WO2020129667A1 - Acid-group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member - Google Patents

Acid-group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member Download PDF

Info

Publication number
WO2020129667A1
WO2020129667A1 PCT/JP2019/047584 JP2019047584W WO2020129667A1 WO 2020129667 A1 WO2020129667 A1 WO 2020129667A1 JP 2019047584 W JP2019047584 W JP 2019047584W WO 2020129667 A1 WO2020129667 A1 WO 2020129667A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
group
acid
mass
Prior art date
Application number
PCT/JP2019/047584
Other languages
French (fr)
Japanese (ja)
Inventor
駿介 山田
康介 桑田
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2020537671A priority Critical patent/JP6780809B1/en
Priority to KR1020217014292A priority patent/KR102500020B1/en
Priority to CN201980084081.9A priority patent/CN113195574B/en
Publication of WO2020129667A1 publication Critical patent/WO2020129667A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/04Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonamides, polyesteramides or polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1035Preparatory processes from tetracarboxylic acids or derivatives and diisocyanates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3452Solder masks

Definitions

  • the present invention provides an acid group-containing (meth)acrylate resin having excellent photosensitivity and alkali developability and excellent heat resistance in a cured product, a curable resin composition containing the same, and an insulating material comprising the curable resin composition.
  • a solder resist resin material, a resist member, and a method for producing an acid group-containing (meth)acrylate resin are examples of solder resist resin material, a resist member, and a method for producing an acid group-containing (meth)acrylate resin.
  • acid group-containing epoxy acrylate resins obtained by reacting an acid anhydride after acrylate conversion of epoxy resin with acrylic acid are widely used as resin materials for solder resists for printed wiring boards.
  • resin materials for solder resists There are various requirements for the resin material for a solder resist, such as curing with a small amount of exposure, excellent alkali developability, and excellent heat resistance in the cured product.
  • solder resist resin materials include active energy ray-curable products obtained by reacting a reaction product of a novolac type epoxy resin and an unsaturated monocarboxylic acid with a saturated or unsaturated polybasic acid anhydride.
  • a resin is known (for example, refer to Patent Document 1 below), although it has excellent heat resistance in a cured product, it does not satisfy the ever-increasing required properties and is sufficient for the recent market demands. Was not.
  • the problem to be solved by the present invention is to provide an acid group-containing (meth)acrylate resin having excellent photosensitivity and alkali developability and excellent heat resistance in a cured product, a curable resin composition containing the same,
  • An object of the present invention is to provide an insulating material comprising a curable resin composition, a resin material for solder resist, a resist member, and a method for producing an acid group-containing (meth)acrylate resin.
  • an amide imide resin having an acid group and/or an acid anhydride group, a hydroxyl group-containing (meth)acrylate compound, an epoxy group-containing (meth)acrylate compound and a polycarboxylic acid An acid group-containing (meth)acrylate resin using an acid anhydride as an essential reaction raw material, wherein the amide imide resin is a reaction product of a polyisocyanate compound and a polycarboxylic acid anhydride, or a polyisocyanate compound, a polycarboxylic acid anhydride.
  • a hydroxyl group-containing (meth)acrylate compound used as a raw material of an acid group-containing (meth)acrylate resin or a hydroxyl group-containing (meth)acrylate compound used as a raw material of an amideimide resin One or both contain a (meth)acrylate compound having two hydroxyl groups, and/or a (meth)acrylate compound having three hydroxyl groups. The inventors have found that the above problems can be solved by using them, and completed the present invention.
  • the present invention relates to an amide imide resin (A) having an acid group and/or an acid anhydride group, a hydroxyl group-containing (meth)acrylate compound (B), an epoxy group-containing (meth)acrylate compound (C), and An acid group-containing (meth)acrylate resin containing a carboxylic acid anhydride (D) as an essential reaction raw material, wherein the amideimide resin (A) is a polyisocyanate compound (a1) and a polycarboxylic acid anhydride (a2). Or a reaction product (A-2) of the polyisocyanate compound (a1), the polycarboxylic acid anhydride (a2) and the hydroxyl group-containing (meth)acrylate compound (a3).
  • Either or both of the containing (meth)acrylate compound (B) and the hydroxyl group-containing (meth)acrylate compound (a3) have (meth)acrylate compound having two hydroxyl groups, and/or have three hydroxyl groups (meth ) Acid group-containing (meth)acrylate resin containing an acrylate compound, a curable resin composition containing the same, a cured product of the curable resin composition, an insulating material, and a solder resist
  • the present invention relates to a resin material, a resist member, and a method for producing an acid group-containing (meth)acrylate resin.
  • the acid group-containing (meth)acrylate resin of the present invention is excellent in photosensitivity and alkali developability, and is excellent in heat resistance in a cured product, and thus can be suitably used for an insulating material, a resin material for solder resist and a resist member. ..
  • the acid group-containing (meth)acrylate resin of the present invention includes an amide imide resin (A) having an acid group and/or an acid anhydride group, a hydroxyl group-containing (meth)acrylate compound (B), and an epoxy group-containing (meth)acrylate compound ( C) and polycarboxylic acid anhydride (D) are essential reaction raw materials.
  • (meth)acrylate means acrylate and/or methacrylate.
  • (meth)acryloyl means acryloyl and/or methacryloyl.
  • (meth)acrylic means acrylic and/or methacrylic.
  • the amide-imide resin (A) having an acid group and/or an acid anhydride group may have only one of an acid group and an acid anhydride group, or may have both. Good. Among them, it is preferable to have an acid anhydride group from the viewpoint of reactivity and reaction control with the hydroxyl group-containing (meth)acrylate compound (B) and the epoxy group-containing (meth)acrylate compound (C). It is preferable to have both an acid group and an acid anhydride group.
  • Examples of the acid group include a carboxyl group, a sulfonic acid group, a phosphoric acid group and the like.
  • Examples of the acid anhydride group include a carboxylic acid anhydride group, a sulfonic acid anhydride group, and a phosphoric acid anhydride group.
  • amide-imide resin (A) As the amide-imide resin (A), [1] a reaction product (A-1) of a polyisocyanate compound (a1) and a polycarboxylic acid anhydride (a2) (hereinafter referred to as "amide-imide resin (A-1)" Or [2] a reaction product (A-2) of a polyisocyanate compound (a1), a polycarboxylic acid anhydride (a2) and a hydroxyl group-containing (meth)acrylate compound (a3) (hereinafter referred to as an amide imide resin (A -2) is sometimes used).
  • the amide imide resin (A-1) is obtained by reacting a polyisocyanate compound (a1) and a polycarboxylic acid anhydride (a2).
  • polyisocyanate compound (a1) examples include, butane diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, and other aliphatic diisocyanate compounds; norbornane diisocyanate, Alicyclic diisocyanate compounds such as isophorone diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate; tolylene diisocyanate, xylylene diisocyanate, tetramethyl xylylene diisocyanate, diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, 4,4'- Aromatic diisocyanate compounds such as diisocyanato-3,3'-dimethylbiphenyl and o-tolidine diisocyanate; polymethylene polyphenyl polyis
  • these polyisocyanate compounds may be used alone or in combination of two or more kinds.
  • These polyisocyanate compounds (a1) have excellent photosensitivity and alkali developability, and are capable of forming an acid group-containing (meth)acrylate resin capable of forming a cured product having excellent heat resistance. Nurate modified products are preferred.
  • each R 1 is independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • Each R 2 is independently an alkyl group having 1 to 4 carbon atoms, or a bonding point connecting the structural site represented by the structural formula (1) and the methylene group marked with *. is there.
  • l is 0 or an integer of 1 to 3
  • m is an integer of 1 to 15.
  • the alicyclic diisocyanate compound or its modified product is preferable, and the alicyclic diisocyanate is preferable, in terms of the acid group-containing (meth)acrylate resin having excellent solvent solubility. Further, the aliphatic diisocyanate compound or a modified product thereof is preferable in that an acid group-containing (meth)acrylate resin capable of forming a cured product having excellent heat sensitivity and excellent photosensitivity and alkali developability can be obtained. , Aliphatic diisocyanates are preferred.
  • the ratio of the total mass of the alicyclic diisocyanate compound or a modified product thereof and the aliphatic diisocyanate compound or a modified product thereof to the total mass of the polyisocyanate compound (a1) is preferably 70% by mass or more, It is more preferably 90 mass% or more.
  • the mass ratio of both is preferably in the range of 20/80 to 80/20.
  • polycarboxylic acid anhydride (a2) examples include aliphatic polycarboxylic acid anhydride, alicyclic polycarboxylic acid anhydride, aromatic polycarboxylic acid anhydride and the like.
  • aliphatic polycarboxylic acid anhydrides examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, citraconic acid, and itacone.
  • examples thereof include acids, glutaconic acid, and acid anhydrides of 1,2,3,4-butanetetracarboxylic acid.
  • the aliphatic hydrocarbon group may be linear or branched and may have an unsaturated bond in the structure.
  • the acid anhydride group is bonded to the alicyclic structure as an alicyclic polycarboxylic acid anhydride, the aromatic ring of the other structural site It does not matter whether it is present or not.
  • Examples of the alicyclic polycarboxylic acid anhydride include tetrahydrophthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, cyclohexanetricarboxylic acid, cyclohexanetetracarboxylic acid, bicyclo[2.2.1]heptane-2, 3-dicarboxylic acid, methylbicyclo[2.2.1]heptane-2,3-dicarboxylic acid, 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene- Examples thereof include acid anhydrides of 1,2-dicarboxylic acid.
  • aromatic polycarboxylic acid anhydrides examples include phthalic acid, trimellitic acid, pyromellitic acid, naphthalene dicarboxylic acid, naphthalene tricarboxylic acid, naphthalene tetracarboxylic acid, biphenyl dicarboxylic acid, biphenyl tricarboxylic acid, biphenyl tetracarboxylic acid, Examples thereof include acid anhydrides of benzophenone tetracarboxylic acid.
  • polycarboxylic acid anhydrides (a2) can be used alone or in combination of two or more kinds.
  • the acid group-containing (meth)acrylate resin capable of forming a cured product having excellent photosensitivity and alkali developability and having excellent heat resistance is obtained, the alicyclic polycarboxylic acid An acid anhydride or the aromatic polycarboxylic acid anhydride is preferable.
  • an acid group-containing (meth)acrylate resin capable of forming a cured product having excellent heat sensitivity and excellent photosensitivity and alkali developability it is possible to obtain a carboxyl group and an acid anhydride in the molecular structure.
  • the content of the tricarboxylic acid anhydride in the polycarboxylic acid anhydride (a2) is preferably 70% by mass or more, and more preferably 90% by mass or more.
  • the amide-imide resin (A-1) if necessary, other compounds may be used in combination as a reaction raw material in addition to the polyisocyanate compound (a1) and the polycarboxylic acid anhydride (a2). ..
  • the other compound when used in combination, the effects of the present invention are sufficiently exhibited, and therefore, the polyisocyanate compound (a1) and the polycarboxylic acid anhydride in the reaction raw material of the amide imide resin (A-1) are used.
  • the total content of (a2) is preferably 80% by mass or more, and more preferably 85% by mass.
  • Examples of the other compounds include polycarboxylic acid and the like.
  • any compound can be used as long as it is a compound having two or more carboxyl groups in one molecule.
  • oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid maleic acid, fumaric acid, phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, hexahydro Phthalic acid, methylhexahydrophthalic acid, citraconic acid, itaconic acid, glutaconic acid, 1,2,3,4-butanetetracarboxylic acid, cyclohexanetricarboxylic acid, cyclohexanetetracarboxylic acid, bicyclo[2.2.1]heptane- 2,3-dicarboxylic acid, methylbicyclo[2.2.1]heptane-2,3-dicarboxylic acid, 4-
  • polycarboxylic acid for example, a copolymer of a conjugated diene vinyl monomer and acrylonitrile, which has a carboxyl group in its molecule, can also be used.
  • polycarboxylic acids (a2) can be used alone or in combination of two or more kinds.
  • the copolymer of the conjugated diene vinyl monomer and acrylonitrile, which has a carboxyl group in its molecule is, for example, a butadiene-acrylonitrile copolymer represented by the following structural formula (2-1).
  • the position of the carboxyl group may be located on either the side chain or the terminal of the molecule, but the terminal is preferred.
  • X is an integer of 1 to 50
  • Y is an integer of 1 to 50
  • Z is an integer of 1 to 20.
  • X is an integer of 1 to 50
  • Y is an integer of 1 to 50
  • Z is an integer of 1 to 20.
  • the acid value of the amide-imide resin (A-1) has excellent photosensitivity and alkali developability, an acid group-containing (meth)acrylate resin capable of forming a cured product having excellent heat resistance can be obtained.
  • the measured value under a neutral condition that is, under the condition that the acid anhydride group is not ring-opened is in the range of 60 to 350 mgKOH/g, and the acid anhydride group was ring-opened in the presence of water.
  • the measured value under the condition is preferably in the range of 61 to 360 mgKOH/g.
  • the acid value is a value measured by the neutralization titration method of JIS K0070 (1992).
  • the method for producing the amide-imide resin (A-1) is not particularly limited and may be produced by any method.
  • it can be produced by a method similar to that of a general amide-imide resin.
  • 0.8 to 3.5 mol of the polycarboxylic acid anhydride (a2) is used with respect to 1 mol of the isocyanate group contained in the polyisocyanate compound (a1), and the temperature condition is about 100 to 180° C.
  • the method of stirring and mixing under the reaction is mentioned.
  • the reaction may be carried out in an organic solvent if necessary, and a basic catalyst may be used if necessary.
  • organic solvent examples include ketone solvents such as methyl ethyl ketone, acetone, dimethylformamide and methyl isobutyl ketone; cyclic ether solvents such as tetrahydrofuran and dioxolane; ester solvents such as methyl acetate, ethyl acetate and butyl acetate; toluene, xylene and solvent.
  • ketone solvents such as methyl ethyl ketone, acetone, dimethylformamide and methyl isobutyl ketone
  • cyclic ether solvents such as tetrahydrofuran and dioxolane
  • ester solvents such as methyl acetate, ethyl acetate and butyl acetate
  • toluene, xylene and solvent examples of the organic solvent.
  • Aromatic solvents such as naphtha; Alicyclic solvents such as cyclohexane and methylcyclohexane; Alcohol solvents such as carbitol, cellosolve, methanol, isopropanol, butanol, propylene glycol monomethyl ether; alkylene glycol monoalkyl ether, dialkylene glycol monoalkyl ether And glycol ether solvents such as dialkylene glycol monoalkyl ether acetate; methoxypropanol, cyclohexanone, methyl cellosolve, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate and the like.
  • These organic solvents can be used alone or in combination of two or more kinds. Further, the amount of the organic solvent used is preferably in the range of about 0.1 to 5 times the total mass of the reaction raw materials because the reaction efficiency becomes good.
  • Examples of the basic catalyst include N-methylmorpholine, pyridine, 1,8-diazabicyclo[5.4.0]undecene-7 (DBU), 1,5-diazabicyclo[4.3.0]nonene- 5(DBN), 1,4-diazabicyclo[2.2.2]octane (DABCO), tri-n-butylamine or dimethylbenzylamine, butylamine, octylamine, monoethanolamine, diethanolamine, triethanolamine, imidazole, 1 -Methylimidazole, 2,4-dimethylimidazole, 1,4-diethylimidazole, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-(N-phenyl)aminopropyltrimethoxysilane, 3-( Amine compounds such as 2-aminoethyl)aminopropyltrimethoxysilane, 3-(2-amin
  • the amide imide resin (A-2) is obtained by reacting a polyisocyanate compound (a1), a polycarboxylic acid anhydride (a2) and a hydroxyl group-containing (meth)acrylate compound (a3).
  • polyisocyanate compound (a1) the same ones as the above polyisocyanate compound (a1) can be used, and the polyisocyanate compound can be used alone or in combination of two or more kinds.
  • polycarboxylic acid anhydride (a2) the same polycarboxylic acid anhydride (a2) as described above can be used.
  • the polycarboxylic acid anhydride (a2) is used in such an amount that an acid group-containing (meth)acrylate resin capable of forming a cured product having excellent photosensitivity and alkali developability and excellent heat resistance can be obtained. Therefore, it is preferably used in the range of 0.8 to 3.5 mol with respect to 1 mol of the isocyanate group contained in the polyisocyanate compound (a1).
  • hydroxyl group-containing (meth)acrylate compound (a3) other specific structures are not particularly limited as long as it is a compound having a hydroxyl group and a (meth)acryloyl group in the molecular structure, and various compounds can be used. it can. Examples thereof include hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, trimethylolpropane (meth)acrylate, trimethylolpropane di(meth)acrylate, pentaerythritol (meth)acrylate, pentaerythritol di(meth)acrylate.
  • a (poly)oxyalkylene chain such as a (poly)oxyethylene chain, a (poly)oxypropylene chain, or a (poly)oxytetramethylene chain is introduced into the molecular structure of each of the various hydroxyl group-containing (meth)acrylate compounds
  • a modified poly)oxyalkylene a modified lactone obtained by introducing a (poly)lactone structure into the molecular structure of each of the various hydroxyl group-containing (meth)acrylate compounds.
  • These hydroxyl group-containing (meth)acrylate compounds (a3) can be used alone or in combination of two or more kinds.
  • the amide imide resin (A-2) if necessary, other than the polyisocyanate compound (a1), the polycarboxylic acid anhydride (a2) and the hydroxyl group-containing (meth)acrylate compound (a3), Other compounds can be used together as a reaction raw material. When the other compound is used in combination, the effect of the present invention is sufficiently exhibited, and therefore, the polyisocyanate compound (a1) and the polycarboxylic acid anhydride in the reaction raw material of the amide imide resin (A-2) are used.
  • the total content of (a2) and the hydroxyl group-containing (meth)acrylate compound (a3) is preferably 80% by mass or more, and more preferably 85% by mass.
  • Examples of the other compounds include polycarboxylic acid and the like.
  • polycarboxylic acid As the polycarboxylic acid, the same polycarboxylic acid as described above can be used.
  • the polycarboxylic acids may be used alone or in combination of two or more.
  • the acid value of the amide-imide resin (A-2) has excellent photosensitivity and alkali developability, an acid group-containing (meth)acrylate resin capable of forming a cured product having excellent heat resistance can be obtained.
  • the measured value under a neutral condition that is, under the condition that the acid anhydride group is not ring-opened is in the range of 60 to 350 mgKOH/g, and the acid anhydride group was ring-opened in the presence of water.
  • the measured value under the condition is preferably in the range of 61 to 360 mgKOH/g.
  • the method for producing the amide-imide resin (A-2) is not particularly limited and may be produced by any method.
  • it may be produced by a method of reacting all the reaction raw materials at once, or may be produced by a method of sequentially reacting the reaction raw materials.
  • the polycarboxylic acid anhydride (a2) is reacted with the hydroxyl group-containing (meth)acrylate compound (a3) (step A1) to obtain the intermediate obtained in the step A1. It is preferable that the reaction product and the polyisocyanate compound (a1) are reacted (step A2).
  • the step A1 is a step of reacting the polycarboxylic acid anhydride (a2) with the hydroxyl group-containing (meth)acrylate compound (a3) to obtain an intermediate reaction product.
  • the reaction is mainly to react the acid anhydride group of the polycarboxylic acid anhydride (a2) with the hydroxyl group of the hydroxyl group-containing (meth)acrylate compound (a3).
  • the reaction ratio of the reaction is preferably such that the number of moles of the polycarboxylic acid anhydride (a2) is 1 to 8 with respect to 1 mole of the hydroxyl group contained in the hydroxyl group-containing (meth)acrylate compound (a3).
  • the reaction of step A1 can be carried out, for example, in the presence of a suitable esterification catalyst while heating and stirring under a temperature condition of about 80 to 140°C. Further, the reaction may be carried out in an organic solvent, if necessary.
  • esterification catalyst examples include phosphorus compounds such as trimethylphosphine, tributylphosphine and triphenylphosphine, amine compounds such as triethylamine, tributylamine and dimethylbenzylamine, 2-methylimidazole, 2-heptadecylimidazole and 2-ethyl.
  • esterification catalysts can be used alone or in combination of two or more kinds.
  • organic solvent the same organic solvents as described above can be used, and the organic solvent can be used alone or in combination of two or more kinds.
  • the step A2 is a reaction between the intermediate reaction product obtained in the step A1 and the polyisocyanate compound (a1).
  • the reaction is mainly to react the acid group and/or acid anhydride group of the intermediate reaction product obtained in step A1 with the isocyanate group of the polyisocyanate compound (a1).
  • the reaction of step A2 can be carried out, for example, in the presence of a suitable basic catalyst, with heating and stirring under a temperature condition of about 100 to 180°C. Further, the reaction may be carried out in an organic solvent, if necessary. When step A1 and step A2 are continuously performed, the basic catalyst and the organic solvent may not be added, or may be appropriately added.
  • the same basic catalysts as described above can be used, and the organic solvent can be used alone or in combination of two or more kinds.
  • the hydroxyl group-containing (meth)acrylate compound (B) As the hydroxyl group-containing (meth)acrylate compound (B), the same as the above-mentioned hydroxyl group-containing (meth)acrylate compound (a3) can be used, and the hydroxyl group-containing (meth)acrylate compound (B) is independent. Can also be used in combination with two or more kinds.
  • the amide imide resin (A-1) is used as the amide imide resin (A)
  • the hydroxyl group-containing (meth)acrylate compound (B) is a (meth)acrylate compound having two hydroxyl groups, and/or A (meth)acrylate compound having three hydroxyl groups is used as an essential component.
  • the hydroxyl group-containing (meth)acrylate compound (a3) which is a raw material of the amide imide resin (A-2), or the hydroxyl group containing A (meth)acrylate compound having two hydroxyl groups and/or a (meth)acrylate compound having three hydroxyl groups is essentially used for either or both of the (meth)acrylate compound (B).
  • the molecular weight of the hydroxyl group-containing (meth)acrylate compound (B) has excellent photosensitivity and alkali developability, and an acid group-containing (meth)acrylate resin capable of forming a cured product having excellent heat resistance is obtained. Therefore, 1,000 or less is preferable. Further, when the hydroxyl group-containing (meth)acrylate compound (B) is an oxyalkylene modified product or a lactone modified product, the weight average molecular weight (Mw) is preferably 1,000 or less.
  • epoxy group-containing (meth)acrylate compound (C) other specific structures are not particularly limited as long as it has a (meth)acryloyl group and an epoxy group in the molecular structure, and various compounds are used. be able to. Examples thereof include glycidyl group-containing (meth)acrylate monomers such as glycidyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate glycidyl ether, and epoxycyclohexylmethyl (meth)acrylate; dihydroxybenzene diglycidyl ether and dihydroxy.
  • Examples thereof include mono(meth)acrylate compounds of diglycidyl ether compounds such as naphthalene diglycidyl ether, biphenol diglycidyl ether, and bisphenol diglycidyl ether.
  • These epoxy group-containing (meth)acrylate compounds may be used alone or in combination of two or more kinds.
  • a (meth)acrylate compound having one epoxy group is preferable because the reaction can be easily controlled, and it forms a cured product having excellent photosensitivity and alkali developability and excellent heat resistance.
  • Glycidyl group-containing (meth)acrylate monomers are preferred because they give possible acid group-containing (meth)acrylate resins.
  • the molecular weight of the glycidyl group-containing (meth)acrylate monomer is preferably 500 or less. Furthermore, the ratio of the glycidyl group-containing (meth)acrylate monomer to the total mass of the epoxy group-containing (meth)acrylate compound (C) is preferably 70% by mass or more, and more preferably 90% by mass or more. ..
  • polycarboxylic acid anhydride (D) the same polycarboxylic acid anhydride (a3) as described above can be used.
  • an acid group-containing (meth)acrylate resin having excellent photosensitivity and alkali developability and capable of forming a cured product having excellent heat resistance can be obtained, an aliphatic polycarboxylic acid anhydride or an alicyclic resin can be obtained.
  • Formula polycarboxylic acid anhydrides are preferred, and aliphatic dicarboxylic acid anhydrides or alicyclic dicarboxylic acid anhydrides are more preferred.
  • These polycarboxylic acid anhydrides (D) can be used alone or in combination of two or more kinds.
  • Examples of the acid group-containing (meth)acrylate resin of the present invention include the amideimide resin (A), the hydroxyl group-containing (meth)acrylate compound (B), and the epoxy group-containing (meth)acrylate depending on desired resin performance and the like.
  • other reaction raw materials can be used in combination.
  • the total content of the above components (A) to (D) in the reaction raw materials of the acid group-containing (meth)acrylate resin is included.
  • the amount is preferably 80% by mass or more, more preferably 85% by mass or more.
  • the method for producing the acid group-containing (meth)acrylate resin of the present invention is not particularly limited, and any method may be used. For example, it may be produced by a method of reacting all the reaction raw materials at once, or may be produced by a method of sequentially reacting the reaction raw materials. Among them, since the reaction can be easily controlled, the amide-imide resin (A) is reacted with the hydroxyl group-containing (meth)acrylate compound (B) (step 1), and the product of step 1 and the epoxy group-containing ( It is preferably produced by a method of reacting a (meth)acrylate compound (C) (step 2) and reacting the product of step 2 with the polycarboxylic acid anhydride (D) (step 3).
  • the step 1 is a reaction between the amide imide resin (A) and the hydroxyl group-containing (meth)acrylate compound (B).
  • the reaction mainly reacts the acid group and/or acid anhydride group in the amide-imide resin (A) with the hydroxyl group in the hydroxyl group-containing (meth)acrylate compound (B). Since the hydroxyl group-containing (meth)acrylate compound (B) is particularly excellent in reactivity with the acid anhydride group, it is preferable that the amide imide resin (A) has an acid anhydride group as described above.
  • the content of the acid anhydride group in the amide imide resin (A) is the difference between the above-mentioned two measured values of the acid value, that is, the acid value under the condition where the acid anhydride group is ring-opened, It can be calculated from the difference from the acid value under the condition that the acid anhydride group is not opened.
  • the reaction ratio between the amide imide resin (A) and the hydroxyl group-containing (meth)acrylate compound (B) is such that when the amide imide resin (A) has an acid group and an acid anhydride group, and the amide imide resin (A) is When it has an acid anhydride group, the number of moles of the hydroxyl group of the hydroxyl group-containing (meth)acrylate compound (B) is 0.9 to 1.1 with respect to 1 mole of the acid anhydride group of the amide imide resin (A). It is preferable to use it within the range. When the amide imide resin (A) has an acid group, the number of moles of the hydroxyl group of the hydroxyl group-containing (meth)acrylate compound (B) is 0. 1 mole of the acid group of the amide imide resin (A). It is preferably used in the range of 1 to 0.5.
  • the reaction between the amide-imide resin (A) and the hydroxyl group-containing (meth)acrylate compound (B) is carried out, for example, by heating and stirring under a temperature condition of about 80 to 140° C. in the presence of a suitable esterification catalyst.
  • a suitable esterification catalyst You can As the esterification catalyst, the same esterification catalyst as described above can be used.
  • the esterification catalysts may be used alone or in combination of two or more.
  • the esterification catalyst is preferably added in an amount of 0.001 to 5 parts by mass with respect to 100 parts by mass of the total amount of the reaction raw materials.
  • the reaction may be carried out in an organic solvent if necessary, and an acidic catalyst may be used if necessary.
  • the organic solvent the same organic solvents as described above can be used, and the organic solvent can be used alone or in combination of two or more kinds.
  • the reaction may be continued as it is in the organic solvent used in the production of the amide imide resin (A).
  • the acidic catalyst examples include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid, organic acids such as methanesulfonic acid, paratoluenesulfonic acid and oxalic acid, boron trifluoride, anhydrous aluminum chloride, Lewis acids such as zinc chloride. And so on. These acidic catalysts can be used alone or in combination of two or more kinds.
