group is not ring-opened.
  • the measured value under the condition where the acid anhydride group is opened, such as in the presence of water is preferably in the range of 61 to 300 mgKOH / g.
  • the amide-imide resin (A) uses a polyisocyanate compound (a1) and a polycarboxylic acid or an acid anhydride (a2) as essential reaction raw materials, and the polycarboxylic acid or an acid anhydride (a2) is alicyclic.
  • a polycarboxylic acid or an anhydride thereof is an essential component.
  • polyisocyanate compound (a1) examples include aliphatic diisocyanate compounds such as butane diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 2,4,4-trimethylhexamethylene diisocyanate; norbornane diisocyanate, isophorone Cycloaliphatic diisocyanate compounds such as diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate; tolylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, 4,4'-diisocyanato -Aromatic diisocyanate compounds such as 3,3'-dimethylbiphenyl; (1)
  • each R 1 is independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • R 2 is each independently an alkyl group having 1 to 4 carbon atoms, or a bonding point linked to a structural site represented by the structural formula through a methylene group marked with *.
  • l is 0 or an integer of 1 to 3
  • m is an integer of 1 or more.
  • the polymethylene polyphenyl polyisocyanate which has the repeating structure represented by these; These isocyanurate modified bodies, biuret modified bodies, allophanate modified bodies, etc. are mentioned. These may be used alone or in combination of two or more.
  • the alicyclic diisocyanate compound or a modified product thereof is preferable because the acid group-containing (meth) acrylate resin is excellent in balance between developability and heat resistance in the cured product, and isocyanate of the alicyclic diisocyanate compound. Nurate modified products are preferred. Furthermore, it is preferable that the ratio of the said alicyclic diisocyanate compound or its modified body with respect to the total mass of the said polyisocyanate compound (a1) is 70 mass% or more, and it is preferable that it is 90 mass% or more.
  • both carboxy groups and acid anhydride groups exist in the system.
  • a compound having both a carboxy group and an acid anhydride group in the molecule may be used, or a compound having a carboxy group and a compound having an acid anhydride group are used in combination. May be.
  • polycarboxylic acid or its acid anhydride a polycarboxylic acid having an alicyclic structure as an essential component of the present invention or an anhydride thereof (in the present invention, “alicyclic polycarboxylic acid or its anhydride” “)” Is not limited as long as the carboxy group or the acid anhydride group is bonded to the alicyclic structure, and other structures are not particularly limited, and a wide variety of compounds can be used. Moreover, you may have an aromatic ring in molecular structure.
  • Examples of the alicyclic polycarboxylic acid compound or its anhydride include, for example, tetrahydrophthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, cyclohexanetricarboxylic acid, methylcyclohexanetricarboxylic acid, cyclohexytricarboxylic acid, methylcyclohexytricarboxylic acid.
  • an aliphatic polycarboxylic acid compound or an acid anhydride thereof an aromatic polycarboxylic acid compound or an acid anhydride thereof may be used in combination with the alicyclic polycarboxylic acid or the anhydride thereof.
  • the aliphatic hydrocarbon group may be either a straight chain type or a branched type, and may have an unsaturated bond in the structure.
  • Examples of the aliphatic polycarboxylic acid compound or its acid anhydride include, for example, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid.
  • Examples thereof include acids, citraconic acid, itaconic acid, glutaconic acid, 1,2,3,4-butanetetracarboxylic acid, and acid anhydrides thereof.
  • aromatic polycarboxylic acid compound or acid anhydride thereof examples include, for example, phthalic acid, trimellitic acid, pyromellitic acid, naphthalene dicarboxylic acid, naphthalene tricarboxylic acid, naphthalene tetracarboxylic acid, biphenyl dicarboxylic acid, biphenyl tricarboxylic acid , Biphenyltetracarboxylic acid, benzophenonetetracarboxylic acid and the like.
  • the polycarboxylic acid or its acid anhydride (a2) has the alicyclic polycarboxylic acid or its anhydride as an essential component, so that the cured product has high heat resistance, developability and solvent solubility.
  • An acid group-containing (meth) acrylate resin having excellent properties can be obtained.
  • the said amide imide resin (A) can be manufactured efficiently, it is preferable to use an alicyclic tricarboxylic acid anhydride as said alicyclic polycarboxylic acid or its anhydride.
  • the ratio of alicyclic polycarboxylic acid or its anhydride with respect to the gross mass of the said polycarboxylic acid or its acid anhydride (a2) is 70 mass% or more, and it is preferable that it is 90 mass% or more.
  • the amide-imide resin (A) uses the polyisocyanate compound (a1) and the polycarboxylic acid or acid anhydride (a2) as essential reaction raw materials, other than these, depending on the desired resin performance, etc. These reaction raw materials may be used in combination.
  • the ratio of the total mass is preferably 90% by mass or more, and preferably 95% by mass or more.
  • the production method is not particularly limited, and any method is used. It may be manufactured. For example, it can be produced by the same method as a general amideimide resin. Specifically, 0.6 to 1.1 mol of the polycarboxylic acid or its acid anhydride (a2) is used with respect to 1 mol of the isocyanate group of the polyisocyanate compound (a1), preferably 50 ° C. to Examples thereof include a method of stirring and mixing in a temperature range of 250 ° C., particularly preferably about 70 to 180 ° C.
  • the polyisocyanate (a1) and the polycarboxylic acid or acid anhydride (a2) are the number of moles (N) of the isocyanate group of the polyisocyanate (a1) and the polycarboxylic acid or acid anhydride (a2). ) Of the number of moles of carboxy groups (M1) and the number of moles of acid anhydride groups (M2) [((M1) + (M2)) / (N)] is 1.1 to 3. When the reaction is carried out, the polarity in the reaction system becomes high, the reaction proceeds to lubrication, the isocyanate group does not remain, and the resulting polyamideimide resin has good stability. Further, the polycarboxylic acid or its acid anhydride (a2) is preferably used for the reason that the residual amount is small and the problem of separation such as recrystallization hardly occurs, and among them, 1.2 to 2.5 is more preferable.
  • the (amide) imidization reaction one or more of the isocyanate compound (a1) and one or more of the polycarboxylic acid or acid anhydride (a2) thereof are mixed and stirred in a solvent or in the absence of a solvent. It is preferable to carry out the heating while performing. At that time, the polyisocyanate (a2) is added to the polycarboxylic acid or acid anhydride (a1) at least twice, more preferably 3 to 5 times, so that a polyamide having a sharp molecular weight distribution is added. It is preferable from the point that an imide resin is obtained.
  • the (amide) imidization reaction is a reaction in which a hydroxyl group and an isocyanate group form an imide group with decarboxylation.
  • the progress of the (amide) imidization reaction can be traced by an analytical means such as an infrared vector, acid value, or quantitative determination of an isocyanate group.
  • an analytical means such as an infrared vector, acid value, or quantitative determination of an isocyanate group.
  • the infrared spectrum, 2270 cm -1 which is the characteristic absorption of an isocyanate group was reduced as the reaction further acid anhydride group is reduced with a characteristic absorption at 1860 cm -1 and 850 cm -1.
  • the absorption of imide groups increases at 1780 cm ⁇ 1 and 1720 cm ⁇ 1 .
  • the (amide) imidation reaction may be terminated by lowering the temperature while confirming the target acid value, viscosity, molecular weight and the like.
  • the (amide) imidation reaction may be performed in an organic solvent as necessary.
  • the selection of the organic solvent to be used is appropriately selected depending on the reaction raw material and the solubility of the acid group-containing (meth) acrylate resin that is the product, reaction temperature conditions, etc., for example, methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, Examples include methoxypropanol, cyclohexanone, methyl cellosolve, alkylene glycol monoalkyl ether acetate, dialkylene glycol monoalkyl ether acetate, dialkylene glycol acetate and the like. These may be used alone or as a mixed solvent of two or more.
  • the amount of the organic solvent used is preferably in the range of about 0.1 to 5 times the total mass of the reaction raw materials because the reaction efficiency is good.
  • the polyamideimide resin (A1) used in the present invention thus obtained has an imide bond and an amide bond represented by the following structural formula (2), and at the molecular end, the following structural formula ( It has a structure represented by at least one selected from the group consisting of 3) to (5).
  • R 3 is a residue obtained by removing the acid anhydride group and the carboxy group from the polycarboxylic acid or its acid anhydride (a2).
  • the polyamideimide resin of the present invention has the following structural formula (6)
  • n is a repeating unit of 0 to 30.
  • Rb is an amide bond or an imide bond represented by the structural formula (2).
  • Rc is the structural formula (3).
  • Rd is a residue obtained by removing an isocyanato group from polyisocyanate (a1). It is not limited to this.
  • Rd is, for example, the following structural formula (7)
  • Ra represents a residue obtained by removing an isocyanato group from a divalent aliphatic diisocyanate, for example).
  • the hydroxy (meth) acrylate compound (B) is not particularly limited as long as it has a hydroxyl group and a (meth) acryloyl group in the molecular structure, and a wide variety of compounds can be used. Moreover, the said hydroxy (meth) acrylate compound (B) may be used independently, respectively and may use 2 or more types together. Among these, a monohydroxy (meth) acrylate compound is preferable because the reaction can be easily controlled.
  • (Poly) oxyalkylene-modified products in which (poly) oxyalkylene chains are introduced; lactone-modified products in which (poly) lactone structures are introduced into the molecular structures of the various hydroxy (meth) acrylate compounds, and the like. That. These may be used alone or in combination of two or more. Especially, since it becomes an acid group containing (meth) acrylate resin excellent in the balance of the heat resistance and elongation in hardened
  • the acid group-containing (meth) acrylate resin of the present invention includes the amide-imide resin (A) having the acid group or acid anhydride group and the hydroxy (meth) acrylate compound (B) depending on the desired resin performance and the like.
  • Other reaction raw materials may be used in combination.
  • the ratio of the total mass of the components (A) and (B) to the total mass of the reaction raw material of the acid group-containing (meth) acrylate resin is 80% by mass or more. It is preferable that it is 90 mass% or more.
  • the method for producing the acid group-containing (meth) acrylate resin is not particularly limited, and may be produced by any method.
  • the acid group or acid anhydride group in the amideimide resin (A) and the hydroxy (meth) acrylate compound (B) are mainly used.
  • the hydroxy (meth) acrylate compound (B) is particularly excellent in reactivity with an acid anhydride group, and as described above, the amideimide resin (A) is an acid anhydride group. It is preferable to have.
  • the reaction ratio between the amideimide resin (A) and the hydroxy (meth) acrylate compound (B) is based on the total of acid groups and acid anhydride groups in the amideimide resin (A).
  • (B) is preferably used in the range of 0.9 to 1.1 mol.
  • the reaction between the polyamideimide resin (A) and the hydroxy (meth) acrylate compound (B) is carried out by the number of moles of acid anhydride groups (M3) in the polyamideimide resin (A) and the hydroxy (meth).
  • M3 acid anhydride groups
  • the content of the acid anhydride group in the amideimide resin (A) is the difference between the two acid value measurement values described above, that is, the acid value under the condition where the acid anhydride group is ring-opened, although it can be calculated from the difference from the acid value under conditions where the acid anhydride group is not ring-opened, more specifically, it can be determined by the following method.
  • the number of moles of the acid anhydride group in the polyamideimide resin (A) is as follows because the polycarboxylic acid or the acid anhydride (a2) is consumed by the reaction with the polyisocyanate (a1): It can be calculated by (1) to (3).
  • the polyamideimide resin (A) is diluted with a solvent or the like, and the acid value (a) is determined by titration with an aqueous KOH solution.
  • the polyamideimide resin (A) is diluted with a solvent or the like, an excess amount of n-butanol is reacted with the acid anhydride group, and then the acid value (b) is determined by titration with a KOH aqueous solution.
  • the polyamideimide resin (A) used as a raw material one produced by the above method can be used, but a side reaction of urethanization can be suppressed during the reaction with the hydroxy (meth) acrylate compound (B). It is preferable to use one in which the isocyanate group has completely disappeared. The disappearance of the isocyanate group can be confirmed by the disappearance of 2270 cm ⁇ 1, which is the characteristic absorption of the isocyanate group in the infrared spectrum, for example.
  • the reaction of the amideimide resin (A) and the hydroxy (meth) acrylate compound (B) can be performed, for example, by heating and stirring under a temperature condition of about 90 to 140 ° C. in the presence of a suitable esterification catalyst.
  • a suitable esterification catalyst include phosphorus compounds such as trimethylphosphine, tributylphosphine, and triphenylphosphine, and amine compounds such as triethylamine, tributylamine, and dimethylbenzylamine. These may be used alone or in combination of two or more.
  • the addition amount of the catalyst is preferably in the range of 0.03 to 5% by mass with respect to the total mass of the reaction raw materials.
  • the reaction may be performed in an organic solvent as necessary.
  • the selection of the organic solvent to be used is appropriately selected depending on the reaction raw material and the solubility of the acid group-containing (meth) acrylate resin that is the product, reaction temperature conditions, etc., for example, methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, Examples include methoxypropanol, cyclohexanone, methyl cellosolve, alkylene glycol monoalkyl ether acetate, dialkylene glycol monoalkyl ether acetate, dialkylene glycol acetate and the like. These may be used alone or as a mixed solvent of two or more.
  • the reaction may be continued as it is in the organic solvent used in the production of the amideimide resin (A). Good.
  • the acid value of the acid group-containing (meth) acrylate resin thus obtained is an acid group-containing (meth) acrylate resin that is excellent in developability and the like in addition to heat resistance and elongation in the cured product. It is preferably in the range of ⁇ 200 mgKOH / g.
  • the acid value of the acid group-containing (meth) acrylate resin is a value measured by a neutralization titration method of JIS K 0070 (1992).
  • the (meth) acryloyl group equivalent of the acid group-containing (meth) acrylate resin is preferably in the range of 400 to 1,500 g / equivalent, and the mass average molecular weight (Mw) of the acid group-containing (meth) acrylate resin Is preferably in the range of 1,000 to 10,000, and more preferably in the range of 1,000 to 6,000.
  • the molecular weight of the acid group-containing (meth) acrylate resin is a value measured by GPC measured under the following conditions.
  • Measuring device Tosoh Corporation HLC-8120GPC, UV8020 Column: TFKguardcolumnhxl-L, TFKgel (G1000HXL, G2000HXL, G3000HXL, G4000HXL) manufactured by Tosoh Corporation Detector: RI (differential refractometer) and UV (254 nm) Measurement conditions: Column temperature 40 ° C Solvent THF Flux 1.0ml / min Standard: Calibration curve prepared with polystyrene standard sample Sample: 0.1% by mass THF solution in terms of resin solids filtered through microfilter (injection amount: 200 ⁇ l)
  • the acid group-containing (meth) acrylate resin of the present invention thus obtained has an imide bond and an amide bond represented by the following structural formula (2), and further has the following structural formula at the molecular end.
  • R 3 is a residue obtained by removing an acid anhydride group and a carboxy group from polycarboxylic acid or acid anhydride (a2).
  • R 4 is the hydroxy (meth) acrylate compound (B). It is a residue obtained by removing a hydroxy group from
  • the acid group-containing (meth) acrylate resin of the present invention has the following structural formula (8)
  • n is a repeating unit of 0 to 30.
  • Rb is an amide bond or an imide bond represented by the above structural formula (2).
  • Rc ′ is a molecular end, A structure having an acid group represented by at least one structural formula selected from the group consisting of formulas (3), (4), (4 ′) and (5), and the structural formulas (3 ′), (4 ′ ) And (4 ′′) at least one of the structures having a (meth) acryloyl group represented by at least one structural formula.
  • Rd has the same definition as described above.
  • the acid group-containing (meth) acrylate resin of the present invention has a polymerizable (meth) acryloyl group in the molecular structure, for example, it can be used as a curable resin composition by adding a photopolymerization initiator. Can do.
  • the photopolymerization initiator may be selected and used according to the type of active energy ray to be irradiated. Moreover, you may use together with photosensitizers, such as an amine compound, a urea compound, a sulfur-containing compound, a phosphorus-containing compound, a chlorine-containing compound, a nitrile compound.
  • photosensitizers such as an amine compound, a urea compound, a sulfur-containing compound, a phosphorus-containing compound, a chlorine-containing compound, a nitrile compound.
  • photopolymerization initiator examples include, for example, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, 2- (dimethylamino) Alkylphenone photopolymerization initiators such as -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone; 2,4,6-trimethylbenzoyl-diphenyl- Examples include acylphosphine oxide photopolymerization initiators such as phosphine oxide; intramolecular hydrogen abstraction type photopolymerization initiators such as benzophenone compounds. These may be used alone or in combination of two or more.
  • the addition amount of the photopolymerization initiator is preferably in the range of 0.05 to 15% by mass, for example, in the range of 0.1 to 10% by mass with respect to the total of components other than the solvent of the curable resin composition. It is more preferable that
  • the curable resin composition of the present invention may contain a resin component other than the acid group-containing (meth) acrylate resin of the present invention.
  • the resin component is obtained, for example, by reacting an epoxy resin such as a bisphenol type epoxy resin or a novolak type epoxy resin with (meth) acrylic acid, dicarboxylic acid anhydride, and unsaturated monocarboxylic acid anhydride as required.
  • an epoxy resin such as a bisphenol type epoxy resin or a novolak type epoxy resin
  • acrylic acid, dicarboxylic acid anhydride dicarboxylic acid anhydride
  • unsaturated monocarboxylic acid anhydride unsaturated monocarboxylic acid anhydride
  • Examples of the (meth) acrylate monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl ( Aliphatic mono (meth) acrylate compounds such as meth) acrylate and octyl (meth) acrylate; alicyclic mono (meth) acrylate compounds such as cyclohexyl (meth) acrylate, isobornyl (meth) acrylate and adamantyl mono (meth) acrylate; Heterocyclic mono (meth) acrylate compounds such as glycidyl (meth) acrylate and tetrahydrofurfuryl acrylate; benzyl (meth) acrylate, phenyl (meth) acrylate,
  • Aliphatic di (meth) acrylate compounds such as ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, butanediol di (meth) acrylate, hexanediol di (meth) acrylate and neopentyl glycol di (meth) acrylate 1,4-cyclohexanedimethanol di (meth) acrylate, norbornane di (meth) acrylate, norbornane dimethanol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate
  • alicyclic di (meth) acrylate compounds aromatic di (meth) acrylate compounds such as biphenol di (meth) acrylate and bisphenol di (meth) acrylate;
  • Aliphatic tri (meth) acrylate compounds such as trimethylolpropane tri (meth) acrylate and glycerin tri (meth) acrylate; (poly) oxyethylene chain in the molecular structure of the aliphatic tri (meth) acrylate compound, (poly) (Poly) oxyalkylene-modified tri (meth) acrylate compound introduced with (poly) oxyalkylene chain such as oxypropylene chain and (poly) oxytetramethylene chain; in the molecular structure of the aliphatic tri (meth) acrylate compound ( A lactone-modified tri (meth) acrylate compound having a poly) lactone structure;
  • Tetra- or higher functional aliphatic poly (meth) acrylate compounds such as pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate; (Poly) oxyalkylene-modified poly (meth) having 4 or more functionalities in which (poly) oxyethylene chain, (poly) oxypropylene chain, (poly) oxytetramethylene chain, or other (poly) oxyalkylene chain is introduced into the molecular structure Acrylate compounds; tetrafunctional or higher functional lactone-modified poly (meth) acrylate compounds in which a (poly) lactone structure is introduced into the molecular structure of the aliphatic poly (meth) acrylate compound.
  • the curable resin composition of the present invention may contain an organic solvent for the purpose of adjusting the coating viscosity.
  • the kind and addition amount are appropriately adjusted according to the desired performance. Generally, it is used in the range of 10 to 90% by mass with respect to the total of the curable resin composition.
  • Specific examples of the solvent include, for example, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; cyclic ether solvents such as tetrahydrofuran and dioxolane; esters such as methyl acetate, ethyl acetate and butyl acetate; aromatics such as toluene and xylene.
  • Solvents include cycloaliphatic, methylcyclohexane and other alicyclic solvents; carbitol, cellosolve, methanol, isopropanol, butanol, propylene glycol monomethyl ether and other alcohol solvents; alkylene glycol monoalkyl ether, dialkylene glycol monoalkyl ether, dialkylene glycol mono Examples include glycol ether solvents such as alkyl ether acetates. These may be used alone or in combination of two or more.
  • the curable resin composition of the present invention may contain various additives such as inorganic fine particles and polymer fine particles, pigments, antifoaming agents, viscosity modifiers, leveling agents, flame retardants, and storage stabilizers. .
  • the acid group-containing (meth) acrylate resin of the present invention is characterized by excellent developability evaluated by photosensitivity, drying control width, and the like, and heat resistance in a cured product. In addition, it also has excellent characteristics such as solvent solubility, substrate adhesion in a cured product, and non-adhesiveness after temporary drying. Examples of applications in which various characteristics of the acid group-containing (meth) acrylate resin according to the present invention are excellent, such as solder resists, interlayer insulating materials, package materials, underfill materials, circuit elements, etc. It can be used as a package adhesive layer or an adhesive layer between an integrated circuit element and a circuit board.
  • thin film display applications such as LCD and OELD can be suitably used for thin film transistor protective films, liquid crystal color filter protective films, color filter pigment resists, black matrix resists, spacers, and the like.
  • the resin material for solder resist of the present invention includes, for example, each component such as a curing agent, a curing accelerator, and an organic solvent in addition to the acid group-containing (meth) acrylate resin, the photopolymerization initiator, and various additives. Become.
  • the curing agent is not particularly limited as long as it has a functional group capable of reacting with a carboxy group in the acid group-containing (meth) acrylate resin, and examples thereof include an epoxy resin.
  • examples of the epoxy resin used here include bisphenol type epoxy resin, phenylene ether type epoxy resin, naphthylene ether type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, phenol novolac type epoxy resin, and cresol novolac type epoxy resin.
  • Bisphenol novolac type epoxy resin, naphthol novolak type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolac type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene-phenol Examples include addition reaction type epoxy resins. These may be used alone or in combination of two or more. Among these epoxy resins, phenolic novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol novolac type epoxy resin, naphthol novolac type epoxy resin, naphthol-phenol co-condensed novolak type epoxy resin because of excellent heat resistance in cured products.
  • Novolak type epoxy resins such as naphthol-cresol co-condensed novolak type epoxy resins are preferable, and those having a softening point in the range of 50 to 120 ° C. are particularly preferable.
  • the curing accelerator accelerates the curing reaction of the curing agent.
  • a phosphorus compound, a tertiary amine, an imidazole, an organic acid metal salt, a Lewis acid examples include amine complex salts. These may be used alone or in combination of two or more.
  • the addition amount of the curing accelerator is, for example, in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the curing agent.
  • the organic solvent is not particularly limited as long as it can dissolve various components such as the acid group-containing (meth) acrylate resin and the curing agent.
  • methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol examples include cyclohexanone, methyl cellosolve, diethylene glycol monoethyl ether acetate, and propylene glycol monomethyl ether acetate.
  • the method of obtaining a resist member using the solder resist resin material of the present invention is, for example, by applying the solder resist resin material on a substrate and evaporating and drying the organic solvent in a temperature range of about 60 to 100 ° C. Thereafter, there is a method in which a non-exposed portion is exposed with an ultraviolet solution or an electron beam through a photomask having a desired pattern formed, and an unexposed portion is developed with an alkaline aqueous solution, and further heated and cured in a temperature range of about 140 to 180 ° C. .
  • the acid value of the acid group-containing (meth) acrylate resin was measured by the neutralization titration method of JIS K 0070 (1992).
  • the molecular weight of the acid group-containing (meth) acrylate resin was measured by GPC under the following conditions.
  • Measuring device Tosoh Corporation HLC-8120GPC, UV8020 Column: TFKguardcolumnhxl-L, TFKgel (G1000HXL, G2000HXL, G3000HXL, G4000HXL) manufactured by Tosoh Corporation Detector: RI (differential refractometer) and UV (254 nm) Measurement conditions: Column temperature 40 ° C Solvent THF Flux 1.0ml / min Standard: Calibration curve prepared with polystyrene standard sample Sample: 0.1% by mass THF solution in terms of resin solids filtered through microfilter (injection amount: 200 ⁇ l)
  • Example 1 Production of Acid Group-Containing (Meth) acrylate Resin (1)
  • 1102.8 g propylene glycol monomethyl ether acetate and an isocyanurate modified form of isophorone diisocyanate (“VESTANAT” manufactured by EVONIK) T7.61 / 100 ”, isocyanate group content 17.2% by mass) 197.6 g and cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride 506.9 g were added.
  • the temperature was raised to 140 ° C. over 2 hours, and the reaction was further continued for 2 hours at the same temperature.
  • the resulting amide-imide resin intermediate (1) solution was mixed with a pentaerythritol polyacrylate mixture (“Aronix M-306” manufactured by Toa Gosei Co., Ltd., pentaerythritol triacrylate content of about 67%, hydroxyl value of 159.7 mg KOH / g). ) 189.2 g, triphenylphosphine 3.8 g, and methoquinone 0.6 g were added and reacted at 120 ° C. for 7 hours.
  • a pentaerythritol polyacrylate mixture (“Aronix M-306” manufactured by Toa Gosei Co., Ltd., pentaerythritol triacrylate content of about 67%, hydroxyl value of 159.7 mg KOH / g).
  • 189.2 g, triphenylphosphine 3.8 g, and methoquinone 0.6 g were added and reacted at 120 ° C
  • the solid content acid value of the acid group-containing (meth) acrylate resin (1) was 140 mgKOH / g, the (meth) acryloyl group equivalent was 727 g / equivalent, and the mass average molecular weight (Mw) was 2,353.
  • a pentaerythritol polyacrylate mixture (“Aronix M-306” manufactured by Toa Gosei Co., Ltd., pentaerythritol triacrylate content of about 67%, hydroxyl value of 159.7 mg KOH / g was added to the resulting amideimide resin intermediate (2) solution. ) 189.2 g, triphenylphosphine 3.8 g, and methoquinone 0.6 g were added and reacted at 120 ° C. for 7 hours.
  • the solid content acid value of the acid group-containing (meth) acrylate resin (3) was 154 mgKOH / g, the (meth) acryloyl group equivalent was 889 g / equivalent, and the mass average molecular weight (Mw) was 3,443.
  • Example 4 Production of Acid Group-Containing (Meth) acrylate Resin (4)
  • a flask equipped with a stirrer, thermometer and condenser 1422.7 g of propylene glycol monomethyl ether acetate and an isocyanurate modified form of isophorone diisocyanate ("VESTANAT” manufactured by EVONIK) T-2890 / 100 ", isocyanate group content 17.2% by mass) 753.2 g and cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride 644.2 g were added. After raising the temperature to 140 ° C.
  • the solid content acid value of the acid group-containing (meth) acrylate resin (4) was 164 mgKOH / g, the (meth) acryloyl group equivalent was 997 g / equivalent, and the mass average molecular weight (Mw) was 3,621.
  • Example 5 Production of Acid Group-Containing (Meth) acrylate Resin (5)
  • a flask equipped with a stirrer, thermometer and condenser 1422.7 g of propylene glycol monomethyl ether acetate and isocyanurate modified form of isophorone diisocyanate (“VESTANAT” manufactured by EVONIK) T-2890 / 100 ", isocyanate group content 17.2% by mass) 753.2 g and cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride 644.2 g were added. After raising the temperature to 140 ° C.
  • the solid content acid value of the acid group-containing (meth) acrylate resin (4) was 149 mgKOH / g, the (meth) acryloyl group equivalent was 1,104 g / equivalent, and the mass average molecular weight (Mw) was 3,792.
  • the resulting amide-imide resin intermediate (1 ′) solution was mixed with a pentaerythritol polyacrylate mixture (“Aronix M-306” manufactured by Toa Gosei Co., Ltd., pentaerythritol triacrylate content of about 67%, hydroxyl value 159.7 mg KOH / g) 24.5 g was added and reacted at 120 ° C. for 2 hours.
  • Aronix M-306 manufactured by Toa Gosei Co., Ltd., pentaerythritol triacrylate content of about 67%, hydroxyl value 159.7 mg KOH / g) 24.5 g was added and reacted at 120 ° C. for 2 hours.
  • absorption at 1860 cm ⁇ 1 which is the characteristic absorption of the acid anhydride group, completely disappeared, and an acid group-containing (meth) acrylate resin (1 ′) solution was obtained.
  • the acid group-containing (meth) acrylate resin (1 ′) had a solid content acid value of 162 mg KOH / g, a (meth) acryloyl group equivalent of 567 g / equivalent, and a mass average molecular weight (Mw) of 3865.
  • curable resin composition 100 g of acid group-containing (meth) acrylate resin (solid content) obtained in the above, "EPICLON N-680” (cresol novolac type epoxy resin) manufactured by DIC Corporation, "Irgacure” manufactured by BASF Corporation 907 "(2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one), 0.5 g of 2-ethyl-4-methylimidazole," LumiCure DPA-600T “manufactured by Toagosei Co., Ltd.
  • composition containing dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate in a molar ratio of 40/60) and 0.65 g of phthalocyanine green are added, and propylene glycol monomethyl ether acetate is added to add 50 mass of non-volatile matter. % To obtain a curable resin composition .
  • Step Tablet No. 2 was irradiated with 1,000 mJ / cm 2 ultraviolet rays using a metal halide lamp. This was developed with a 5% aqueous sodium carbonate solution for 180 seconds and evaluated by the number of remaining steps. The greater the number of remaining stages, the higher the photosensitivity.
  • a curable resin composition was applied onto a glass substrate with a 50 ⁇ m applicator, and samples with different drying times at 80 ° C. were prepared every 10 minutes from 30 minutes to 100 minutes. These were developed with a 5% by mass aqueous sodium carbonate solution for 180 seconds, and the drying time at 80 ° C. of the sample in which no residue remained was evaluated as the drying control width. The longer the drying control width, the better the alkali developability.
  • a curable resin composition was applied onto glass with a 50 ⁇ m applicator and dried at 80 ° C for 30 minutes. After irradiating 1,000 mJ / cm 2 of ultraviolet rays using a metal halide lamp, it was heated at 170 ° C. for 1 hour.
  • the cured product is peeled off from the glass, and a 6 mm ⁇ 40 mm test piece is cut out, and viscoelasticity measuring device (DMA: solid viscoelasticity measuring device “RSAII” manufactured by Rheometric Co., Ltd., tension method: frequency 1 Hz, temperature rising rate 3 ° C./min. ) was used to evaluate the glass transition temperature (Tg) at the temperature at which the elastic modulus change was maximum (the tan ⁇ change rate was the largest).
  • B Glass transition temperature (Tg) is lower than 230 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