  • the step 2 is a reaction between the product of the step 1 and the epoxy group-containing (meth)acrylate compound (C).
  • the reaction is mainly to react the acid group in the product obtained in the step 1 with the epoxy group-containing (meth)acrylate compound.
  • the reaction ratio is such that the number of moles of the epoxy group contained in the epoxy group-containing (meth)acrylate compound (C) is 0.7 to 1.2 with respect to 1 mole of the acid group in the product obtained in step 1. It is preferable to use the above range, more preferably to the range of 0.9 to 1.1.
  • the reaction of step 2 can be carried out, for example, in the presence of a suitable esterification catalyst with heating and stirring under temperature conditions of about 90 to 140°C.
  • the esterification catalyst may not be added, or may be added appropriately. Further, the reaction may be carried out in an organic solvent, if necessary.
  • the esterification catalyst and the organic solvent may be the same as the above-mentioned esterification catalyst and the organic solvent, and they may be used alone or in combination of two or more kinds.
  • the step 3 is a reaction between the product of the step 2 and the polycarboxylic acid anhydride (D).
  • the reaction is mainly to react the hydroxyl group in the product obtained in the step 2 with the polycarboxylic acid anhydride (D).
  • a hydroxyl group generated by ring opening of the epoxy group in the epoxy group-containing (meth)acrylate compound (C) is present.
  • the reaction ratio of the polycarboxylic acid anhydride (D) is preferably adjusted so that the acid value of the product (meth)acrylate resin containing an acid group is about 60 to 120 mgKOH/g.
  • step 3 can be carried out, for example, in the presence of a suitable esterification catalyst while heating and stirring under a temperature condition of about 80 to 140°C.
  • the esterification catalyst may not be added, or may be added appropriately.
  • the reaction may be carried out in an organic solvent, if necessary.
  • the esterification catalyst and the organic solvent may be the same as the above-mentioned esterification catalyst and the organic solvent, and they may be used alone or in combination of two or more kinds.
  • the acid value of the acid group-containing (meth)acrylate resin of the present invention has excellent photosensitivity and alkali developability, and an acid group-containing (meth)acrylate resin capable of forming a cured product having excellent heat resistance is obtained. Therefore, the range of 50 to 120 mgKOH/g is preferable, and the range of 60 to 110 mgKOH/g is more preferable.
  • the acid value of the acid group-containing (meth)acrylate resin in the present invention is a value measured by the neutralization titration method of JIS K0070 (1992).
  • the weight average molecular weight (Mw) of the acid group-containing (meth)acrylate resin is preferably in the range of 1,000 to 20,000.
  • a weight average molecular weight (Mw) shows the value measured by the gel permeation chromatography (GPC) method.
  • the acid group-containing (meth)acrylate resin of the present invention has a polymerizable (meth)acryloyl group in its molecular structure, it can be used as a curable resin composition by adding a photopolymerization initiator, for example. You can
  • the photopolymerization initiator may be appropriately selected and used depending on the type of active energy ray to be irradiated. Further, it may be used in combination with a photosensitizer such as an amine compound, a urea compound, a sulfur-containing compound, a phosphorus-containing compound, a chlorine-containing compound and a nitrile compound. Specific examples of the photopolymerization initiator include, for example, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1,2-(dimethylamino).
  • Alkylphenone-based photopolymerization initiator such as 2-[[4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone; 2,4,6-trimethylbenzoyl-diphenyl- Examples thereof include acylphosphine oxide-based photopolymerization initiators such as phosphine oxide; intramolecular hydrogen abstraction type photopolymerization initiators such as benzophenone compounds. These may be used alone or in combination of two or more.
  • photopolymerization initiator examples include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-[4-(2-hydroxyethoxy)phenyl]-2- Hydroxy-2-methyl-1-propan-1-one, thioxanthone and thioxanthone derivatives, 2,2'-dimethoxy-1,2-diphenylethan-1-one, diphenyl(2,4,6-trimethoxybenzoyl)phosphine Oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropane-1- On, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-1-butanone and the like.
  • Examples of commercial products of the other photopolymerization initiators include “Omnirad-1173”, “Omnirad-184", “Omnirad-127”, “Omnirad-2959”, “Omnirad-369”, and “Omnirad-379”. , “Omnirad-907”, “Omnirad-4265”, “Omnirad-1000”, “Omnirad-651”, “Omnirad-TPO", “Omnirad-819", “Omnirad-2022”, “Omnirad-2100” and “Omnirad-2100".
  • Omnirad-754 "Omnirad-784", “Omnirad-500”, “Omnirad-81” (manufactured by IGM), "Kayacure-DETX”, “Kayacure-MBP”, “Kayacure-DMBI”, “Kayacure-EPA”.
  • photopolymerization initiators can be used alone or in combination of two or more kinds.
  • the amount of the photopolymerization initiator added is, for example, preferably in the range of 0.05 to 15% by mass, and in the range of 0.1 to 10% by mass, based on the total amount of the components other than the solvent of the curable resin composition. Is more preferable.
  • the curable resin composition of the present invention may contain other resin components other than the acid group-containing (meth)acrylate resin described above.
  • the other resin components include a resin (E) having an acid group and a polymerizable unsaturated bond, various (meth)acrylate monomers, and the like.
  • the resin (E) having an acid group and a polymerizable unsaturated bond may be any resin having an acid group and a polymerizable unsaturated bond in the resin, for example, an acid group and a polymerizable unsaturated bond Epoxy resin having, urethane resin having acid group and polymerizable unsaturated bond, acrylic resin having acid group and polymerizable unsaturated bond, amide imide resin having acid group and polymerizable unsaturated bond, acid group and polymerizable unsaturated Examples thereof include an acrylamide resin having a bond.
  • Examples of the acid group include a carboxyl group, a sulfonic acid group, a phosphoric acid group and the like.
  • Examples of the epoxy resin having an acid group and a polymerizable unsaturated bond include, for example, an epoxy resin, an unsaturated monobasic acid, and an acid group-containing epoxy (meth)acrylate resin that uses polybasic acid anhydride as an essential reaction raw material.
  • epoxy resin examples include bisphenol type epoxy resin, phenylene ether type epoxy resin, naphthylene ether type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, Bisphenol novolac type epoxy resin, naphthol novolac type epoxy resin, naphthol-phenol co-contracting novolac type epoxy resin, naphthol-cresol co-contracting novolac type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene-phenol addition
  • examples thereof include reactive epoxy resins, biphenylaralkyl epoxy resins, fluorene epoxy resins, xanthene epoxy resins, dihydroxybenzene epoxy resins, trihydroxybenzene epoxy resins and the like. These epoxy resins can be used alone or in combination of two or more kinds.
  • the unsaturated monobasic acid means a compound having an acid group and a polymerizable unsaturated bond in one molecule.
  • the acid group include a carboxyl group, a sulfonic acid group, a phosphoric acid group, and the like.
  • the unsaturated monobasic acid (D) include acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, ⁇ -cyanocinnamic acid, ⁇ -styrylacrylic acid and ⁇ -furfurylacrylic acid.
  • esterified products of unsaturated monobasic acids, acid halides, acid anhydrides and the like can also be used. These unsaturated monobasic acids can be used alone or in combination of two or more kinds.
  • polybasic acid anhydrides examples include phthalic anhydride, succinic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic acid anhydride, and hexahydro.
  • examples thereof include phthalic anhydride, methylhexahydrophthalic anhydride, octenyl succinic anhydride and tetrapropenyl succinic anhydride.
  • These polybasic acid anhydrides can be used alone or in combination of two or more kinds. Further, among these, since a curable resin composition having excellent photosensitivity and alkali developability and capable of forming a cured product having excellent heat resistance is obtained, tetrahydrophthalic anhydride and succinic anhydride are preferable.
  • the same polyisocyanate compound (a1) as described above can be used as the polyisocyanate compound, and the polyisocyanate compound can be used alone or in combination of two or more kinds.
  • the hydroxyl group-containing (meth)acrylate compound may be the same as the above-mentioned hydroxyl group-containing (meth)acrylate compound (a3), and the hydroxyl group-containing (meth)acrylate compound may be used alone or in two kinds. The above can also be used together.
  • the method for producing the epoxy resin having the acid group and the polymerizable unsaturated bond is not particularly limited and may be produced by any method.
  • the production of the epoxy resin having an acid group and a polymerizable unsaturated bond may be carried out in an organic solvent if necessary, and a basic catalyst may be used if necessary.
  • organic solvent the same organic solvents as described above can be used, and the organic solvent can be used alone or in combination of two or more kinds.
  • the same basic catalysts as described above can be used, and the basic catalyst can be used alone or in combination of two or more kinds.
  • the urethane resin having an acid group and a polymerizable unsaturated bond for example, a polyisocyanate compound, a hydroxyl group-containing (meth) acrylate compound, a carboxyl group-containing polyol compound, and optionally a polybasic acid anhydride, the carboxyl group Those obtained by reacting with a polyol compound other than the containing polyol compound, a polyisocyanate compound, a hydroxyl group-containing (meth)acrylate compound, a polybasic acid anhydride, and a polyol compound other than the carboxyl group-containing polyol compound And the like.
  • the same polyisocyanate compound (a1) as described above can be used as the polyisocyanate compound, and the polyisocyanate compound can be used alone or in combination of two or more kinds.
  • the hydroxyl group-containing (meth)acrylate compound may be the same as the above-mentioned hydroxyl group-containing (meth)acrylate compound (a3), and the hydroxyl group-containing (meth)acrylate compound may be used alone or in two kinds. The above can also be used together.
  • carboxyl group-containing polyol compound examples include 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, and 2,2-dimethylolvaleric acid.
  • the carboxyl group-containing polyol compound may be used alone or in combination of two or more kinds.
  • polybasic acid anhydride the same polybasic acid anhydride as described above can be used, and the polybasic acid anhydride can be used alone or in combination of two or more kinds.
  • polyol compound other than the carboxyl group-containing polyol compound examples include aliphatic polyol compounds such as ethylene glycol, propylene glycol, butanediol, hexanediol, glycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol, and dipentaerythritol; Aromatic polyol compounds such as biphenol and bisphenol; (Poly)oxyethylene chains such as (poly)oxyethylene chains, (poly)oxypropylene chains, and (poly)oxytetramethylene chains in the molecular structures of the various polyol compounds Modified (poly)oxyalkylene modified products; lactone modified products in which a (poly)lactone structure is introduced into the molecular structures of the various polyol compounds are included.
  • the polyol compounds other than the carboxyl group-containing polyol compound may be used alone or in combination of two or more kinds.
  • the method for producing the urethane resin having an acid group and a polymerizable unsaturated bond is not particularly limited and may be produced by any method.
  • the production of the urethane resin having an acid group and a polymerizable unsaturated bond may be carried out in an organic solvent if necessary, and a basic catalyst may be used if necessary.
  • organic solvent the same organic solvents as described above can be used, and the organic solvent can be used alone or in combination of two or more kinds.
  • the same basic catalysts as described above can be used, and the basic catalyst can be used alone or in combination of two or more kinds.
  • the acrylic resin having an acid group and a polymerizable unsaturated bond for example, a (meth)acrylate compound ( ⁇ ) having a reactive functional group such as a hydroxyl group, a carboxyl group, an isocyanate group, and a glycidyl group is polymerized as an essential component.
  • the acrylic resin intermediate may be a copolymer of the (meth)acrylate compound ( ⁇ ) and, if necessary, other polymerizable unsaturated group-containing compound.
  • the other polymerizable unsaturated group-containing compound include (meth)acrylates such as methyl(meth)acrylate, ethyl(meth)acrylate, propyl(meth)acrylate, butyl(meth)acrylate and 2-ethylhexyl(meth)acrylate.
  • Acrylic acid alkyl ester alicyclic structure-containing (meth)acrylate such as cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate; phenyl (meth)acrylate, benzyl (meth)acrylate, phenoxy Examples thereof include aromatic ring-containing (meth)acrylates such as ethyl acrylate; silyl group-containing (meth)acrylates such as 3-methacryloxypropyltrimethoxysilane; styrene derivatives such as styrene, ⁇ -methylstyrene, and chlorostyrene. These may be used alone or in combination of two or more.
  • the (meth)acrylate compound ( ⁇ ) is not particularly limited as long as it can react with the reactive functional group contained in the (meth)acrylate compound ( ⁇ ), but from the viewpoint of reactivity, it is the following combination. Is preferred. That is, when a hydroxyl group-containing (meth)acrylate is used as the (meth)acrylate compound ( ⁇ ), an isocyanate group-containing (meth)acrylate is preferably used as the (meth)acrylate compound ( ⁇ ). When a carboxyl group-containing (meth)acrylate is used as the (meth)acrylate compound ( ⁇ ), it is preferable to use a glycidyl group-containing (meth)acrylate as the (meth)acrylate compound ( ⁇ ).
  • an isocyanate group-containing (meth)acrylate is used as the (meth)acrylate compound ( ⁇ )
  • a hydroxyl group-containing (meth)acrylate is preferably used as the (meth)acrylate compound ( ⁇ ).
  • a glycidyl group-containing (meth)acrylate is used as the (meth)acrylate compound ( ⁇ )
  • a carboxyl group-containing (meth)acrylate is preferably used as the (meth)acrylate compound ( ⁇ ).
  • the (meth)acrylate compound ( ⁇ ) can be used alone or in combination of two or more kinds.
  • polybasic acid anhydride the same polybasic acid anhydride as described above can be used, and the polybasic acid anhydride can be used alone or in combination of two or more kinds.
  • the method for producing the acrylic resin having an acid group and a polymerizable unsaturated bond is not particularly limited, and any method may be used.
  • the production of the acrylic resin having an acid group and a polymerizable unsaturated bond may be carried out in an organic solvent if necessary, and a basic catalyst may be used if necessary.
  • organic solvent the same organic solvents as described above can be used, and the organic solvent can be used alone or in combination of two or more kinds.
  • the same basic catalysts as described above can be used, and the basic catalyst can be used alone or in combination of two or more kinds.
  • Examples of the amide imide resin having an acid group and a polymerizable unsaturated bond include an amide imide resin having an acid group and/or an acid anhydride group, a hydroxyl group-containing (meth)acrylate compound and/or an epoxy group-containing (meth)acrylate.
  • Examples thereof include those obtained by reacting a compound with a compound having at least one reactive functional group selected from the group consisting of a hydroxyl group, a carboxyl group, an isocyanate group, a glycidyl group, and an acid anhydride group.
  • the compound having a reactive functional group may or may not have a (meth)acryloyl group.
  • the amide-imide resin may have either an acid group or an acid anhydride group, or may have both. From the viewpoint of reactivity and reaction control with a hydroxyl group-containing (meth)acrylate compound or a (meth)acryloyl group-containing epoxy compound, it is preferable to have an acid anhydride group, and both an acid group and an acid anhydride group. It is more preferable to have The acid value of the amide-imide resin is preferably in the range of 60 to 350 mgKOH/g measured under neutral conditions, that is, under conditions where the acid anhydride group is not opened. On the other hand, the measured value under the condition that the acid anhydride group is ring-opened, such as in the presence of water, is preferably in the range of 61 to 360 mgKOH/g.
  • Examples of the amide-imide resin include those obtained by using a polyisocyanate compound and a polybasic acid anhydride as reaction raw materials.
  • the same polyisocyanate compound (a1) as described above can be used as the polyisocyanate compound.
  • polybasic acid anhydride the same polybasic acid anhydride as described above can be used, and the polybasic acid anhydride can be used alone or in combination of two or more kinds.
  • a polybasic acid may be used as a reaction raw material in combination with the amide-imide resin, if necessary.
  • any compound can be used as long as it is a compound having two or more carboxyl groups in one molecule.
  • oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid maleic acid, fumaric acid, phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, hexahydro Phthalic acid, methylhexahydrophthalic acid, citraconic acid, itaconic acid, glutaconic acid, 1,2,3,4-butanetetracarboxylic acid, cyclohexanetricarboxylic acid, cyclohexanetetracarboxylic acid, bicyclo[2.2.1]heptane- 2,3-dicarboxylic acid, methylbicyclo[2.2.1]heptane-2,3-dicarboxylic acid, 4-(2,
  • polybasic acid for example, a copolymer of a conjugated diene vinyl monomer and acrylonitrile, which has a carboxyl group in its molecule, can also be used.
  • These polybasic acids can be used alone or in combination of two or more kinds.
  • the hydroxyl group-containing (meth)acrylate compound may be the same as the above-mentioned hydroxyl group-containing (meth)acrylate compound (a3), and the hydroxyl group-containing (meth)acrylate compound may be used alone or in two kinds. The above can also be used together.
  • epoxy group-containing (meth)acrylate compound as the above-mentioned epoxy group-containing (meth)acrylate compound (C) can be used, and the epoxy group-containing (meth)acrylate compound can be used alone. It is also possible to use two or more kinds in combination.
  • the method for producing the amide-imide resin having the acid group and the polymerizable unsaturated bond is not particularly limited and may be produced by any method.
  • the amide-imide resin having an acid group and a polymerizable unsaturated bond may be produced in an organic solvent, if necessary, and a basic catalyst may be used, if necessary.
  • organic solvent the same organic solvents as described above can be used, and the organic solvent can be used alone or in combination of two or more kinds.
  • the same basic catalysts as described above can be used, and the basic catalyst can be used alone or in combination of two or more kinds.
  • Examples of the acrylamide resin having an acid group and a polymerizable unsaturated bond include a phenolic hydroxyl group-containing compound, an alkylene oxide or alkylene carbonate, an N-alkoxyalkyl (meth)acrylamide compound, and a polybasic acid anhydride. Examples thereof include those obtained by reacting with an unsaturated monobasic acid, if necessary.
  • the above-mentioned phenolic hydroxyl group-containing compound means a compound having at least two phenolic hydroxyl groups in the molecule.
  • Examples of the compound having at least two phenolic hydroxyl groups in the molecule include compounds represented by the following structural formulas (3-1) to (3-4).
  • R 1 is any of an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group and a halogen atom.
  • R 2 are each independently a hydrogen atom or a methyl group.
  • p is 0 or an integer of 1 or more, preferably 0 or an integer of 1 to 3, more preferably 0 or 1, and further preferably 0.
  • q is an integer of 2 or more, preferably 2 or 3.
  • the position of the substituent on the aromatic ring in the above structural formula is arbitrary, and for example, in the naphthalene ring of the structural formula (3-2), it may be substituted on any ring, and In 3-3), it may be substituted on any ring of the benzene ring present in one molecule, and in structural formula (3-4), it may be substituted on any ring of the benzene ring present in one molecule. It indicates that they may be substituted, and the number of substituents in one molecule is p and q.
  • phenolic hydroxyl group-containing compound for example, a compound having one phenolic hydroxyl group in the molecule and a compound represented by any one of the following structural formulas (x-1) to (x-5) are essential.
  • An essential reaction between the reaction product used as the reaction raw material, the compound having at least two phenolic hydroxyl groups in the molecule, and the compound represented by any of the following structural formulas (x-1) to (x-5) A reaction product as a raw material can also be used.
  • a novolac type phenol resin using one or more compounds having one phenolic hydroxyl group in the molecule as a reaction raw material, and one or more compounds having at least two phenolic hydroxyl groups in the molecule It is also possible to use a novolac-type phenol resin as a reaction raw material.
  • R 3 is any of an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group and a halogen atom, and i Is 0 or an integer of 1 to 4.
  • Z is any of a vinyl group, a halomethyl group, a hydroxymethyl group and an alkyloxymethyl group.
  • Y is any of an alkylene group having 1 to 4 carbon atoms, an oxygen atom, a sulfur atom, and a carbonyl group, and j is an integer of 1 to 4.
  • Examples of the compound having one phenolic hydroxyl group in the molecule include compounds represented by the following structural formulas (2-1) to (2-4).
  • R 4 is any of an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group and a halogen atom.
  • R 5 are each independently a hydrogen atom or a methyl group.
  • p is 0 or an integer of 1 or more, preferably 0 or an integer of 1 to 3, more preferably 0 or 1, and further preferably 0.
  • the position of the substituent on the aromatic ring in the above structural formula is arbitrary, and for example, in the naphthalene ring of the structural formula (4-2), the substituent may be substituted on any ring.
  • the compounds represented by the above structural formulas (3-1) to (3-4) can be used.
  • phenolic hydroxyl group-containing compounds can be used alone or in combination of two or more kinds.
  • alkylene oxide examples include ethylene oxide, propylene oxide, butylene oxide, pentylene oxide and the like.
  • ethylene oxide or propylene oxide is preferable because a curable resin composition having excellent photosensitivity and alkali developability and capable of forming a cured product having excellent heat resistance can be obtained.
  • the alkylene oxides may be used alone or in combination of two or more.
  • alkylene carbonate examples include ethylene carbonate, propylene carbonate, butylene carbonate, pentylene carbonate and the like.
  • ethylene carbonate or propylene carbonate is preferable because a curable resin composition having excellent photosensitivity and alkali developability and capable of forming a cured product having excellent heat resistance can be obtained.
  • the alkylene carbonates may be used alone or in combination of two or more.
  • N-alkoxyalkyl(meth)acrylamide compound examples include N-methoxymethyl(meth)acrylamide, N-ethoxymethyl(meth)acrylamide, N-butoxymethyl(meth)acrylamide, N-methoxyethyl(meth)acrylamide. , N-ethoxyethyl (meth)acrylamide, N-butoxyethyl (meth)acrylamide and the like.
  • the N-alkoxyalkyl (meth)acrylamide compounds may be used alone or in combination of two or more.
  • polybasic acid anhydride the same polybasic acid anhydride as described above can be used, and the polybasic acid anhydride can be used alone or in combination of two or more kinds.
  • the same unsaturated monobasic acid as described above can be used, and the organic solvent can be used alone or in combination of two or more kinds.
  • the method for producing the acrylamide resin having the acid group and the polymerizable unsaturated bond is not particularly limited and may be produced by any method.
  • the production of the acrylamide resin having an acid group and a polymerizable unsaturated bond may be carried out in an organic solvent, if necessary, and a basic catalyst and an acidic catalyst may be used, if necessary.
  • organic solvent the same organic solvents as described above can be used, and the organic solvent can be used alone or in combination of two or more kinds.
  • the same basic catalysts as described above can be used, and the basic catalyst can be used alone or in combination of two or more kinds.
  • the same acidic catalyst as described above can be used, and the acidic catalyst can be used alone or in combination of two or more kinds.
  • the amount of the resin (E) having an acid group and a polymerizable unsaturated bond used is preferably in the range of 10 to 900 parts by mass with respect to 100 parts by mass of the acid group-containing (meth)acrylate resin of the present invention.
  • Examples of the various (meth)acrylate monomers include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, 2 -Aliphatic mono(meth)acrylate compounds such as ethylhexyl(meth)acrylate and octyl(meth)acrylate; cycloaliphatic (meth)acrylate, isobornyl(meth)acrylate, adamantyl mono(meth)acrylate and other alicyclic mono(meth)acrylates Acrylate compounds; Heterocyclic mono(meth)acrylate compounds such as glycidyl (meth)acrylate and tetrahydrofurfuryl acrylate; benzyl (meth)acrylate, phenyl (meth)acrylate, phenylbenzyl (meth)
  • (Meth)acrylate compounds such as aromatic mono(meth)acrylate compounds: (poly)oxyethylene chain, (poly)oxypropylene chain, (poly)oxy in the molecular structure of the various mono(meth)acrylate monomers
  • An aliphatic poly(meth)acrylate compound of (poly)oxyethylene chain, (poly)oxypropylene chain, (poly)oxytetramethylene chain, or the like in the molecular structure of the aliphatic poly(meth)acrylate compound A tetra- or higher functional (poly)oxyalkylene-modified poly(meth)acrylate compound having an oxyalkylene chain introduced; a tetra-functional or higher functional lactone having a (poly)lactone structure introduced into the molecular structure of the aliphatic poly(meth)acrylate compound Examples include modified poly(meth)acrylate compounds.
  • the various (meth)acrylate monomers may be used alone or in combination of two or more.
  • the curable resin composition of the present invention if necessary, a curing agent, a curing accelerator, an organic solvent, inorganic fine particles or polymer fine particles, a pigment, a defoaming agent, a viscosity modifier, a leveling agent, a flame retardant, It may also contain various additives such as a storage stabilizer.
  • the curing agent is not particularly limited as long as it has a functional group capable of reacting with the carboxy group in the acid group-containing (meth)acrylate resin, and examples thereof include an epoxy resin.
  • the epoxy resin include bisphenol type epoxy resin, phenylene ether type epoxy resin, naphthylene ether type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, Bisphenol novolac type epoxy resin, naphthol novolac type epoxy resin, naphthol-phenol co-contracting novolac type epoxy resin, naphthol-cresol co-contracting novolac type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene-phenol addition
  • epoxy resins can be used alone or in combination of two or more kinds. Further, among these, since a curable resin composition having excellent photosensitivity and alkali developability and capable of forming a cured product having excellent heat resistance is obtained, a phenol novolac type epoxy resin, a cresol novolac type is obtained.
  • Novolak type epoxy resins such as epoxy resin, bisphenol novolac type epoxy resin, naphthol novolak type epoxy resin, naphthol-phenol co-contracting novolac type epoxy resin, naphthol-cresol co-contracting novolac type epoxy resin are preferable, and the softening point is 20 to 120°C. The range of is particularly preferable.
  • the curing accelerator is for promoting a curing reaction of the curing agent, and when an epoxy resin is used as the curing agent, a phosphorus compound, an amine compound, an imidazole, an organic acid metal salt, a Lewis acid, Examples thereof include amine complex salts. These curing accelerators can be used alone or in combination of two or more kinds. Further, the addition amount of the curing accelerator is preferably, for example, in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the curing agent.
  • organic solvent the same organic solvents as described above can be used, and the organic solvent can be used alone or in combination of two or more kinds.
  • the cured product of the present invention can be obtained by irradiating the curable resin composition with an active energy ray.
  • the active energy rays include ionizing radiation such as ultraviolet rays, electron rays, ⁇ rays, ⁇ rays, and ⁇ rays.
  • the irradiation may be performed in an atmosphere of an inert gas such as nitrogen gas or in an air atmosphere in order to efficiently carry out the curing reaction by the ultraviolet rays.
  • ultraviolet lamps are generally used from the viewpoint of practicality and economy. Specific examples thereof include a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a xenon lamp, a gallium lamp, a metal halide lamp, sunlight, and an LED.
  • the cumulative light amount of the active energy rays is not particularly limited, but is preferably 10 to 5,000 mJ/cm 2 , and more preferably 50 to 1,000 mJ/cm 2 .
  • the integrated light amount is within the above range, it is possible to prevent or suppress the generation of an uncured portion, which is preferable.
  • the irradiation with the active energy rays may be performed in one step or in two or more steps.
  • the cured product of the present invention has excellent heat resistance, for example, in a semiconductor device application, a solder resist, an interlayer insulating material, a package material, an underfill material, a package adhesive layer such as a circuit element, or an integrated circuit. It can be suitably used as an adhesive layer between an element and a circuit board. Further, it can be suitably used as a thin film transistor protective film, a liquid crystal color filter protective film, a color filter pigment resist, a black matrix resist, a spacer and the like in a thin display application represented by LCD and OELD. Among them, it can be particularly preferably used for solder resist applications.
  • the resin material for solder resist of the present invention comprises the curable resin composition.
  • the resist member of the present invention is, for example, a photomask on which a desired pattern is formed after applying the resin material for solder resist on a substrate and evaporating and drying an organic solvent in a temperature range of about 60 to 100°C. Through exposure with an active energy ray, the unexposed area is developed with an alkaline aqueous solution, and then heat-cured in a temperature range of about 140 to 200° C.
  • Examples of the base material include metal foils such as copper foil and aluminum foil.