Provided are: an acid group-containing (meth)acrylate resin which provides a cured product that has high heat resistance, while exhibiting excellent developability and excellent solubility in a solvent; a curable resin composition which contains this acid group-containing (meth)acrylate resin; an insulating material which is composed of this curable resin composition; a resin material for solder resists; and a resist member. As the acid group-containing (meth)acrylate resin, the present invention more specifically provides an acid group-containing (meth)acrylate resin which uses an amide-imide resin having an acid group or an acid anhydride group and a hydroxy (meth)acrylate compound as essential reaction starting materials, and wherein: the amide-imide resin uses a polyisocyanate compound and a polycarboxylic acid or an acid anhydride thereof as essential reaction starting materials; and the polycarboxylic acid or an acid anhydride thereof contains an alicyclic polycarboxylic acid or an anhydride thereof as an essential component.

Description

酸基含有(メタ)アクリレート樹脂及びソルダーレジスト用樹脂材料Acid group-containing (meth) acrylate resin and solder resist resin material
 本発明は、硬化物における耐熱性が高く、現像性や溶剤溶解性にも優れる酸基含有(メタ)アクリレート樹脂、これを含有する硬化性樹脂組成物、前記硬化性樹脂組成物からなる絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材に関する。 The present invention provides an acid group-containing (meth) acrylate resin having high heat resistance in a cured product and excellent in developability and solvent solubility, a curable resin composition containing the acid group, and an insulating material comprising the curable resin composition The present invention relates to a solder resist resin material and a resist member.
 プリント配線基板用のソルダーレジスト用樹脂材料には、エポキシ樹脂をアクリル酸でアクリレート化した後、酸無水物を反応させて得られる酸基含有エポキシアクリレート樹脂が広く用いられている。ソルダーレジスト用樹脂材料に対する要求性能は、少ない露光量で硬化すること、アルカリ現像性に優れること、硬化物における耐熱性や強度、柔軟性、伸び、誘電特性、基材密着性等に優れることなど様々なものが挙げられる。 As a resin material for a solder resist for a printed wiring board, an acid group-containing epoxy acrylate resin obtained by reacting an acid anhydride after an epoxy resin is acrylated with acrylic acid is widely used. Performance requirements for solder resist resin materials include curing with a small amount of exposure, excellent alkali developability, excellent heat resistance and strength, flexibility, elongation, dielectric properties, substrate adhesion, etc. in cured products, etc. There are various things.
 従来知られているソルダーレジスト用樹脂材料として、イソシアヌレート変性イソホロンジイソシアネートと無水トリメリット酸との反応生成物であるポリイミド樹脂にペンタエリスリトールトリアクリレートを反応させて得られる分岐ポリイミド樹脂が知られている(下記特許文献1参照)。特許文献1記載の分岐ポリイミド樹脂は、硬化物における耐熱性に優れる特徴を有するもののアルカリ溶解性が低く、ソルダーレジスト用樹脂材料としての要求性能を十分に満たすものではなかった。 As a conventionally known solder resist resin material, a branched polyimide resin obtained by reacting pentaerythritol triacrylate with a polyimide resin which is a reaction product of isocyanurate-modified isophorone diisocyanate and trimellitic anhydride is known. (See Patent Document 1 below). The branched polyimide resin described in Patent Document 1 has a feature that is excellent in heat resistance in a cured product, but has low alkali solubility, and does not sufficiently satisfy the required performance as a resin material for solder resist.
特開2011-186042号公報JP 2011-186042 A
 したがって、本発明が解決しようとする課題は、硬化物における耐熱性が高く、現像性や溶剤溶解性にも優れる酸基含有(メタ)アクリレート樹脂、これを含有する硬化性樹脂組成物、前記硬化性樹脂組成物からなる絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材を提供することにある。 Therefore, the problem to be solved by the present invention is an acid group-containing (meth) acrylate resin having high heat resistance in a cured product and excellent in developability and solvent solubility, a curable resin composition containing the acid group, and the curing It is in providing the insulating material which consists of a conductive resin composition, the resin material for solder resists, and a resist member.
 本発明者らは上記課題を解決するため鋭意検討を行った結果、ポリカルボン酸原料として脂環式ポリカルボン酸又はその無水物を用いた(メタ)アクリロイル基含有アミドイミド樹脂は、硬化物における耐熱性と現像性とを兼備することを見出し、本発明を完成させるに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that a (meth) acryloyl group-containing amideimide resin using an alicyclic polycarboxylic acid or its anhydride as a polycarboxylic acid raw material has a heat resistance in a cured product. The present invention has been completed by finding that it has both the property and developability.
 即ち、本発明は、酸基又は酸無水物基を有するアミドイミド樹脂(A)とヒドロキシ(メタ)アクリレート化合物(B)とを必須の反応原料とする酸基含有(メタ)アクリレート樹脂であって、前記アミドイミド樹脂(A)が、ポリイソシアネート化合物(a1)とポリカルボン酸又はその酸無水物(a2)とを必須の反応原料とし、前記ポリカルボン酸又はその酸無水物(a2)が脂環式ポリカルボン酸又はその無水物を必須の成分とすることを特徴とする酸基含有(メタ)アクリレート樹脂に関する。 That is, the present invention is an acid group-containing (meth) acrylate resin comprising an amideimide resin (A) having an acid group or an acid anhydride group and a hydroxy (meth) acrylate compound (B) as essential reaction raw materials, The amide-imide resin (A) uses a polyisocyanate compound (a1) and a polycarboxylic acid or acid anhydride (a2) as essential reaction raw materials, and the polycarboxylic acid or acid anhydride (a2) is alicyclic. The present invention relates to an acid group-containing (meth) acrylate resin characterized by comprising polycarboxylic acid or an anhydride thereof as an essential component.
 本発明はさらに、前記酸基含有(メタ)アクリレート樹脂と、光重合開始剤とを含有する硬化性樹脂組成物に関する。 The present invention further relates to a curable resin composition containing the acid group-containing (meth) acrylate resin and a photopolymerization initiator.
 本発明はさらに、前記硬化性樹脂組成物の硬化物に関する。 The present invention further relates to a cured product of the curable resin composition.
 本発明はさらに、前記硬化性樹脂組成物からなる絶縁材料に関する。 The present invention further relates to an insulating material comprising the curable resin composition.
 本発明はさらに、前記硬化性樹脂組成物からなるソルダーレジスト用樹脂材料に関する。 The present invention further relates to a solder resist resin material comprising the curable resin composition.
 本発明はさらに、前記ソルダーレジスト用樹脂材料からなるレジスト部材に関する。 The present invention further relates to a resist member made of the resin material for solder resist.
 本発明によれば、硬化物における耐熱性が高く、現像性や溶剤溶解性にも優れる酸基含有(メタ)アクリレート樹脂、これを含有する硬化性樹脂組成物、前記硬化性樹脂組成物からなる絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材を提供することができる。 According to the present invention, the cured product comprises an acid group-containing (meth) acrylate resin having high heat resistance and excellent developability and solvent solubility, a curable resin composition containing the acid group, and the curable resin composition. An insulating material, a resin material for solder resist, and a resist member can be provided.
図1は、実施例1で得られた酸基含有(メタ)アクリレート樹脂(1)のGPCチャート図である。1 is a GPC chart of the acid group-containing (meth) acrylate resin (1) obtained in Example 1. FIG.
 以下、本発明を詳細に説明する。
 本発明の酸基含有(メタ)アクリレート樹脂は、酸基又は酸無水物基を有するアミドイミド樹脂(A)とヒドロキシ(メタ)アクリレート化合物(B)とを必須の反応原料とする酸基含有(メタ)アクリレート樹脂であって、前記アミドイミド樹脂(A)が、ポリイソシアネート化合物(a1)とポリカルボン酸又はその酸無水物(a2)とを必須の反応原料とし、前記ポリカルボン酸又はその酸無水物(a2)が脂環式ポリカルボン酸又はその無水物を必須の成分とすることを特徴とする。
Hereinafter, the present invention will be described in detail.
The acid group-containing (meth) acrylate resin of the present invention is an acid group-containing (meta) group comprising an amideimide resin (A) having an acid group or an acid anhydride group and a hydroxy (meth) acrylate compound (B) as essential reaction materials. ) Acrylate resin, wherein the amide-imide resin (A) comprises a polyisocyanate compound (a1) and a polycarboxylic acid or acid anhydride (a2) as essential reaction raw materials, and the polycarboxylic acid or acid anhydride thereof. (A2) has alicyclic polycarboxylic acid or its anhydride as an essential component.
 本発明において(メタ)アクリレート樹脂とは、分子中にアクリロイル基、メタクリロイル基、或いはその両方を有する樹脂のことをいう。また、(メタ)アクリロイル基とは、アクリロイル基、メタクリロイル基の一方或いは両方のことをいい、(メタ)アクリレートとは、アクリレート及びメタクリレートの総称である。 In the present invention, the (meth) acrylate resin refers to a resin having an acryloyl group, a methacryloyl group, or both in the molecule. The (meth) acryloyl group means one or both of an acryloyl group and a methacryloyl group, and (meth) acrylate is a general term for acrylate and methacrylate.
 前記酸基又は酸無水物基を有するアミドイミド樹脂(A)は、酸基又は酸無水物基のどちらか一方のみを有するものであってもよいし、両方を有するものであってもよい。中でも、前記ヒドロキシ(メタ)アクリレート化合物(B)との反応性や反応制御の観点から酸無水物基を有していることが好ましく、酸基と酸無水物基との両方を有することが好ましい。前記アミドイミド樹脂(A)の酸価は、中性条件下、即ち、酸無水物基を開環させない条件での測定値が60~250mgKOH/gの範囲であることが好ましい。他方、水の存在下等、酸無水物基を開環させた条件での測定値が61~300mgKOH/gの範囲であることが好ましい。 The amidoimide resin (A) having an acid group or an acid anhydride group may have only one of an acid group or an acid anhydride group, or may have both. Among them, it is preferable to have an acid anhydride group from the viewpoint of reactivity with the hydroxy (meth) acrylate compound (B) and reaction control, and it is preferable to have both an acid group and an acid anhydride group. . The acid value of the amideimide resin (A) is preferably in the range of 60 to 250 mgKOH / g under neutral conditions, that is, under conditions where the acid anhydride group is not ring-opened. On the other hand, the measured value under the condition where the acid anhydride group is opened, such as in the presence of water, is preferably in the range of 61 to 300 mgKOH / g.
 前記アミドイミド樹脂(A)は、ポリイソシアネート化合物(a1)とポリカルボン酸又はその酸無水物(a2)とを必須の反応原料とし、前記ポリカルボン酸又はその酸無水物(a2)が脂環式ポリカルボン酸又はその無水物を必須の成分とすることを特徴とする。 The amide-imide resin (A) uses a polyisocyanate compound (a1) and a polycarboxylic acid or an acid anhydride (a2) as essential reaction raw materials, and the polycarboxylic acid or an acid anhydride (a2) is alicyclic. A polycarboxylic acid or an anhydride thereof is an essential component.
 前記ポリイソシアネート化合物(a1)は、例えば、ブタンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート化合物;ノルボルナンジイソシアネート、イソホロンジイソシアネート、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート等の脂環式ジイソシアネート化合物;トリレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、4,4’-ジイソシアナト-3,3’-ジメチルビフェニル等の芳香族ジイソシアネート化合物;下記構造式(1) Examples of the polyisocyanate compound (a1) include aliphatic diisocyanate compounds such as butane diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 2,4,4-trimethylhexamethylene diisocyanate; norbornane diisocyanate, isophorone Cycloaliphatic diisocyanate compounds such as diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate; tolylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, 4,4'-diisocyanato -Aromatic diisocyanate compounds such as 3,3'-dimethylbiphenyl; (1)
Figure JPOXMLDOC01-appb-C000002
[式(1)中、Rはそれぞれ独立に水素原子、炭素原子数1~6の炭化水素基の何れかである。Rはそれぞれ独立に炭素原子数1~4のアルキル基、又は構造式で表される構造部位と*印が付されたメチレン基を介して連結する結合点の何れかである。lは0又は1~3の整数であり、mは1以上の整数である。]で表される繰り返し構造を有するポリメチレンポリフェニルポリイソシアネート;これらのイソシアヌレート変性体、ビウレット変性体、アロファネート変性体等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
Figure JPOXMLDOC01-appb-C000002
[In Formula (1), each R 1 is independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. R 2 is each independently an alkyl group having 1 to 4 carbon atoms, or a bonding point linked to a structural site represented by the structural formula through a methylene group marked with *. l is 0 or an integer of 1 to 3, and m is an integer of 1 or more. ] The polymethylene polyphenyl polyisocyanate which has the repeating structure represented by these; These isocyanurate modified bodies, biuret modified bodies, allophanate modified bodies, etc. are mentioned. These may be used alone or in combination of two or more.
 これらの中でも、現像性と硬化物における耐熱性とのバランスに優れる酸基含有(メタ)アクリレート樹脂となることから、前記脂環式ジイソシアネート化合物又はその変性体が好ましく、脂環式ジイソシアネート化合物のイソシアヌレート変性体が好ましい。更に、前記ポリイソシアネート化合物(a1)の総質量に対する前記脂環式ジイソシアネート化合物又はその変性体の割合が70質量%以上であることが好ましく、90質量%以上であることが好ましい。 Among these, the alicyclic diisocyanate compound or a modified product thereof is preferable because the acid group-containing (meth) acrylate resin is excellent in balance between developability and heat resistance in the cured product, and isocyanate of the alicyclic diisocyanate compound. Nurate modified products are preferred. Furthermore, it is preferable that the ratio of the said alicyclic diisocyanate compound or its modified body with respect to the total mass of the said polyisocyanate compound (a1) is 70 mass% or more, and it is preferable that it is 90 mass% or more.
 前記ポリカルボン酸又はその酸無水物(a2)について、前記アミドイミド樹脂(A)がアミド基とイミド基の両方を有するためには、系中にカルボキシ基及び酸無水物基の両方が存在している必要があるが、本発明においては、分子中にカルボキシ基と酸無水物基との両方を有する化合物を用いてもよいし、カルボキシ基を有する化合物と酸無水物基を有する化合物とを併用してもよい。 For the polycarboxylic acid or acid anhydride (a2), in order for the amide-imide resin (A) to have both amide groups and imide groups, both carboxy groups and acid anhydride groups exist in the system. In the present invention, a compound having both a carboxy group and an acid anhydride group in the molecule may be used, or a compound having a carboxy group and a compound having an acid anhydride group are used in combination. May be.
 前記ポリカルボン酸又はその酸無水物(a2)のうち本発明が必須の成分とする脂環式構造を有するポリカルボン酸又はその無水物(本発明において「脂環式ポリカルボン酸又はその無水物」という)は、カルボキシ基又は酸無水物基が脂環構造に結合しているものであればよく、それ以外の構造は特に問われず、多種多様な化合物を用いることができる。また、分子構造中に芳香環を有していてもよい。前記脂環式ポリカルボン酸化合物又はその無水物の一例としては、例えば、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、シクロヘキサントリカルボン酸、メチルシクロヘキサントリカルボン酸、シクロヘキセントリカルボン酸、メチルシクロヘキセントリカルボン酸、シクロヘキサンテトラカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸、及びこれらの酸無水物等が挙げられる。 Of the polycarboxylic acid or its acid anhydride (a2), a polycarboxylic acid having an alicyclic structure as an essential component of the present invention or an anhydride thereof (in the present invention, “alicyclic polycarboxylic acid or its anhydride” “)” Is not limited as long as the carboxy group or the acid anhydride group is bonded to the alicyclic structure, and other structures are not particularly limited, and a wide variety of compounds can be used. Moreover, you may have an aromatic ring in molecular structure. Examples of the alicyclic polycarboxylic acid compound or its anhydride include, for example, tetrahydrophthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, cyclohexanetricarboxylic acid, methylcyclohexanetricarboxylic acid, cyclohexytricarboxylic acid, methylcyclohexytricarboxylic acid. Acid, cyclohexanetetracarboxylic acid, bicyclo [2.2.1] heptane-2,3-dicarboxylic acid, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid, 4- (2,5-dicarboxylic acid) And oxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic acid, and acid anhydrides thereof.
 本発明では、前記脂環式ポリカルボン酸又はその無水物と併せて、脂肪族ポリカルボン酸化合物又はその酸無水物や、芳香族ポリカルボン酸化合物又はその酸無水物を併用してもよい。前記脂肪族ポリカルボン酸化合物又はその酸無水物について、脂肪族炭化水素基は直鎖型及び分岐型のいずれでもよく、構造中に不飽和結合を有していてもよい。前記脂肪族ポリカルボン酸化合物又はその酸無水物の一例としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸、1,2,3,4-ブタンテトラカルボン酸、及びこれらの酸無水物等が挙げられる。 In the present invention, an aliphatic polycarboxylic acid compound or an acid anhydride thereof, an aromatic polycarboxylic acid compound or an acid anhydride thereof may be used in combination with the alicyclic polycarboxylic acid or the anhydride thereof. Regarding the aliphatic polycarboxylic acid compound or the acid anhydride thereof, the aliphatic hydrocarbon group may be either a straight chain type or a branched type, and may have an unsaturated bond in the structure. Examples of the aliphatic polycarboxylic acid compound or its acid anhydride include, for example, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid. Examples thereof include acids, citraconic acid, itaconic acid, glutaconic acid, 1,2,3,4-butanetetracarboxylic acid, and acid anhydrides thereof.