  • the acid value of the acid group-containing (meth)acrylate resin was measured by the neutralization titration method of JIS K0070 (1992).
  • the molecular weight of the acid group-containing (meth)acrylate resin was measured by GPC under the following conditions.
  • Measuring device "HLC-8220 GPC” manufactured by Tosoh Corporation, Column: Tosoh Co., Ltd. guard column “HXL-L” + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + “TSK-GEL G3000HXL” manufactured by Tosoh Corporation + “TSK-GEL G4000HXL” manufactured by Tosoh Corporation Detector: RI (differential refractometer) Data processing: "GPC-8020 model II version 4.10" manufactured by Tosoh Corporation Measurement conditions: Column temperature 40°C Developing solvent Tetrahydrofuran Flow rate 1.0 ml/min Standard: The following monodisperse polystyrene having a known molecular weight was used according to the measurement manual of “GPC-8020 Model II Version 4.10”.
  • the hydroxyl value of this pentaerythritol polyacrylate (A1) is 290 mgKOH/g
  • the content of pentaerythritol tetraacrylate (a1) calculated from the area ratio of the liquid chromatography chart is 16% by mass
  • the pentaerythritol triacrylate (a2) content is 50% by mass
  • the content of pentaerythritol diacrylate (a3) is 29% by mass
  • the content of pentaerythritol monoacrylate (a4) is 3% by mass
  • the content of the other high molecular weight component (a') is 2%. It was mass %.
  • the obtained aqueous layer was extracted with ethyl acetate and washed with a saturated aqueous solution of sodium hydrogen carbonate until the pH reached 7.
  • the organic layer was dehydrated with magnesium sulfate and then concentrated under reduced pressure at room temperature to obtain pentaerythritol diacrylate (A2).
  • dipentaerythritol acrylate (A3) was 140 mgKOH/g.
  • dipentaerythritol tetraacrylate (b1) calculated from the area ratio of the liquid chromatography chart is 28% by mass
  • the content of dipentaerythritol pentaacrylate (b2) is 42% by mass
  • dipentaerythritol hexaacrylate is 28% by mass
  • the content of (b3) was 22% by mass
  • the content of the high molecular weight component (b') was 8% by mass.
  • Example 1 Production of acid group-containing (meth)acrylate resin (1)
  • a flask equipped with a thermometer, a stirrer, and a reflux condenser 288 parts by mass of diethylene glycol monomethyl ether acetate, 168 parts by mass of trimellitic anhydride, 53 parts by mass of pentaerythritol polyacrylate (A1) obtained in Synthesis Example 1, dibutyl. Hydroxytoluene (0.7 parts by mass), metoquinone (0.3 parts by mass) and triphenylphosphine (0.7 parts by mass) were added, and the mixture was reacted at 120° C. for 6 hours while blowing air.
  • the acid value of the solid content of the acid group-containing (meth)acrylate resin (1) was 87 mgKOH/g, and the weight average molecular weight was 2,390.
  • Example 2 Production of acid group-containing (meth)acrylate resin (2)
  • a flask equipped with a thermometer, a stirrer, and a reflux condenser 288 parts by mass of diethylene glycol monomethyl ether acetate, 168 parts by mass of trimellitic anhydride, 53 parts by mass of pentaerythritol polyacrylate (A1) obtained in Synthesis Example 1, dibutyl. Hydroxytoluene (0.7 parts by mass), metoquinone (0.3 parts by mass) and triphenylphosphine (0.7 parts by mass) were added, and the mixture was reacted at 120° C. for 6 hours while blowing air.
  • Example 3 Production of acid group-containing (meth)acrylate resin (3)
  • a flask equipped with a thermometer, a stirrer, and a reflux condenser 288 parts by mass of diethylene glycol monomethyl ether acetate, 168 parts by mass of trimellitic anhydride, 53 parts by mass of pentaerythritol polyacrylate (A1) obtained in Synthesis Example 1, dibutyl. 0.7 parts by mass of hydroxytoluene, 0.3 parts by mass of methoquinone, and 0.7 parts by mass of triphenylphosphine were added and the reaction was carried out at 120° C. for 6 hours while blowing air.
  • Example 4 Production of acid group-containing (meth)acrylate resin (4)
  • a flask equipped with a thermometer, a stirrer, and a reflux condenser 275 parts by mass of diethylene glycol monomethyl ether acetate, 144 parts by mass of trimellitic anhydride, 44 parts by mass of pentaerythritol polyacrylate (A1) obtained in Synthesis Example 1, dibutyl. 0.7 parts by mass of hydroxytoluene, 0.2 parts by mass of metoquinone, and 0.6 parts by mass of triphenylphosphine were added, and the mixture was reacted at 120° C. for 6 hours while blowing air.
  • the acid value of the solid content of the acid group-containing (meth)acrylate resin (4) was 85 mgKOH/g, and the weight average molecular weight was 2,440.
  • Example 5 Production of acid group-containing (meth)acrylate resin (5)
  • a flask equipped with a thermometer, a stirrer, and a reflux condenser 275 parts by mass of diethylene glycol monomethyl ether acetate, 144 parts by mass of trimellitic anhydride, 44 parts by mass of pentaerythritol polyacrylate (A1) obtained in Synthesis Example 1, dibutyl. Hydroxytoluene (0.7 parts by mass), metoquinone (0.3 parts by mass) and triphenylphosphine (0.6 parts by mass) were added, and the mixture was reacted at 120° C. for 6 hours while blowing air.
  • Example 6 Production of acid group-containing (meth)acrylate resin (6)
  • 374 parts by mass of diethylene glycol monomethyl ether acetate 173 parts by mass of cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, obtained in Synthesis Example 1
  • 53 parts by mass of pentaerythritol polyacrylate (A1), 0.7 parts by mass of dibutylhydroxytoluene, 0.3 parts by mass of methoquinone, and 0.7 parts by mass of triphenylphosphine were added, and the mixture was reacted at 120° C.
  • Example 7 Production of acid group-containing (meth)acrylate resin (7)
  • 341 parts by mass of diethylene glycol monomethyl ether acetate 341 parts by mass of diethylene glycol monomethyl ether acetate, 149 parts by mass of cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, obtained in Synthesis Example 1
  • 44 parts by mass of pentaerythritol polyacrylate (A1), 0.7 parts by mass of dibutylhydroxytoluene, 0.3 parts by mass of methoquinone, and 0.6 parts by mass of triphenylphosphine were added and reacted at 120° C. for 6 hours while blowing air.
  • Example 8 Production of acid group-containing (meth)acrylate resin (8)
  • a flask equipped with a thermometer, a stirrer, and a reflux condenser 211 parts by mass of diethylene glycol monomethyl ether acetate, 111 parts by mass of isophorone diisocyanate, 144 parts by mass of trimellitic anhydride, and 0.5 parts by mass of dibutylhydroxytoluene were added and dissolved.
  • the reaction was carried out at 160° C. for 8 hours in a nitrogen atmosphere, and it was confirmed that the isocyanate group content was 0.1% by mass or less.
  • Example 9 Production of acid group-containing (meth)acrylate resin (9)
  • a flask equipped with a thermometer, a stirrer, and a reflux condenser 211 parts by mass of diethylene glycol monomethyl ether acetate, 111 parts by mass of isophorone diisocyanate, 144 parts by mass of trimellitic anhydride, and 0.5 parts by mass of dibutylhydroxytoluene were added and dissolved.
  • the reaction was carried out at 160° C. for 8 hours in a nitrogen atmosphere, and it was confirmed that the isocyanate group content was 0.1% by mass or less.
  • Example 10 Production of acid group-containing (meth)acrylate resin (10)
  • a flask equipped with a thermometer, a stirrer, and a reflux condenser 269 parts by mass of diethylene glycol monomethyl ether acetate, 168 parts by mass of trimellitic anhydride, 34 parts by mass of pentaerythritol diacrylate (A2) obtained in Synthesis Example 2, dibutyl. 0.7 parts by mass of hydroxytoluene, 0.2 parts by mass of metoquinone, and 0.6 parts by mass of triphenylphosphine were added, and the mixture was reacted at 120° C. for 6 hours while blowing air.
  • the acid value of the solid content of the acid group-containing (meth)acrylate resin (10) was 92 mgKOH/g, and the weight average molecular weight was 2,590.
  • Example 11 Production of acid group-containing (meth)acrylate resin (11)
  • a flask equipped with a thermometer, a stirrer, and a reflux condenser 288 parts by mass of diethylene glycol monomethyl ether acetate, 168 parts by mass of trimellitic anhydride, 53 parts by mass of pentaerythritol polyacrylate (A1) obtained in Synthesis Example 1, dibutyl. 0.7 parts by mass of hydroxytoluene, 0.2 parts by mass of methoquinone, and 0.7 parts by mass of triphenylphosphine were added and the reaction was carried out at 120° C. for 6 hours while blowing air.
  • Example 12 Production of acid group-containing (meth)acrylate resin (12)
  • a flask equipped with a thermometer, a stirrer, and a reflux condenser 269 parts by mass of diethylene glycol monomethyl ether acetate, 168 parts by mass of trimellitic anhydride, 34 parts by mass of pentaerythritol diacrylate (A2) obtained in Synthesis Example 2, dibutyl. 0.7 parts by mass of hydroxytoluene, 0.2 parts by mass of metoquinone, and 0.6 parts of triphenylphosphine were added and the reaction was carried out at 120° C. for 6 hours while blowing air.
  • the acid value of the solid content of the acid group-containing (meth)acrylate resin (12) was 105 mgKOH/g, and the weight average molecular weight was 2990.
  • Example 13 Production of acid group-containing (meth)acrylate resin (13)
  • a flask equipped with a thermometer, a stirrer, and a reflux condenser 269 parts by mass of diethylene glycol monomethyl ether acetate, 168 parts by mass of trimellitic anhydride, 34 parts by mass of pentaerythritol diacrylate (A2) obtained in Synthesis Example 2, dibutyl. 0.7 parts by mass of hydroxytoluene, 0.2 parts by mass of metoquinone, and 0.6 parts by mass of triphenylphosphine were added, and the mixture was reacted at 120° C. for 6 hours while blowing air.
  • the acid value of the solid content of the acid group-containing (meth)acrylate resin (13) was 101 mgKOH/g, and the weight average molecular weight was 2,590.
  • Example 14 Production of acid group-containing (meth)acrylate resin (14)
  • a flask equipped with a thermometer, a stirrer, and a reflux condenser 332 parts by mass of diethylene glycol monomethyl ether acetate, 168 parts by mass of trimellitic anhydride, 97 parts by mass of "Aronix M-306", 0.8 part by mass of dibutylhydroxytoluene.
  • 0.3 parts by mass of methoquinone and 0.8 part of triphenylphosphine were added and the reaction was carried out at 120° C. for 6 hours while blowing air.
  • 111 parts by mass of isophorone diisocyanate was added and reacted at 120° C.
  • Example 15 Production of acid group-containing (meth)acrylate resin (15)
  • a flask equipped with a thermometer, a stirrer, and a reflux condenser 332 parts by mass of diethylene glycol monomethyl ether acetate, 168 parts by mass of trimellitic anhydride, 97 parts by mass of "Aronix M-306", 0.8 part by mass of dibutylhydroxytoluene.
  • 0.3 parts by mass of methoquinone and 0.8 part of triphenylphosphine were added and the reaction was carried out at 120° C. for 6 hours while blowing air.
  • 111 parts by mass of isophorone diisocyanate was added and reacted at 120° C.
  • Example 16 Production of acid group-containing (meth)acrylate resin (16)
  • a flask equipped with a thermometer, a stirrer, and a reflux condenser 392 parts by mass of diethylene glycol monomethyl ether acetate, an isocyanurate modified product of isophorone diisocyanate (“VESTANAT T-1890/100” manufactured by EVONIK, isocyanate group content 17. (2 mass %) 244 mass parts, trimellitic anhydride 192 mass parts, and dibutyl hydroxytoluene 1.0 mass part were added and dissolved. The reaction was carried out at 160° C. for 5 hours in a nitrogen atmosphere, and it was confirmed that the isocyanate group content was 0.1% by mass or less.
  • VESTANAT T-1890/100 manufactured by EVONIK
  • the acid value of the solid content of the acid group-containing (meth)acrylate resin (16) was 86 mgKOH/g, and the weight average molecular weight was 7,450.
  • Example 17 Production of acid group-containing (meth)acrylate resin (17)
  • a flask equipped with a thermometer, a stirrer, and a reflux condenser 418 parts by mass of diethylene glycol monomethyl ether acetate, 192 parts by mass of trimellitic anhydride, 26 parts by mass of pentaerythritol polyacrylate (A1) obtained in Synthesis Example 1, dibutyl. 1.0 parts by mass of hydroxytoluene, 0.3 parts by mass of methoquinone, and 0.7 parts by mass of triphenylphosphine were added and the reaction was carried out at 120° C. for 6 hours while blowing air.
  • the acid value of the solid content of the acid group-containing (meth)acrylate resin (17) was 84 mgKOH/g, and the weight average molecular weight was 7,390.
  • Example 18 Production of acid group-containing (meth)acrylate resin (18)
  • a flask equipped with a thermometer, a stirrer, and a reflux condenser 211 parts by mass of diethylene glycol monomethyl ether acetate, 111 parts by mass of isophorone diisocyanate, 144 parts by mass of trimellitic anhydride, and 0.5 parts by mass of dibutylhydroxytoluene were added and dissolved.
  • the reaction was carried out at 160° C. for 8 hours in a nitrogen atmosphere, and it was confirmed that the isocyanate group content was 0.1% by mass or less.
  • Example 19 Production of acid group-containing (meth)acrylate resin (19)
  • a flask equipped with a thermometer, a stirrer, and a reflux condenser 345 parts by mass of diethylene glycol monomethyl ether acetate, 168 parts by mass of trimellitic anhydride, 110 parts by mass of dipentaerythritol polyacrylate (A3) obtained in Synthesis Example 3, 0.9 parts by mass of dibutylhydroxytoluene, 0.3 parts by mass of metoquinone, and 0.8 parts by mass of triphenylphosphine were added and the reaction was carried out at 120° C. for 6 hours while blowing air.
  • A3 dipentaerythritol polyacrylate
  • Example 20 Production of acid group-containing (meth)acrylate resin (20)
  • a flask equipped with a thermometer, a stirrer, and a reflux condenser 258 parts by mass of diethylene glycol monomethyl ether acetate, 139 parts by mass of trimellitic anhydride, 52 parts by mass of pentaerythritol diacrylate (A2) obtained in Synthesis Example 2, dibutyl. Hydroxytoluene (0.6 parts by mass), methoquinone (0.2 parts by mass) and triphenylphosphine (0.6 parts by mass) were added, and the mixture was reacted at 120° C. for 6 hours while blowing air.
  • 111 parts by mass of isophorone diisocyanate was added and reacted at 120° C. for 12 hours, and it was confirmed that the isocyanate group content was 0.1% by mass or less.
  • 65 parts by mass of “Aronix M-306” was added, and the mixture was reacted at 110° C. for 3 hours.
  • 111 parts by mass of glycidyl methacrylate and 1.6 parts by mass of triphenylphosphine were added and reacted at 110° C. for 5 hours.
  • 74 parts by mass of succinic anhydride and 53 parts by mass of diethylene glycol monomethyl ether acetate were added and reacted at 110° C. for 5 hours to obtain a target acid group-containing (meth)acrylate resin (20).
  • the acid value of the solid content of the acid group-containing (meth)acrylate resin (20) was 85 mgKOH/g, and the weight average molecular weight was 2340.
  • Example 21 Production of acid group-containing (meth)acrylate resin (21)
  • a flask equipped with a thermometer, a stirrer, and a reflux condenser 279 parts by mass of diethylene glycol monomethyl ether acetate, 197 parts by mass of trimellitic anhydride, 15 parts by mass of pentaerythritol diacrylate (A2) obtained in Synthesis Example 2, dibutyl. Hydroxytoluene (0.7 parts by mass), metoquinone (0.3 parts by mass) and triphenylphosphine (0.6 parts by mass) were added, and the mixture was reacted at 120° C. for 6 hours while blowing air.
  • Example 22 Production of acid group-containing (meth)acrylate resin (22)
  • a flask equipped with a thermometer, a stirrer, and a reflux condenser 254 parts by mass of diethylene glycol monomethyl ether acetate, 168 parts by mass of trimellitic anhydride, 53 parts by mass of pentaerythritol polyacrylate (A1) obtained in Synthesis Example 1, dibutyl. Hydroxytoluene (0.6 parts by mass), methoquinone (0.2 parts by mass) and triphenylphosphine (0.7 parts by mass) were added, and the mixture was reacted at 120° C. for 6 hours while blowing air.
  • Example 23 Production of acid group-containing (meth)acrylate resin (23)
  • 271 parts by mass of dimethylacetamide 271 parts by mass of trimellitic anhydride, 53 parts by mass of pentaerythritol polyacrylate (A1) obtained in Synthesis Example 1, dibutylhydroxytoluene.
  • 0.7 parts by mass, 0.2 parts by mass of metoquinone, and 0.7 parts by mass of triphenylphosphine were added, and the mixture was reacted at 120° C. for 6 hours while blowing air.
  • the acid value of the solid content of the acid group-containing acrylate resin (C1) was 85 mgKOH/g.
  • Example 24 Preparation of curable resin composition (1)
  • Curable resin composition (1) was obtained.
  • Examples 25 to 46 Preparation of curable resin compositions (2) to (23)
  • the acid group-containing (meth)acrylate resins (2) to (23) obtained in Examples 2 to 23 were used, respectively.
  • Curable resin compositions (2) to (23) were obtained in the same manner as in Example 24.
  • Tables 1 and 2 show the compositions and evaluation results of the curable resin compositions (1) to (23) produced in Examples 24 to 46 and the curable resin composition (C2) produced in Comparative Example 2.
  • Example 47 Preparation of curable resin composition (24)
  • the acid group-containing (meth)acrylate resin (1) obtained in Example 1 an orthocresol novolac type epoxy resin (“EPICLON N-680” manufactured by DIC Corporation) as a curing agent, and 2-methyl-1 as a photopolymerization initiator.
  • -(4-Methylthiophenyl)-2-morpholinopropan-1-one (“OMNIRAD-907” manufactured by IGM) and diethylene glycol monomethyl ether acetate as an organic solvent were mixed in a mass ratio shown in Table 1 to prepare a curable resin.
  • a composition (24) was obtained.
  • Example 48 to 69 Preparation of curable resin compositions (25) to (46)
  • the acid group-containing (meth)acrylate resins (2) to (23) obtained in Examples 2 to 23 were used instead of the acid group-containing (meth)acrylate resin (1) used in Example 47, respectively.
  • Curable resin compositions (25) to (46) were obtained in the same manner as in Example 47.
  • the test piece was cut into a size of 6 mm ⁇ 40 mm, and a viscoelasticity measuring device (DMA: solid viscoelasticity measuring device “RSAII” manufactured by Rheometric Co., tension method: frequency 1 Hz, temperature rising rate 3° C./min) was used.
  • DMA solid viscoelasticity measuring device “RSAII” manufactured by Rheometric Co., tension method: frequency 1 Hz, temperature rising rate 3° C./min
  • Tg glass transition temperature
  • Tables 3 and 4 show the compositions and evaluation results of the curable resin compositions (24) to (46) produced in Examples 47 to 69 and the curable resin composition (C3) produced in Comparative Example 3.
  • the parts by mass of the “acid group-containing (meth)acrylate resin” in Tables 1 to 4 are solution values.
  • “Curing agent” in Tables 1 to 4 indicates an ortho-cresol novolac type epoxy resin (“EPICLON N-680” manufactured by DIC Corporation, epoxy equivalent: 214).
  • Organic solvent in Tables 1 to 4 indicates diethylene glycol monomethyl ether acetate.
  • Examples 22 to 63 shown in Tables 1 to 4 are examples of curable resin compositions using the acid group-containing (meth)acrylate resin of the present invention. It was confirmed that this curable resin composition had excellent photosensitivity and alkali developability, and that the cured product had excellent heat resistance.
  • Comparative Examples 2 and 3 are examples of curable resin compositions that do not use the acid group-containing (meth)acrylate resin of the present invention. It was confirmed that this curable resin composition had remarkably insufficient photosensitivity and remarkably insufficient heat resistance in the cured product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials For Photolithography (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Organic Insulating Materials (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

The present invention provides an acid-group-containing (meth)acrylate resin having, as essential reaction raw materials, an amide-imide resin having an acid group and/or acid anhydride group, a hydroxyl-group-containing (meth)acrylate compound, an epoxy-group-containing (meth)acrylate compound, and a polycarboxylic acid anhydride, wherein the acid-group-containing (meth)acrylate resin is characterized in that: the amide-imide resin is a reaction product of a polyisocyanate compound and a polycarboxylic acid anhydride, or is a reaction product of a polyisocyanate compound, a polycarboxylic acid anhydride, and a hydroxyl-group-containing (meth)acrylate compound; and the hydroxyl-group-containing (meth)acrylate compound contains a (meth)acrylate compound having two hydroxyl groups and/or a (meth)acrylate compound having three hydroxyl groups. The acid-group-containing (meth)acrylate resin has exceptional photosensitivity and alkaline developability and can form a cured product having exceptional heat resistance.

Description

酸基含有(メタ)アクリレート樹脂、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
 本発明は、光感度及びアルカリ現像性に優れ、硬化物における耐熱性に優れた酸基含有(メタ)アクリレート樹脂、これを含有する硬化性樹脂組成物、前記硬化性樹脂組成物からなる絶縁材料、ソルダーレジスト用樹脂材料、レジスト部材、及び酸基含有(メタ)アクリレート樹脂の製造方法に関する。 The present invention provides an acid group-containing (meth)acrylate resin having excellent photosensitivity and alkali developability and excellent heat resistance in a cured product, a curable resin composition containing the same, and an insulating material comprising the curable resin composition. , A solder resist resin material, a resist member, and a method for producing an acid group-containing (meth)acrylate resin.
 近年、プリント配線基板用のソルダーレジスト用樹脂材料には、エポキシ樹脂をアクリル酸でアクリレート化した後、酸無水物を反応させて得られる酸基含有エポキシアクリレート樹脂が広く用いられている。ソルダーレジスト用樹脂材料に対する要求性能は、少ない露光量で硬化すること、アルカリ現像性に優れること、硬化物における耐熱性に優れることなど様々なものが挙げられる。 In recent years, acid group-containing epoxy acrylate resins obtained by reacting an acid anhydride after acrylate conversion of epoxy resin with acrylic acid are widely used as resin materials for solder resists for printed wiring boards. There are various requirements for the resin material for a solder resist, such as curing with a small amount of exposure, excellent alkali developability, and excellent heat resistance in the cured product.
 従来知られているソルダーレジスト用樹脂材料としては、ノボラック型エポキシ樹脂と不飽和モノカルボン酸との反応物と、飽和または不飽和多塩基酸無水物とを反応させて得られる活性エネルギー線硬化性樹脂が知られているが(例えば、下記特許文献1参照。)、硬化物における耐熱性には優れるものの、今後ますます高まる要求特性を満足するものではなく、昨今の市場要求に対し十分なものではなかった。 Conventionally known solder resist resin materials include active energy ray-curable products obtained by reacting a reaction product of a novolac type epoxy resin and an unsaturated monocarboxylic acid with a saturated or unsaturated polybasic acid anhydride. Although a resin is known (for example, refer to Patent Document 1 below), although it has excellent heat resistance in a cured product, it does not satisfy the ever-increasing required properties and is sufficient for the recent market demands. Was not.
 そこで、優れた光感度及びアルカリ現像性を有し、硬化物における耐熱性により一層優れた材料が求められていた。 Therefore, there was a demand for a material that has excellent photosensitivity and alkali developability and that has even higher heat resistance in the cured product.
特開昭61-243869号公報Japanese Patent Laid-Open No. 61-243869
 本発明が解決しようとする課題は、優れた光感度及びアルカリ現像性を有し、硬化物における耐熱性に優れた酸基含有(メタ)アクリレート樹脂、これを含有する硬化性樹脂組成物、前記硬化性樹脂組成物からなる絶縁材料、ソルダーレジスト用樹脂材料、レジスト部材及び酸基含有(メタ)アクリレート樹脂の製造方法を提供することである。 The problem to be solved by the present invention is to provide an acid group-containing (meth)acrylate resin having excellent photosensitivity and alkali developability and excellent heat resistance in a cured product, a curable resin composition containing the same, An object of the present invention is to provide an insulating material comprising a curable resin composition, a resin material for solder resist, a resist member, and a method for producing an acid group-containing (meth)acrylate resin.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、酸基及び/または酸無水物基を有するアミドイミド樹脂、水酸基含有(メタ)アクリレート化合物、エポキシ基含有(メタ)アクリレート化合物及びポリカルボン酸無水物を必須の反応原料とする酸基含有(メタ)アクリレート樹脂であって、前記アミドイミド樹脂が、ポリイソシアネート化合物及びポリカルボン酸無水物の反応物、または、ポリイソシアネート化合物、ポリカルボン酸無水物及び水酸基含有(メタ)アクリレートの反応物であり、酸基含有(メタ)アクリレート樹脂の原料として用いる水酸基含有(メタ)アクリレート化合物、またはアミドイミド樹脂の原料として用いる水酸基含有(メタ)アクリレート化合物のいずれか一方または両方が、水酸基を2つ有する(メタ)アクリレート化合物、及び/または水酸基を3つ有する(メタ)アクリレート化合物を含有するものであることを特徴とする酸基含有(メタ)アクリレート樹脂を用いることによって、上記課題を解決できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have found that an amide imide resin having an acid group and/or an acid anhydride group, a hydroxyl group-containing (meth)acrylate compound, an epoxy group-containing (meth)acrylate compound and a polycarboxylic acid An acid group-containing (meth)acrylate resin using an acid anhydride as an essential reaction raw material, wherein the amide imide resin is a reaction product of a polyisocyanate compound and a polycarboxylic acid anhydride, or a polyisocyanate compound, a polycarboxylic acid anhydride. And a hydroxyl group-containing (meth)acrylate compound used as a raw material of an acid group-containing (meth)acrylate resin or a hydroxyl group-containing (meth)acrylate compound used as a raw material of an amideimide resin. One or both contain a (meth)acrylate compound having two hydroxyl groups, and/or a (meth)acrylate compound having three hydroxyl groups. The inventors have found that the above problems can be solved by using them, and completed the present invention.
 すなわち、本発明は、酸基及び/または酸無水物基を有するアミドイミド樹脂(A)と、水酸基含有(メタ)アクリレート化合物(B)と、エポキシ基含有(メタ)アクリレート化合物(C)と、ポリカルボン酸無水物(D)とを必須の反応原料とする酸基含有(メタ)アクリレート樹脂であって、前記アミドイミド樹脂(A)が、ポリイソシアネート化合物(a1)及びポリカルボン酸無水物(a2)の反応物(A-1)、または、ポリイソシアネート化合物(a1)、ポリカルボン酸無水物(a2)及び水酸基含有(メタ)アクリレート化合物(a3)の反応物(A-2)であり、前記水酸基含有(メタ)アクリレート化合物(B)または前記水酸基含有(メタ)アクリレート化合物(a3)のいずれか一方または両方が、水酸基を2つ有する(メタ)アクリレート化合物、及び/または水酸基を3つ有する(メタ)アクリレート化合物を含有するものであることを特徴とする酸基含有(メタ)アクリレート樹脂、これを含有する硬化性樹脂組成物、前記硬化性樹脂組成物からなる硬化物、絶縁材料、ソルダーレジスト用樹脂材料、レジスト部材及び酸基含有(メタ)アクリレート樹脂の製造方法に関するものである。 That is, the present invention relates to an amide imide resin (A) having an acid group and/or an acid anhydride group, a hydroxyl group-containing (meth)acrylate compound (B), an epoxy group-containing (meth)acrylate compound (C), and An acid group-containing (meth)acrylate resin containing a carboxylic acid anhydride (D) as an essential reaction raw material, wherein the amideimide resin (A) is a polyisocyanate compound (a1) and a polycarboxylic acid anhydride (a2). Or a reaction product (A-2) of the polyisocyanate compound (a1), the polycarboxylic acid anhydride (a2) and the hydroxyl group-containing (meth)acrylate compound (a3). Either or both of the containing (meth)acrylate compound (B) and the hydroxyl group-containing (meth)acrylate compound (a3) have (meth)acrylate compound having two hydroxyl groups, and/or have three hydroxyl groups (meth ) Acid group-containing (meth)acrylate resin containing an acrylate compound, a curable resin composition containing the same, a cured product of the curable resin composition, an insulating material, and a solder resist The present invention relates to a resin material, a resist member, and a method for producing an acid group-containing (meth)acrylate resin.
 本発明の酸基含有(メタ)アクリレート樹脂は、光感度及びアルカリ現像性に優れ、硬化物における耐熱性に優れることから、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材に好適に用いることができる。 The acid group-containing (meth)acrylate resin of the present invention is excellent in photosensitivity and alkali developability, and is excellent in heat resistance in a cured product, and thus can be suitably used for an insulating material, a resin material for solder resist and a resist member. ..
 本発明の酸基含有(メタ)アクリレート樹脂は、酸基及び/または酸無水物基を有するアミドイミド樹脂(A)、水酸基含有(メタ)アクリレート化合物(B)、エポキシ基含有(メタ)アクリレート化合物(C)及びポリカルボン酸無水物(D)を必須の反応原料とすることを特徴とする。 The acid group-containing (meth)acrylate resin of the present invention includes an amide imide resin (A) having an acid group and/or an acid anhydride group, a hydroxyl group-containing (meth)acrylate compound (B), and an epoxy group-containing (meth)acrylate compound ( C) and polycarboxylic acid anhydride (D) are essential reaction raw materials.
 なお、本発明において、「(メタ)アクリレート」とは、アクリレート及び/またはメタクリレートを意味する。また、「(メタ)アクリロイル」とは、アクリロイル及び/またはメタクリロイルを意味する。さらに、「(メタ)アクリル」とは、アクリル及び/またはメタクリルを意味する。 In the present invention, the term “(meth)acrylate” means acrylate and/or methacrylate. Moreover, "(meth)acryloyl" means acryloyl and/or methacryloyl. Furthermore, "(meth)acrylic" means acrylic and/or methacrylic.
 前記酸基及び/または酸無水物基を有するアミドイミド樹脂(A)としては、酸基または酸無水物基のどちらか一方のみを有するものであってもよいし、両方を有するものであってもよい。なかでも、前記水酸基含有(メタ)アクリレート化合物(B)や前記エポキシ基含有(メタ)アクリレート化合物(C)との反応性や反応制御の観点から、酸無水物基を有していることが好ましく、酸基と酸無水物基との両方を有することが好ましい。 The amide-imide resin (A) having an acid group and/or an acid anhydride group may have only one of an acid group and an acid anhydride group, or may have both. Good. Among them, it is preferable to have an acid anhydride group from the viewpoint of reactivity and reaction control with the hydroxyl group-containing (meth)acrylate compound (B) and the epoxy group-containing (meth)acrylate compound (C). It is preferable to have both an acid group and an acid anhydride group.
 前記酸基としては、例えば、カルボキシル基、スルホン酸基、燐酸基等が挙げられる。 Examples of the acid group include a carboxyl group, a sulfonic acid group, a phosphoric acid group and the like.
 前記酸無水物基としては、例えば、カルボン酸無水物基、スルホン酸無水物基、燐酸無水物基等が挙げられる。 Examples of the acid anhydride group include a carboxylic acid anhydride group, a sulfonic acid anhydride group, and a phosphoric acid anhydride group.
 前記アミドイミド樹脂(A)としては、〔1〕ポリイソシアネート化合物(a1)及びポリカルボン酸無水物(a2)の反応物(A-1)(以下、「アミドイミド樹脂(A-1)」と称することがある。)、または〔2〕ポリイソシアネート化合物(a1)、ポリカルボン酸無水物(a2)及び水酸基含有(メタ)アクリレート化合物(a3)の反応物(A-2)(以下、アミドイミド樹脂(A-2)と称することがある。)を用いる。 As the amide-imide resin (A), [1] a reaction product (A-1) of a polyisocyanate compound (a1) and a polycarboxylic acid anhydride (a2) (hereinafter referred to as "amide-imide resin (A-1)" Or [2] a reaction product (A-2) of a polyisocyanate compound (a1), a polycarboxylic acid anhydride (a2) and a hydroxyl group-containing (meth)acrylate compound (a3) (hereinafter referred to as an amide imide resin (A -2) is sometimes used).
 〔1〕アミドイミド樹脂(A-1)について説明する。 [1] The amide imide resin (A-1) will be described.
 前記アミドイミド樹脂(A-1)は、ポリイソシアネート化合物(a1)及びポリカルボン酸無水物(a2)を反応させて得られるものである。 The amide imide resin (A-1) is obtained by reacting a polyisocyanate compound (a1) and a polycarboxylic acid anhydride (a2).
 前記ポリイソシアネート化合物(a1)としては、例えば、ブタンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート化合物;ノルボルナンジイソシアネート、イソホロンジイソシアネート、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート等の脂環式ジイソシアネート化合物;トリレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、4,4’-ジイソシアナト-3,3’-ジメチルビフェニル、o-トリジンジイソシアネート等の芳香族ジイソシアネート化合物;下記構造式(1)で表される繰り返し構造を有するポリメチレンポリフェニルポリイソシアネート;これらのイソシアヌレート変性体、ビウレット変性体、アロファネート変性体等が挙げられる。また、これらのポリイソシアネート化合物は、単独で用いることも2種以上を併用することもできる。これらのポリイソシアネート化合物(a1)は、優れた光感度及びアルカリ現像性を有し、優れた耐熱性を有する硬化物を形成可能な酸基含有(メタ)アクリレート樹脂が得られることから、非イソシアヌレート変性体が好ましい。 Examples of the polyisocyanate compound (a1) include, butane diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, and other aliphatic diisocyanate compounds; norbornane diisocyanate, Alicyclic diisocyanate compounds such as isophorone diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate; tolylene diisocyanate, xylylene diisocyanate, tetramethyl xylylene diisocyanate, diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, 4,4'- Aromatic diisocyanate compounds such as diisocyanato-3,3'-dimethylbiphenyl and o-tolidine diisocyanate; polymethylene polyphenyl polyisocyanates having a repeating structure represented by the following structural formula (1); modified isocyanurates thereof, biuret Examples include modified products and allophanate modified products. In addition, these polyisocyanate compounds may be used alone or in combination of two or more kinds. These polyisocyanate compounds (a1) have excellent photosensitivity and alkali developability, and are capable of forming an acid group-containing (meth)acrylate resin capable of forming a cured product having excellent heat resistance. Nurate modified products are preferred.
Figure JPOXMLDOC01-appb-C000001
[式(1)中、Rはそれぞれ独立して、水素原子、または炭素原子数1~6の炭化水素基の何れかである。Rはそれぞれ独立して、炭素原子数1~4のアルキル基、または構造式(1)で表される構造部位と*印が付されたメチレン基を介して連結する結合点の何れかである。lは0または1~3の整数であり、mは1~15の整数である。]
Figure JPOXMLDOC01-appb-C000001
[In the formula (1), each R 1 is independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. Each R 2 is independently an alkyl group having 1 to 4 carbon atoms, or a bonding point connecting the structural site represented by the structural formula (1) and the methylene group marked with *. is there. l is 0 or an integer of 1 to 3, and m is an integer of 1 to 15. ]
 これらの中でも、優れた溶剤溶解性を有する酸基含有(メタ)アクリレート樹脂となる点では前記脂環式ジイソシアネート化合物またはその変性体が好ましく、脂環式ジイソシアネートが好ましい。また、優れた光感度及びアルカリ現像性を有し、優れた耐熱性を有する硬化物を形成可能な酸基含有(メタ)アクリレート樹脂が得られる点では前記脂肪族ジイソシアネート化合物またはその変性体が好ましく、脂肪族ジイソシアネートが好ましい。さらに、前記ポリイソシアネート化合物(a1)の総質量に対する前記脂環式ジイソシアネート化合物またはその変性体と前記脂肪族ジイソシアネート化合物またはその変性体との合計質量の割合が70質量%以上であることが好ましく、90質量%以上であることがより好ましい。また、前記脂環式ジイソシアネート化合物またはその変性体と前記脂肪族ジイソシアネート化合物またはその変性体とを併用する場合には、両者の質量比が20/80~80/20の範囲であることが好ましい。 Among these, the alicyclic diisocyanate compound or its modified product is preferable, and the alicyclic diisocyanate is preferable, in terms of the acid group-containing (meth)acrylate resin having excellent solvent solubility. Further, the aliphatic diisocyanate compound or a modified product thereof is preferable in that an acid group-containing (meth)acrylate resin capable of forming a cured product having excellent heat sensitivity and excellent photosensitivity and alkali developability can be obtained. , Aliphatic diisocyanates are preferred. Furthermore, the ratio of the total mass of the alicyclic diisocyanate compound or a modified product thereof and the aliphatic diisocyanate compound or a modified product thereof to the total mass of the polyisocyanate compound (a1) is preferably 70% by mass or more, It is more preferably 90 mass% or more. When the alicyclic diisocyanate compound or modified product thereof and the aliphatic diisocyanate compound or modified product thereof are used in combination, the mass ratio of both is preferably in the range of 20/80 to 80/20.
 前記ポリカルボン酸無水物(a2)としては、例えば、脂肪族ポリカルボン酸無水物、脂環式ポリカルボン酸無水物、芳香族ポリカルボン酸無水物等が挙げられる。 Examples of the polycarboxylic acid anhydride (a2) include aliphatic polycarboxylic acid anhydride, alicyclic polycarboxylic acid anhydride, aromatic polycarboxylic acid anhydride and the like.
 前記脂肪族ポリカルボン酸無水物としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸、1,2,3,4-ブタンテトラカルボン酸の酸無水物等が挙げられる。また、前記脂肪族ポリカルボン酸無水物としては、脂肪族炭化水素基は直鎖型及び分岐型のいずれでもよく、構造中に不飽和結合を有していてもよい。 Examples of the aliphatic polycarboxylic acid anhydrides include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, citraconic acid, and itacone. Examples thereof include acids, glutaconic acid, and acid anhydrides of 1,2,3,4-butanetetracarboxylic acid. In the aliphatic polycarboxylic acid anhydride, the aliphatic hydrocarbon group may be linear or branched and may have an unsaturated bond in the structure.
 前記脂環式ポリカルボン酸無水物としては、本発明では、酸無水物基が脂環構造に結合しているものを脂環式ポリカルボン酸無水物とし、それ以外の構造部位における芳香環の有無は問わないものとする。前記脂環式ポリカルボン酸無水物としては、例えば、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、シクロヘキサントリカルボン酸、シクロヘキサンテトラカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸の酸無水物等が挙げられる。 As the alicyclic polycarboxylic acid anhydride, in the present invention, the acid anhydride group is bonded to the alicyclic structure as an alicyclic polycarboxylic acid anhydride, the aromatic ring of the other structural site It does not matter whether it is present or not. Examples of the alicyclic polycarboxylic acid anhydride include tetrahydrophthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, cyclohexanetricarboxylic acid, cyclohexanetetracarboxylic acid, bicyclo[2.2.1]heptane-2, 3-dicarboxylic acid, methylbicyclo[2.2.1]heptane-2,3-dicarboxylic acid, 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene- Examples thereof include acid anhydrides of 1,2-dicarboxylic acid.
 前記芳香族ポリカルボン酸無水物としては、例えば、フタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、ナフタレントリカルボン酸、ナフタレンテトラカルボン酸、ビフェニルジカルボン酸、ビフェニルトリカルボン酸、ビフェニルテトラカルボン酸、ベンゾフェノンテトラカルボン酸の酸無水物等が挙げられる。 Examples of the aromatic polycarboxylic acid anhydrides include phthalic acid, trimellitic acid, pyromellitic acid, naphthalene dicarboxylic acid, naphthalene tricarboxylic acid, naphthalene tetracarboxylic acid, biphenyl dicarboxylic acid, biphenyl tricarboxylic acid, biphenyl tetracarboxylic acid, Examples thereof include acid anhydrides of benzophenone tetracarboxylic acid.
 これらのポリカルボン酸無水物(a2)は、単独で用いることも2種以上を併用することもできる。また、これらの中でも、優れた光感度及びアルカリ現像性を有し、優れた耐熱性を有する硬化物を形成可能な酸基含有(メタ)アクリレート樹脂が得られることから、前記脂環式ポリカルボン酸無水物、或いは前記芳香族ポリカルボン酸無水物が好ましい。また、優れた光感度及びアルカリ現像性を有し、優れた耐熱性を有する硬化物を形成可能な酸基含有(メタ)アクリレート樹脂が得られることから、分子構造中にカルボキシル基と酸無水物基との両方を有するトリカルボン酸無水物を用いることが好ましく、シクロヘキサントリカルボン酸無水物またはトリメリット酸無水物を用いることが特に好ましい。この際、前記ポリカルボン酸無水物(a2)中の前記トリカルボン酸無水物の含有量が、70質量%以上が好ましく、90質量%以上がより好ましい。 These polycarboxylic acid anhydrides (a2) can be used alone or in combination of two or more kinds. In addition, among these, since the acid group-containing (meth)acrylate resin capable of forming a cured product having excellent photosensitivity and alkali developability and having excellent heat resistance is obtained, the alicyclic polycarboxylic acid An acid anhydride or the aromatic polycarboxylic acid anhydride is preferable. Further, since it is possible to obtain an acid group-containing (meth)acrylate resin capable of forming a cured product having excellent heat sensitivity and excellent photosensitivity and alkali developability, it is possible to obtain a carboxyl group and an acid anhydride in the molecular structure. It is preferable to use a tricarboxylic acid anhydride having both a group and a cyclohexanetricarboxylic acid anhydride or a trimellitic acid anhydride. At this time, the content of the tricarboxylic acid anhydride in the polycarboxylic acid anhydride (a2) is preferably 70% by mass or more, and more preferably 90% by mass or more.
 また、前記アミドイミド樹脂(A-1)としては、必要に応じて、前記ポリイソシアネート化合物(a1)及び前記ポリカルボン酸無水物(a2)以外に、その他の化合物を反応原料として併用することもできる。前記その他の化合物を併用する場合、本発明が奏する効果が十分に発揮されることから、前記アミドイミド樹脂(A-1)の反応原料中の前記ポリイソシアネート化合物(a1)及び前記ポリカルボン酸無水物(a2)の合計の含有量が、80質量%以上が好ましく、85質量%がより好ましい。 Further, as the amide-imide resin (A-1), if necessary, other compounds may be used in combination as a reaction raw material in addition to the polyisocyanate compound (a1) and the polycarboxylic acid anhydride (a2). .. When the other compound is used in combination, the effects of the present invention are sufficiently exhibited, and therefore, the polyisocyanate compound (a1) and the polycarboxylic acid anhydride in the reaction raw material of the amide imide resin (A-1) are used. The total content of (a2) is preferably 80% by mass or more, and more preferably 85% by mass.
 前記その他の化合物としては、例えば、ポリカルボン酸等が挙げられる。 Examples of the other compounds include polycarboxylic acid and the like.
 前記ポリカルボン酸としては、一分子中にカルボキシル基を2つ以上有する化合物であれば何れのものも用いることができる。例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、シトラコン酸、イタコン酸、グルタコン酸、1,2,3,4-ブタンテトラカルボン酸、シクロヘキサントリカルボン酸、シクロヘキサンテトラカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、ナフタレントリカルボン酸、ナフタレンテトラカルボン酸、ビフェニルジカルボン酸、ビフェニルトリカルボン酸、ビフェニルテトラカルボン酸、ベンゾフェノンテトラカルボン酸等が挙げられる。また、前記ポリカルボン酸としては、例えば、共役ジエン系ビニルモノマーとアクリロニトリルとの共重合体であって、その分子中にカルボキシル基を有する重合体も用いることができる。これらのポリカルボン酸(a2)は、単独で用いることも2種以上を併用することもできる。 As the polycarboxylic acid, any compound can be used as long as it is a compound having two or more carboxyl groups in one molecule. For example, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, hexahydro Phthalic acid, methylhexahydrophthalic acid, citraconic acid, itaconic acid, glutaconic acid, 1,2,3,4-butanetetracarboxylic acid, cyclohexanetricarboxylic acid, cyclohexanetetracarboxylic acid, bicyclo[2.2.1]heptane- 2,3-dicarboxylic acid, methylbicyclo[2.2.1]heptane-2,3-dicarboxylic acid, 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydro Naphthalene-1,2-dicarboxylic acid, trimellitic acid, pyromellitic acid, naphthalene dicarboxylic acid, naphthalene tricarboxylic acid, naphthalene tetracarboxylic acid, biphenyl dicarboxylic acid, biphenyl tricarboxylic acid, biphenyl tetracarboxylic acid, benzophenone tetracarboxylic acid, etc. To be Further, as the polycarboxylic acid, for example, a copolymer of a conjugated diene vinyl monomer and acrylonitrile, which has a carboxyl group in its molecule, can also be used. These polycarboxylic acids (a2) can be used alone or in combination of two or more kinds.
 前記共役ジエン系ビニルモノマーとアクリロニトリルとの共重合体であって、その分子中にカルボキシル基を有する重合体としては、例えば、下記構造式(2-1)で表されるブタジエン-アクリロニトリル共重合体にカルボキシル基を有する重合体や、下記構造式(2-2)で表されるブタジエン-アクリロニトリル共重合体の分子中に水酸基を有する重合体と無水マレイン酸等の多塩基酸無水物とのハーフエステルなどが挙げられる。なお、カルボキシル基の位置は、分子の側鎖または末端の何れに位置していてもよいが、末端が好ましい。 The copolymer of the conjugated diene vinyl monomer and acrylonitrile, which has a carboxyl group in its molecule, is, for example, a butadiene-acrylonitrile copolymer represented by the following structural formula (2-1). Half of a polymer having a carboxyl group in the polymer and a polymer having a hydroxyl group in the molecule of a butadiene-acrylonitrile copolymer represented by the following structural formula (2-2) and a polybasic acid anhydride such as maleic anhydride Examples thereof include esters. The position of the carboxyl group may be located on either the side chain or the terminal of the molecule, but the terminal is preferred.
Figure JPOXMLDOC01-appb-C000002
[構造式(2-1)中、Xは1~50の整数であり、Yは1~50の整数であり、Zは1~20の整数である。]
Figure JPOXMLDOC01-appb-C000002
[In the structural formula (2-1), X is an integer of 1 to 50, Y is an integer of 1 to 50, and Z is an integer of 1 to 20. ]
Figure JPOXMLDOC01-appb-C000003
[構造式(2-2)中、Xは1~50の整数であり、Yは1~50の整数であり、Zは1~20の整数である。]
Figure JPOXMLDOC01-appb-C000003
[In the structural formula (2-2), X is an integer of 1 to 50, Y is an integer of 1 to 50, and Z is an integer of 1 to 20. ]
 前記アミドイミド樹脂(A-1)の酸価は、優れた光感度及びアルカリ現像性を有し、優れた耐熱性を有する硬化物を形成可能な酸基含有(メタ)アクリレート樹脂が得られることから、中性条件下、即ち、酸無水物基を開環させない条件での測定値が60~350mgKOH/gの範囲であることが好ましく、水の存在下等、酸無水物基を開環させた条件での測定値が61~360mgKOH/gの範囲であることが好ましい。なお、本願発明において酸価はJIS K 0070(1992)の中和滴定法にて測定される値である。 Since the acid value of the amide-imide resin (A-1) has excellent photosensitivity and alkali developability, an acid group-containing (meth)acrylate resin capable of forming a cured product having excellent heat resistance can be obtained. It is preferable that the measured value under a neutral condition, that is, under the condition that the acid anhydride group is not ring-opened is in the range of 60 to 350 mgKOH/g, and the acid anhydride group was ring-opened in the presence of water. The measured value under the condition is preferably in the range of 61 to 360 mgKOH/g. In the present invention, the acid value is a value measured by the neutralization titration method of JIS K0070 (1992).
 前記アミドイミド樹脂(A-1)の製造方法としては、特に限定されず、どのような方法で製造してもよい。例えば、一般的なアミドイミド樹脂と同様の方法にて製造することができる。具体的には、前記ポリイソシアネート化合物(a1)が有するイソシアネート基1モルに対し、0.8~3.5モルの前記ポリカルボン酸無水物(a2)を用い、100~180℃程度の温度条件下で撹拌混合して反応させる方法が挙げられる。 The method for producing the amide-imide resin (A-1) is not particularly limited and may be produced by any method. For example, it can be produced by a method similar to that of a general amide-imide resin. Specifically, 0.8 to 3.5 mol of the polycarboxylic acid anhydride (a2) is used with respect to 1 mol of the isocyanate group contained in the polyisocyanate compound (a1), and the temperature condition is about 100 to 180° C. The method of stirring and mixing under the reaction is mentioned.
 該反応は、必要に応じて有機溶剤中で行ってもよく、また、必要に応じて塩基性触媒を用いてもよい。 The reaction may be carried out in an organic solvent if necessary, and a basic catalyst may be used if necessary.
 前記有機溶剤としては、例えば、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン等のケトン溶剤;テトラヒドロフラン、ジオキソラン等の環状エーテル溶剤;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル溶剤;トルエン、キシレン、ソルベントナフサ等の芳香族溶剤;シクロヘキサン、メチルシクロヘキサン等の脂環族溶剤;カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテルなどのアルコール溶剤;アルキレングリコールモノアルキルエーテル、ジアルキレングリコールモノアルキルエーテル、ジアルキレングリコールモノアルキルエーテルアセテート等のグリコールエーテル溶剤;メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。これらの有機溶剤は、単独で用いることも2種以上を併用することもできる。また、前記有機溶剤の使用量は、反応効率が良好となることから、反応原料の合計質量に対し0.1~5倍量程度の範囲で用いることが好ましい。 Examples of the organic solvent include ketone solvents such as methyl ethyl ketone, acetone, dimethylformamide and methyl isobutyl ketone; cyclic ether solvents such as tetrahydrofuran and dioxolane; ester solvents such as methyl acetate, ethyl acetate and butyl acetate; toluene, xylene and solvent. Aromatic solvents such as naphtha; Alicyclic solvents such as cyclohexane and methylcyclohexane; Alcohol solvents such as carbitol, cellosolve, methanol, isopropanol, butanol, propylene glycol monomethyl ether; alkylene glycol monoalkyl ether, dialkylene glycol monoalkyl ether And glycol ether solvents such as dialkylene glycol monoalkyl ether acetate; methoxypropanol, cyclohexanone, methyl cellosolve, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate and the like. These organic solvents can be used alone or in combination of two or more kinds. Further, the amount of the organic solvent used is preferably in the range of about 0.1 to 5 times the total mass of the reaction raw materials because the reaction efficiency becomes good.
 前記塩基性触媒としては、例えば、N-メチルモルフォリン、ピリジン、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、トリ-n-ブチルアミンもしくはジメチルベンジルアミン、ブチルアミン、オクチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、イミダゾール、1-メチルイミダゾール、2,4-ジメチルイミダゾール、1,4-ジエチルイミダゾール、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(N-フェニル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、テトラメチルアンモニウムヒドロキシド等のアミン化合物類;トリオクチルメチルアンモニウムクロライド、トリオクチルメチルアンモニウムアセテート等の四級アンモニウム塩類;トリメチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等のホスフィン類;テトラメチルホスホニウムクロライド、テトラエチルホスホニウムクロライド、テトラプロピルホスホニウムクロライド、テトラブチルホスホニウムクロライド、テトラブチルホスホニウムブロマイド、トリメチル(2-ヒドロキシルプロピル)ホスホニウムクロライド、トリフェニルホスホニウムクロライド、ベンジルホスホニウムクロライド等のホスホニウム塩類;ジブチル錫ジラウレート、オクチル錫トリラウレート、オクチル錫ジアセテート、ジオクチル錫ジアセテート、ジオクチル錫ジネオデカノエート、ジブチル錫ジアセテート、オクチル酸錫、1,1,3,3-テトラブチル-1,3-ドデカノイルジスタノキサン等の有機錫化合物;オクチル酸亜鉛、オクチル酸ビスマス等の有機金属化合物;オクタン酸錫等の無機錫化合物;無機金属化合物などが挙げられる。これらの塩基性触媒は、単独で用いることも2種以上を併用することもできる。 Examples of the basic catalyst include N-methylmorpholine, pyridine, 1,8-diazabicyclo[5.4.0]undecene-7 (DBU), 1,5-diazabicyclo[4.3.0]nonene- 5(DBN), 1,4-diazabicyclo[2.2.2]octane (DABCO), tri-n-butylamine or dimethylbenzylamine, butylamine, octylamine, monoethanolamine, diethanolamine, triethanolamine, imidazole, 1 -Methylimidazole, 2,4-dimethylimidazole, 1,4-diethylimidazole, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-(N-phenyl)aminopropyltrimethoxysilane, 3-( Amine compounds such as 2-aminoethyl)aminopropyltrimethoxysilane, 3-(2-aminoethyl)aminopropylmethyldimethoxysilane, and tetramethylammonium hydroxide; four such as trioctylmethylammonium chloride and trioctylmethylammonium acetate Primary ammonium salts; phosphines such as trimethylphosphine, tributylphosphine and triphenylphosphine; tetramethylphosphonium chloride, tetraethylphosphonium chloride, tetrapropylphosphonium chloride, tetrabutylphosphonium chloride, tetrabutylphosphonium bromide, trimethyl(2-hydroxypropyl)phosphonium Phosphonium salts such as chloride, triphenylphosphonium chloride, benzylphosphonium chloride; dibutyltin dilaurate, octyltin trilaurate, octyltin diacetate, dioctyltin diacetate, dioctyltin dinedecanoate, dibutyltin diacetate, tin octylate, Organotin compounds such as 1,1,3,3-tetrabutyl-1,3-dodecanoyldistannoxane; Organometallic compounds such as zinc octylate and bismuth octylate; Inorganic tin compounds such as tin octoate; Inorganic metal compounds And so on. These basic catalysts can be used alone or in combination of two or more kinds.
 〔2〕アミドイミド樹脂(A-2)について説明する。 [2] The amide imide resin (A-2) will be described.
 前記アミドイミド樹脂(A-2)は、ポリイソシアネート化合物(a1)、ポリカルボン酸無水物(a2)及び水酸基含有(メタ)アクリレート化合物(a3)を反応させて得られるものである。 The amide imide resin (A-2) is obtained by reacting a polyisocyanate compound (a1), a polycarboxylic acid anhydride (a2) and a hydroxyl group-containing (meth)acrylate compound (a3).
 前記ポリイソシアネート化合物(a1)としては、上述のポリイソシアネート化合物(a1)と同様のものを用いることができ、前記ポリイソシアネート化合物は、単独で用いることも2種以上を併用することもできる。 As the polyisocyanate compound (a1), the same ones as the above polyisocyanate compound (a1) can be used, and the polyisocyanate compound can be used alone or in combination of two or more kinds.
 前記ポリカルボン酸無水物(a2)としては、上述のポリカルボン酸無水物(a2)と同様のものを用いることができる。 As the polycarboxylic acid anhydride (a2), the same polycarboxylic acid anhydride (a2) as described above can be used.