 前記芳香族ポリカルボン酸化合物又はその酸無水物の一例としては、例えば、フタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、ナフタレントリカルボン酸、ナフタレンテトラカルボン酸、ビフェニルジカルボン酸、ビフェニルトリカルボン酸、ビフェニルテトラカルボン酸、ベンゾフェノンテトラカルボン酸等が挙げられる。 Examples of the aromatic polycarboxylic acid compound or acid anhydride thereof include, for example, phthalic acid, trimellitic acid, pyromellitic acid, naphthalene dicarboxylic acid, naphthalene tricarboxylic acid, naphthalene tetracarboxylic acid, biphenyl dicarboxylic acid, biphenyl tricarboxylic acid , Biphenyltetracarboxylic acid, benzophenonetetracarboxylic acid and the like.
 本発明では、前記ポリカルボン酸又はその酸無水物(a2)が前記脂環式ポリカルボン酸又はその無水物を必須の成分とすることにより、硬化物における耐熱性が高く、現像性や溶剤溶解性にも優れる酸基含有(メタ)アクリレート樹脂を得ることができる。更に、前記アミドイミド樹脂(A)を効率的に製造できることから、前記脂環式ポリカルボン酸又はその無水物として脂環式トリカルボン酸無水物を用いることが好ましい。また、前記ポリカルボン酸又はその酸無水物(a2)の総質量に対する脂環式ポリカルボン酸又はその無水物の割合が70質量%以上であることが好ましく、90質量%以上であることが好ましい。 In the present invention, the polycarboxylic acid or its acid anhydride (a2) has the alicyclic polycarboxylic acid or its anhydride as an essential component, so that the cured product has high heat resistance, developability and solvent solubility. An acid group-containing (meth) acrylate resin having excellent properties can be obtained. Furthermore, since the said amide imide resin (A) can be manufactured efficiently, it is preferable to use an alicyclic tricarboxylic acid anhydride as said alicyclic polycarboxylic acid or its anhydride. Moreover, it is preferable that the ratio of alicyclic polycarboxylic acid or its anhydride with respect to the gross mass of the said polycarboxylic acid or its acid anhydride (a2) is 70 mass% or more, and it is preferable that it is 90 mass% or more. .
 前記アミドイミド樹脂(A)が前記ポリイソシアネート化合物(a1)と前記ポリカルボン酸又はその酸無水物(a2)とを必須の反応原料とするものである場合、所望の樹脂性能等に応じてこれら以外の反応原料を併用してもよい。この場合、本発明が奏する効果が十分に発揮されることから、アミドイミド樹脂(A)の反応原料総質量に対する前記ポリイソシアネート化合物(a1)と前記ポリカルボン酸又はその酸無水物(a2)との合計質量の割合が90質量%以上であることが好ましく、95質量%以上であることが好ましい。 When the amide-imide resin (A) uses the polyisocyanate compound (a1) and the polycarboxylic acid or acid anhydride (a2) as essential reaction raw materials, other than these, depending on the desired resin performance, etc. These reaction raw materials may be used in combination. In this case, since the effect exhibited by the present invention is sufficiently exhibited, the polyisocyanate compound (a1) and the polycarboxylic acid or acid anhydride (a2) thereof with respect to the total reaction raw material mass of the amideimide resin (A) The ratio of the total mass is preferably 90% by mass or more, and preferably 95% by mass or more.
 前記アミドイミド樹脂(A)がポリイソシアネート化合物(a1)とポリカルボン酸又はその酸無水物(a2)とを反応原料とするものである場合、その製造方法は特に限定されず、どのような方法で製造してもよい。例えば、一般的なアミドイミド樹脂と同様の方法にて製造することができる。具体的には、前記ポリイソシアネート化合物(a1)が有するイソシアネート基1モルに対し、0.6~1.1モルの前記ポリカルボン酸又はその酸無水物(a2)を用い、好ましくは50℃~250℃の範囲、特に好ましくは70~180℃程度の温度条件下で撹拌混合して反応させる方法が挙げられる。 When the amide imide resin (A) is a polyisocyanate compound (a1) and a polycarboxylic acid or an acid anhydride (a2) as a reaction raw material, the production method is not particularly limited, and any method is used. It may be manufactured. For example, it can be produced by the same method as a general amideimide resin. Specifically, 0.6 to 1.1 mol of the polycarboxylic acid or its acid anhydride (a2) is used with respect to 1 mol of the isocyanate group of the polyisocyanate compound (a1), preferably 50 ° C. to Examples thereof include a method of stirring and mixing in a temperature range of 250 ° C., particularly preferably about 70 to 180 ° C.
 前記ポリイソシアネート(a1)と前記ポリカルボン酸又はその酸無水物(a2)とは、前記ポリイソシアネート(a1)のイソシアネート基のモル数(N)と、前記ポリカルボン酸又はその酸無水物(a2)のカルボキシ基のモル数(M1)及び酸無水物基モル数(M2)の合計のモル数との比〔((M1)+(M2))/(N)〕が1.1~3となるように反応させるのが、反応系中の極性が高くなり反応が潤滑に進行し、イソシアネート基が残存せず、得られるポリアミドイミド樹脂の安定性が良好である。また、前記ポリカルボン酸又はその酸無水物(a2)の残存量も少なく再結晶等の分離の問題も起こりにくい等の理由により好ましく、中でも1.2~2.5がより好ましい。 The polyisocyanate (a1) and the polycarboxylic acid or acid anhydride (a2) are the number of moles (N) of the isocyanate group of the polyisocyanate (a1) and the polycarboxylic acid or acid anhydride (a2). ) Of the number of moles of carboxy groups (M1) and the number of moles of acid anhydride groups (M2) [((M1) + (M2)) / (N)] is 1.1 to 3. When the reaction is carried out, the polarity in the reaction system becomes high, the reaction proceeds to lubrication, the isocyanate group does not remain, and the resulting polyamideimide resin has good stability. Further, the polycarboxylic acid or its acid anhydride (a2) is preferably used for the reason that the residual amount is small and the problem of separation such as recrystallization hardly occurs, and among them, 1.2 to 2.5 is more preferable.
 (アミド)イミド化反応は、溶剤中あるいは無溶剤中で、前記イソシアネート化合物(a1)の1種類以上と、前記ポリカルボン酸又はその酸無水物(a2)の1種以上とを混合し、撹拌を行いながら昇温して行うことが好ましい。その際、前記ポリカルボン酸又はその酸無水物(a1)に対して、前記ポリイソシアネート(a2)を少なくとも2回、さらに好ましくは3~5回に分けて加えることが、分子量分布のシャープなポリアミドイミド樹脂が得られる点から好ましい。(アミド)イミド化反応は、脱炭酸を伴いながら無水酸基とイソシアネート基がイミド基を形成する反応である。(アミド)イミド化反応の進行は、赤外スベクトルや、酸価、イソシアネート基の定量等の分析手段により追跡することができる。赤外スペクトルでは、イソシアネート基の特性吸収である2270cm-1が反応とともに減少し、さらに1860cm-1と850cm-1に特性吸収を有する酸無水物基が減少する。一方、1780cm-1と1720cm-1にイミド基の吸収が増加する。(アミド)イミド化反応は、目的とする酸価、粘度、分子量等を確認しながら、温度を下げて終了させても良い。しかしながら、経時の安定性等の面からイソシアネート基が消失するまで(アミド)イミド化反応を続行させることがより好ましい。また、(アミド)イミド化反応中や該反応後は、合成される樹脂の物性を損なわない範囲で、触媒、酸化防止剤、界面活性剤、その他溶剤等を添加してもよい。 In the (amide) imidization reaction, one or more of the isocyanate compound (a1) and one or more of the polycarboxylic acid or acid anhydride (a2) thereof are mixed and stirred in a solvent or in the absence of a solvent. It is preferable to carry out the heating while performing. At that time, the polyisocyanate (a2) is added to the polycarboxylic acid or acid anhydride (a1) at least twice, more preferably 3 to 5 times, so that a polyamide having a sharp molecular weight distribution is added. It is preferable from the point that an imide resin is obtained. The (amide) imidization reaction is a reaction in which a hydroxyl group and an isocyanate group form an imide group with decarboxylation. The progress of the (amide) imidization reaction can be traced by an analytical means such as an infrared vector, acid value, or quantitative determination of an isocyanate group. The infrared spectrum, 2270 cm -1 which is the characteristic absorption of an isocyanate group was reduced as the reaction further acid anhydride group is reduced with a characteristic absorption at 1860 cm -1 and 850 cm -1. On the other hand, the absorption of imide groups increases at 1780 cm −1 and 1720 cm −1 . The (amide) imidation reaction may be terminated by lowering the temperature while confirming the target acid value, viscosity, molecular weight and the like. However, it is more preferable to continue the (amide) imidization reaction until the isocyanate group disappears from the viewpoint of stability over time. Further, during or after the (amide) imidization reaction, a catalyst, an antioxidant, a surfactant, other solvents, and the like may be added as long as the physical properties of the synthesized resin are not impaired.
 (アミド)イミド化反応は必要に応じて有機溶媒中で行ってもよい。用いる有機溶媒の選択は、反応原料及び生成物である酸基含有(メタ)アクリレート樹脂の溶解性や反応温度条件等により適宜選択されるが、例えば、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、アルキレングリコールモノアルキルエーテルアセテート、ジアルキレングリコールモノアルキルエーテルアセテート、ジアルキレングリコールアセテート等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上の混合溶媒としても良い。有機溶剤の使用量は、反応効率が良好となることから、反応原料の合計質量に対し0.1~5倍量程度の範囲で用いることが好ましい。 The (amide) imidation reaction may be performed in an organic solvent as necessary. The selection of the organic solvent to be used is appropriately selected depending on the reaction raw material and the solubility of the acid group-containing (meth) acrylate resin that is the product, reaction temperature conditions, etc., for example, methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, Examples include methoxypropanol, cyclohexanone, methyl cellosolve, alkylene glycol monoalkyl ether acetate, dialkylene glycol monoalkyl ether acetate, dialkylene glycol acetate and the like. These may be used alone or as a mixed solvent of two or more. The amount of the organic solvent used is preferably in the range of about 0.1 to 5 times the total mass of the reaction raw materials because the reaction efficiency is good.
 このようにして得られた本発明で用いるポリアミドイミド樹脂(A1)は、下記の構造式(2)で表されるイミド結合とアミド結合とを有し、さらに分子末端に、下記の構造式(3)~(5)からなる群から選ばれる少なくとも1種で表される構造を有する。 The polyamideimide resin (A1) used in the present invention thus obtained has an imide bond and an amide bond represented by the following structural formula (2), and at the molecular end, the following structural formula ( It has a structure represented by at least one selected from the group consisting of 3) to (5).
Figure JPOXMLDOC01-appb-C000003
(ただし、式中、Rはポリカルボン酸又はその酸無水物(a2)から酸無水物基とカルボキシ基を除いた残基である。)
Figure JPOXMLDOC01-appb-C000003
(In the formula, R 3 is a residue obtained by removing the acid anhydride group and the carboxy group from the polycarboxylic acid or its acid anhydride (a2).)
 本発明のポリアミドイミド樹脂は、以下の構造式(6) The polyamideimide resin of the present invention has the following structural formula (6)
Figure JPOXMLDOC01-appb-C000004
(ただし、式中、nは、繰り返し単位で0~30である。また、Rbは、上記の構造式(2)で示されるアミド結合またはイミド結合である。Rcは、上記の構造式(3)~(5)のいずれかである。Rdは、ポリイソシアネート(a1)からイソシアナト基を除いた残基である。)で表されるものを含むが、当該構造式のものは一例であってこれに限定されるものではない。
Figure JPOXMLDOC01-appb-C000004
(In the formula, n is a repeating unit of 0 to 30. Rb is an amide bond or an imide bond represented by the structural formula (2). Rc is the structural formula (3). ) To (5), wherein Rd is a residue obtained by removing an isocyanato group from polyisocyanate (a1). It is not limited to this.
 また、Rdは、例えば、以下の構造式(7) Rd is, for example, the following structural formula (7)
Figure JPOXMLDOC01-appb-C000005
 (ただし、Raは、例えば、2価の脂肪族ジイソシアネート類からイソシアナト基を除いた残基を示す。)で表される3価の有機基であってもよい。
Figure JPOXMLDOC01-appb-C000005
(However, Ra represents a residue obtained by removing an isocyanato group from a divalent aliphatic diisocyanate, for example).
 前記ヒドロキシ(メタ)アクリレート化合物(B)は、分子構造中に水酸基と(メタ)アクリロイル基とを有する化合物であれば他の具体構造は特に限定されず、多種多様な化合物を用いることができる。また、前記ヒドロキシ(メタ)アクリレート化合物(B)はそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、反応の制御が容易となることからモノヒドロキシ(メタ)アクリレート化合物が好ましい。その一例としては、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等のヒドロキシ(メタ)アクリレート化合物;前記各種のヒドロキシ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性体;前記各種のヒドロキシ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性体等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、硬化物における耐熱性と伸度とのバランスに優れる酸基含有(メタ)アクリレート樹脂となることから、分子量が1,000以下のものが好ましい。また、前記ヒドロキシ(メタ)アクリレート化合物(B)が前記オキシアルキレン変性体やラクトン変性体である場合には、質量平均分子量(Mw)が1,000以下であることが好ましい。 The hydroxy (meth) acrylate compound (B) is not particularly limited as long as it has a hydroxyl group and a (meth) acryloyl group in the molecular structure, and a wide variety of compounds can be used. Moreover, the said hydroxy (meth) acrylate compound (B) may be used independently, respectively and may use 2 or more types together. Among these, a monohydroxy (meth) acrylate compound is preferable because the reaction can be easily controlled. For example, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, dipentaerythritol Hydroxy (meth) acrylate compounds such as penta (meth) acrylate; in the molecular structure of the various hydroxy (meth) acrylate compounds (poly) oxyethylene chain, (poly) oxypropylene chain, (poly) oxytetramethylene chain, etc. (Poly) oxyalkylene-modified products in which (poly) oxyalkylene chains are introduced; lactone-modified products in which (poly) lactone structures are introduced into the molecular structures of the various hydroxy (meth) acrylate compounds, and the like. That. These may be used alone or in combination of two or more. Especially, since it becomes an acid group containing (meth) acrylate resin excellent in the balance of the heat resistance and elongation in hardened | cured material, a thing with a molecular weight of 1,000 or less is preferable. Moreover, when the said hydroxy (meth) acrylate compound (B) is the said oxyalkylene modified body and a lactone modified body, it is preferable that a mass mean molecular weight (Mw) is 1,000 or less.
 本発明の酸基含有(メタ)アクリレート樹脂は、所望の樹脂性能等に応じて、前記酸基又は酸無水物基を有するアミドイミド樹脂(A)及び前記ヒドロキシ(メタ)アクリレート化合物(B)の他、他の反応原料を併用してもよい。この場合、本発明が奏する効果が十分に発揮されることから、酸基含有(メタ)アクリレート樹脂の反応原料総質量に対する前記(A)、(B)成分の合計質量の割合が80質量%以上であることが好ましく、90質量%以上であることが好ましい。 The acid group-containing (meth) acrylate resin of the present invention includes the amide-imide resin (A) having the acid group or acid anhydride group and the hydroxy (meth) acrylate compound (B) depending on the desired resin performance and the like. Other reaction raw materials may be used in combination. In this case, since the effect exhibited by the present invention is sufficiently exhibited, the ratio of the total mass of the components (A) and (B) to the total mass of the reaction raw material of the acid group-containing (meth) acrylate resin is 80% by mass or more. It is preferable that it is 90 mass% or more.
 前記酸基含有(メタ)アクリレート樹脂の製造方法は特に限定されず、どのような方法にて製造してもよい。前記アミドイミド樹脂(A)と前記ヒドロキシ(メタ)アクリレート化合物(B)との反応では、主に、前記アミドイミド樹脂(A)中の酸基又は酸無水物基とヒドロキシ(メタ)アクリレート化合物(B)中のヒドロキシ基とが反応するが、前記ヒドロキシ(メタ)アクリレート化合物(B)は特に酸無水物基との反応性に優れることから、前述の通り、前記アミドイミド樹脂(A)は酸無水物基を有していることが好ましい。前記アミドイミド樹脂(A)と前記ヒドロキシ(メタ)アクリレート化合物(B)との反応割合は、前記アミドイミド樹脂(A)中の酸基及び酸無水物基の合計に対し、前記ヒドロキシ(メタ)アクリレート化合物(B)を0.9~1.1モルの範囲で用いることが好ましい。特に、前記アミドイミド樹脂(A)中の酸無水物基の合計に対し、前記ヒドロキシ(メタ)アクリレート化合物(B)を0.9~1.1モルの範囲で用いることが好ましい。 The method for producing the acid group-containing (meth) acrylate resin is not particularly limited, and may be produced by any method. In the reaction between the amideimide resin (A) and the hydroxy (meth) acrylate compound (B), the acid group or acid anhydride group in the amideimide resin (A) and the hydroxy (meth) acrylate compound (B) are mainly used. The hydroxy (meth) acrylate compound (B) is particularly excellent in reactivity with an acid anhydride group, and as described above, the amideimide resin (A) is an acid anhydride group. It is preferable to have. The reaction ratio between the amideimide resin (A) and the hydroxy (meth) acrylate compound (B) is based on the total of acid groups and acid anhydride groups in the amideimide resin (A). (B) is preferably used in the range of 0.9 to 1.1 mol. In particular, it is preferable to use the hydroxy (meth) acrylate compound (B) in a range of 0.9 to 1.1 mol based on the total of acid anhydride groups in the amideimide resin (A).
 さらに好ましくは、ポリアミドイミド樹脂(A)と前記ヒドロキシ(メタ)アクリレート化合物(B)との反応は、ポリアミドイミド樹脂(A)中の酸無水物基モル数(M3)と、前記ヒドロキシ(メタ)アクリレート化合物(B)のヒドロキシ基のモル数(L)との比、L/M3=1~5の範囲であることが、得られる樹脂の硬化性と耐熱性が高くなるため好ましく、さらに、L/M3=1~2の範囲であることが耐熱性の観点からより好ましい。 More preferably, the reaction between the polyamideimide resin (A) and the hydroxy (meth) acrylate compound (B) is carried out by the number of moles of acid anhydride groups (M3) in the polyamideimide resin (A) and the hydroxy (meth). The ratio of the acrylate compound (B) to the number of moles of hydroxy groups (L) is preferably in the range of L / M3 = 1 to 5 because the resulting resin has high curability and heat resistance. / M3 = 1 to 2 is more preferable from the viewpoint of heat resistance.
 なお、前記アミドイミド樹脂(A)中の酸無水物基の含有量は、前述した2通りの酸価の測定値の差分、即ち、酸無水物基を開環させた条件での酸価と、酸無水物基を開環させない条件での酸価との差分から算出することができるが、より具体的には、以下の方法で求めることができる。 In addition, the content of the acid anhydride group in the amideimide resin (A) is the difference between the two acid value measurement values described above, that is, the acid value under the condition where the acid anhydride group is ring-opened, Although it can be calculated from the difference from the acid value under conditions where the acid anhydride group is not ring-opened, more specifically, it can be determined by the following method.