 前記ポリカルボン酸無水物(a2)の使用量は、優れた光感度及びアルカリ現像性を有し、優れた耐熱性を有する硬化物を形成可能な酸基含有(メタ)アクリレート樹脂が得られることから、前記ポリイソシアネート化合物(a1)が有するイソシアネート基1モルに対して、0.8~3.5モルとなる範囲で用いることが好ましい。 The polycarboxylic acid anhydride (a2) is used in such an amount that an acid group-containing (meth)acrylate resin capable of forming a cured product having excellent photosensitivity and alkali developability and excellent heat resistance can be obtained. Therefore, it is preferably used in the range of 0.8 to 3.5 mol with respect to 1 mol of the isocyanate group contained in the polyisocyanate compound (a1).
 前記水酸基含有(メタ)アクリレート化合物(a3)としては、分子構造中に水酸基と(メタ)アクリロイル基とを有する化合物であれば他の具体構造は特に限定されず、多種多様な化合物を用いることができる。その一例としては、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、トリメチロールプロパン(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトール(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトール(メタ)アクリレート、ジペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジトリメチロールプロパン(メタ)アクリレート、ジトリメチロールプロパンジ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート等が挙げられる。また、前記各種の水酸基含有(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性体や、前記各種の水酸基含有(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性体等も用いることができる。これらの水酸基含有(メタ)アクリレート化合物(a3)は、単独で用いることも、2種以上を併用することもできる。 As the hydroxyl group-containing (meth)acrylate compound (a3), other specific structures are not particularly limited as long as it is a compound having a hydroxyl group and a (meth)acryloyl group in the molecular structure, and various compounds can be used. it can. Examples thereof include hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, trimethylolpropane (meth)acrylate, trimethylolpropane di(meth)acrylate, pentaerythritol (meth)acrylate, pentaerythritol di(meth)acrylate. ) Acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol (meth)acrylate, dipentaerythritol di(meth)acrylate, dipentaerythritol tri(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta Examples thereof include (meth)acrylate, ditrimethylolpropane (meth)acrylate, ditrimethylolpropane di(meth)acrylate, and ditrimethylolpropane tri(meth)acrylate. In addition, a (poly)oxyalkylene chain such as a (poly)oxyethylene chain, a (poly)oxypropylene chain, or a (poly)oxytetramethylene chain is introduced into the molecular structure of each of the various hydroxyl group-containing (meth)acrylate compounds ( It is also possible to use a modified poly)oxyalkylene, a modified lactone obtained by introducing a (poly)lactone structure into the molecular structure of each of the various hydroxyl group-containing (meth)acrylate compounds. These hydroxyl group-containing (meth)acrylate compounds (a3) can be used alone or in combination of two or more kinds.
 また、前記アミドイミド樹脂(A-2)としては、必要に応じて、前記ポリイソシアネート化合物(a1)、前記ポリカルボン酸無水物(a2)及び前記水酸基含有(メタ)アクリレート化合物(a3)以外に、その他の化合物を反応原料として併用することもできる。前記その他の化合物を併用する場合、本発明が奏する効果が十分に発揮されることから、前記アミドイミド樹脂(A-2)の反応原料中の前記ポリイソシアネート化合物(a1)、前記ポリカルボン酸無水物(a2)及び前記水酸基含有(メタ)アクリレート化合物(a3)の合計の含有量が、80質量%以上が好ましく、85質量%がより好ましい。 As the amide imide resin (A-2), if necessary, other than the polyisocyanate compound (a1), the polycarboxylic acid anhydride (a2) and the hydroxyl group-containing (meth)acrylate compound (a3), Other compounds can be used together as a reaction raw material. When the other compound is used in combination, the effect of the present invention is sufficiently exhibited, and therefore, the polyisocyanate compound (a1) and the polycarboxylic acid anhydride in the reaction raw material of the amide imide resin (A-2) are used. The total content of (a2) and the hydroxyl group-containing (meth)acrylate compound (a3) is preferably 80% by mass or more, and more preferably 85% by mass.
 前記その他の化合物としては、例えば、ポリカルボン酸等が挙げられる。 Examples of the other compounds include polycarboxylic acid and the like.
 前記ポリカルボン酸としては、上述のポリカルボン酸と同様のものを用いることができる。前記ポリカルボン酸は、単独で用いることも、2種以上を併用することもできる。 As the polycarboxylic acid, the same polycarboxylic acid as described above can be used. The polycarboxylic acids may be used alone or in combination of two or more.
 前記アミドイミド樹脂(A-2)の酸価は、優れた光感度及びアルカリ現像性を有し、優れた耐熱性を有する硬化物を形成可能な酸基含有(メタ)アクリレート樹脂が得られることから、中性条件下、即ち、酸無水物基を開環させない条件での測定値が60~350mgKOH/gの範囲であることが好ましく、水の存在下等、酸無水物基を開環させた条件での測定値が61~360mgKOH/gの範囲であることが好ましい。 Since the acid value of the amide-imide resin (A-2) has excellent photosensitivity and alkali developability, an acid group-containing (meth)acrylate resin capable of forming a cured product having excellent heat resistance can be obtained. It is preferable that the measured value under a neutral condition, that is, under the condition that the acid anhydride group is not ring-opened is in the range of 60 to 350 mgKOH/g, and the acid anhydride group was ring-opened in the presence of water. The measured value under the condition is preferably in the range of 61 to 360 mgKOH/g.
 前記アミドイミド樹脂(A-2)の製造方法としては、特に制限されず、どのような方法にて製造してもよい。例えば、反応原料の全てを一括で反応させる方法で製造してもよいし、反応原料を順次反応させる方法で製造してもよい。なかでも、反応の制御が容易であることから、前記ポリカルボン酸無水物(a2)と前記水酸基含有(メタ)アクリレート化合物(a3)を反応させ(工程A1)、前記工程A1で得られた中間反応生成物と前記ポリイソシアネート化合物(a1)とを反応させる(工程A2)方法で製造することが好ましい。 The method for producing the amide-imide resin (A-2) is not particularly limited and may be produced by any method. For example, it may be produced by a method of reacting all the reaction raw materials at once, or may be produced by a method of sequentially reacting the reaction raw materials. Among them, since the reaction is easily controlled, the polycarboxylic acid anhydride (a2) is reacted with the hydroxyl group-containing (meth)acrylate compound (a3) (step A1) to obtain the intermediate obtained in the step A1. It is preferable that the reaction product and the polyisocyanate compound (a1) are reacted (step A2).
 前記工程A1としては、前記ポリカルボン酸無水物(a2)と前記水酸基含有(メタ)アクリレート化合物(a3)とを反応させて、中間反応生成物を得る工程である。該反応は、主に、前記ポリカルボン酸無水物(a2)の酸無水物基と前記水酸基含有(メタ)アクリレート化合物(a3)の水酸基を反応させるものである。前記反応の反応割合は、前記水酸基含有(メタ)アクリレート化合物(a3)が有する水酸基1モルに対する前記ポリカルボン酸無水物(a2)のモル数が、2~8の範囲が好ましい。工程A1の反応は、例えば、適当なエステル化触媒の存在下、80~140℃程度の温度条件下で加熱撹拌して行うことができる。また、反応は必要に応じて有機溶剤中で行ってもよい。 The step A1 is a step of reacting the polycarboxylic acid anhydride (a2) with the hydroxyl group-containing (meth)acrylate compound (a3) to obtain an intermediate reaction product. The reaction is mainly to react the acid anhydride group of the polycarboxylic acid anhydride (a2) with the hydroxyl group of the hydroxyl group-containing (meth)acrylate compound (a3). The reaction ratio of the reaction is preferably such that the number of moles of the polycarboxylic acid anhydride (a2) is 1 to 8 with respect to 1 mole of the hydroxyl group contained in the hydroxyl group-containing (meth)acrylate compound (a3). The reaction of step A1 can be carried out, for example, in the presence of a suitable esterification catalyst while heating and stirring under a temperature condition of about 80 to 140°C. Further, the reaction may be carried out in an organic solvent, if necessary.
 前記エステル化触媒としては、例えば、トリメチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等のリン化合物、トリエチルアミン、トリブチルアミン、ジメチルベンジルアミン等のアミン化合物、2-メチルイミダゾール、2-ヘプタデシルイミダゾール、2-エチル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-イソブチル-2-メチルイミダゾール等のイミダゾール化合物等が挙げられる。これらのエステル化触媒は、単独で用いることも、2種以上を併用することもできる。 Examples of the esterification catalyst include phosphorus compounds such as trimethylphosphine, tributylphosphine and triphenylphosphine, amine compounds such as triethylamine, tributylamine and dimethylbenzylamine, 2-methylimidazole, 2-heptadecylimidazole and 2-ethyl. Examples thereof include imidazole compounds such as -4-methylimidazole, 1-benzyl-2-methylimidazole and 1-isobutyl-2-methylimidazole. These esterification catalysts can be used alone or in combination of two or more kinds.
 前記有機溶剤としては、上述の有機溶剤と同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same organic solvents as described above can be used, and the organic solvent can be used alone or in combination of two or more kinds.
 前記工程A2としては、前記工程A1で得られた中間反応生成物と前記ポリイソシアネート化合物(a1)との反応である。該反応は、主に、前記工程A1で得られた中間反応生成物が有する酸基及び/または酸無水物基と前記ポリイソシアネート化合物(a1)のイソシアネート基を反応させるものである。工程A2の反応は、例えば、適当な塩基性触媒の存在下、100~180℃程度の温度条件下で加熱撹拌して行うことができる。また、反応は必要に応じて有機溶剤中で行ってもよい。工程A1と工程A2とを連続して行う場合、塩基性触媒及び有機溶剤は追加しなくてもよいし、適宜追加してもよい。 The step A2 is a reaction between the intermediate reaction product obtained in the step A1 and the polyisocyanate compound (a1). The reaction is mainly to react the acid group and/or acid anhydride group of the intermediate reaction product obtained in step A1 with the isocyanate group of the polyisocyanate compound (a1). The reaction of step A2 can be carried out, for example, in the presence of a suitable basic catalyst, with heating and stirring under a temperature condition of about 100 to 180°C. Further, the reaction may be carried out in an organic solvent, if necessary. When step A1 and step A2 are continuously performed, the basic catalyst and the organic solvent may not be added, or may be appropriately added.
 前記塩基性触媒としては、上述の塩基性触媒と同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the basic catalyst, the same basic catalysts as described above can be used, and the organic solvent can be used alone or in combination of two or more kinds.
 前記水酸基含有(メタ)アクリレート化合物(B)としては、上述の水酸基含有(メタ)アクリレート化合物(a3)と同様のものを用いることができ、前記水酸基含有(メタ)アクリレート化合物(B)は、単独で用いることも2種以上を併用することもできる。なお、前記アミドイミド樹脂(A)として、前記アミドイミド樹脂(A-1)を用いる場合、前記水酸基含有(メタ)アクリレート化合物(B)としては、水酸基を2つ有する(メタ)アクリレート化合物、及び/または水酸基を3つ有する(メタ)アクリレート化合物を必須として用いる。 As the hydroxyl group-containing (meth)acrylate compound (B), the same as the above-mentioned hydroxyl group-containing (meth)acrylate compound (a3) can be used, and the hydroxyl group-containing (meth)acrylate compound (B) is independent. Can also be used in combination with two or more kinds. When the amide imide resin (A-1) is used as the amide imide resin (A), the hydroxyl group-containing (meth)acrylate compound (B) is a (meth)acrylate compound having two hydroxyl groups, and/or A (meth)acrylate compound having three hydroxyl groups is used as an essential component.
 また、前記アミドイミド樹脂(A)として、前記アミドイミド樹脂(A-2)を用いる場合、前記アミドイミド樹脂(A-2)の原料である前記水酸基含有(メタ)アクリレート化合物(a3)、または前記水酸基含有(メタ)アクリレート化合物(B)のいずれか一方または両方に、水酸基を2つ有する(メタ)アクリレート化合物、及び/または水酸基を3つ有する(メタ)アクリレート化合物を必須として用いる。 When the amide imide resin (A-2) is used as the amide imide resin (A), the hydroxyl group-containing (meth)acrylate compound (a3), which is a raw material of the amide imide resin (A-2), or the hydroxyl group containing A (meth)acrylate compound having two hydroxyl groups and/or a (meth)acrylate compound having three hydroxyl groups is essentially used for either or both of the (meth)acrylate compound (B).
 前記水酸基含有(メタ)アクリレート化合物(B)の分子量は、優れた光感度及びアルカリ現像性を有し、優れた耐熱性を有する硬化物を形成可能な酸基含有(メタ)アクリレート樹脂が得られることから、1,000以下が好ましい。また、前記水酸基含有(メタ)アクリレート化合物(B)が、オキシアルキレン変性体やラクトン変性体である場合には、重量平均分子量(Mw)は、1,000以下が好ましい。 The molecular weight of the hydroxyl group-containing (meth)acrylate compound (B) has excellent photosensitivity and alkali developability, and an acid group-containing (meth)acrylate resin capable of forming a cured product having excellent heat resistance is obtained. Therefore, 1,000 or less is preferable. Further, when the hydroxyl group-containing (meth)acrylate compound (B) is an oxyalkylene modified product or a lactone modified product, the weight average molecular weight (Mw) is preferably 1,000 or less.
 前記エポキシ基含有(メタ)アクリレート化合物(C)としては、分子構造中に(メタ)アクリロイル基とエポキシ基とを有するものであれば他の具体構造は特に限定されず、多種多様な化合物を用いることができる。その一例としては、例えば、グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、エポキシシクロへキシルメチル(メタ)アクリレート等のグリシジル基含有(メタ)アクリレートモノマー;ジヒドロキシベンゼンジグリシジルエーテル、ジヒドロキシナフタレンジグリシジルエーテル、ビフェノールジグリシジルエーテル、ビスフェノールジグリシジルエーテル等のジグリシジルエーテル化合物のモノ(メタ)アクリレート化物等が挙げられる。これらのエポキシ基含有(メタ)アクリレート化合物は、単独で用いることも、2種以上を併用することもできる。これらの中でも、反応の制御が容易となることから、エポキシ基を1つ有する(メタ)アクリレート化合物が好ましく、優れた光感度及びアルカリ現像性を有し、優れた耐熱性を有する硬化物を形成可能な酸基含有(メタ)アクリレート樹脂が得られることから、グリシジル基含有(メタ)アクリレートモノマーが好ましい。また、前記グリシジル基含有(メタ)アクリレートモノマーの分子量は500以下であることが好ましい。さらに、前記エポキシ基含有(メタ)アクリレート化合物(C)の総質量に対する前記グリシジル基含有(メタ)アクリレートモノマーの割合が70質量%以上であることが好ましく、90質量%以上であることがより好ましい。 As the epoxy group-containing (meth)acrylate compound (C), other specific structures are not particularly limited as long as it has a (meth)acryloyl group and an epoxy group in the molecular structure, and various compounds are used. be able to. Examples thereof include glycidyl group-containing (meth)acrylate monomers such as glycidyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate glycidyl ether, and epoxycyclohexylmethyl (meth)acrylate; dihydroxybenzene diglycidyl ether and dihydroxy. Examples thereof include mono(meth)acrylate compounds of diglycidyl ether compounds such as naphthalene diglycidyl ether, biphenol diglycidyl ether, and bisphenol diglycidyl ether. These epoxy group-containing (meth)acrylate compounds may be used alone or in combination of two or more kinds. Among these, a (meth)acrylate compound having one epoxy group is preferable because the reaction can be easily controlled, and it forms a cured product having excellent photosensitivity and alkali developability and excellent heat resistance. Glycidyl group-containing (meth)acrylate monomers are preferred because they give possible acid group-containing (meth)acrylate resins. The molecular weight of the glycidyl group-containing (meth)acrylate monomer is preferably 500 or less. Furthermore, the ratio of the glycidyl group-containing (meth)acrylate monomer to the total mass of the epoxy group-containing (meth)acrylate compound (C) is preferably 70% by mass or more, and more preferably 90% by mass or more. ..
 前記ポリカルボン酸無水物(D)としては、上述のポリカルボン酸無水物(a3)と同様のものを用いることができる。また、優れた光感度及びアルカリ現像性を有し、優れた耐熱性を有する硬化物を形成可能な酸基含有(メタ)アクリレート樹脂が得られることから、脂肪族ポリカルボン酸無水物または脂環式ポリカルボン酸無水物が好ましく、脂肪族ジカルボン酸無水物または脂環式ジカルボン酸無水物がより好ましい。これらポリカルボン酸無水物(D)は、単独で用いることも2種以上を併用することもできる。 As the polycarboxylic acid anhydride (D), the same polycarboxylic acid anhydride (a3) as described above can be used. In addition, since an acid group-containing (meth)acrylate resin having excellent photosensitivity and alkali developability and capable of forming a cured product having excellent heat resistance can be obtained, an aliphatic polycarboxylic acid anhydride or an alicyclic resin can be obtained. Formula polycarboxylic acid anhydrides are preferred, and aliphatic dicarboxylic acid anhydrides or alicyclic dicarboxylic acid anhydrides are more preferred. These polycarboxylic acid anhydrides (D) can be used alone or in combination of two or more kinds.
 本発明の酸基含有(メタ)アクリレート樹脂としては、所望の樹脂性能等に応じて、前記アミドイミド樹脂(A)、前記水酸基含有(メタ)アクリレート化合物(B)、前記エポキシ基含有(メタ)アクリレート化合物(C)及び前記ポリカルボン酸無水物(D)以外に、その他の反応原料を併用することもできる。前記その他の反応原料を併用する場合、本発明が奏する効果が十分に発揮されることから、酸基含有(メタ)アクリレート樹脂の反応原料中の前記(A)~(D)成分の合計の含有量は、80質量%以上が好ましく、85質量%以上がより好ましい。 Examples of the acid group-containing (meth)acrylate resin of the present invention include the amideimide resin (A), the hydroxyl group-containing (meth)acrylate compound (B), and the epoxy group-containing (meth)acrylate depending on desired resin performance and the like. In addition to the compound (C) and the polycarboxylic acid anhydride (D), other reaction raw materials can be used in combination. When the above-mentioned other reaction raw materials are used in combination, the effect of the present invention is sufficiently exhibited. Therefore, the total content of the above components (A) to (D) in the reaction raw materials of the acid group-containing (meth)acrylate resin is included. The amount is preferably 80% by mass or more, more preferably 85% by mass or more.
 本発明の酸基含有(メタ)アクリレート樹脂の製造方法としては、特に限定されず、どのような方法にて製造してもよい。例えば、反応原料の全てを一括で反応させる方法で製造してもよいし、反応原料を順次反応させる方法で製造してもよい。なかでも、反応の制御が容易であることから、前記アミドイミド樹脂(A)と前記水酸基含有(メタ)アクリレート化合物(B)を反応させ(工程1)、工程1の生成物と前記エポキシ基含有(メタ)アクリレート化合物(C)とを反応させ(工程2)、工程2の生成物と前記ポリカルボン酸無水物(D)とを反応させる(工程3)方法で製造することが好ましい。 The method for producing the acid group-containing (meth)acrylate resin of the present invention is not particularly limited, and any method may be used. For example, it may be produced by a method of reacting all the reaction raw materials at once, or may be produced by a method of sequentially reacting the reaction raw materials. Among them, since the reaction can be easily controlled, the amide-imide resin (A) is reacted with the hydroxyl group-containing (meth)acrylate compound (B) (step 1), and the product of step 1 and the epoxy group-containing ( It is preferably produced by a method of reacting a (meth)acrylate compound (C) (step 2) and reacting the product of step 2 with the polycarboxylic acid anhydride (D) (step 3).
 前記工程1としては、前記アミドイミド樹脂(A)と前記水酸基含有(メタ)アクリレート化合物(B)との反応である。該反応は、主に、前記アミドイミド樹脂(A)中の酸基及び/または酸無水物基と水酸基含有(メタ)アクリレート化合物(B)中の水酸基とを反応させるものである。前記水酸基含有(メタ)アクリレート化合物(B)は特に酸無水物基との反応性に優れることから、前述の通り、前記アミドイミド樹脂(A)は酸無水物基を有していることが好ましい。なお、前記アミドイミド樹脂(A)中の酸無水物基の含有量は、前述した2通りの酸価の測定値の差分、即ち、酸無水物基を開環させた条件での酸価と、酸無水物基を開環させない条件での酸価との差分から算出することができる。 The step 1 is a reaction between the amide imide resin (A) and the hydroxyl group-containing (meth)acrylate compound (B). The reaction mainly reacts the acid group and/or acid anhydride group in the amide-imide resin (A) with the hydroxyl group in the hydroxyl group-containing (meth)acrylate compound (B). Since the hydroxyl group-containing (meth)acrylate compound (B) is particularly excellent in reactivity with the acid anhydride group, it is preferable that the amide imide resin (A) has an acid anhydride group as described above. The content of the acid anhydride group in the amide imide resin (A) is the difference between the above-mentioned two measured values of the acid value, that is, the acid value under the condition where the acid anhydride group is ring-opened, It can be calculated from the difference from the acid value under the condition that the acid anhydride group is not opened.
 前記アミドイミド樹脂(A)と前記水酸基含有(メタ)アクリレート化合物(B)との反応割合は、前記アミドイミド樹脂(A)が酸基及び酸無水物基を有する場合、並びに前記アミドイミド樹脂(A)が酸無水物基を有する場合、前記アミドイミド樹脂(A)が有する酸無水物基1モルに対する、前記水酸基含有(メタ)アクリレート化合物(B)が有する水酸基のモル数が、0.9~1.1となる範囲で用いることが好ましい。また、前記アミドイミド樹脂(A)が酸基を有する場合、前記アミドイミド樹脂(A)が有する酸基1モルに対する、前記水酸基含有(メタ)アクリレート化合物(B)が有する水酸基のモル数が、0.1~0.5となる範囲で用いることが好ましい。 The reaction ratio between the amide imide resin (A) and the hydroxyl group-containing (meth)acrylate compound (B) is such that when the amide imide resin (A) has an acid group and an acid anhydride group, and the amide imide resin (A) is When it has an acid anhydride group, the number of moles of the hydroxyl group of the hydroxyl group-containing (meth)acrylate compound (B) is 0.9 to 1.1 with respect to 1 mole of the acid anhydride group of the amide imide resin (A). It is preferable to use it within the range. When the amide imide resin (A) has an acid group, the number of moles of the hydroxyl group of the hydroxyl group-containing (meth)acrylate compound (B) is 0. 1 mole of the acid group of the amide imide resin (A). It is preferably used in the range of 1 to 0.5.
 前記アミドイミド樹脂(A)と前記水酸基含有(メタ)アクリレート化合物(B)との反応は、例えば、適当なエステル化触媒の存在下、80~140℃程度の温度条件下で加熱撹拌して行うことができる。前記エステル化触媒としては、上述のエステル化触媒と同様のものを用いることができる。前記エステル化触媒は、単独で用いることも、2種以上を併用することもできる。前記エステル化触媒の添加量は、反応原料の合計質量100質量部に対して0.001~5質量部の範囲で用いることが好ましい。 The reaction between the amide-imide resin (A) and the hydroxyl group-containing (meth)acrylate compound (B) is carried out, for example, by heating and stirring under a temperature condition of about 80 to 140° C. in the presence of a suitable esterification catalyst. You can As the esterification catalyst, the same esterification catalyst as described above can be used. The esterification catalysts may be used alone or in combination of two or more. The esterification catalyst is preferably added in an amount of 0.001 to 5 parts by mass with respect to 100 parts by mass of the total amount of the reaction raw materials.
 該反応は必要に応じて有機溶剤中で行ってもよく、また、必要に応じて酸性触媒を用いてもよい。 The reaction may be carried out in an organic solvent if necessary, and an acidic catalyst may be used if necessary.
 前記有機溶剤としては、上述の有機溶剤と同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。なお、前記アミドイミド樹脂(A)の製造と工程1とを連続して行う場合には、前記アミドイミド樹脂(A)の製造で用いた有機溶剤中でそのまま反応を続けてもよい。 As the organic solvent, the same organic solvents as described above can be used, and the organic solvent can be used alone or in combination of two or more kinds. When the production of the amide imide resin (A) and step 1 are carried out continuously, the reaction may be continued as it is in the organic solvent used in the production of the amide imide resin (A).
 前記酸性触媒としては、例えば、塩酸、硫酸、リン酸等の無機酸、メタンスルホン酸、パラトルエンスルホン酸、シュウ酸等の有機酸、三フッ化ホウ素、無水塩化アルミニウム、塩化亜鉛等のルイス酸などが挙げられる。これらの酸性触媒は、単独で用いることも2種以上を併用することもできる。 Examples of the acidic catalyst include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid, organic acids such as methanesulfonic acid, paratoluenesulfonic acid and oxalic acid, boron trifluoride, anhydrous aluminum chloride, Lewis acids such as zinc chloride. And so on. These acidic catalysts can be used alone or in combination of two or more kinds.
 前記工程2としては、前記工程1の生成物と前記エポキシ基含有(メタ)アクリレート化合物(C)との反応である。該反応は、主に、前記工程1で得られた生成物中の酸基と前記エポキシ基含有(メタ)アクリレート化合物を反応させるものである。その反応割合は、工程1で得られた生成物中の酸基1モルに対する、前記エポキシ基含有(メタ)アクリレート化合物(C)が有するエポキシ基のモル数が、0.7~1.2となる範囲で用いることが好ましく、0.9~1.1となる範囲で用いることがより好ましい。工程2の反応は、例えば、適当なエステル化触媒の存在下、90~140℃程度の温度条件下で加熱撹拌して行うことができる。工程1と工程2とを連続して行う場合、エステル化触媒は追加しなくてもよいし、適宜追加してもよい。また、反応は必要に応じて有機溶剤中で行ってもよい。なお、前記エステル化触媒及び有機溶剤は、上述のエステル化触媒及び有機溶剤と同様のものを用いることができ、それらは、単独で用いることも2種以上を併用することもできる。 The step 2 is a reaction between the product of the step 1 and the epoxy group-containing (meth)acrylate compound (C). The reaction is mainly to react the acid group in the product obtained in the step 1 with the epoxy group-containing (meth)acrylate compound. The reaction ratio is such that the number of moles of the epoxy group contained in the epoxy group-containing (meth)acrylate compound (C) is 0.7 to 1.2 with respect to 1 mole of the acid group in the product obtained in step 1. It is preferable to use the above range, more preferably to the range of 0.9 to 1.1. The reaction of step 2 can be carried out, for example, in the presence of a suitable esterification catalyst with heating and stirring under temperature conditions of about 90 to 140°C. When step 1 and step 2 are carried out continuously, the esterification catalyst may not be added, or may be added appropriately. Further, the reaction may be carried out in an organic solvent, if necessary. The esterification catalyst and the organic solvent may be the same as the above-mentioned esterification catalyst and the organic solvent, and they may be used alone or in combination of two or more kinds.