 すなわち、ポリアミドイミド樹脂(A)中の酸無水物基のモル数は、前記ポリカルボン酸またはその酸無水物(a2)が、前記ポリイソシアネート(a1)との反応で消費されるため、以下の(1)~(3)により算出することができる。
(1)ポリアミドイミド樹脂(A)を、溶剤等で希釈し、KOH水溶液の滴定により酸価(a)を求める。
(2)ポリアミドイミド樹脂(A)を溶剤等で希釈し、酸無水物基に過剰量のn-ブタノールを反応させた後、KOH水溶液の滴定により酸価(b)を求める。なお、(2)において、酸無水物基とn-ブタノールの反応は、117℃にて行うものとする。酸無水物の消失は赤外スペクトルにて、酸無水物基の特性吸収である1860cm-1が完全に消滅したことで確認する。
(3)上記酸価(a)と酸価(b)の差より、本発明に用いるポリアミドイミド樹脂(A)中の酸無水物基の濃度を算出し、モル数に換算する。
That is, the number of moles of the acid anhydride group in the polyamideimide resin (A) is as follows because the polycarboxylic acid or the acid anhydride (a2) is consumed by the reaction with the polyisocyanate (a1): It can be calculated by (1) to (3).
(1) The polyamideimide resin (A) is diluted with a solvent or the like, and the acid value (a) is determined by titration with an aqueous KOH solution.
(2) The polyamideimide resin (A) is diluted with a solvent or the like, an excess amount of n-butanol is reacted with the acid anhydride group, and then the acid value (b) is determined by titration with a KOH aqueous solution. In (2), the reaction between the acid anhydride group and n-butanol is carried out at 117 ° C. The disappearance of the acid anhydride is confirmed by the complete disappearance of 1860 cm −1, which is the characteristic absorption of the acid anhydride group, in the infrared spectrum.
(3) From the difference between the acid value (a) and the acid value (b), the concentration of the acid anhydride group in the polyamideimide resin (A) used in the present invention is calculated and converted to the number of moles.
 原料として用いるポリアミドイミド樹脂(A)は、上記方法で製造したものを用いることができるが、前記ヒドロキシ(メタ)アクリレート化合物(B)との反応の際に、ウレタン化の副反応を抑制できるため、イソシアネート基が完全に消失しているものを用いることが好ましい。イソシアネート基の消失は、例えば赤外スペクトルにおいてイソシアネート基の特性吸収である2270cm-1が消失していることで確認することができる。 As the polyamideimide resin (A) used as a raw material, one produced by the above method can be used, but a side reaction of urethanization can be suppressed during the reaction with the hydroxy (meth) acrylate compound (B). It is preferable to use one in which the isocyanate group has completely disappeared. The disappearance of the isocyanate group can be confirmed by the disappearance of 2270 cm −1, which is the characteristic absorption of the isocyanate group in the infrared spectrum, for example.
 前記アミドイミド樹脂(A)と前記ヒドロキシ(メタ)アクリレート化合物(B)との反応は、例えば、適当なエステル化触媒の存在下、90~140℃程度の温度条件下で加熱撹拌して行うことができる。前記エステル化触媒は、例えば、トリメチルホスフィン、トリブチルホスフィン、トリフェニルフォスフィン等のリン化合物、トリエチルアミン、トリブチルアミン、ジメチルベンジルアミン等のアミン化合物等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。触媒の添加量は、反応原料の合計質量に対し0.03~5質量%の範囲で用いることが好ましい。 The reaction of the amideimide resin (A) and the hydroxy (meth) acrylate compound (B) can be performed, for example, by heating and stirring under a temperature condition of about 90 to 140 ° C. in the presence of a suitable esterification catalyst. it can. Examples of the esterification catalyst include phosphorus compounds such as trimethylphosphine, tributylphosphine, and triphenylphosphine, and amine compounds such as triethylamine, tributylamine, and dimethylbenzylamine. These may be used alone or in combination of two or more. The addition amount of the catalyst is preferably in the range of 0.03 to 5% by mass with respect to the total mass of the reaction raw materials.
 反応は必要に応じて有機溶媒中で行ってもよい。用いる有機溶媒の選択は、反応原料及び生成物である酸基含有(メタ)アクリレート樹脂の溶解性や反応温度条件等により適宜選択されるが、例えば、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、アルキレングリコールモノアルキルエーテルアセテート、ジアルキレングリコールモノアルキルエーテルアセテート、ジアルキレングリコールアセテート等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上の混合溶媒としても良い。前記アミドイミド樹脂(A)の製造と酸基含有(メタ)アクリレート樹脂の製造とを連続して行う場合には、前記アミドイミド樹脂(A)の製造で用いた有機溶媒中でそのまま反応を続けてもよい。 The reaction may be performed in an organic solvent as necessary. The selection of the organic solvent to be used is appropriately selected depending on the reaction raw material and the solubility of the acid group-containing (meth) acrylate resin that is the product, reaction temperature conditions, etc., for example, methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, Examples include methoxypropanol, cyclohexanone, methyl cellosolve, alkylene glycol monoalkyl ether acetate, dialkylene glycol monoalkyl ether acetate, dialkylene glycol acetate and the like. These may be used alone or as a mixed solvent of two or more. When the production of the amideimide resin (A) and the production of the acid group-containing (meth) acrylate resin are carried out continuously, the reaction may be continued as it is in the organic solvent used in the production of the amideimide resin (A). Good.
 このようにして得られる酸基含有(メタ)アクリレート樹脂の酸価は、硬化物における耐熱性や伸度の他、現像性等にも優れる酸基含有(メタ)アクリレート樹脂となることから、80~200mgKOH/gの範囲であることが好ましい。なお、本願発明において酸基含有(メタ)アクリレート樹脂の酸価はJIS K 0070(1992)の中和滴定法にて測定される値である。また、前記酸基含有(メタ)アクリレート樹脂の(メタ)アクリロイル基当量は400~1,500g/当量の範囲であることが好ましく、前記酸基含有(メタ)アクリレート樹脂の質量平均分子量(Mw)は1,000~10,000の範囲であることが好ましく、1,000~6,000の範囲であることがより好ましい。 The acid value of the acid group-containing (meth) acrylate resin thus obtained is an acid group-containing (meth) acrylate resin that is excellent in developability and the like in addition to heat resistance and elongation in the cured product. It is preferably in the range of ~ 200 mgKOH / g. In the present invention, the acid value of the acid group-containing (meth) acrylate resin is a value measured by a neutralization titration method of JIS K 0070 (1992). The (meth) acryloyl group equivalent of the acid group-containing (meth) acrylate resin is preferably in the range of 400 to 1,500 g / equivalent, and the mass average molecular weight (Mw) of the acid group-containing (meth) acrylate resin Is preferably in the range of 1,000 to 10,000, and more preferably in the range of 1,000 to 6,000.
 前記酸基含有(メタ)アクリレート樹脂の分子量は、下記条件で測定されるGPCにて測定される値である。 The molecular weight of the acid group-containing (meth) acrylate resin is a value measured by GPC measured under the following conditions.
測定装置:東ソー株式会社製 HLC-8120GPC、UV8020
カラム :東ソー株式会社製 TFKguardcolumnhxl-L、TFKgel(G1000HXL、G2000HXL、G3000HXL、G4000HXL)
検出器 :RI(示差屈折計)及びUV(254nm)
測定条件:カラム温度 40℃
     溶媒    THF
     流束    1.0ml/min
標準  :ポリスチレン標準試料にて検量線作成
試料  :樹脂固形分換算で0.1質量%のTHF溶液をマイクロフィルターでろ過したもの(注入量:200μl)
Measuring device: Tosoh Corporation HLC-8120GPC, UV8020
Column: TFKguardcolumnhxl-L, TFKgel (G1000HXL, G2000HXL, G3000HXL, G4000HXL) manufactured by Tosoh Corporation
Detector: RI (differential refractometer) and UV (254 nm)
Measurement conditions: Column temperature 40 ° C
Solvent THF
Flux 1.0ml / min
Standard: Calibration curve prepared with polystyrene standard sample Sample: 0.1% by mass THF solution in terms of resin solids filtered through microfilter (injection amount: 200 μl)
 このようにして得られた本発明の酸基含有(メタ)アクリレート樹脂は、下記の構造式(2)で表されるイミド結合とアミド結合とを有し、さらに分子末端に、下記の構造式(3)、(4)、(4’)および(5)からなる群から選ばれる少なくとも1種で表される酸基を有する構造と、下記の構造式(3’)、(4’)および(4”)からなる群から選ばれる少なくとも1種で表される(メタ)アクリロイル基を有する構造とを有する。 The acid group-containing (meth) acrylate resin of the present invention thus obtained has an imide bond and an amide bond represented by the following structural formula (2), and further has the following structural formula at the molecular end. A structure having an acid group represented by at least one selected from the group consisting of (3), (4), (4 ′) and (5), and the following structural formulas (3 ′), (4 ′) and And a structure having a (meth) acryloyl group represented by at least one selected from the group consisting of (4 ″).
Figure JPOXMLDOC01-appb-C000006
(ただし、式中、Rはポリカルボン酸又はその酸無水物(a2)から酸無水物基とカルボキシ基を除いた残基である。Rは、前記ヒドロキシ(メタ)アクリレート化合物(B)からヒドロキシ基を除いた残基である。)
Figure JPOXMLDOC01-appb-C000006
(In the formula, R 3 is a residue obtained by removing an acid anhydride group and a carboxy group from polycarboxylic acid or acid anhydride (a2). R 4 is the hydroxy (meth) acrylate compound (B). It is a residue obtained by removing a hydroxy group from
 本発明の酸基含有(メタ)アクリレート樹脂は、以下の構造式(8) The acid group-containing (meth) acrylate resin of the present invention has the following structural formula (8)
Figure JPOXMLDOC01-appb-C000007
(式中、nは、繰り返し単位で0~30である。また、Rbは、上記の構造式(2)で示されるアミド結合またはイミド結合である。Rc’は、分子末端であり、前記構造式(3)、(4)、(4’)および(5)からなる群から選ばれる少なくとも一つの構造式で表される酸基を有する構造と、前記構造式(3’)、(4’)および(4”)からなる群から選ばれる少なくとも一つの構造式で表される(メタ)アクリロイル基を有する構造の少なくとも一方である。Rdは、前記と同様の定義である。)で表されるものを含むが、当該構造式のものは一例であってこれに限定されるものではない。
Figure JPOXMLDOC01-appb-C000007
(In the formula, n is a repeating unit of 0 to 30. Rb is an amide bond or an imide bond represented by the above structural formula (2). Rc ′ is a molecular end, A structure having an acid group represented by at least one structural formula selected from the group consisting of formulas (3), (4), (4 ′) and (5), and the structural formulas (3 ′), (4 ′ ) And (4 ″) at least one of the structures having a (meth) acryloyl group represented by at least one structural formula. Rd has the same definition as described above. Although the thing of the said structural formula is an example, what is not limited to this.
 本発明の酸基含有(メタ)アクリレート樹脂は、分子構造中に重合性の(メタ)アクリロイル基を有することから、例えば、光重合開始剤を添加することにより硬化性樹脂組成物として利用することができる。 Since the acid group-containing (meth) acrylate resin of the present invention has a polymerizable (meth) acryloyl group in the molecular structure, for example, it can be used as a curable resin composition by adding a photopolymerization initiator. Can do.
 前記光重合開始剤は、照射する活性エネルギー線の種類等により適切なものを選択して用いればよい。また、アミン化合物、尿素化合物、含硫黄化合物、含燐化合物、含塩素化合物、ニトリル化合物等の光増感剤と併用してもよい。光重合開始剤の具体例としては、例えば、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン等のアルキルフェノン系光重合開始剤;2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド等のアシルホスフィンオキサイド系光重合開始剤;ベンゾフェノン化合物等の分子内水素引き抜き型光重合開始剤等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 The photopolymerization initiator may be selected and used according to the type of active energy ray to be irradiated. Moreover, you may use together with photosensitizers, such as an amine compound, a urea compound, a sulfur-containing compound, a phosphorus-containing compound, a chlorine-containing compound, a nitrile compound. Specific examples of the photopolymerization initiator include, for example, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, 2- (dimethylamino) Alkylphenone photopolymerization initiators such as -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone; 2,4,6-trimethylbenzoyl-diphenyl- Examples include acylphosphine oxide photopolymerization initiators such as phosphine oxide; intramolecular hydrogen abstraction type photopolymerization initiators such as benzophenone compounds. These may be used alone or in combination of two or more.
 前記光重合開始剤の市販品は、例えば、BASF社製「IRGACURE127」、「IRGACURE184」、「IRGACURE250」、「IRGACURE270」、「IRGACURE290」、「IRGACURE369E」、「IRGACURE379EG」、「IRGACURE500」、「IRGACURE651」、「IRGACURE754」、「IRGACURE819」、「IRGACURE907」、「IRGACURE1173」、「IRGACURE2959」、「IRGACURE MBF」、「IRGACURE TPO」、「IRGACURE OXE 01」、「IRGACURE OXE 02」、IGM RESINS社製「OMNIRAD184」、「OMNIRAD250」、「OMNIRAD369」、「OMNIRAD369E」、「OMNIRAD651」、「OMNIRAD907FF」、「OMNIRAD1173」等が挙げられる。 Commercially available products of the photopolymerization initiator include, for example, “IRGACURE127”, “IRGACURE184”, “IRGACURE250”, “IRGACURE270”, “IRGACURE290”, “IRGACURE369E”, “IRGACURE379EG”, “IRGACURE500”, “IRGACURE500”, manufactured by BASF. , “IRGACURE 754”, “IRGACURE 819”, “IRGACURE 907”, “IRGACURE 1173”, “IRGACURE 2959”, “IRGACURE MBF”, “IRGACURE TPO”, “IRGACURE OXE 01”, “IRGACUREOX 4” , "OMNIRAD250", "OM IRAD369 "," OMNIRAD369E "," OMNIRAD651 "," OMNIRAD907FF "," OMNIRAD1173 ", and the like.
 前記光重合開始剤の添加量は、例えば、硬化性樹脂組成物の溶剤以外の成分の合計に対し0.05~15質量%の範囲であることが好ましく、0.1~10質量%の範囲であることがより好ましい。 The addition amount of the photopolymerization initiator is preferably in the range of 0.05 to 15% by mass, for example, in the range of 0.1 to 10% by mass with respect to the total of components other than the solvent of the curable resin composition. It is more preferable that
 本発明の硬化性樹脂組成物は、前記本発明の酸基含有(メタ)アクリレート樹脂以外の樹脂成分を含有しても良い。該樹脂成分は、例えば、ビスフェノール型エポキシ樹脂やノボラック型エポキシ樹脂等のエポキシ樹脂と(メタ)アクリル酸、ジカルボン酸無水物、必要に応じて不飽和モノカルボン酸無水物等を反応させて得られるような、樹脂中にカルボキシ基と(メタ)アクリロイル基とを有する樹脂や、各種の(メタ)アクリレートモノマー等が挙げられる。 The curable resin composition of the present invention may contain a resin component other than the acid group-containing (meth) acrylate resin of the present invention. The resin component is obtained, for example, by reacting an epoxy resin such as a bisphenol type epoxy resin or a novolak type epoxy resin with (meth) acrylic acid, dicarboxylic acid anhydride, and unsaturated monocarboxylic acid anhydride as required. Examples of such a resin include a resin having a carboxy group and a (meth) acryloyl group in the resin, and various (meth) acrylate monomers.
 前記(メタ)アクリレートモノマーは、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート等の脂肪族モノ(メタ)アクリレート化合物;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチルモノ(メタ)アクリレート等の脂環型モノ(メタ)アクリレート化合物;グリシジル(メタ)アクリレート、テトラヒドロフルフリルアクリレート等の複素環型モノ(メタ)アクリレート化合物;ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、フェニルベンジル(メタ)アクリレート、フェノキシ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシエトキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、フェノキシベンジル(メタ)アクリレート、ベンジルベンジル(メタ)アクリレート、フェニルフェノキシエチル(メタ)アクリレート等の芳香族モノ(メタ)アクリレート化合物等のモノ(メタ)アクリレート化合物:前記各種のモノ(メタ)アクリレートモノマーの分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等のポリオキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性モノ(メタ)アクリレート化合物;前記各種のモノ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性モノ(メタ)アクリレート化合物; Examples of the (meth) acrylate monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl ( Aliphatic mono (meth) acrylate compounds such as meth) acrylate and octyl (meth) acrylate; alicyclic mono (meth) acrylate compounds such as cyclohexyl (meth) acrylate, isobornyl (meth) acrylate and adamantyl mono (meth) acrylate; Heterocyclic mono (meth) acrylate compounds such as glycidyl (meth) acrylate and tetrahydrofurfuryl acrylate; benzyl (meth) acrylate, phenyl (meth) acrylate, phenylbenzyl ( Acrylate), phenoxy (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxyethoxyethyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, phenoxybenzyl (meth) acrylate, benzylbenzyl (meth) Mono (meth) acrylate compounds such as aromatic mono (meth) acrylate compounds such as acrylate and phenylphenoxyethyl (meth) acrylate: (poly) oxyethylene chains in the molecular structure of the various mono (meth) acrylate monomers, ( (Poly) oxyalkylene-modified mono (meth) acrylate compound having a polyoxyalkylene chain such as poly) oxypropylene chain or (poly) oxytetramethylene chain introduced; In the molecular structure of the object (poly) lactone-modified mono introducing the lactone structure-containing (meth) acrylate compound;
 エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の脂肪族ジ(メタ)アクリレート化合物;1,4-シクロヘキサンジメタノールジ(メタ)アクリレート、ノルボルナンジ(メタ)アクリレート、ノルボルナンジメタノールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等の脂環型ジ(メタ)アクリレート化合物;ビフェノールジ(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート等の芳香族ジ(メタ)アクリレート化合物;前記各種のジ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入したポリオキシアルキレン変性ジ(メタ)アクリレート化合物;前記各種のジ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性ジ(メタ)アクリレート化合物; Aliphatic di (meth) acrylate compounds such as ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, butanediol di (meth) acrylate, hexanediol di (meth) acrylate and neopentyl glycol di (meth) acrylate 1,4-cyclohexanedimethanol di (meth) acrylate, norbornane di (meth) acrylate, norbornane dimethanol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate Such as alicyclic di (meth) acrylate compounds; aromatic di (meth) acrylate compounds such as biphenol di (meth) acrylate and bisphenol di (meth) acrylate; A polyoxyalkylene-modified di (meth) acrylate compound in which a (poly) oxyalkylene chain such as a (poly) oxyethylene chain, a (poly) oxypropylene chain, or a (poly) oxytetramethylene chain is introduced into the molecular structure of the compound; A lactone-modified di (meth) acrylate compound in which a (poly) lactone structure is introduced into the molecular structure of various di (meth) acrylate compounds;
 トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート等の脂肪族トリ(メタ)アクリレート化合物;前記脂肪族トリ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性トリ(メタ)アクリレート化合物;前記脂肪族トリ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性トリ(メタ)アクリレート化合物; Aliphatic tri (meth) acrylate compounds such as trimethylolpropane tri (meth) acrylate and glycerin tri (meth) acrylate; (poly) oxyethylene chain in the molecular structure of the aliphatic tri (meth) acrylate compound, (poly) (Poly) oxyalkylene-modified tri (meth) acrylate compound introduced with (poly) oxyalkylene chain such as oxypropylene chain and (poly) oxytetramethylene chain; in the molecular structure of the aliphatic tri (meth) acrylate compound ( A lactone-modified tri (meth) acrylate compound having a poly) lactone structure;
 ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の4官能以上の脂肪族ポリ(メタ)アクリレート化合物;前記脂肪族ポリ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した4官能以上の(ポリ)オキシアルキレン変性ポリ(メタ)アクリレート化合物;前記脂肪族ポリ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入した4官能以上のラクトン変性ポリ(メタ)アクリレート化合物等が挙げられる。 Tetra- or higher functional aliphatic poly (meth) acrylate compounds such as pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate; (Poly) oxyalkylene-modified poly (meth) having 4 or more functionalities in which (poly) oxyethylene chain, (poly) oxypropylene chain, (poly) oxytetramethylene chain, or other (poly) oxyalkylene chain is introduced into the molecular structure Acrylate compounds; tetrafunctional or higher functional lactone-modified poly (meth) acrylate compounds in which a (poly) lactone structure is introduced into the molecular structure of the aliphatic poly (meth) acrylate compound.
 本発明の硬化性樹脂組成物は、塗工粘度調節等の目的で有機溶剤を含有してもよい。その種類や添加量は、所望の性能に応じて適宜調整される。一般には、硬化性樹脂組成物の合計に対し10~90質量%の範囲で用いられる。前記溶剤の具体例としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン溶剤;テトラヒドロフラン、ジオキソラン等の環状エーテル溶剤;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル;トルエン、キシレン等の芳香族溶剤;シクロヘキサン、メチルシクロヘキサン等の脂環族溶剤;カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテルなどのアルコール溶剤;アルキレングリコールモノアルキルエーテル、ジアルキレングリコールモノアルキルエーテル、ジアルキレングリコールモノアルキルエーテルアセテート等のグリコールエーテル系溶剤が挙げられる。これらはそれぞれ単独で使用しても良いし、2種類以上を併用しても良い。 The curable resin composition of the present invention may contain an organic solvent for the purpose of adjusting the coating viscosity. The kind and addition amount are appropriately adjusted according to the desired performance. Generally, it is used in the range of 10 to 90% by mass with respect to the total of the curable resin composition. Specific examples of the solvent include, for example, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; cyclic ether solvents such as tetrahydrofuran and dioxolane; esters such as methyl acetate, ethyl acetate and butyl acetate; aromatics such as toluene and xylene. Solvents; cycloaliphatic, methylcyclohexane and other alicyclic solvents; carbitol, cellosolve, methanol, isopropanol, butanol, propylene glycol monomethyl ether and other alcohol solvents; alkylene glycol monoalkyl ether, dialkylene glycol monoalkyl ether, dialkylene glycol mono Examples include glycol ether solvents such as alkyl ether acetates. These may be used alone or in combination of two or more.
 本発明の硬化性樹脂組成物は、この他、無機微粒子やポリマー微粒子、顔料、消泡剤、粘度調整剤、レベリング剤、難燃剤、保存安定化剤等の各種添加剤を含有しても良い。 In addition to this, the curable resin composition of the present invention may contain various additives such as inorganic fine particles and polymer fine particles, pigments, antifoaming agents, viscosity modifiers, leveling agents, flame retardants, and storage stabilizers. .
 本発明の酸基含有(メタ)アクリレート樹脂は、光感度や乾燥管理幅等で評価される現像性や、硬化物における耐熱性に優れる特徴を有する。この他、溶剤溶解性や、硬化物における基材密着性、仮乾燥後の非粘着性等にも優れる特徴を有する。本発明の酸基含有(メタ)アクリレート樹脂の各種性能に優れる特徴が生かされる用途として、例えば、半導体デバイス関係の用途としては、ソルダーレジスト、層間絶縁材料、パッケージ材、アンダーフィル材、回路素子等のパッケージ接着層や集積回路素子と回路基板の接着層として用いることができる。また、LCD、OELDに代表される薄型ディスプレイ関係の用途としては、薄膜トランジスタ保護膜、液晶カラーフィルタ保護膜、カラーフィルタ用顔料レジスト、ブラックマトリックス用レジスト、スペーサーなどに好適に用いることができる。これらの中でも、特にソルダーレジスト用途に好適に用いることができる。本発明のソルダーレジスト用樹脂材料は、例えば、前記酸基含有(メタ)アクリレート樹脂、光重合開始剤及び各種の添加剤に加え、硬化剤、硬化促進剤、有機溶媒等の各成分を含んでなる。 The acid group-containing (meth) acrylate resin of the present invention is characterized by excellent developability evaluated by photosensitivity, drying control width, and the like, and heat resistance in a cured product. In addition, it also has excellent characteristics such as solvent solubility, substrate adhesion in a cured product, and non-adhesiveness after temporary drying. Examples of applications in which various characteristics of the acid group-containing (meth) acrylate resin according to the present invention are excellent, such as solder resists, interlayer insulating materials, package materials, underfill materials, circuit elements, etc. It can be used as a package adhesive layer or an adhesive layer between an integrated circuit element and a circuit board. In addition, thin film display applications such as LCD and OELD can be suitably used for thin film transistor protective films, liquid crystal color filter protective films, color filter pigment resists, black matrix resists, spacers, and the like. Among these, it can use suitably especially for a soldering resist use. The resin material for solder resist of the present invention includes, for example, each component such as a curing agent, a curing accelerator, and an organic solvent in addition to the acid group-containing (meth) acrylate resin, the photopolymerization initiator, and various additives. Become.
 前記硬化剤は、前記酸基含有(メタ)アクリレート樹脂中のカルボキシ基と反応し得る官能基を有するものであれば特に制限されず、例えば、エポキシ樹脂が挙げられる。ここで用いるエポキシ樹脂は、例えば、ビスフェノール型エポキシ樹脂、フェニレンエーテル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。これらのエポキシ樹脂の中でも、硬化物における耐熱性に優れることから、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂が好ましく、軟化点が50~120℃の範囲であるものが特に好ましい。 The curing agent is not particularly limited as long as it has a functional group capable of reacting with a carboxy group in the acid group-containing (meth) acrylate resin, and examples thereof include an epoxy resin. Examples of the epoxy resin used here include bisphenol type epoxy resin, phenylene ether type epoxy resin, naphthylene ether type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, phenol novolac type epoxy resin, and cresol novolac type epoxy resin. Bisphenol novolac type epoxy resin, naphthol novolak type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolac type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene-phenol Examples include addition reaction type epoxy resins. These may be used alone or in combination of two or more. Among these epoxy resins, phenolic novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol novolac type epoxy resin, naphthol novolac type epoxy resin, naphthol-phenol co-condensed novolak type epoxy resin because of excellent heat resistance in cured products. Novolak type epoxy resins such as naphthol-cresol co-condensed novolak type epoxy resins are preferable, and those having a softening point in the range of 50 to 120 ° C. are particularly preferable.
 前記硬化促進剤は、前記硬化剤の硬化反応を促進するものであり、前記硬化剤としてエポキシ樹脂を用いる場合には、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。硬化促進剤の添加量は、例えば、前記硬化剤100質量部に対し1~10質量部の範囲で用いる。 The curing accelerator accelerates the curing reaction of the curing agent. When an epoxy resin is used as the curing agent, a phosphorus compound, a tertiary amine, an imidazole, an organic acid metal salt, a Lewis acid, Examples include amine complex salts. These may be used alone or in combination of two or more. The addition amount of the curing accelerator is, for example, in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the curing agent.
 前記有機溶媒は、前記酸基含有(メタ)アクリレート樹脂や硬化剤等の各種成分を溶解し得るものであれば特に限定されず、例えば、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。 The organic solvent is not particularly limited as long as it can dissolve various components such as the acid group-containing (meth) acrylate resin and the curing agent. For example, methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol, Examples include cyclohexanone, methyl cellosolve, diethylene glycol monoethyl ether acetate, and propylene glycol monomethyl ether acetate.
 本発明のソルダーレジスト用樹脂材料を用いてレジスト部材を得る方法は、例えば、前記ソルダーレジスト用樹脂材料を基材上に塗布し、60~100℃程度の温度範囲で有機溶剤を揮発乾燥させた後、所望のパターンが形成されたフォトマスクを通して紫外線や電子線等にて露光させ、アルカリ水溶液にて未露光部を現像し、更に140~180℃程度の温度範囲で加熱硬化させる方法が挙げられる。 The method of obtaining a resist member using the solder resist resin material of the present invention is, for example, by applying the solder resist resin material on a substrate and evaporating and drying the organic solvent in a temperature range of about 60 to 100 ° C. Thereafter, there is a method in which a non-exposed portion is exposed with an ultraviolet solution or an electron beam through a photomask having a desired pattern formed, and an unexposed portion is developed with an alkaline aqueous solution, and further heated and cured in a temperature range of about 140 to 180 ° C. .
 以下に、実施例および比較例をもって本発明をより詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples.
 本願実施例において酸基含有(メタ)アクリレート樹脂の酸価はJIS K 0070(1992)の中和滴定法にて測定した。 In the examples of the present application, the acid value of the acid group-containing (meth) acrylate resin was measured by the neutralization titration method of JIS K 0070 (1992).
 本願実施例において酸基含有(メタ)アクリレート樹脂の分子量は下記条件のGPCにて測定した。 In the examples of the present application, the molecular weight of the acid group-containing (meth) acrylate resin was measured by GPC under the following conditions.
測定装置:東ソー株式会社製 HLC-8120GPC、UV8020
カラム :東ソー株式会社製 TFKguardcolumnhxl-L、TFKgel(G1000HXL、G2000HXL、G3000HXL、G4000HXL)
検出器 :RI(示差屈折計)及びUV(254nm)
測定条件:カラム温度 40℃
     溶媒    THF
     流束    1.0ml/min
標準  :ポリスチレン標準試料にて検量線作成
試料  :樹脂固形分換算で0.1質量%のTHF溶液をマイクロフィルターでろ過したもの(注入量:200μl)
Measuring device: Tosoh Corporation HLC-8120GPC, UV8020
Column: TFKguardcolumnhxl-L, TFKgel (G1000HXL, G2000HXL, G3000HXL, G4000HXL) manufactured by Tosoh Corporation
Detector: RI (differential refractometer) and UV (254 nm)
Measurement conditions: Column temperature 40 ° C
Solvent THF
Flux 1.0ml / min
Standard: Calibration curve prepared with polystyrene standard sample Sample: 0.1% by mass THF solution in terms of resin solids filtered through microfilter (injection amount: 200 μl)
 実施例1 酸基含有(メタ)アクリレート樹脂(1)の製造
 撹拌装置、温度計、コンデンサーを付けたフラスコにプロピレングリコールモノメチルエーテルアセテート1102.8g、イソホロンジイソシアネートのイソシアヌレート変性体(EVONIK社製「VESTANAT T-1890/100」、イソシアネート基含有量17.2質量%)197.6g及びシクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物506.9gを加えた。2時間かけて140℃まで昇温させ、同温度で更に2時間反応させた。赤外スペクトルにてイソシアネート基の特性吸収である2270cm-1の吸収が完全に消滅したことを確認した。次いで、イソホロンジイソシアネートのイソシアヌレート変性体(EVONIK社製「VESTANAT T-1890/100」、イソシアネート基含有量17.2質量%)197.6gを加えて反応を継続し、赤外スペクトルにてイソシアネート基の特性吸収である2270cm-1の吸収が完全に消滅したことを確認した。更に、イソホロンジイソシアネートのイソシアヌレート変性体(EVONIK社製「VESTANAT T-1890/100」、イソシアネート基含有量17.2質量%)197.6gを加えて反応を継続し、赤外スペクトルにてイソシアネート基の特性吸収である2270cm-1の吸収が完全に消滅したことを確認し、アミドイミド樹脂中間体(1)溶液を得た。赤外スペクトルにて1780cm-1、1720cm-1にイミド基の特性吸収を確認した。酸無水物基非開環条件で測定したアミドイミド樹脂中間体(1)の固形分酸価は190mgKOH/gであった。
Example 1 Production of Acid Group-Containing (Meth) acrylate Resin (1) In a flask equipped with a stirrer, thermometer and condenser, 1102.8 g of propylene glycol monomethyl ether acetate and an isocyanurate modified form of isophorone diisocyanate (“VESTANAT” manufactured by EVONIK) T7.61 / 100 ”, isocyanate group content 17.2% by mass) 197.6 g and cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride 506.9 g were added. The temperature was raised to 140 ° C. over 2 hours, and the reaction was further continued for 2 hours at the same temperature. In the infrared spectrum, it was confirmed that the absorption at 2270 cm −1 , which is the characteristic absorption of the isocyanate group, completely disappeared. Subsequently, 197.6 g of an isocyanurate-modified form of isophorone diisocyanate (“VESTANAT T-1890 / 100” manufactured by EVONIK, isocyanate group content 17.2% by mass) was added, and the reaction was continued. It was confirmed that the absorption at 2270 cm −1 , which is the characteristic absorption, was completely extinguished. Further, 197.6 g of an isocyanurate-modified form of isophorone diisocyanate (“VESTANAT T-1890 / 100” manufactured by EVONIK, isocyanate group content 17.2% by mass) was added, and the reaction was continued. It was confirmed that the absorption at 2270 cm −1 , which is the characteristic absorption of, completely disappeared, and an amidoimide resin intermediate (1) solution was obtained. 1780 cm -1 in the infrared spectra confirmed the characteristic absorption of an imide group at 1720 cm -1. The solid content acid value of the amidoimide resin intermediate (1) measured under acid anhydride group non-ring-opening conditions was 190 mgKOH / g.
 続いて、得られたアミドイミド樹脂中間体(1)溶液にペンタエリスリトールポリアクリレート混合物(東亜合成株式会社製「アロニックスM-306」、ペンタエリスリトールトリアクリレート含有量約67%、水酸基価159.7mgKOH/g)189.2g、トリフェニルフォスフィン3.8g、メトキノン0.6gを加え、120℃で7時間反応させた。赤外スペクトルにて酸無水物基の特性吸収である1860cm-1の吸収が完全に消失したことを確認し、酸基含有(メタ)アクリレート樹脂(1)溶液を得た。酸基含有(メタ)アクリレート樹脂(1)の固形分酸価は140mgKOH/g、(メタ)アクリロイル基当量は727g/当量、質量平均分子量(Mw)は2,353であった。 Subsequently, the resulting amide-imide resin intermediate (1) solution was mixed with a pentaerythritol polyacrylate mixture (“Aronix M-306” manufactured by Toa Gosei Co., Ltd., pentaerythritol triacrylate content of about 67%, hydroxyl value of 159.7 mg KOH / g). ) 189.2 g, triphenylphosphine 3.8 g, and methoquinone 0.6 g were added and reacted at 120 ° C. for 7 hours. It was confirmed in the infrared spectrum that the absorption at 1860 cm −1 , which is the characteristic absorption of the acid anhydride group, completely disappeared, and an acid group-containing (meth) acrylate resin (1) solution was obtained. The solid content acid value of the acid group-containing (meth) acrylate resin (1) was 140 mgKOH / g, the (meth) acryloyl group equivalent was 727 g / equivalent, and the mass average molecular weight (Mw) was 2,353.
 実施例2 酸基含有(メタ)アクリレート樹脂(2)の製造
 撹拌装置、温度計、コンデンサーを付けたフラスコにプロピレングリコールモノメチルエーテルアセテート1422.7g、イソホロンジイソシアネートのイソシアヌレート変性体(EVONIK社製「VESTANAT T-1890/100」、イソシアネート基含有量17.2質量%)753.2g及びシクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物644.2gを加えた。2時間かけて140℃まで昇温させた後、同温度で反応を継続し、赤外スペクトルにてイソシアネート基の特性吸収である2270cm-1の吸収が完全に消滅したことを確認して、アミドイミド樹脂中間体(2)溶液を得た。赤外スペクトルにて1780cm-1、1720cm-1にイミド基の特性吸収を確認した。酸無水物基非開環条件で測定したアミドイミド樹脂中間体(2)の固形分酸価は197mgKOH/gであった。
 続いて、得られたアミドイミド樹脂中間体(2)溶液にペンタエリスリトールポリアクリレート混合物(東亜合成株式会社製「アロニックスM-306」、ペンタエリスリトールトリアクリレート含有量約67%、水酸基価159.7mgKOH/g)189.2g、トリフェニルフォスフィン3.8g、メトキノン0.6gを加え、120℃で7時間反応させた。赤外スペクトルにて酸無水物基の特性吸収である1860cm-1の吸収が完全に消失したことを確認し、酸基含有(メタ)アクリレート樹脂(2)溶液を得た。酸基含有(メタ)アクリレート樹脂(2)の固形分酸価は147mgKOH/g、(メタ)アクリロイル基当量は727g/当量、質量平均分子量(Mw)は3,948であった。