 前記工程3としては、前記工程2の生成物と前記ポリカルボン酸無水物(D)との反応である。該反応は、主に、前記工程2で得られた生成物中の水酸基と前記ポリカルボン酸無水物(D)とを反応させるものである。前記工程2の生成物中には、例えば、前記エポキシ基含有(メタ)アクリレート化合物(C)中のエポキシ基の開環により生じた水酸基等が存在する。前記ポリカルボン酸無水物(D)の反応割合は、生成物である酸基含有(メタ)アクリレート樹脂の酸価が60~120mgKOH/g程度になるよう調整されることが好ましい。工程3の反応は、例えば、適当なエステル化触媒の存在下、80~140℃程度の温度条件下で加熱撹拌して行うことができる。工程2と工程3とを連続して行う場合、エステル化触媒は追加しなくてもよいし、適宜追加してもよい。また、反応は必要に応じて有機溶剤中で行ってもよい。なお、前記エステル化触媒及び有機溶剤は、上述のエステル化触媒及び有機溶剤と同様のものを用いることができ、それらは、単独で用いることも2種以上を併用することもできる。 The step 3 is a reaction between the product of the step 2 and the polycarboxylic acid anhydride (D). The reaction is mainly to react the hydroxyl group in the product obtained in the step 2 with the polycarboxylic acid anhydride (D). In the product of the step 2, for example, a hydroxyl group generated by ring opening of the epoxy group in the epoxy group-containing (meth)acrylate compound (C) is present. The reaction ratio of the polycarboxylic acid anhydride (D) is preferably adjusted so that the acid value of the product (meth)acrylate resin containing an acid group is about 60 to 120 mgKOH/g. The reaction of step 3 can be carried out, for example, in the presence of a suitable esterification catalyst while heating and stirring under a temperature condition of about 80 to 140°C. When step 2 and step 3 are carried out continuously, the esterification catalyst may not be added, or may be added appropriately. Further, the reaction may be carried out in an organic solvent, if necessary. The esterification catalyst and the organic solvent may be the same as the above-mentioned esterification catalyst and the organic solvent, and they may be used alone or in combination of two or more kinds.
 本発明の酸基含有(メタ)アクリレート樹脂の酸価は、優れた光感度及びアルカリ現像性を有し、優れた耐熱性を有する硬化物を形成可能な酸基含有(メタ)アクリレート樹脂が得られることから、50~120mgKOH/gの範囲が好ましく、60~110mgKOH/gの範囲がより好ましい。なお、本願発明において酸基含有(メタ)アクリレート樹脂の酸価は、JIS K 0070(1992)の中和滴定法にて測定される値である。 The acid value of the acid group-containing (meth)acrylate resin of the present invention has excellent photosensitivity and alkali developability, and an acid group-containing (meth)acrylate resin capable of forming a cured product having excellent heat resistance is obtained. Therefore, the range of 50 to 120 mgKOH/g is preferable, and the range of 60 to 110 mgKOH/g is more preferable. The acid value of the acid group-containing (meth)acrylate resin in the present invention is a value measured by the neutralization titration method of JIS K0070 (1992).
 また、前記酸基含有(メタ)アクリレート樹脂の重量平均分子量(Mw)は1,000~20,000の範囲であることが好ましい。なお、本発明において、重量平均分子量(Mw)は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定した値を示す。 The weight average molecular weight (Mw) of the acid group-containing (meth)acrylate resin is preferably in the range of 1,000 to 20,000. In addition, in this invention, a weight average molecular weight (Mw) shows the value measured by the gel permeation chromatography (GPC) method.
 本発明の酸基含有(メタ)アクリレート樹脂は、分子構造中に重合性の(メタ)アクリロイル基を有することから、例えば、光重合開始剤を添加することにより硬化性樹脂組成物として利用することができる。 Since the acid group-containing (meth)acrylate resin of the present invention has a polymerizable (meth)acryloyl group in its molecular structure, it can be used as a curable resin composition by adding a photopolymerization initiator, for example. You can
 前記光重合開始剤は、照射する活性エネルギー線の種類等により適切なものを選択して用いればよい。また、アミン化合物、尿素化合物、含硫黄化合物、含燐化合物、含塩素化合物、ニトリル化合物等の光増感剤と併用してもよい。光重合開始剤の具体例としては、例えば、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン等のアルキルフェノン系光重合開始剤;2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド等のアシルホスフィンオキサイド系光重合開始剤;ベンゾフェノン化合物等の分子内水素引き抜き型光重合開始剤等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 The photopolymerization initiator may be appropriately selected and used depending on the type of active energy ray to be irradiated. Further, it may be used in combination with a photosensitizer such as an amine compound, a urea compound, a sulfur-containing compound, a phosphorus-containing compound, a chlorine-containing compound and a nitrile compound. Specific examples of the photopolymerization initiator include, for example, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1,2-(dimethylamino). Alkylphenone-based photopolymerization initiator such as 2-[[4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone; 2,4,6-trimethylbenzoyl-diphenyl- Examples thereof include acylphosphine oxide-based photopolymerization initiators such as phosphine oxide; intramolecular hydrogen abstraction type photopolymerization initiators such as benzophenone compounds. These may be used alone or in combination of two or more.
 前記光重合開始剤としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-〔4-(2-ヒドロキシエトキシ)フェニル〕-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、チオキサントン及びチオキサントン誘導体、2,2′-ジメトキシ-1,2-ジフェニルエタン-1-オン、ジフェニル(2,4,6-トリメトキシベンゾイル)ホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン等が挙げられる。 Examples of the photopolymerization initiator include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-[4-(2-hydroxyethoxy)phenyl]-2- Hydroxy-2-methyl-1-propan-1-one, thioxanthone and thioxanthone derivatives, 2,2'-dimethoxy-1,2-diphenylethan-1-one, diphenyl(2,4,6-trimethoxybenzoyl)phosphine Oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropane-1- On, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-1-butanone and the like.
 前記その他の光重合開始剤の市販品としては、例えば、「Omnirad-1173」、「Omnirad-184」、「Omnirad-127」、「Omnirad-2959」、「Omnirad-369」、「Omnirad-379」、「Omnirad-907」、「Omnirad-4265」、「Omnirad-1000」、「Omnirad-651」、「Omnirad-TPO」、「Omnirad-819」、「Omnirad-2022」、「Omnirad-2100」、「Omnirad-754」、「Omnirad-784」、「Omnirad-500」、「Omnirad-81」(IGM社製)、「カヤキュア-DETX」、「カヤキュア-MBP」、「カヤキュア-DMBI」、「カヤキュア-EPA」、「カヤキュア-OA」(日本化薬株式会社製)、「バイキュア-10」、「バイキュア-55」(ストウファ・ケミカル社製)、「トリゴナルP1」(アクゾ社製)、「サンドレイ1000」(サンドズ社製)、「ディープ」(アプジョン社製)、「クオンタキュア-PDO」、「クオンタキュア-ITX」、「クオンタキュア-EPD」(ワードブレンキンソップ社製)、「Runtecure-1104」(Runtec社製)等が挙げられる。これらの光重合開始剤は、単独で用いることも、2種以上を併用することもできる。 Examples of commercial products of the other photopolymerization initiators include "Omnirad-1173", "Omnirad-184", "Omnirad-127", "Omnirad-2959", "Omnirad-369", and "Omnirad-379". , "Omnirad-907", "Omnirad-4265", "Omnirad-1000", "Omnirad-651", "Omnirad-TPO", "Omnirad-819", "Omnirad-2022", "Omnirad-2100" and "Omnirad-2100". Omnirad-754, "Omnirad-784", "Omnirad-500", "Omnirad-81" (manufactured by IGM), "Kayacure-DETX", "Kayacure-MBP", "Kayacure-DMBI", "Kayacure-EPA". , "Kayakyu-OA" (manufactured by Nippon Kayaku Co., Ltd.), "Vicure-10", "Vicure-55" (manufactured by Stofa Chemical Co., Ltd.), "Trigonal P1" (manufactured by Akzo), "Sandray 1000" ( Sands), "Deep" (Apjon), "Quantacure-PDO", "Quantacure-ITX", "Quantacure-EPD" (Word Brenkinsop), "Runtecure-1104" (Runtec) Manufactured by the company) and the like. These photopolymerization initiators can be used alone or in combination of two or more kinds.
 前記光重合開始剤の添加量は、例えば、硬化性樹脂組成物の溶剤以外の成分の合計に対し0.05~15質量%の範囲であることが好ましく、0.1~10質量%の範囲であることがより好ましい。 The amount of the photopolymerization initiator added is, for example, preferably in the range of 0.05 to 15% by mass, and in the range of 0.1 to 10% by mass, based on the total amount of the components other than the solvent of the curable resin composition. Is more preferable.
 本発明の硬化性樹脂組成物は、前述した酸基含有(メタ)アクリレート樹脂以外のその他の樹脂成分を含有しても良い。前記その他の樹脂成分としては、酸基及び重合性不飽和結合を有する樹脂(E)、各種の(メタ)アクリレートモノマー等が挙げられる。 The curable resin composition of the present invention may contain other resin components other than the acid group-containing (meth)acrylate resin described above. Examples of the other resin components include a resin (E) having an acid group and a polymerizable unsaturated bond, various (meth)acrylate monomers, and the like.
 前記酸基及び重合性不飽和結合を有する樹脂(E)としては、樹脂中に酸基及び重合性不飽和結合を有するものであれば何れでもよく、例えば、酸基及び重合性不飽和結合を有するエポキシ樹脂、酸基及び重合性不飽和結合を有するウレタン樹脂、酸基及び重合性不飽和結合を有するアクリル樹脂、酸基及び重合性不飽和結合を有するアミドイミド樹脂、酸基及び重合性不飽和結合を有するアクリルアミド樹脂等が挙げられる。 The resin (E) having an acid group and a polymerizable unsaturated bond may be any resin having an acid group and a polymerizable unsaturated bond in the resin, for example, an acid group and a polymerizable unsaturated bond Epoxy resin having, urethane resin having acid group and polymerizable unsaturated bond, acrylic resin having acid group and polymerizable unsaturated bond, amide imide resin having acid group and polymerizable unsaturated bond, acid group and polymerizable unsaturated Examples thereof include an acrylamide resin having a bond.
 前記酸基としては、例えば、カルボキシル基、スルホン酸基、燐酸基等が挙げられる。 Examples of the acid group include a carboxyl group, a sulfonic acid group, a phosphoric acid group and the like.
 前記酸基及び重合性不飽和結合を有するエポキシ樹脂としては、例えば、エポキシ樹脂、不飽和一塩基酸、及び多塩基酸無水物を必須の反応原料とする酸基含有エポキシ(メタ)アクリレート樹脂や、エポキシ樹脂、不飽和一塩基酸、多塩基酸無水物、ポリイソシアネート化合物、及び水酸基含有(メタ)アクリレート化合物を反応原料とする酸基及びウレタン基含有エポキシ(メタ)アクリレート樹脂などが挙げられる。 Examples of the epoxy resin having an acid group and a polymerizable unsaturated bond include, for example, an epoxy resin, an unsaturated monobasic acid, and an acid group-containing epoxy (meth)acrylate resin that uses polybasic acid anhydride as an essential reaction raw material. , An epoxy resin, an unsaturated monobasic acid, a polybasic acid anhydride, a polyisocyanate compound, and an acid group- and urethane group-containing epoxy (meth)acrylate resin using a hydroxyl group-containing (meth)acrylate compound as a reaction raw material.
 前記エポキシ樹脂としては、例えば、ビスフェノール型エポキシ樹脂、フェニレンエーテル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フルオレン型エポキシ樹脂、キサンテン型エポキシ樹脂、ジヒドロキシベンゼン型エポキシ樹脂、トリヒドロキシベンゼン型エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は、単独で用いることも2種以上を併用することもできる。 Examples of the epoxy resin include bisphenol type epoxy resin, phenylene ether type epoxy resin, naphthylene ether type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, Bisphenol novolac type epoxy resin, naphthol novolac type epoxy resin, naphthol-phenol co-contracting novolac type epoxy resin, naphthol-cresol co-contracting novolac type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene-phenol addition Examples thereof include reactive epoxy resins, biphenylaralkyl epoxy resins, fluorene epoxy resins, xanthene epoxy resins, dihydroxybenzene epoxy resins, trihydroxybenzene epoxy resins and the like. These epoxy resins can be used alone or in combination of two or more kinds.
 前記不飽和一塩基酸とは、一分子中に酸基及び重合性不飽和結合を有する化合物をいう。前記酸基としては、例えば、カルボキシル基、スルホン酸基、燐酸基等が挙げられる。前記不飽和一塩基酸(D)としては、例えば、アクリル酸、メタクリル酸、クロトン酸、桂皮酸、α-シアノ桂皮酸、β-スチリルアクリル酸、β-フルフリルアクリル酸等が挙げられる。また、前記不飽和一塩基酸のエステル化物、酸ハロゲン化物、酸無水物等も用いることができる。これらの不飽和一塩基酸は、単独で用いることも2種以上を併用することもできる。 The unsaturated monobasic acid means a compound having an acid group and a polymerizable unsaturated bond in one molecule. Examples of the acid group include a carboxyl group, a sulfonic acid group, a phosphoric acid group, and the like. Examples of the unsaturated monobasic acid (D) include acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, α-cyanocinnamic acid, β-styrylacrylic acid and β-furfurylacrylic acid. Further, esterified products of unsaturated monobasic acids, acid halides, acid anhydrides and the like can also be used. These unsaturated monobasic acids can be used alone or in combination of two or more kinds.
 前記多塩基酸無水物としては、例えば、無水フタル酸、無水コハク酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、オクテニル無水コハク酸、テトラプロぺニル無水コハク酸等が挙げられる。これらの多塩基酸無水物は、単独で用いることも2種以上を併用することもできる。また、これらの中でも、優れた光感度及びアルカリ現像性を有し、優れた耐熱性を有する硬化物を形成可能な硬化性樹脂組成物が得られることから、テトラヒドロ無水フタル酸、無水コハク酸が好ましい。 Examples of the polybasic acid anhydrides include phthalic anhydride, succinic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic acid anhydride, and hexahydro. Examples thereof include phthalic anhydride, methylhexahydrophthalic anhydride, octenyl succinic anhydride and tetrapropenyl succinic anhydride. These polybasic acid anhydrides can be used alone or in combination of two or more kinds. Further, among these, since a curable resin composition having excellent photosensitivity and alkali developability and capable of forming a cured product having excellent heat resistance is obtained, tetrahydrophthalic anhydride and succinic anhydride are preferable.
 前記ポリイソシアネート化合物としては、上述のポリイソシアネート化合物(a1)と同様のものを用いることができ、前記ポリイソシアネート化合物は、単独で用いることも2種以上を併用することもできる。 The same polyisocyanate compound (a1) as described above can be used as the polyisocyanate compound, and the polyisocyanate compound can be used alone or in combination of two or more kinds.
 前記水酸基含有(メタ)アクリレート化合物としては、上述の水酸基含有(メタ)アクリレート化合物(a3)と同様のものを用いることができ、前記水酸基含有(メタ)アクリレート化合物は、単独で用いることも2種以上を併用することもできる。 The hydroxyl group-containing (meth)acrylate compound may be the same as the above-mentioned hydroxyl group-containing (meth)acrylate compound (a3), and the hydroxyl group-containing (meth)acrylate compound may be used alone or in two kinds. The above can also be used together.
 前記酸基及び重合性不飽和結合を有するエポキシ樹脂の製造方法としては、特に限定されず、どのような方法で製造してもよい。前記酸基及び重合性不飽和結合を有するエポキシ樹脂の製造においては、必要に応じて有機溶剤中で行ってもよく、また、必要に応じて塩基性触媒を用いてもよい。 The method for producing the epoxy resin having the acid group and the polymerizable unsaturated bond is not particularly limited and may be produced by any method. The production of the epoxy resin having an acid group and a polymerizable unsaturated bond may be carried out in an organic solvent if necessary, and a basic catalyst may be used if necessary.
 前記有機溶剤としては、上述の有機溶剤と同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same organic solvents as described above can be used, and the organic solvent can be used alone or in combination of two or more kinds.
 前記塩基性触媒としては、上述の塩基性触媒と同様のものを用いることができ、前記塩基性触媒は、単独で用いることも2種以上を併用することもできる。 As the basic catalyst, the same basic catalysts as described above can be used, and the basic catalyst can be used alone or in combination of two or more kinds.
 前記酸基及び重合性不飽和結合を有するウレタン樹脂としては、例えば、ポリイソシアネート化合物、水酸基含有(メタ)アクリレート化合物、カルボキシル基含有ポリオール化合物、及び必要に応じて多塩基酸無水物、前記カルボキシル基含有ポリオール化合物以外のポリオール化合物とを反応させて得られたものや、ポリイソシアネート化合物、水酸基含有(メタ)アクリレート化合物、多塩基酸無水物、及びカルボキシル基含有ポリオール化合物以外のポリオール化合物とを反応させて得られたもの等が挙げられる。 The urethane resin having an acid group and a polymerizable unsaturated bond, for example, a polyisocyanate compound, a hydroxyl group-containing (meth) acrylate compound, a carboxyl group-containing polyol compound, and optionally a polybasic acid anhydride, the carboxyl group Those obtained by reacting with a polyol compound other than the containing polyol compound, a polyisocyanate compound, a hydroxyl group-containing (meth)acrylate compound, a polybasic acid anhydride, and a polyol compound other than the carboxyl group-containing polyol compound And the like.
 前記ポリイソシアネート化合物としては、上述のポリイソシアネート化合物(a1)と同様のものを用いることができ、前記ポリイソシアネート化合物は、単独で用いることも2種以上を併用することもできる。 The same polyisocyanate compound (a1) as described above can be used as the polyisocyanate compound, and the polyisocyanate compound can be used alone or in combination of two or more kinds.
 前記水酸基含有(メタ)アクリレート化合物としては、上述の水酸基含有(メタ)アクリレート化合物(a3)と同様のものを用いることができ、前記水酸基含有(メタ)アクリレート化合物は、単独で用いることも2種以上を併用することもできる。 The hydroxyl group-containing (meth)acrylate compound may be the same as the above-mentioned hydroxyl group-containing (meth)acrylate compound (a3), and the hydroxyl group-containing (meth)acrylate compound may be used alone or in two kinds. The above can also be used together.
 前記カルボキシル基含有ポリオール化合物としては、例えば、2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸、2,2-ジメチロール吉草酸等が挙げられる。前記カルボキシル基含有ポリオール化合物は、単独で用いることも2種以上を併用することもできる。 Examples of the carboxyl group-containing polyol compound include 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, and 2,2-dimethylolvaleric acid. The carboxyl group-containing polyol compound may be used alone or in combination of two or more kinds.
 前記多塩基酸無水物としては、上述の多塩基酸無水物と同様のものを用いることができ、前記多塩基酸無水物は、単独で用いることも2種以上を併用することもできる。 As the polybasic acid anhydride, the same polybasic acid anhydride as described above can be used, and the polybasic acid anhydride can be used alone or in combination of two or more kinds.
 前記カルボキシル基含有ポリオール化合物以外のポリオール化合物としては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、グリセリン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等の脂肪族ポリオール化合物;ビフェノール、ビスフェノール等の芳香族ポリオール化合物;前記各種のポリオール化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性体;前記各種のポリオール化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性体等が挙げられる。前記カルボキシル基含有ポリオール化合物以外のポリオール化合物は、単独で用いることも2種以上を併用することもできる。 Examples of the polyol compound other than the carboxyl group-containing polyol compound include aliphatic polyol compounds such as ethylene glycol, propylene glycol, butanediol, hexanediol, glycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol, and dipentaerythritol; Aromatic polyol compounds such as biphenol and bisphenol; (Poly)oxyethylene chains such as (poly)oxyethylene chains, (poly)oxypropylene chains, and (poly)oxytetramethylene chains in the molecular structures of the various polyol compounds Modified (poly)oxyalkylene modified products; lactone modified products in which a (poly)lactone structure is introduced into the molecular structures of the various polyol compounds are included. The polyol compounds other than the carboxyl group-containing polyol compound may be used alone or in combination of two or more kinds.
 前記酸基及び重合性不飽和結合を有するウレタン樹脂の製造方法としては、特に限定されず、どのような方法で製造してもよい。前記酸基及び重合性不飽和結合を有するウレタン樹脂の製造においては、必要に応じて有機溶剤中で行ってもよく、また、必要に応じて塩基性触媒を用いてもよい。 The method for producing the urethane resin having an acid group and a polymerizable unsaturated bond is not particularly limited and may be produced by any method. The production of the urethane resin having an acid group and a polymerizable unsaturated bond may be carried out in an organic solvent if necessary, and a basic catalyst may be used if necessary.
 前記有機溶剤としては、上述の有機溶剤と同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same organic solvents as described above can be used, and the organic solvent can be used alone or in combination of two or more kinds.
 前記塩基性触媒としては、上述の塩基性触媒と同様のものを用いることができ、前記塩基性触媒は、単独で用いることも2種以上を併用することもできる。 As the basic catalyst, the same basic catalysts as described above can be used, and the basic catalyst can be used alone or in combination of two or more kinds.
 前記酸基及び重合性不飽和結合を有するアクリル樹脂としては、例えば、水酸基やカルボキシル基、イソシアネート基、グリシジル基等の反応性官能基を有する(メタ)アクリレート化合物(α)を必須の成分として重合させて得られるアクリル樹脂中間体に、これらの官能基と反応し得る反応性官能基を有する(メタ)アクリレート化合物(β)をさらに反応させることにより(メタ)アクリロイル基を導入して得られる反応生成物や、前記反応生成物中の水酸基に多塩基酸無水物を反応させて得られるもの等が挙げられる。 As the acrylic resin having an acid group and a polymerizable unsaturated bond, for example, a (meth)acrylate compound (α) having a reactive functional group such as a hydroxyl group, a carboxyl group, an isocyanate group, and a glycidyl group is polymerized as an essential component. A reaction obtained by introducing a (meth)acryloyl group by further reacting the acrylic resin intermediate thus obtained with a (meth)acrylate compound (β) having a reactive functional group capable of reacting with these functional groups. Examples thereof include products and products obtained by reacting a polybasic acid anhydride with the hydroxyl groups in the reaction product.
 前記アクリル樹脂中間体は、前記(メタ)アクリレート化合物(α)の他、必要に応じてその他の重合性不飽和基含有化合物を共重合させたものであってもよい。前記その他の重合性不飽和基含有化合物は、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル;シクロヘキシル(メタ)アクリレート、イソボロニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等の脂環式構造含有(メタ)アクリレート;フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチルアクリレート等の芳香環含有(メタ)アクリレート;3-メタクリロキシプロピルトリメトキシシラン等のシリル基含有(メタ)アクリレート;スチレン、α-メチルスチレン、クロロスチレン等のスチレン誘導体等が挙げられる。これらは単独で用いることも2種以上を併用することもできる。 The acrylic resin intermediate may be a copolymer of the (meth)acrylate compound (α) and, if necessary, other polymerizable unsaturated group-containing compound. Examples of the other polymerizable unsaturated group-containing compound include (meth)acrylates such as methyl(meth)acrylate, ethyl(meth)acrylate, propyl(meth)acrylate, butyl(meth)acrylate and 2-ethylhexyl(meth)acrylate. Acrylic acid alkyl ester; alicyclic structure-containing (meth)acrylate such as cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate; phenyl (meth)acrylate, benzyl (meth)acrylate, phenoxy Examples thereof include aromatic ring-containing (meth)acrylates such as ethyl acrylate; silyl group-containing (meth)acrylates such as 3-methacryloxypropyltrimethoxysilane; styrene derivatives such as styrene, α-methylstyrene, and chlorostyrene. These may be used alone or in combination of two or more.
 前記(メタ)アクリレート化合物(β)は、前記(メタ)アクリレート化合物(α)が有する反応性官能基と反応し得るものであれば特に限定されないが、反応性の観点から以下の組み合わせであることが好ましい。即ち、前記(メタ)アクリレート化合物(α)として水酸基含有(メタ)アクリレートを用いた場合には、(メタ)アクリレート化合物(β)としてイソシアネート基含有(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレート化合物(α)としてカルボキシル基含有(メタ)アクリレートを用いた場合には、(メタ)アクリレート化合物(β)としてグリシジル基含有(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレート化合物(α)としてイソシアネート基含有(メタ)アクリレートを用いた場合には、(メタ)アクリレート化合物(β)として水酸基含有(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレート化合物(α)としてグリシジル基含有(メタ)アクリレートを用いた場合には、(メタ)アクリレート化合物(β)としてカルボキシル基含有(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレート化合物(β)は、単独で用いることも2種以上を併用することもできる。 The (meth)acrylate compound (β) is not particularly limited as long as it can react with the reactive functional group contained in the (meth)acrylate compound (α), but from the viewpoint of reactivity, it is the following combination. Is preferred. That is, when a hydroxyl group-containing (meth)acrylate is used as the (meth)acrylate compound (α), an isocyanate group-containing (meth)acrylate is preferably used as the (meth)acrylate compound (β). When a carboxyl group-containing (meth)acrylate is used as the (meth)acrylate compound (α), it is preferable to use a glycidyl group-containing (meth)acrylate as the (meth)acrylate compound (β). When an isocyanate group-containing (meth)acrylate is used as the (meth)acrylate compound (α), a hydroxyl group-containing (meth)acrylate is preferably used as the (meth)acrylate compound (β). When a glycidyl group-containing (meth)acrylate is used as the (meth)acrylate compound (α), a carboxyl group-containing (meth)acrylate is preferably used as the (meth)acrylate compound (β). The (meth)acrylate compound (β) can be used alone or in combination of two or more kinds.
 前記多塩基酸無水物は、上述の多塩基酸無水物と同様のものを用いることができ、前記多塩基酸無水物は、単独で用いることも2種以上を併用することもできる。 As the polybasic acid anhydride, the same polybasic acid anhydride as described above can be used, and the polybasic acid anhydride can be used alone or in combination of two or more kinds.
 前記酸基及び重合性不飽和結合を有するアクリル樹脂の製造方法としては、特に限定されず、どのような方法で製造してもよい。前記酸基及び重合性不飽和結合を有するアクリル樹脂の製造においては、必要に応じて有機溶剤中で行ってもよく、また、必要に応じて塩基性触媒を用いてもよい。 The method for producing the acrylic resin having an acid group and a polymerizable unsaturated bond is not particularly limited, and any method may be used. The production of the acrylic resin having an acid group and a polymerizable unsaturated bond may be carried out in an organic solvent if necessary, and a basic catalyst may be used if necessary.
 前記有機溶剤としては、上述の有機溶剤と同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same organic solvents as described above can be used, and the organic solvent can be used alone or in combination of two or more kinds.
 前記塩基性触媒としては、上述の塩基性触媒と同様のものを用いることができ、前記塩基性触媒は、単独で用いることも2種以上を併用することもできる。 As the basic catalyst, the same basic catalysts as described above can be used, and the basic catalyst can be used alone or in combination of two or more kinds.
 前記酸基及び重合性不飽和結合を有するアミドイミド樹脂としては、例えば、酸基及び/または酸無水物基を有するアミドイミド樹脂と、水酸基含有(メタ)アクリレート化合物及び/またはエポキシ基含有(メタ)アクリレート化合物と、必要に応じて、水酸基、カルボキシル基、イソシアネート基、グリシジル基、及び酸無水物基からなる群より選ばれる1種以上の反応性官能基を有する化合物を反応させて得られるものが挙げられる。なお、前記反応性官能基を有する化合物は、(メタ)アクリロイル基を有していてもよいし、有していなくてもよい。 Examples of the amide imide resin having an acid group and a polymerizable unsaturated bond include an amide imide resin having an acid group and/or an acid anhydride group, a hydroxyl group-containing (meth)acrylate compound and/or an epoxy group-containing (meth)acrylate. Examples thereof include those obtained by reacting a compound with a compound having at least one reactive functional group selected from the group consisting of a hydroxyl group, a carboxyl group, an isocyanate group, a glycidyl group, and an acid anhydride group. To be The compound having a reactive functional group may or may not have a (meth)acryloyl group.
 前記アミドイミド樹脂としては、酸基または酸無水物基のどちらか一方のみを有するものであってもよいし、両方を有するものであってもよい。水酸基含有(メタ)アクリレート化合物や(メタ)アクリロイル基含有エポキシ化合物との反応性や反応制御の観点から、酸無水物基を有するものであることが好ましく、酸基と酸無水物基との両方を有するものであることがより好ましい。前記アミドイミド樹脂の酸価は、中性条件下、即ち、酸無水物基を開環させない条件での測定値が60~350mgKOH/gの範囲であることが好ましい。他方、水の存在下等、酸無水物基を開環させた条件での測定値が61~360mgKOH/gの範囲であることが好ましい。 The amide-imide resin may have either an acid group or an acid anhydride group, or may have both. From the viewpoint of reactivity and reaction control with a hydroxyl group-containing (meth)acrylate compound or a (meth)acryloyl group-containing epoxy compound, it is preferable to have an acid anhydride group, and both an acid group and an acid anhydride group. It is more preferable to have The acid value of the amide-imide resin is preferably in the range of 60 to 350 mgKOH/g measured under neutral conditions, that is, under conditions where the acid anhydride group is not opened. On the other hand, the measured value under the condition that the acid anhydride group is ring-opened, such as in the presence of water, is preferably in the range of 61 to 360 mgKOH/g.