Example 2 Production of Acid Group-Containing (Meth) acrylate Resin (2) In a flask equipped with a stirrer, thermometer and condenser, 1422.7 g of propylene glycol monomethyl ether acetate and an isocyanurate modified form of isophorone diisocyanate ("VESTANAT" manufactured by EVONIK) T-2890 / 100 ", isocyanate group content 17.2% by mass) 753.2 g and cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride 644.2 g were added. After raising the temperature to 140 ° C. over 2 hours, the reaction was continued at the same temperature, and it was confirmed in the infrared spectrum that the absorption at 2270 cm −1 , which is the characteristic absorption of the isocyanate group, was completely eliminated. A resin intermediate (2) solution was obtained. 1780 cm -1 in the infrared spectra confirmed the characteristic absorption of an imide group at 1720 cm -1. The solid content acid value of the amidoimide resin intermediate (2) measured under the acid anhydride group non-ring-opening condition was 197 mgKOH / g.
Subsequently, a pentaerythritol polyacrylate mixture (“Aronix M-306” manufactured by Toa Gosei Co., Ltd., pentaerythritol triacrylate content of about 67%, hydroxyl value of 159.7 mg KOH / g was added to the resulting amideimide resin intermediate (2) solution. ) 189.2 g, triphenylphosphine 3.8 g, and methoquinone 0.6 g were added and reacted at 120 ° C. for 7 hours. In the infrared spectrum, it was confirmed that the absorption at 1860 cm −1 , which is the characteristic absorption of the acid anhydride group, completely disappeared, and an acid group-containing (meth) acrylate resin (2) solution was obtained. The solid content acid value of the acid group-containing (meth) acrylate resin (2) was 147 mgKOH / g, the (meth) acryloyl group equivalent was 727 g / equivalent, and the mass average molecular weight (Mw) was 3,948.
 実施例3 酸基含有(メタ)アクリレート樹脂(3)の製造
 撹拌装置、温度計、コンデンサーを付けたフラスコにプロピレングリコールモノメチルエーテルアセテート1422.7g、イソホロンジイソシアネートのイソシアヌレート変性体(EVONIK社製「VESTANAT T-1890/100」、イソシアネート基含有量17.2質量%)753.2g及びシクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物644.2gを加えた。2時間かけて140℃まで昇温させた後、同温度で反応を継続し、赤外スペクトルにてイソシアネート基の特性吸収である2270cm-1の吸収が完全に消滅したことを確認して、アミドイミド樹脂中間体(3)溶液を得た。赤外スペクトルにて1780cm-1、1720cm-1にイミド基の特性吸収を確認した。酸無水物基非開環条件で測定したアミドイミド樹脂中間体(3)の固形分酸価は201mgKOH/gであった。
Example 3 Production of Acid Group-Containing (Meth) acrylate Resin (3) In a flask equipped with a stirrer, thermometer and condenser, 1422.7 g of propylene glycol monomethyl ether acetate and an isocyanurate modified form of isophorone diisocyanate (“VESTANAT” manufactured by EVONIK) T-2890 / 100 ", isocyanate group content 17.2% by mass) 753.2 g and cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride 644.2 g were added. After raising the temperature to 140 ° C. over 2 hours, the reaction was continued at the same temperature, and it was confirmed in the infrared spectrum that the absorption at 2270 cm −1 , which is the characteristic absorption of the isocyanate group, was completely eliminated. A resin intermediate (3) solution was obtained. 1780 cm -1 in the infrared spectra confirmed the characteristic absorption of an imide group at 1720 cm -1. The solid content acid value of the amidoimide resin intermediate (3) measured under acid anhydride group non-ring-opening conditions was 201 mgKOH / g.
 続いて、得られたアミドイミド樹脂中間体(3)溶液にヒドロキシエチルアクリレート189.2g、トリフェニルフォスフィン3.8g、メトキノン0.6gを加え、120℃で7時間反応させた。赤外スペクトルにて酸無水物基の特性吸収である1860cm-1の吸収が完全に消失したことを確認し、酸基含有(メタ)アクリレート樹脂(3)溶液を得た。酸基含有(メタ)アクリレート樹脂(3)の固形分酸価は154mgKOH/g、(メタ)アクリロイル基当量は889g/当量、質量平均分子量(Mw)は3,443であった。 Subsequently, 189.2 g of hydroxyethyl acrylate, 3.8 g of triphenylphosphine, and 0.6 g of methoquinone were added to the obtained amideimide resin intermediate (3) solution, and the mixture was reacted at 120 ° C. for 7 hours. In the infrared spectrum, it was confirmed that the absorption at 1860 cm −1 , which is the characteristic absorption of the acid anhydride group, completely disappeared, and an acid group-containing (meth) acrylate resin (3) solution was obtained. The solid content acid value of the acid group-containing (meth) acrylate resin (3) was 154 mgKOH / g, the (meth) acryloyl group equivalent was 889 g / equivalent, and the mass average molecular weight (Mw) was 3,443.
 実施例4 酸基含有(メタ)アクリレート樹脂(4)の製造
 撹拌装置、温度計、コンデンサーを付けたフラスコにプロピレングリコールモノメチルエーテルアセテート1422.7g、イソホロンジイソシアネートのイソシアヌレート変性体(EVONIK社製「VESTANAT T-1890/100」、イソシアネート基含有量17.2質量%)753.2g及びシクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物644.2gを加えた。2時間かけて140℃まで昇温させた後、同温度で反応を継続し、赤外スペクトルにてイソシアネート基の特性吸収である2270cm-1の吸収が完全に消滅したことを確認して、アミドイミド樹脂中間体(4)溶液を得た。赤外スペクトルにて1780cm-1、1720cm-1にイミド基の特性吸収を確認した。酸無水物基非開環条件で測定したアミドイミド樹脂中間体(4)の固形分酸価は201mgKOH/gであった。
Example 4 Production of Acid Group-Containing (Meth) acrylate Resin (4) In a flask equipped with a stirrer, thermometer and condenser, 1422.7 g of propylene glycol monomethyl ether acetate and an isocyanurate modified form of isophorone diisocyanate ("VESTANAT" manufactured by EVONIK) T-2890 / 100 ", isocyanate group content 17.2% by mass) 753.2 g and cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride 644.2 g were added. After raising the temperature to 140 ° C. over 2 hours, the reaction was continued at the same temperature, and it was confirmed in the infrared spectrum that the absorption at 2270 cm −1 , which is the characteristic absorption of the isocyanate group, was completely eliminated. A resin intermediate (4) solution was obtained. 1780 cm -1 in the infrared spectra confirmed the characteristic absorption of an imide group at 1720 cm -1. The solid content acid value of the amidoimide resin intermediate (4) measured under acid anhydride group non-ring-opening conditions was 201 mgKOH / g.
 続いて、得られたアミドイミド樹脂中間体(4)溶液にヒドロキシプロピルアクリレート189.2g、トリフェニルフォスフィン3.8g、メトキノン0.6gを加え、120℃で7時間反応させた。赤外スペクトルにて酸無水物基の特性吸収である1860cm-1の吸収が完全に消失したことを確認し、酸基含有(メタ)アクリレート樹脂(4)溶液を得た。酸基含有(メタ)アクリレート樹脂(4)の固形分酸価は164mgKOH/g、(メタ)アクリロイル基当量は997g/当量、質量平均分子量(Mw)は3,621であった。 Subsequently, 189.2 g of hydroxypropyl acrylate, 3.8 g of triphenylphosphine, and 0.6 g of methoquinone were added to the obtained amideimide resin intermediate (4) solution, and the mixture was reacted at 120 ° C. for 7 hours. It was confirmed in the infrared spectrum that the absorption at 1860 cm −1, which is the characteristic absorption of the acid anhydride group, completely disappeared, and an acid group-containing (meth) acrylate resin (4) solution was obtained. The solid content acid value of the acid group-containing (meth) acrylate resin (4) was 164 mgKOH / g, the (meth) acryloyl group equivalent was 997 g / equivalent, and the mass average molecular weight (Mw) was 3,621.
 実施例5 酸基含有(メタ)アクリレート樹脂(5)の製造
 撹拌装置、温度計、コンデンサーを付けたフラスコにプロピレングリコールモノメチルエーテルアセテート1422.7g、イソホロンジイソシアネートのイソシアヌレート変性体(EVONIK社製「VESTANAT T-1890/100」、イソシアネート基含有量17.2質量%)753.2g及びシクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物644.2gを加えた。2時間かけて140℃まで昇温させた後、同温度で反応を継続し、赤外スペクトルにてイソシアネート基の特性吸収である2270cm-1の吸収が完全に消滅したことを確認して、アミドイミド樹脂中間体(5)溶液を得た。赤外スペクトルにて1780cm-1、1720cm-1にイミド基の特性吸収を確認した。酸無水物基非開環条件で測定したアミドイミド樹脂中間体(5)の固形分酸価は201mgKOH/gであった。
Example 5 Production of Acid Group-Containing (Meth) acrylate Resin (5) In a flask equipped with a stirrer, thermometer and condenser, 1422.7 g of propylene glycol monomethyl ether acetate and isocyanurate modified form of isophorone diisocyanate (“VESTANAT” manufactured by EVONIK) T-2890 / 100 ", isocyanate group content 17.2% by mass) 753.2 g and cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride 644.2 g were added. After raising the temperature to 140 ° C. over 2 hours, the reaction was continued at the same temperature, and it was confirmed in the infrared spectrum that the absorption at 2270 cm −1 , which is the characteristic absorption of the isocyanate group, was completely eliminated. A resin intermediate (5) solution was obtained. 1780 cm -1 in the infrared spectra confirmed the characteristic absorption of an imide group at 1720 cm -1. The solid content acid value of the amidoimide resin intermediate (5) measured under acid anhydride group non-ring-opening conditions was 201 mgKOH / g.
 続いて、得られたアミドイミド樹脂中間体(5)溶液に4-ヒドロキシブチルアクリレート189.2g、トリフェニルフォスフィン3.8g、メトキノン0.6gを加え、120℃で7時間反応させた。赤外スペクトルにて酸無水物基の特性吸収である1860cm-1の吸収が完全に消失したことを確認し、酸基含有(メタ)アクリレート樹脂(4)溶液を得た。酸基含有(メタ)アクリレート樹脂(4)の固形分酸価は149mgKOH/g、(メタ)アクリロイル基当量は1,104g/当量、質量平均分子量(Mw)は3,792であった。 Subsequently, 189.2 g of 4-hydroxybutyl acrylate, 3.8 g of triphenylphosphine, and 0.6 g of methoquinone were added to the resulting amideimide resin intermediate (5) solution, and reacted at 120 ° C. for 7 hours. In the infrared spectrum, it was confirmed that the absorption at 1860 cm −1 , which is the characteristic absorption of the acid anhydride group, completely disappeared, and an acid group-containing (meth) acrylate resin (4) solution was obtained. The solid content acid value of the acid group-containing (meth) acrylate resin (4) was 149 mgKOH / g, the (meth) acryloyl group equivalent was 1,104 g / equivalent, and the mass average molecular weight (Mw) was 3,792.
 比較製造例1 酸基含有(メタ)アクリレート樹脂(1’)の製造
 撹拌装置、温度計、コンデンサーを付けたフラスコにプロピレングリコールモノメチルエーテルアセテート276.4g、イソホロンジイソシアネートのイソシアヌレート変性体(EVONIK社製「VESTANAT T-1890/100」、イソシアネート基含有量17.2質量%)146.4g及び無水トリメリット酸121.0gを加えた。2時間かけて140℃まで昇温させた後、同温度で反応を継続し、赤外スペクトルにてイソシアネート基の特性吸収である2270cm-1の吸収が完全に消滅したことを確認して、アミドイミド樹脂中間体(1’)溶液を得た。赤外スペクトルにて1780cm-1、1720cm-1にイミド基の特性吸収を確認した。酸無水物基非開環条件で測定したアミドイミド樹脂中間体(1’)の固形分酸価は212mgKOH/gであった。
Comparative Production Example 1 Production of Acid Group-Containing (Meth) acrylate Resin (1 ′) 276.4 g of Propylene Glycol Monomethyl Ether Acetate and Isocyanurate Modified Form of Isophorone Diisocyanate (EVONIK) “VESTANAT T-1890 / 100”, isocyanate group content 17.2% by mass) 146.4 g and trimellitic anhydride 121.0 g were added. After raising the temperature to 140 ° C. over 2 hours, the reaction was continued at the same temperature, and it was confirmed in the infrared spectrum that the absorption at 2270 cm −1 , which is the characteristic absorption of the isocyanate group, was completely eliminated. A resin intermediate (1 ′) solution was obtained. 1780 cm -1 in the infrared spectra confirmed the characteristic absorption of an imide group at 1720 cm -1. The solid content acid value of the amidoimide resin intermediate (1 ′) measured under acid anhydride group non-ring-opening conditions was 212 mgKOH / g.
 続いて、得られたアミドイミド樹脂中間体(1’)溶液にペンタエリスリトールポリアクリレート混合物(東亜合成株式会社製「アロニックスM-306」、ペンタエリスリトールトリアクリレート含有量約67%、水酸基価159.7mgKOH/g)24.5gを加え、120℃で2時間反応させた。赤外スペクトルにて酸無水物基の特性吸収である1860cm-1の吸収が完全に消失したことを確認し、酸基含有(メタ)アクリレート樹脂(1’)溶液を得た。酸基含有(メタ)アクリレート樹脂(1’)の固形分酸価は162mgKOH/g、(メタ)アクリロイル基当量は567g/当量、質量平均分子量(Mw)は3865であった。 Subsequently, the resulting amide-imide resin intermediate (1 ′) solution was mixed with a pentaerythritol polyacrylate mixture (“Aronix M-306” manufactured by Toa Gosei Co., Ltd., pentaerythritol triacrylate content of about 67%, hydroxyl value 159.7 mg KOH / g) 24.5 g was added and reacted at 120 ° C. for 2 hours. In the infrared spectrum, it was confirmed that absorption at 1860 cm −1 , which is the characteristic absorption of the acid anhydride group, completely disappeared, and an acid group-containing (meth) acrylate resin (1 ′) solution was obtained. The acid group-containing (meth) acrylate resin (1 ′) had a solid content acid value of 162 mg KOH / g, a (meth) acryloyl group equivalent of 567 g / equivalent, and a mass average molecular weight (Mw) of 3865.
実施例6~10及び比較例1
 下記要領で各種評価試験を行った。結果を表1に示す。
Examples 6 to 10 and Comparative Example 1
Various evaluation tests were performed as follows. The results are shown in Table 1.
・溶剤希釈性の評価
 先で得た酸基含有(メタ)アクリレート樹脂10gに25℃のプロピレングリコールモノメチルエーテルアセテートを徐々に添加し、濁りが生じるまでの希釈率を測定した。
-Evaluation of solvent dilution The propylene glycol monomethyl ether acetate of 25 degreeC was added gradually to 10 g of acid group containing (meth) acrylate resins obtained previously, and the dilution rate until it became cloudy was measured.
・硬化性樹脂組成物の調製
 先で得た酸基含有(メタ)アクリレート樹脂(固形分)100g、DIC株式会社製「EPICLON N-680」(クレゾールノボラック型エポキシ樹脂)24g、BASF社製「イルガキュア907」(2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン)5g、2-エチル-4-メチルイミダゾール0.5g、東亞合成株式会社製「ルミキュアDPA-600T」(ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートとをモル比40/60で含有する組成物)13g、フタロシアニングリーン0.65gを配合し、プロピレングリコールモノメチルエーテルアセテートを加えて不揮発分を50質量%に調整し、硬化性樹脂組成物を得た。
-Preparation of curable resin composition 100 g of acid group-containing (meth) acrylate resin (solid content) obtained in the above, "EPICLON N-680" (cresol novolac type epoxy resin) manufactured by DIC Corporation, "Irgacure" manufactured by BASF Corporation 907 "(2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one), 0.5 g of 2-ethyl-4-methylimidazole," LumiCure DPA-600T "manufactured by Toagosei Co., Ltd. "(Composition containing dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate in a molar ratio of 40/60) and 0.65 g of phthalocyanine green are added, and propylene glycol monomethyl ether acetate is added to add 50 mass of non-volatile matter. % To obtain a curable resin composition .
・光感度の評価
 ガラス基材の上に硬化性樹脂組成物を50μmのアプリケーターで塗布し、80℃で30分乾燥させた。次いで、コダック社製のステップタブレットNo.2を介し、メタルハライドランプを用いて1,000mJ/cmの紫外線を照射した。これを5%の炭酸ナトリウム水溶液で180秒現像し、残存した段数で評価した。残存段数が多いほど光感度が高い。
-Evaluation of photosensitivity The curable resin composition was apply | coated with the applicator of 50 micrometers on the glass base material, and it was made to dry at 80 degreeC for 30 minutes. Next, Step Tablet No. 2 was irradiated with 1,000 mJ / cm 2 ultraviolet rays using a metal halide lamp. This was developed with a 5% aqueous sodium carbonate solution for 180 seconds and evaluated by the number of remaining steps. The greater the number of remaining stages, the higher the photosensitivity.
・乾燥管理幅の評価
 ガラス基材の上に硬化性樹脂組成物を50μmのアプリケーターで塗布し、80℃での乾燥時間が異なるサンプルを乾燥時間30分から100分まで10分刻みで作成した。これらを5質量%の炭酸ナトリウム水溶液で180秒現像し、残渣が残らなかったサンプルの80℃での乾燥時間を乾燥管理幅として評価した。乾燥管理幅が長いほどアルカリ現像性に優れる。
-Evaluation of drying control width A curable resin composition was applied onto a glass substrate with a 50 μm applicator, and samples with different drying times at 80 ° C. were prepared every 10 minutes from 30 minutes to 100 minutes. These were developed with a 5% by mass aqueous sodium carbonate solution for 180 seconds, and the drying time at 80 ° C. of the sample in which no residue remained was evaluated as the drying control width. The longer the drying control width, the better the alkali developability.
・耐熱性の評価
 ガラス上に硬化性樹脂組成物を50μmのアプリケーターで塗布し、80℃で30分間乾燥させた。メタルハライドランプを用いて1,000mJ/cmの紫外線を照射した後、170℃で1時間加熱した。
-Evaluation of heat resistance A curable resin composition was applied onto glass with a 50 µm applicator and dried at 80 ° C for 30 minutes. After irradiating 1,000 mJ / cm 2 of ultraviolet rays using a metal halide lamp, it was heated at 170 ° C. for 1 hour.
 ガラスから硬化物を剥離して6mm×40mmの試験片を切り出し、粘弾性測定装置(DMA:レオメトリック社製固体粘弾性測定装置「RSAII」、引張り法:周波数1Hz、昇温速度3℃/分)を用いて、弾性率変化が最大となる(tanδ変化率が最も大きい)温度をガラス転移温度(Tg)として評価した。
A:ガラス転移温度(Tg)が230℃以上
B:ガラス転移温度(Tg)が230℃未満
The cured product is peeled off from the glass, and a 6 mm × 40 mm test piece is cut out, and viscoelasticity measuring device (DMA: solid viscoelasticity measuring device “RSAII” manufactured by Rheometric Co., Ltd., tension method: frequency 1 Hz, temperature rising rate 3 ° C./min. ) Was used to evaluate the glass transition temperature (Tg) at the temperature at which the elastic modulus change was maximum (the tan δ change rate was the largest).
A: Glass transition temperature (Tg) is 230 ° C. or higher B: Glass transition temperature (Tg) is lower than 230 ° C.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008

Claims (15)

  1.  酸基又は酸無水物基を有するアミドイミド樹脂(A)とヒドロキシ(メタ)アクリレート化合物(B)とを必須の反応原料とする酸基含有(メタ)アクリレート樹脂であって、前記アミドイミド樹脂(A)が、ポリイソシアネート化合物(a1)とポリカルボン酸又はその酸無水物(a2)とを必須の反応原料とし、前記ポリカルボン酸又はその酸無水物(a2)が脂環式ポリカルボン酸又はその無水物を必須の成分とすることを特徴とする酸基含有(メタ)アクリレート樹脂。 An acid group-containing (meth) acrylate resin comprising an amideimide resin (A) having an acid group or an acid anhydride group and a hydroxy (meth) acrylate compound (B) as essential reaction raw materials, the amideimide resin (A) However, the polyisocyanate compound (a1) and the polycarboxylic acid or acid anhydride (a2) are essential reaction raw materials, and the polycarboxylic acid or acid anhydride (a2) is an alicyclic polycarboxylic acid or anhydride thereof. An acid group-containing (meth) acrylate resin characterized by comprising a product as an essential component.
  2.  前記酸基含有(メタ)アクリレート樹脂が、下記の構造式(2)で表されるイミド結合とアミド結合とを有し、さらに分子末端に、下記の構造式(3)、(4)、(4’)および(5)からなる群から選ばれる少なくとも1種で表される酸基を有する構造と、下記の構造式(3’)、(4’)および(4”)からなる群から選ばれる少なくとも1種で表される(メタ)アクリロイル基を有する構造とを有する、請求項1記載の酸基含有(メタ)アクリレート樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (ただし、式中、Rはポリカルボン酸又はその酸無水物(a2)から酸無水物基とカルボキシ基を除いた残基である。Rは、前記ヒドロキシ(メタ)アクリレート化合物(B)からヒドロキシ基を除いた残基である。)
    The acid group-containing (meth) acrylate resin has an imide bond and an amide bond represented by the following structural formula (2), and the following structural formulas (3), (4), ( 4 ') and a structure having at least one acid group selected from the group consisting of (5) and a group consisting of the following structural formulas (3'), (4 ') and (4 ") The acid group-containing (meth) acrylate resin according to claim 1, which has a structure having a (meth) acryloyl group represented by at least one kind.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 3 is a residue obtained by removing an acid anhydride group and a carboxy group from polycarboxylic acid or acid anhydride (a2). R 4 is the hydroxy (meth) acrylate compound (B). It is a residue obtained by removing a hydroxy group from
  3. 前記ポリイソシアネート化合物(a1)が脂肪族又は脂環式ジイソシアネート化合物或いはその変性体を必須の成分とする請求項1記載の酸基含有(メタ)アクリレート樹脂。 The acid group-containing (meth) acrylate resin according to claim 1, wherein the polyisocyanate compound (a1) contains an aliphatic or alicyclic diisocyanate compound or a modified product thereof as an essential component.
  4. 前記ポリカルボン酸又はその酸無水物(a2)が脂環式トリカルボン酸無水物を必須の成分とするものである請求項1記載の酸基含有(メタ)アクリレート樹脂。 2. The acid group-containing (meth) acrylate resin according to claim 1, wherein the polycarboxylic acid or its acid anhydride (a2) contains an alicyclic tricarboxylic acid anhydride as an essential component.
  5. (メタ)アクリロイル基当量が400~1,500g/当量の範囲である請求項1記載の酸基含有(メタ)アクリレート樹脂。 The acid group-containing (meth) acrylate resin according to claim 1, wherein the (meth) acryloyl group equivalent is in the range of 400 to 1,500 g / equivalent.
  6. 請求項1~4の何れか一つに記載の変性(メタ)アクリレート樹脂と、光重合開始剤とを含有する硬化性樹脂組成物。 A curable resin composition comprising the modified (meth) acrylate resin according to any one of claims 1 to 4 and a photopolymerization initiator.
  7. 請求項5記載の硬化性樹脂組成物の硬化物。 A cured product of the curable resin composition according to claim 5.
  8. 請求項5記載の硬化性樹脂組成物からなる絶縁材料。 An insulating material comprising the curable resin composition according to claim 5.
  9. 請求項5記載の硬化性樹脂組成物からなるソルダーレジスト用樹脂材料。 A resin material for a solder resist comprising the curable resin composition according to claim 5.
  10. 請求項8記載のソルダーレジスト用樹脂材料を用いてなるレジスト部材。 A resist member comprising the resin material for solder resist according to claim 8.
  11.  酸基又は酸無水物基を有するアミドイミド樹脂(A)とヒドロキシ(メタ)アクリレート化合物(B)とを必須の反応原料として反応させる酸基含有(メタ)アクリレート樹脂の製造方法であって、前記アミドイミド樹脂(A)が、ポリイソシアネート化合物(a1)とポリカルボン酸又はその酸無水物(a2)とを必須の反応原料とし、前記ポリカルボン酸又はその酸無水物(a2)が脂環式ポリカルボン酸又はその無水物を必須の成分として反応させることによって得られるものであることを特徴とする酸基含有(メタ)アクリレート樹脂の製造方法。 A method for producing an acid group-containing (meth) acrylate resin, in which an amideimide resin (A) having an acid group or an acid anhydride group and a hydroxy (meth) acrylate compound (B) are reacted as essential reaction raw materials, Resin (A) uses polyisocyanate compound (a1) and polycarboxylic acid or acid anhydride (a2) as essential reaction raw materials, and the polycarboxylic acid or acid anhydride (a2) is alicyclic polycarboxylic acid. A method for producing an acid group-containing (meth) acrylate resin, which is obtained by reacting an acid or an anhydride thereof as an essential component.
  12.  前記ポリイソシアネート化合物(a1)が脂肪族又は脂環式ジイソシアネート化合物或いはその変性体を必須の成分とする請求項11記載の酸基含有(メタ)アクリレート樹脂の製造方法。 The method for producing an acid group-containing (meth) acrylate resin according to claim 11, wherein the polyisocyanate compound (a1) comprises an aliphatic or alicyclic diisocyanate compound or a modified product thereof as an essential component.
  13.  前記ポリカルボン酸又はその酸無水物(a2)が脂環式トリカルボン酸無水物を必須の成分とするものである請求項11又は12記載の酸基含有(メタ)アクリレート樹脂の製造方法。 The method for producing an acid group-containing (meth) acrylate resin according to claim 11 or 12, wherein the polycarboxylic acid or its acid anhydride (a2) contains an alicyclic tricarboxylic acid anhydride as an essential component.
  14.  (メタ)アクリロイル基当量が400~1,500g/当量の範囲である請求項11~13のいずれか一項記載の酸基含有(メタ)アクリレート樹脂の製造方法。 The method for producing an acid group-containing (meth) acrylate resin according to any one of claims 11 to 13, wherein the (meth) acryloyl group equivalent is in the range of 400 to 1,500 g / equivalent.
  15. 請求項11~14の何れか一つに記載の製造方法で得られた酸基含有(メタ)アクリレート樹脂と、光重合開始剤とを混合する硬化性樹脂組成物の製造方法。 A method for producing a curable resin composition, comprising mixing the acid group-containing (meth) acrylate resin obtained by the production method according to any one of claims 11 to 14 and a photopolymerization initiator.
PCT/JP2018/021824 2017-06-14 2018-06-07 Acid group-containing (meth)acrylate resin and resin material for solder resists WO2018230428A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019525361A JP6669311B2 (en) 2017-06-14 2018-06-07 Acid group-containing (meth) acrylate resin and resin material for solder resist