 前記アミドイミド樹脂としては、例えば、ポリイソシアネート化合物と、多塩基酸無水物とを反応原料として得られるものが挙げられる。 Examples of the amide-imide resin include those obtained by using a polyisocyanate compound and a polybasic acid anhydride as reaction raw materials.
 前記ポリイソシアネート化合物としては、上述のポリイソシアネート化合物(a1)と同様のものを用いることができる。 The same polyisocyanate compound (a1) as described above can be used as the polyisocyanate compound.
 前記多塩基酸無水物としては、上述の多塩基酸無水物と同様のものを用いることができ、前記多塩基酸無水物は、単独で用いることも2種以上を併用することもできる。 As the polybasic acid anhydride, the same polybasic acid anhydride as described above can be used, and the polybasic acid anhydride can be used alone or in combination of two or more kinds.
 また、前記アミドイミド樹脂は、必要に応じて、前記ポリイソシアネート化合物及び多塩基酸無水物以外に、多塩基酸を反応原料として併用することもできる。 In addition to the polyisocyanate compound and the polybasic acid anhydride, a polybasic acid may be used as a reaction raw material in combination with the amide-imide resin, if necessary.
 前記多塩基酸としては、一分子中にカルボキシル基を2つ以上有する化合物であれば何れのものも用いることができる。例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、シトラコン酸、イタコン酸、グルタコン酸、1,2,3,4-ブタンテトラカルボン酸、シクロヘキサントリカルボン酸、シクロヘキサンテトラカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、ナフタレントリカルボン酸、ナフタレンテトラカルボン酸、ビフェニルジカルボン酸、ビフェニルトリカルボン酸、ビフェニルテトラカルボン酸、ベンゾフェノンテトラカルボン酸等が挙げられる。また、前記多塩基酸としては、例えば、共役ジエン系ビニルモノマーとアクリロニトリルとの共重合体であって、その分子中にカルボキシル基を有する重合体も用いることができる。これらの多塩基酸は、単独で用いることも2種以上を併用することもできる。 As the polybasic acid, any compound can be used as long as it is a compound having two or more carboxyl groups in one molecule. For example, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, hexahydro Phthalic acid, methylhexahydrophthalic acid, citraconic acid, itaconic acid, glutaconic acid, 1,2,3,4-butanetetracarboxylic acid, cyclohexanetricarboxylic acid, cyclohexanetetracarboxylic acid, bicyclo[2.2.1]heptane- 2,3-dicarboxylic acid, methylbicyclo[2.2.1]heptane-2,3-dicarboxylic acid, 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydro Naphthalene-1,2-dicarboxylic acid, trimellitic acid, pyromellitic acid, naphthalene dicarboxylic acid, naphthalene tricarboxylic acid, naphthalene tetracarboxylic acid, biphenyl dicarboxylic acid, biphenyl tricarboxylic acid, biphenyl tetracarboxylic acid, benzophenone tetracarboxylic acid, etc. To be As the polybasic acid, for example, a copolymer of a conjugated diene vinyl monomer and acrylonitrile, which has a carboxyl group in its molecule, can also be used. These polybasic acids can be used alone or in combination of two or more kinds.
 前記水酸基含有(メタ)アクリレート化合物としては、上述の水酸基含有(メタ)アクリレート化合物(a3)と同様のものを用いることができ、前記水酸基含有(メタ)アクリレート化合物は、単独で用いることも2種以上を併用することもできる。 The hydroxyl group-containing (meth)acrylate compound may be the same as the above-mentioned hydroxyl group-containing (meth)acrylate compound (a3), and the hydroxyl group-containing (meth)acrylate compound may be used alone or in two kinds. The above can also be used together.
 前記エポキシ基含有(メタ)アクリレート化合物としては、上述のエポキシ基含有(メタ)アクリレート化合物(C)と同様のものを用いることができ、前記エポキシ基含有(メタ)アクリレート化合物は、単独で用いることも2種以上を併用することもできる。 The same epoxy group-containing (meth)acrylate compound as the above-mentioned epoxy group-containing (meth)acrylate compound (C) can be used, and the epoxy group-containing (meth)acrylate compound can be used alone. It is also possible to use two or more kinds in combination.
 前記酸基及び重合性不飽和結合を有するアミドイミド樹脂の製造方法としては、特に限定されず、どのような方法で製造してもよい。前記酸基及び重合性不飽和結合を有するアミドイミド樹脂の製造においては、必要に応じて有機溶剤中で行ってもよく、また、必要に応じて塩基性触媒を用いてもよい。 The method for producing the amide-imide resin having the acid group and the polymerizable unsaturated bond is not particularly limited and may be produced by any method. The amide-imide resin having an acid group and a polymerizable unsaturated bond may be produced in an organic solvent, if necessary, and a basic catalyst may be used, if necessary.
 前記有機溶剤としては、上述の有機溶剤と同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same organic solvents as described above can be used, and the organic solvent can be used alone or in combination of two or more kinds.
 前記塩基性触媒としては、上述の塩基性触媒と同様のものを用いることができ、前記塩基性触媒は、単独で用いることも2種以上を併用することもできる。 As the basic catalyst, the same basic catalysts as described above can be used, and the basic catalyst can be used alone or in combination of two or more kinds.
 前記酸基及び重合性不飽和結合を有するアクリルアミド樹脂としては、例えば、フェノール性水酸基含有化合物と、アルキレンオキサイドまたはアルキレンカーボネートと、N-アルコキシアルキル(メタ)アクリルアミド化合物と、多塩基酸無水物と、必要に応じて不飽和一塩基酸とを反応させて得られたものが挙げられる。 Examples of the acrylamide resin having an acid group and a polymerizable unsaturated bond include a phenolic hydroxyl group-containing compound, an alkylene oxide or alkylene carbonate, an N-alkoxyalkyl (meth)acrylamide compound, and a polybasic acid anhydride. Examples thereof include those obtained by reacting with an unsaturated monobasic acid, if necessary.
 前記フェノール性水酸基含有化合物としては、分子内にフェノール性水酸基を少なくとも2つ有する化合物をいう。前記分子内にフェノール性水酸基を少なくとも2つ有する化合物としては、例えば、下記構造式(3-1)~(3-4)で表される化合物が挙げられる。 The above-mentioned phenolic hydroxyl group-containing compound means a compound having at least two phenolic hydroxyl groups in the molecule. Examples of the compound having at least two phenolic hydroxyl groups in the molecule include compounds represented by the following structural formulas (3-1) to (3-4).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記構造式(3-1)~(3-4)において、Rは、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、アリール基、ハロゲン原子の何れかであり、Rは、それぞれ独立して、水素原子またはメチル基である。また、pは、0または1以上の整数であり、好ましくは0または1~3の整数であり、より好ましくは0または1であり、さらに好ましくは0である。qは、2以上の整数であり、好ましくは、2または3である。なお、上記構造式における芳香環上の置換基の位置については、任意であり、例えば、構造式(3-2)のナフタレン環においてはいずれの環上に置換していてもよく、構造式(3-3)では、1分子中に存在するベンゼン環のいずれの環上に置換していてもよく、構造式(3-4)では、1分子中に存在するベンゼン環のいずれかの環状に置換していてもよいことを示し、1分子中における置換基の個数がp及びqであることを示している。 In the above structural formulas (3-1) to (3-4), R 1 is any of an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group and a halogen atom. , R 2 are each independently a hydrogen atom or a methyl group. Further, p is 0 or an integer of 1 or more, preferably 0 or an integer of 1 to 3, more preferably 0 or 1, and further preferably 0. q is an integer of 2 or more, preferably 2 or 3. The position of the substituent on the aromatic ring in the above structural formula is arbitrary, and for example, in the naphthalene ring of the structural formula (3-2), it may be substituted on any ring, and In 3-3), it may be substituted on any ring of the benzene ring present in one molecule, and in structural formula (3-4), it may be substituted on any ring of the benzene ring present in one molecule. It indicates that they may be substituted, and the number of substituents in one molecule is p and q.
 また、前記フェノール性水酸基含有化合物としては、例えば、分子内にフェノール性水酸基を1つ有する化合物と下記構造式(x-1)~(x-5)の何れかで表される化合物とを必須の反応原料とする反応生成物や、分子内にフェノール性水酸基を少なくとも2つ有する化合物と下記構造式(x-1)~(x-5)の何れかで表される化合物とを必須の反応原料とする反応生成物なども用いることができる。また、分子内にフェノール性水酸基を1つ有する化合物の1種または2種以上を反応原料とするノボラック型フェノール樹脂、分子内にフェノール性水酸基を少なくとも2つ有する化合物の1種または2種以上を反応原料とするノボラック型フェノール樹脂なども用いることができる。 As the phenolic hydroxyl group-containing compound, for example, a compound having one phenolic hydroxyl group in the molecule and a compound represented by any one of the following structural formulas (x-1) to (x-5) are essential. An essential reaction between the reaction product used as the reaction raw material, the compound having at least two phenolic hydroxyl groups in the molecule, and the compound represented by any of the following structural formulas (x-1) to (x-5) A reaction product as a raw material can also be used. In addition, a novolac type phenol resin using one or more compounds having one phenolic hydroxyl group in the molecule as a reaction raw material, and one or more compounds having at least two phenolic hydroxyl groups in the molecule It is also possible to use a novolac-type phenol resin as a reaction raw material.
Figure JPOXMLDOC01-appb-C000005
[式(x-1)中、hは0または1である。式(x-2)~(x-5)中、Rは、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、アリール基、ハロゲン原子の何れかであり、iは、0または1~4の整数である。式(x-2)、(x-3)及び(x-5)中、Zは、ビニル基、ハロメチル基、ヒドロキシメチル基、アルキルオキシメチル基の何れかである。式(x-5)中、Yは、炭素原子数1~4のアルキレン基、酸素原子、硫黄原子、カルボニル基の何れかであり、jは1~4の整数である。]
Figure JPOXMLDOC01-appb-C000005
[In the formula (x-1), h is 0 or 1. In formulas (x-2) to (x-5), R 3 is any of an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group and a halogen atom, and i Is 0 or an integer of 1 to 4. In formulas (x-2), (x-3) and (x-5), Z is any of a vinyl group, a halomethyl group, a hydroxymethyl group and an alkyloxymethyl group. In formula (x-5), Y is any of an alkylene group having 1 to 4 carbon atoms, an oxygen atom, a sulfur atom, and a carbonyl group, and j is an integer of 1 to 4. ]
 前記分子内にフェノール性水酸基を1つ有する化合物としては、例えば、下記構造式(2-1)~(2-4)で表される化合物等が挙げられる。 Examples of the compound having one phenolic hydroxyl group in the molecule include compounds represented by the following structural formulas (2-1) to (2-4).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記構造式(4-1)~(4-4)において、Rは、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、アリール基、ハロゲン原子の何れかであり、Rは、それぞれ独立して、水素原子またはメチル基である。また、pは、0または1以上の整数であり、好ましくは0または1~3の整数であり、より好ましくは0または1であり、さらに好ましくは0である。なお、上記構造式における芳香環上の置換基の位置については、任意であり、例えば、構造式(4-2)のナフタレン環においてはいずれの環上に置換していてもよく、構造式(4-3)では、1分子中に存在するベンゼン環のいずれの環上に置換していてもよく、構造式(4-4)では、1分子中に存在するベンゼン環のいずれかの環状に置換していてもよいことを示している。 In the above structural formulas (4-1) to (4-4), R 4 is any of an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group and a halogen atom. , R 5 are each independently a hydrogen atom or a methyl group. Further, p is 0 or an integer of 1 or more, preferably 0 or an integer of 1 to 3, more preferably 0 or 1, and further preferably 0. The position of the substituent on the aromatic ring in the above structural formula is arbitrary, and for example, in the naphthalene ring of the structural formula (4-2), the substituent may be substituted on any ring. In 4-3), it may be substituted on any ring of the benzene ring present in one molecule, and in structural formula (4-4), it may be substituted on any ring of the benzene ring present in one molecule. It indicates that they may be replaced.
 前記分子内にフェノール性水酸基を少なくとも2つ有する化合物としては、上述の構造式(3-1)~(3-4)で表される化合物を用いることができる。 As the compound having at least two phenolic hydroxyl groups in the molecule, the compounds represented by the above structural formulas (3-1) to (3-4) can be used.
 これらのフェノール性水酸基含有化合物は、単独で用いることも2種以上を併用することもできる。 These phenolic hydroxyl group-containing compounds can be used alone or in combination of two or more kinds.
 前記アルキレンオキサイドとしては、例えば、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、ペンチレンオキサイド等が挙げられる。これらの中でも、優れた光感度及びアルカリ現像性を有し、優れた耐熱性を有する硬化物を形成可能な硬化性樹脂組成物が得られることから、エチレンオキサイドまたはプロピレンオキサイドが好ましい。前記アルキレンオキサイドは、単独で用いることも2種以上を併用することもできる。 Examples of the alkylene oxide include ethylene oxide, propylene oxide, butylene oxide, pentylene oxide and the like. Among these, ethylene oxide or propylene oxide is preferable because a curable resin composition having excellent photosensitivity and alkali developability and capable of forming a cured product having excellent heat resistance can be obtained. The alkylene oxides may be used alone or in combination of two or more.
 前記アルキレンカーボネートとしては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ペンチレンカーボネート等が挙げられる。これらの中でも、優れた光感度及びアルカリ現像性を有し、優れた耐熱性を有する硬化物を形成可能な硬化性樹脂組成物が得られることから、エチレンカーボネートまたはプロピレンカーボネートが好ましい。前記アルキレンカーボネートは、単独で用いることも2種以上を併用することもできる。 Examples of the alkylene carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, pentylene carbonate and the like. Among these, ethylene carbonate or propylene carbonate is preferable because a curable resin composition having excellent photosensitivity and alkali developability and capable of forming a cured product having excellent heat resistance can be obtained. The alkylene carbonates may be used alone or in combination of two or more.
 前記N-アルコキシアルキル(メタ)アクリルアミド化合物としては、例えば、N-メトキシメチル(メタ)アクリルアミド、N-エトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N-メトキシエチル(メタ)アクリルアミド、N-エトキシエチル(メタ)アクリルアミド、N-ブトキシエチル(メタ)アクリルアミド等が挙げられる。前記N-アルコキシアルキル(メタ)アクリルアミド化合物は、単独で用いることも2種以上を併用することもできる。 Examples of the N-alkoxyalkyl(meth)acrylamide compound include N-methoxymethyl(meth)acrylamide, N-ethoxymethyl(meth)acrylamide, N-butoxymethyl(meth)acrylamide, N-methoxyethyl(meth)acrylamide. , N-ethoxyethyl (meth)acrylamide, N-butoxyethyl (meth)acrylamide and the like. The N-alkoxyalkyl (meth)acrylamide compounds may be used alone or in combination of two or more.
 前記多塩基酸無水物としては、上述の多塩基酸無水物と同様のものを用いることができ、前記多塩基酸無水物は、単独で用いることも2種以上を併用することもできる。 As the polybasic acid anhydride, the same polybasic acid anhydride as described above can be used, and the polybasic acid anhydride can be used alone or in combination of two or more kinds.
 前記不飽和一塩基酸としては、上述の不飽和一塩基酸と同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the unsaturated monobasic acid, the same unsaturated monobasic acid as described above can be used, and the organic solvent can be used alone or in combination of two or more kinds.
 前記酸基及び重合性不飽和結合を有するアクリルアミド樹脂の製造方法としては、特に限定されず、どのような方法で製造してもよい。前記酸基及び重合性不飽和結合を有するアクリルアミド樹脂の製造においては、必要に応じて有機溶剤中で行ってもよく、また、必要に応じて塩基性触媒及び酸性触媒を用いてもよい。 The method for producing the acrylamide resin having the acid group and the polymerizable unsaturated bond is not particularly limited and may be produced by any method. The production of the acrylamide resin having an acid group and a polymerizable unsaturated bond may be carried out in an organic solvent, if necessary, and a basic catalyst and an acidic catalyst may be used, if necessary.
 前記有機溶剤としては、上述の有機溶剤と同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same organic solvents as described above can be used, and the organic solvent can be used alone or in combination of two or more kinds.
 前記塩基性触媒としては、上述の塩基性触媒と同様のものを用いることができ、前記塩基性触媒は、単独で用いることも2種以上を併用することもできる。 As the basic catalyst, the same basic catalysts as described above can be used, and the basic catalyst can be used alone or in combination of two or more kinds.
 前記酸性触媒としては、上述の酸性触媒と同様のものを用いることができ、前記酸性触媒は、単独で用いることも2種以上を併用することもできる。 As the acidic catalyst, the same acidic catalyst as described above can be used, and the acidic catalyst can be used alone or in combination of two or more kinds.
 前記酸基及び重合性不飽和結合を有する樹脂(E)の使用量は、本発明の酸基含有(メタ)アクリレート樹脂100質量部に対して、10~900質量部の範囲が好ましい。 The amount of the resin (E) having an acid group and a polymerizable unsaturated bond used is preferably in the range of 10 to 900 parts by mass with respect to 100 parts by mass of the acid group-containing (meth)acrylate resin of the present invention.
 前記各種の(メタ)アクリレートモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート等の脂肪族モノ(メタ)アクリレート化合物;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチルモノ(メタ)アクリレート等の脂環型モノ(メタ)アクリレート化合物;グリシジル(メタ)アクリレート、テトラヒドロフルフリルアクリレート等の複素環型モノ(メタ)アクリレート化合物;ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、フェニルベンジル(メタ)アクリレート、フェノキシ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシエトキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、フェノキシベンジル(メタ)アクリレート、ベンジルベンジル(メタ)アクリレート、フェニルフェノキシエチル(メタ)アクリレート等の芳香族モノ(メタ)アクリレート化合物等のモノ(メタ)アクリレート化合物:前記各種のモノ(メタ)アクリレートモノマーの分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等のポリオキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性モノ(メタ)アクリレート化合物;前記各種のモノ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性モノ(メタ)アクリレート化合物;エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の脂肪族ジ(メタ)アクリレート化合物;1,4-シクロヘキサンジメタノールジ(メタ)アクリレート、ノルボルナンジ(メタ)アクリレート、ノルボルナンジメタノールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等の脂環型ジ(メタ)アクリレート化合物;ビフェノールジ(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート等の芳香族ジ(メタ)アクリレート化合物;前記各種のジ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入したポリオキシアルキレン変性ジ(メタ)アクリレート化合物;前記各種のジ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性ジ(メタ)アクリレート化合物;トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート等の脂肪族トリ(メタ)アクリレート化合物;前記脂肪族トリ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性トリ(メタ)アクリレート化合物;前記脂肪族トリ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性トリ(メタ)アクリレート化合物;ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の4官能以上の脂肪族ポリ(メタ)アクリレート化合物;前記脂肪族ポリ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した4官能以上の(ポリ)オキシアルキレン変性ポリ(メタ)アクリレート化合物;前記脂肪族ポリ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入した4官能以上のラクトン変性ポリ(メタ)アクリレート化合物などが挙げられる。前記各種の(メタ)アクリレートモノマーは、単独で用いることも2種以上を併用することもできる。 Examples of the various (meth)acrylate monomers include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, 2 -Aliphatic mono(meth)acrylate compounds such as ethylhexyl(meth)acrylate and octyl(meth)acrylate; cycloaliphatic (meth)acrylate, isobornyl(meth)acrylate, adamantyl mono(meth)acrylate and other alicyclic mono(meth)acrylates Acrylate compounds; Heterocyclic mono(meth)acrylate compounds such as glycidyl (meth)acrylate and tetrahydrofurfuryl acrylate; benzyl (meth)acrylate, phenyl (meth)acrylate, phenylbenzyl (meth)acrylate, phenoxy (meth)acrylate, Phenoxyethyl (meth)acrylate, phenoxyethoxyethyl (meth)acrylate, 2-hydroxy-3-phenoxypropyl (meth)acrylate, phenoxybenzyl (meth)acrylate, benzylbenzyl (meth)acrylate, phenylphenoxyethyl (meth)acrylate, etc. (Meth)acrylate compounds such as aromatic mono(meth)acrylate compounds: (poly)oxyethylene chain, (poly)oxypropylene chain, (poly)oxy in the molecular structure of the various mono(meth)acrylate monomers A (poly)oxyalkylene-modified mono(meth)acrylate compound having a polyoxyalkylene chain such as a tetramethylene chain introduced therein; a lactone-modified mono compound having a (poly)lactone structure introduced into the molecular structure of each of the various mono(meth)acrylate compounds (Meth)acrylate compound; aliphatic such as ethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, butanediol di(meth)acrylate, hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate Di(meth)acrylate compound; 1,4-cyclohexanedimethanol di(meth)acrylate, norbornane di(meth)acrylate, norbornane dimethanol di(meth)acrylate, dicyclopentanyl di(meth)acrylate, tricyclodecane di Alicyclic di(meth)acrylate compounds such as methanol di(meth)acrylate; biphenol di(meth)acrylate, bisphenol Aromatic di(meth)acrylate compounds such as enol di(meth)acrylate; (poly)oxyethylene chains, (poly)oxypropylene chains, (poly)oxytetramethylene in the molecular structures of the various di(meth)acrylate compounds. A polyoxyalkylene-modified di(meth)acrylate compound having a (poly)oxyalkylene chain introduced therein such as a chain; a lactone-modified di(meth) having a (poly)lactone structure introduced into the molecular structure of each of the above-mentioned various di(meth)acrylate compounds ) Acrylate compound; Aliphatic tri(meth)acrylate compound such as trimethylolpropane tri(meth)acrylate and glycerin tri(meth)acrylate; (Poly)oxyethylene chain in the molecular structure of the aliphatic tri(meth)acrylate compound. A (poly)oxyalkylene-modified tri(meth)acrylate compound introduced with a (poly)oxyalkylene chain such as a (poly)oxypropylene chain or a (poly)oxytetramethylene chain; a molecule of the aliphatic tri(meth)acrylate compound A lactone-modified tri(meth)acrylate compound having a (poly)lactone structure introduced into the structure; pentaerythritol tetra(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, etc. An aliphatic poly(meth)acrylate compound of (poly)oxyethylene chain, (poly)oxypropylene chain, (poly)oxytetramethylene chain, or the like in the molecular structure of the aliphatic poly(meth)acrylate compound A tetra- or higher functional (poly)oxyalkylene-modified poly(meth)acrylate compound having an oxyalkylene chain introduced; a tetra-functional or higher functional lactone having a (poly)lactone structure introduced into the molecular structure of the aliphatic poly(meth)acrylate compound Examples include modified poly(meth)acrylate compounds. The various (meth)acrylate monomers may be used alone or in combination of two or more.
 また、本発明の硬化性樹脂組成物には、必要に応じて、硬化剤、硬化促進剤、有機溶剤、無機微粒子やポリマー微粒子、顔料、消泡剤、粘度調整剤、レベリング剤、難燃剤、保存安定化剤等の各種添加剤を含有することもできる。 Further, the curable resin composition of the present invention, if necessary, a curing agent, a curing accelerator, an organic solvent, inorganic fine particles or polymer fine particles, a pigment, a defoaming agent, a viscosity modifier, a leveling agent, a flame retardant, It may also contain various additives such as a storage stabilizer.
 前記硬化剤としては、前記酸基含有(メタ)アクリレート樹脂中のカルボキシ基と反応し得る官能基を有するものであれば特に制限されず、例えば、エポキシ樹脂が挙げられる。前記エポキシ樹脂としては、例えば、ビスフェノール型エポキシ樹脂、フェニレンエーテル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フルオレン型エポキシ樹脂、キサンテン型エポキシ樹脂、ジヒドロキシベンゼン型エポキシ樹脂、トリヒドロキシベンゼン型エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は、単独で用いることも2種以上を併用することもできる。また、これらの中でも、優れた光感度及びアルカリ現像性を有し、優れた耐熱性を有する硬化物を形成可能な硬化性樹脂組成物が得られることから、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂が好ましく、軟化点が20~120℃の範囲であるものが特に好ましい。 The curing agent is not particularly limited as long as it has a functional group capable of reacting with the carboxy group in the acid group-containing (meth)acrylate resin, and examples thereof include an epoxy resin. Examples of the epoxy resin include bisphenol type epoxy resin, phenylene ether type epoxy resin, naphthylene ether type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, Bisphenol novolac type epoxy resin, naphthol novolac type epoxy resin, naphthol-phenol co-contracting novolac type epoxy resin, naphthol-cresol co-contracting novolac type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene-phenol addition Examples thereof include reactive epoxy resins, biphenylaralkyl epoxy resins, fluorene epoxy resins, xanthene epoxy resins, dihydroxybenzene epoxy resins, trihydroxybenzene epoxy resins and the like. These epoxy resins can be used alone or in combination of two or more kinds. Further, among these, since a curable resin composition having excellent photosensitivity and alkali developability and capable of forming a cured product having excellent heat resistance is obtained, a phenol novolac type epoxy resin, a cresol novolac type is obtained. Novolak type epoxy resins such as epoxy resin, bisphenol novolac type epoxy resin, naphthol novolak type epoxy resin, naphthol-phenol co-contracting novolac type epoxy resin, naphthol-cresol co-contracting novolac type epoxy resin are preferable, and the softening point is 20 to 120°C. The range of is particularly preferable.
 前記硬化促進剤としては、前記硬化剤の硬化反応を促進するものであり、前記硬化剤としてエポキシ樹脂を用いる場合には、リン系化合物、アミン系化合物、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。これらの硬化促進剤は、単独で用いることも2種以上を併用することもできる。また、前記硬化促進剤の添加量は、例えば、前記硬化剤100質量部に対し1~10質量部の範囲で用いることが好ましい。 The curing accelerator is for promoting a curing reaction of the curing agent, and when an epoxy resin is used as the curing agent, a phosphorus compound, an amine compound, an imidazole, an organic acid metal salt, a Lewis acid, Examples thereof include amine complex salts. These curing accelerators can be used alone or in combination of two or more kinds. Further, the addition amount of the curing accelerator is preferably, for example, in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the curing agent.
 前記有機溶剤としては、上述の有機溶剤と同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same organic solvents as described above can be used, and the organic solvent can be used alone or in combination of two or more kinds.
 本発明の硬化物は、前記硬化性樹脂組成物に、活性エネルギー線を照射することで得ることができる。前記活性エネルギー線としては、例えば、紫外線、電子線、α線、β線、γ線等の電離放射線が挙げられる。また、前記活性エネルギー線として、紫外線を用いる場合、紫外線による硬化反応を効率よく行う上で、窒素ガス等の不活性ガス雰囲気下で照射してもよく、空気雰囲気下で照射してもよい。 The cured product of the present invention can be obtained by irradiating the curable resin composition with an active energy ray. Examples of the active energy rays include ionizing radiation such as ultraviolet rays, electron rays, α rays, β rays, and γ rays. When ultraviolet rays are used as the active energy rays, the irradiation may be performed in an atmosphere of an inert gas such as nitrogen gas or in an air atmosphere in order to efficiently carry out the curing reaction by the ultraviolet rays.