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017116765 2017-06-14
JP2017-116765 2017-06-14

Publications (1)

Publication Number Publication Date
WO2018230428A1 true WO2018230428A1 (en) 2018-12-20

Family

ID=64659241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021824 WO2018230428A1 (en) 2017-06-14 2018-06-07 Acid group-containing (meth)acrylate resin and resin material for solder resists

Country Status (3)

Country Link
JP (1) JP6669311B2 (en)
TW (1) TW201905017A (en)
WO (1) WO2018230428A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129667A1 (en) * 2018-12-19 2020-06-25 Dic株式会社 Acid-group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
WO2020129666A1 (en) * 2018-12-19 2020-06-25 Dic株式会社 Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resists, and resist member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023055304A (en) 2021-10-06 2023-04-18 日本化薬株式会社 Polyamide-imide(meth)acrylate resin, active energy ray-curable resin composition using the same and cured product of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221429A (en) * 2001-06-28 2003-08-05 Dainippon Ink & Chem Inc Active ray-curing polyimide resin composition
JP2005154643A (en) * 2003-11-27 2005-06-16 Tamura Kaken Co Ltd Alkali-soluble imide resin curable by actinic energy ray, alkali-soluble imide resin composition curable by actinic energy ray, composition for solder resist, printed circuit board and photosensitive dry film
JP2015155500A (en) * 2014-02-20 2015-08-27 Dic株式会社 Curable amide-imide resin and method for producing amide-imide resin

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4997661B2 (en) * 1999-03-30 2012-08-08 Dic株式会社 Method for producing imide resin and energy ray curable resin composition using the resin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221429A (en) * 2001-06-28 2003-08-05 Dainippon Ink & Chem Inc Active ray-curing polyimide resin composition
JP2005154643A (en) * 2003-11-27 2005-06-16 Tamura Kaken Co Ltd Alkali-soluble imide resin curable by actinic energy ray, alkali-soluble imide resin composition curable by actinic energy ray, composition for solder resist, printed circuit board and photosensitive dry film
JP2015155500A (en) * 2014-02-20 2015-08-27 Dic株式会社 Curable amide-imide resin and method for producing amide-imide resin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129667A1 (en) * 2018-12-19 2020-06-25 Dic株式会社 Acid-group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
WO2020129666A1 (en) * 2018-12-19 2020-06-25 Dic株式会社 Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resists, and resist member
JP6780809B1 (en) * 2018-12-19 2020-11-04 Dic株式会社 Acid group-containing (meth) acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist and resist member
JPWO2020129666A1 (en) * 2018-12-19 2021-02-15 Dic株式会社 Acid group-containing (meth) acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist and resist member

Also Published As

Publication number Publication date
JPWO2018230428A1 (en) 2020-02-27
TW201905017A (en) 2019-02-01
JP6669311B2 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
WO2018230428A1 (en) Acid group-containing (meth)acrylate resin and resin material for solder resists
JP6579412B2 (en) Acid group-containing (meth) acrylate resin and solder resist resin material
JP6660575B2 (en) Acid group-containing (meth) acrylate resin and resin material for solder resist
JP7172555B2 (en) Acid group-containing (meth)acrylate resin composition, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
WO2018186183A1 (en) Acid group-containing (meth)acrylate resin and solder resist resin material
JP6780809B1 (en) Acid group-containing (meth) acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist and resist member
JP6813135B1 (en) Acid group-containing (meth) acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist and resist member
JP7183761B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7288167B2 (en) Polyamideimide resin containing ethylenically unsaturated group, acid group and secondary hydroxyl group, polyamideimide resin containing ethylenically unsaturated group and acid group, and production method
JP7188053B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7310253B2 (en) Amideimide resin composition, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP2020063346A (en) Acidic group-containing epoxy (meth)acrylate resin, curable resin composition, cured article, insulation material, resin material for solder resist, and resist member
JP7196587B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7264004B2 (en) Acid group-containing (meth)acrylate resin composition, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7275898B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7151411B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7192480B2 (en) Curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7228093B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP2020083985A (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP2018024848A (en) Acid group-containing (meth) acrylate resin and resin material for solder resist

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818784

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525361

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818784

Country of ref document: EP

Kind code of ref document: A1