 紫外線発生源としては、実用性、経済性の面から紫外線ランプが一般的に用いられている。具体的には、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ガリウムランプ、メタルハライドランプ、太陽光、LED等が挙げられる。 ⑦ As a source of ultraviolet rays, ultraviolet lamps are generally used from the viewpoint of practicality and economy. Specific examples thereof include a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a xenon lamp, a gallium lamp, a metal halide lamp, sunlight, and an LED.
 前記活性エネルギー線の積算光量は、特に制限されないが、10~5,000mJ/cmであることが好ましく、50~1,000mJ/cmであることがより好ましい。積算光量が上記範囲であると、未硬化部分の発生の防止または抑制ができることから好ましい。 The cumulative light amount of the active energy rays is not particularly limited, but is preferably 10 to 5,000 mJ/cm 2 , and more preferably 50 to 1,000 mJ/cm 2 . When the integrated light amount is within the above range, it is possible to prevent or suppress the generation of an uncured portion, which is preferable.
 なお、前記活性エネルギー線の照射は、一段階で行ってもよいし、二段階以上に分けて行ってもよい。 The irradiation with the active energy rays may be performed in one step or in two or more steps.
 また、本発明の硬化物は、優れた耐熱性を有することから、例えば、半導体デバイス用途における、ソルダーレジスト、層間絶縁材料、パッケージ材、アンダーフィル材、回路素子等のパッケージ接着層や、集積回路素子と回路基板の接着層として好適に用いることができる。また、LCD、OELDに代表される薄型ディスプレイ用途における、薄膜トランジスタ保護膜、液晶カラーフィルタ保護膜、カラーフィルタ用顔料レジスト、ブラックマトリックス用レジスト、スペーサー等に好適に用いることができる。これらの中でも、特にソルダーレジスト用途に好適に用いることができる。 Further, since the cured product of the present invention has excellent heat resistance, for example, in a semiconductor device application, a solder resist, an interlayer insulating material, a package material, an underfill material, a package adhesive layer such as a circuit element, or an integrated circuit. It can be suitably used as an adhesive layer between an element and a circuit board. Further, it can be suitably used as a thin film transistor protective film, a liquid crystal color filter protective film, a color filter pigment resist, a black matrix resist, a spacer and the like in a thin display application represented by LCD and OELD. Among them, it can be particularly preferably used for solder resist applications.
 本発明のソルダーレジスト用樹脂材料は、前記硬化性樹脂組成物からなるものである。 The resin material for solder resist of the present invention comprises the curable resin composition.
 本発明のレジスト部材は、例えば、前記ソルダーレジスト用樹脂材料を基材上に塗布し、60~100℃程度の温度範囲で有機溶媒を揮発乾燥させた後、所望のパターンが形成されたフォトマスクを通して活性エネルギー線にて露光させ、アルカリ水溶液にて未露光部を現像し、更に140~200℃程度の温度範囲で加熱硬化させて得ることができる。 The resist member of the present invention is, for example, a photomask on which a desired pattern is formed after applying the resin material for solder resist on a substrate and evaporating and drying an organic solvent in a temperature range of about 60 to 100°C. Through exposure with an active energy ray, the unexposed area is developed with an alkaline aqueous solution, and then heat-cured in a temperature range of about 140 to 200° C.
 前記基材としては、例えば、銅箔、アルミニウム箔等の金属箔などが挙げられる。 Examples of the base material include metal foils such as copper foil and aluminum foil.
 以下に、実施例および比較例をもって本発明をより詳しく説明する。 The present invention will be described in more detail below with reference to examples and comparative examples.
 本願実施例において酸基含有(メタ)アクリレート樹脂の酸価はJIS K 0070(1992)の中和滴定法にて測定した。 In the examples of the present application, the acid value of the acid group-containing (meth)acrylate resin was measured by the neutralization titration method of JIS K0070 (1992).
 本願実施例において酸基含有(メタ)アクリレート樹脂の分子量は下記条件のGPCにて測定した。 In the examples of the present application, the molecular weight of the acid group-containing (meth)acrylate resin was measured by GPC under the following conditions.
 測定装置 :東ソー株式会社製「HLC-8220 GPC」、
 カラム:東ソー株式会社製ガードカラム「HXL-L」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G3000HXL」
    +東ソー株式会社製「TSK-GEL G4000HXL」
 検出器: RI(示差屈折計)
 データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.10」
 測定条件: カラム温度  40℃
       展開溶媒   テトラヒドロフラン
       流速     1.0ml/分
 標準  : 前記「GPC-8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
  (使用ポリスチレン)
   東ソー株式会社製「A-500」
   東ソー株式会社製「A-1000」
   東ソー株式会社製「A-2500」
   東ソー株式会社製「A-5000」
   東ソー株式会社製「F-1」
   東ソー株式会社製「F-2」
   東ソー株式会社製「F-4」
   東ソー株式会社製「F-10」
   東ソー株式会社製「F-20」
   東ソー株式会社製「F-40」
   東ソー株式会社製「F-80」
   東ソー株式会社製「F-128」
 試料  : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)
Measuring device: "HLC-8220 GPC" manufactured by Tosoh Corporation,
Column: Tosoh Co., Ltd. guard column "HXL-L"
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G3000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G4000HXL" manufactured by Tosoh Corporation
Detector: RI (differential refractometer)
Data processing: "GPC-8020 model II version 4.10" manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40°C
Developing solvent Tetrahydrofuran Flow rate 1.0 ml/min Standard: The following monodisperse polystyrene having a known molecular weight was used according to the measurement manual of “GPC-8020 Model II Version 4.10”.
(Polystyrene used)
Tosoh Corporation "A-500"
Tosoh Corporation “A-1000”
Tosoh Corporation "A-2500"
Tosoh Corporation “A-5000”
Tosoh Corporation "F-1"
Tosoh Corporation "F-2"
Tosoh Corporation "F-4"
Tosoh Corporation “F-10”
Tosoh Corporation “F-20”
Tosoh Corporation “F-40”
Tosoh Corporation “F-80”
Tosoh Corporation "F-128"
Sample: 1.0% by mass tetrahydrofuran solution in terms of resin solid content filtered through a microfilter (50 μl)
 本実施例において液体クロマトグラフィーチャートは下記条件で測定した。
[測定条件]
装置:株式会社島津製作所製「LCMS-2010EV」
データ処理:株式会社島津製作所製「LCMS Solution」
カラム:東ソー株式会社製「ODS-100V」(2.0mmID×150mm、3μm)40℃
溶離液:水/アセトニトリル、0.4mL/分
検出器:PDA、MS
試料調整:1.資料50mgをアセトニトリル(LC用)10mlに溶解
     2.30秒間ボルテックスで撹拌
     3.30分間静置
     4.0.2μmろ過フィルターに通液し測定試料とする
面積比の計算:UV波長210nmで算出
In this example, the liquid chromatography chart was measured under the following conditions.
[Measurement condition]
Equipment: Shimadzu Corporation “LCMS-2010EV”
Data processing: Shimadzu Corporation “LCMS Solution”
Column: "ODS-100V" manufactured by Tosoh Corporation (2.0 mm ID x 150 mm, 3 µm) 40°C
Eluent: water/acetonitrile, 0.4 mL/min Detector: PDA, MS
Sample preparation: 1. Dissolve 50 mg of the material in 10 ml of acetonitrile (for LC) 2. Stir with vortex for 30 seconds 3. Let stand for 30 minutes 4. Pass through a 0.2 μm filtration filter and use as a measurement sample Calculation of area ratio: UV wavelength calculated at 210 nm
(合成例1:ペンタエリスリトールポリアクリレート(A1)の製造)
 温度計、攪拌器、及びコンデンサーを備えたフラスコに、アクリル酸201.6質量部、ペンタエリスリトール136質量部、硫酸10.6質量部、塩化第二銅1.1質量部、トルエン153質量部を仕込んだ。撹拌しながら105℃まで昇温し、系中を還流させながら同温度で12時間反応させた。反応混合物にトルエン287質量部を追加し、蒸留水123質量部で洗浄した。更に、20質量%水酸化ナトリウム水溶液を添加して反応混合物を中和し、蒸留水62質量部で洗浄した。樹脂固形分に対して500ppm量のハイドロキノンモノメチルエーテルを添加した後、トルエンを留去し、ペンタエリスリトールポリアクリレート(A1)を得た。このペンタエリスリトールポリアクリレート(A1)の水酸基価は290mgKOH/g、液体クロマトグラフィーチャートの面積比から算出されるペンタエリスリトールテトラアクリレート(a1)の含有量は16質量%、ペンタエリスリトールトリアクリレート(a2)の含有量は50質量%、ペンタエリスリトールジアクリレート(a3)の含有量は29質量%、ペンタエリスリトールモノアクリレート(a4)の含有量は3質量%、その他高分子量成分(a’)の含有量は2質量%であった。
(Synthesis Example 1: Production of pentaerythritol polyacrylate (A1))
A flask equipped with a thermometer, a stirrer, and a condenser was charged with 201.6 parts by mass of acrylic acid, 136 parts by mass of pentaerythritol, 10.6 parts by mass of sulfuric acid, 1.1 parts by mass of cupric chloride, and 153 parts by mass of toluene. I prepared it. The temperature was raised to 105° C. with stirring, and the reaction was carried out at the same temperature for 12 hours while refluxing the system. To the reaction mixture, 287 parts by mass of toluene was added and washed with 123 parts by mass of distilled water. Furthermore, a 20 mass% sodium hydroxide aqueous solution was added to neutralize the reaction mixture, and the mixture was washed with 62 parts by mass of distilled water. After adding 500 ppm of hydroquinone monomethyl ether to the resin solid content, toluene was distilled off to obtain pentaerythritol polyacrylate (A1). The hydroxyl value of this pentaerythritol polyacrylate (A1) is 290 mgKOH/g, the content of pentaerythritol tetraacrylate (a1) calculated from the area ratio of the liquid chromatography chart is 16% by mass, and the pentaerythritol triacrylate (a2) content The content is 50% by mass, the content of pentaerythritol diacrylate (a3) is 29% by mass, the content of pentaerythritol monoacrylate (a4) is 3% by mass, and the content of the other high molecular weight component (a') is 2%. It was mass %.
(合成例2:ペンタエリスリトールジアクリレート(A2)の製造)
 温度計、攪拌器、及びコンデンサーを備えたフラスコに、ペンタエリスリトール136質量部、N,N-ジメチルホルムアミド600質量部を仕込み、触媒としてパラトルエンスルホン酸3.7質量部を添加した。撹拌しながら80℃まで昇温してペンタエリスリトールをN,N-ジメチルホルムアミドに溶解させた後、シクロヘキサノン78質量部を加えた。反応温度を80℃に保ちながら反応系内を140mmHgまで減圧し、生成する水を留去しながら反応を続けた。水の生成が確認できなくなったところで、更に1時間還流させた。撹拌を続けながら室温まで冷却して常圧に戻し、減圧濾過により未反応のペンタエリスリトールを除去した。得られた濾液からN,N-ジメチルホルムアミドを減圧除去した後、酢酸エチルを加え、析出したペンタエリスリトールを再度濾過にて除去した。得られた濾液を炭酸水素ナトリウム飽和水溶液で洗浄した後、更に塩化ナトリウム飽和水溶液で洗浄し、有機層を硫酸マグネシウムで脱水した。脱水後の反応生成物を濃縮し、ケタール化合物(x1)を得た。
(Synthesis Example 2: Production of pentaerythritol diacrylate (A2))
A flask equipped with a thermometer, a stirrer, and a condenser was charged with 136 parts by mass of pentaerythritol and 600 parts by mass of N,N-dimethylformamide, and 3.7 parts by mass of paratoluenesulfonic acid was added as a catalyst. The temperature was raised to 80° C. with stirring to dissolve pentaerythritol in N,N-dimethylformamide, and 78 parts by mass of cyclohexanone was added. While maintaining the reaction temperature at 80° C., the pressure in the reaction system was reduced to 140 mmHg, and the reaction was continued while distilling off the produced water. When generation of water could not be confirmed, the mixture was refluxed for another hour. While continuing stirring, the mixture was cooled to room temperature and returned to normal pressure, and unreacted pentaerythritol was removed by vacuum filtration. N,N-dimethylformamide was removed from the obtained filtrate under reduced pressure, ethyl acetate was added, and the precipitated pentaerythritol was removed by filtration again. The obtained filtrate was washed with a saturated aqueous solution of sodium hydrogen carbonate and then with a saturated aqueous solution of sodium chloride, and the organic layer was dehydrated with magnesium sulfate. The reaction product after dehydration was concentrated to obtain a ketal compound (x1).
 次いで、温度計、攪拌器、及びコンデンサーを備えたフラスコに、先で得たケタール化合物(x1)21.6質量部、ジクロロメタン120質量部、トリエチルアミン46.5質量部を仕込み、-5℃まで冷却した。3-クロロプロピオニルクロリド29質量部をジクロロメタン40質量部に溶解させたものを、反応系内を0℃以下に保ちながら少量ずつ滴下した。滴下終了後、徐々に室温まで昇温させ、更に4時間反応させた。原料であるケタール化合物(x1)の消失をガスクロマトグラフにて確認後、減圧濾過でトリエチルアミン塩酸塩を除去した。得られた濾液を飽和炭酸水素ナトリウム水溶液で洗浄した後、更に塩化ナトリウム飽和水溶液で洗浄し、無水硫酸マグネシウムで脱水した。脱水後の反応生成物を濃縮し、アクリレート化合物(x2)30質量部を得た。 Then, 21.6 parts by mass of the ketal compound (x1) obtained above, 120 parts by mass of dichloromethane, and 46.5 parts by mass of triethylamine were charged into a flask equipped with a thermometer, a stirrer, and a condenser, and cooled to -5°C. did. What melt|dissolved 29 mass parts of 3-chloropropionyl chloride in 40 mass parts of dichloromethane was dripped little by little, keeping the reaction system inside at 0 degreeC or less. After the dropping was completed, the temperature was gradually raised to room temperature and the reaction was continued for 4 hours. After confirming disappearance of the ketal compound (x1) as a raw material by gas chromatography, triethylamine hydrochloride was removed by vacuum filtration. The obtained filtrate was washed with a saturated aqueous solution of sodium hydrogen carbonate, further washed with a saturated aqueous solution of sodium chloride, and dehydrated with anhydrous magnesium sulfate. The reaction product after dehydration was concentrated to obtain 30 parts by mass of an acrylate compound (x2).
 次いで、温度計、攪拌器、及びコンデンサーを備えたフラスコに、先で得たアクリレート化合物(x2)6.5質量部、アセトン30質量部を仕込み、撹拌しながら0℃まで冷却した。10%硫酸水溶液10質量部を反応系内が10℃を超えないように少量ずつ滴下し、全量添加後、室温で16時間反応させた。原料であるアクリレート化合物(x2)の消失をガスクロマトグラフにて確認後、水10質量部を加え、アセトンを減圧除去した。得られた水層を酢酸エチルで抽出し、炭酸水素ナトリウム飽和水溶液を用いてpHが7になるまで洗浄した。有機層を硫酸マグネシウムで脱水した後、常温減圧条件下で濃縮して、ペンタエリスリトールジアクリレート(A2)を得た。 Next, 6.5 parts by mass of the acrylate compound (x2) obtained above and 30 parts by mass of acetone were charged into a flask equipped with a thermometer, a stirrer, and a condenser, and cooled to 0° C. with stirring. 10 parts by mass of a 10% aqueous solution of sulfuric acid was dropped little by little so that the temperature in the reaction system would not exceed 10° C., and after the entire amount was added, the reaction was carried out at room temperature for 16 hours. After confirming the disappearance of the raw material acrylate compound (x2) by gas chromatography, 10 parts by mass of water was added and acetone was removed under reduced pressure. The obtained aqueous layer was extracted with ethyl acetate and washed with a saturated aqueous solution of sodium hydrogen carbonate until the pH reached 7. The organic layer was dehydrated with magnesium sulfate and then concentrated under reduced pressure at room temperature to obtain pentaerythritol diacrylate (A2).
(合成例3:ジペンタエリスリトールポリアクリレート(A3)の製造)
 温度計、撹拌器、及びコンデンサーを備えたフラスコに、アクリル酸220質量部、ジペンタエリスリトール180質量部、硫酸15質量部、塩化第二銅1.5質量部、トルエン300質量部を仕込んだ。撹拌しながら105℃まで昇温し、系中を還流させながら同温度で13時間反応させた。生成した水は61質量部であった。反応混合物にトルエン425質量部を追加し、蒸留水200質量部で洗浄した。更に、20%水酸化ナトリウム水溶液を添加して反応混合物を中和し、蒸留水100質量部で洗浄した。樹脂固形分に対して500ppm量のハイドロキノンモノメチルエーテルを添加した後、トルエンを留去し、ジペンタエリスリトールアクリレート(A3)を得た。このジペンタエリスリトールアクリレート(A3)の水酸基価は、140mgKOH/gであった。また、液体クロマトグラフィーチャートの面積比から算出されるジペンタエリスリトールテトラアクリレート(b1)の含有量は28質量%、ジペンタエリスリトールペンタアクリレート(b2)の含有量は42質量%、ジペンタエリスリトールヘキサアクリレート(b3)の含有量は22質量%、高分子量成分(b’)の含有量は8質量%であった。
(Synthesis Example 3: Production of dipentaerythritol polyacrylate (A3))
A flask equipped with a thermometer, a stirrer, and a condenser was charged with 220 parts by mass of acrylic acid, 180 parts by mass of dipentaerythritol, 15 parts by mass of sulfuric acid, 1.5 parts by mass of cupric chloride, and 300 parts by mass of toluene. The temperature was raised to 105° C. with stirring, and the reaction was carried out at the same temperature for 13 hours while refluxing the system. The amount of water produced was 61 parts by mass. To the reaction mixture, 425 parts by mass of toluene was added and washed with 200 parts by mass of distilled water. Furthermore, a 20% aqueous sodium hydroxide solution was added to neutralize the reaction mixture, and the mixture was washed with 100 parts by mass of distilled water. After adding 500 ppm of hydroquinone monomethyl ether to the resin solid content, toluene was distilled off to obtain dipentaerythritol acrylate (A3). The hydroxyl value of this dipentaerythritol acrylate (A3) was 140 mgKOH/g. Further, the content of dipentaerythritol tetraacrylate (b1) calculated from the area ratio of the liquid chromatography chart is 28% by mass, the content of dipentaerythritol pentaacrylate (b2) is 42% by mass, dipentaerythritol hexaacrylate. The content of (b3) was 22% by mass, and the content of the high molecular weight component (b') was 8% by mass.
(実施例1:酸基含有(メタ)アクリレート樹脂(1)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート288質量部、無水トリメリット酸168質量部、合成例1で得たペンタエリスリトールポリアクリレート(A1)53質量部、ジブチルヒドロキシトルエン0.7質量部、メトキノン0.3質量部、トリフェニルホスフィン0.7質量部を加えて空気を吹き込みながら、120℃で6時間反応させた。イソホロンジイソシアネート111質量部加えて、120℃で8時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。次いで、ペンタエリスリトールポリアクリレート混合物(東亜合成株式会社製「アロニックスM-306」、ペンタエリスリトールトリアクリレート含有量約67%、水酸基価159.7mgKOH/g)72質量部を添加し、110℃で3時間反応させた。グリシジルメタクリレート148質量部、トリフェニルホスフィン1.9質量部を添加し、110℃で5時間反応させた。更に、テトラヒドロ無水フタル酸151質量部を加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(1)を得た。この酸基含有(メタ)アクリレート樹脂(1)の固形分酸価は87mgKOH/gであり、重量平均分子量は、2390であった。
(Example 1: Production of acid group-containing (meth)acrylate resin (1))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 288 parts by mass of diethylene glycol monomethyl ether acetate, 168 parts by mass of trimellitic anhydride, 53 parts by mass of pentaerythritol polyacrylate (A1) obtained in Synthesis Example 1, dibutyl. Hydroxytoluene (0.7 parts by mass), metoquinone (0.3 parts by mass) and triphenylphosphine (0.7 parts by mass) were added, and the mixture was reacted at 120° C. for 6 hours while blowing air. 111 parts by mass of isophorone diisocyanate was added and reacted at 120° C. for 8 hours, and it was confirmed that the isocyanate group content was 0.1% by mass or less. Next, 72 parts by mass of a pentaerythritol polyacrylate mixture (“Aronix M-306” manufactured by Toagosei Co., Ltd., pentaerythritol triacrylate content: about 67%, hydroxyl value: 159.7 mgKOH/g) is added, and the mixture is added at 110° C. for 3 hours It was made to react. 148 parts by mass of glycidyl methacrylate and 1.9 parts by mass of triphenylphosphine were added and reacted at 110° C. for 5 hours. Further, 151 parts by mass of tetrahydrophthalic anhydride was added and reacted at 110° C. for 5 hours to obtain a target acid group-containing (meth)acrylate resin (1). The acid value of the solid content of the acid group-containing (meth)acrylate resin (1) was 87 mgKOH/g, and the weight average molecular weight was 2,390.
(実施例2:酸基含有(メタ)アクリレート樹脂(2)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート288質量部、無水トリメリット酸168質量部、合成例1で得たペンタエリスリトールポリアクリレート(A1)53質量部、ジブチルヒドロキシトルエン0.7質量部、メトキノン0.3質量部、トリフェニルホスフィン0.7質量部を加えて空気を吹き込みながら、120℃で6時間反応させた。イソホロンジイソシアネート111質量部加えて、120℃で8時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。次いで、「アロニックスM-306」72質量部を添加し、110℃で3時間反応させた。グリシジルメタクリレート148質量部、トリフェニルホスフィン1.9質量部を添加し、110℃で5時間反応させた。更に、無水コハク酸99質量部を加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(2)を得た。この酸基含有(メタ)アクリレート樹脂(2)の固形分酸価は94mgKOH/gであり、重量平均分子量は、2300であった。
(Example 2: Production of acid group-containing (meth)acrylate resin (2))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 288 parts by mass of diethylene glycol monomethyl ether acetate, 168 parts by mass of trimellitic anhydride, 53 parts by mass of pentaerythritol polyacrylate (A1) obtained in Synthesis Example 1, dibutyl. Hydroxytoluene (0.7 parts by mass), metoquinone (0.3 parts by mass) and triphenylphosphine (0.7 parts by mass) were added, and the mixture was reacted at 120° C. for 6 hours while blowing air. 111 parts by mass of isophorone diisocyanate was added and reacted at 120° C. for 8 hours, and it was confirmed that the isocyanate group content was 0.1% by mass or less. Then, 72 parts by mass of “Aronix M-306” was added, and the mixture was reacted at 110° C. for 3 hours. 148 parts by mass of glycidyl methacrylate and 1.9 parts by mass of triphenylphosphine were added and reacted at 110° C. for 5 hours. Further, 99 parts by mass of succinic anhydride was added and reacted at 110° C. for 5 hours to obtain a target acid group-containing (meth)acrylate resin (2). The acid value of the solid content of this acid group-containing (meth)acrylate resin (2) was 94 mgKOH/g, and the weight average molecular weight was 2,300.
(実施例3:酸基含有(メタ)アクリレート樹脂(3)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート288質量部、無水トリメリット酸168質量部、合成例1で得たペンタエリスリトールポリアクリレート(A1)53質量部、ジブチルヒドロキシトルエン0.7質量部、メトキノン0.3質量部、トリフェニルホスフィン0.7質量部を加えて空気を吹き込みながら、120℃で6時間反応させた。イソホロンジイソシアネート111質量部加えて、120℃で8時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。次いで、「アロニックスM-306」72質量部を添加し、110℃で3時間反応させた。3,4-エポキシシクロへキシルメチルメタクリレート(株式会社ダイセル製「サイクロマーM100」、エポキシ基当量207g/当量)216質量部、トリフェニルホスフィン2.2質量部を添加し、110℃で5時間反応させた。更に、無水コハク酸99質量部を加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(3)を得た。この酸基含有(メタ)アクリレート樹脂(3)の固形分酸価は85mgKOH/gであり、重量平均分子量は、2540であった。
(Example 3: Production of acid group-containing (meth)acrylate resin (3))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 288 parts by mass of diethylene glycol monomethyl ether acetate, 168 parts by mass of trimellitic anhydride, 53 parts by mass of pentaerythritol polyacrylate (A1) obtained in Synthesis Example 1, dibutyl. 0.7 parts by mass of hydroxytoluene, 0.3 parts by mass of methoquinone, and 0.7 parts by mass of triphenylphosphine were added and the reaction was carried out at 120° C. for 6 hours while blowing air. 111 parts by mass of isophorone diisocyanate was added and reacted at 120° C. for 8 hours, and it was confirmed that the isocyanate group content was 0.1% by mass or less. Then, 72 parts by mass of “Aronix M-306” was added, and the mixture was reacted at 110° C. for 3 hours. 216 parts by mass of 3,4-epoxycyclohexylmethyl methacrylate (“Cyclomer M100” manufactured by Daicel Co., Ltd., epoxy group equivalent 207 g/equivalent) and 2.2 parts by mass of triphenylphosphine were added and reacted at 110° C. for 5 hours. Let Further, 99 parts by mass of succinic anhydride was added and reacted at 110° C. for 5 hours to obtain a target acid group-containing (meth)acrylate resin (3). The acid value of the solid content of the acid group-containing (meth)acrylate resin (3) was 85 mgKOH/g, and the weight average molecular weight was 2,540.
(実施例4:酸基含有(メタ)アクリレート樹脂(4)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート275質量部、無水トリメリット酸144質量部、合成例1で得たペンタエリスリトールポリアクリレート(A1)44質量部、ジブチルヒドロキシトルエン0.7質量部、メトキノン0.2質量部、トリフェニルホスフィン0.6質量部を加えて空気を吹き込みながら、120℃で6時間反応させた。ジシクロヘキシルメタン4,4-ジイソシアナート(住化コベストロウレタン株式会社製「デスモジュールW」)131質量部加えて、120℃で8時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。次いで、「アロニックスM-306」52質量部を添加し、110℃で3時間反応させた。グリシジルメタクリレート111質量部、トリフェニルホスフィン1.7質量部を添加し、110℃で5時間反応させた。更に、無水コハク酸75質量部を加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(4)を得た。この酸基含有(メタ)アクリレート樹脂(4)の固形分酸価は85mgKOH/gであり、重量平均分子量は、2440であった。
(Example 4: Production of acid group-containing (meth)acrylate resin (4))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 275 parts by mass of diethylene glycol monomethyl ether acetate, 144 parts by mass of trimellitic anhydride, 44 parts by mass of pentaerythritol polyacrylate (A1) obtained in Synthesis Example 1, dibutyl. 0.7 parts by mass of hydroxytoluene, 0.2 parts by mass of metoquinone, and 0.6 parts by mass of triphenylphosphine were added, and the mixture was reacted at 120° C. for 6 hours while blowing air. 131 parts by mass of dicyclohexylmethane 4,4-diisocyanate (“Desmodur W” manufactured by Sumika Covestrourethane Co., Ltd.) was added and reacted at 120° C. for 8 hours to give an isocyanate group content of 0.1% by mass or less. I confirmed that. Next, 52 parts by mass of “Aronix M-306” was added, and the mixture was reacted at 110° C. for 3 hours. 111 parts by mass of glycidyl methacrylate and 1.7 parts by mass of triphenylphosphine were added and reacted at 110° C. for 5 hours. Further, 75 parts by mass of succinic anhydride was added and reacted at 110° C. for 5 hours to obtain a target acid group-containing (meth)acrylate resin (4). The acid value of the solid content of the acid group-containing (meth)acrylate resin (4) was 85 mgKOH/g, and the weight average molecular weight was 2,440.
(実施例5:酸基含有(メタ)アクリレート樹脂(5)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート275質量部、無水トリメリット酸144質量部、合成例1で得たペンタエリスリトールポリアクリレート(A1)44質量部、ジブチルヒドロキシトルエン0.7質量部、メトキノン0.3質量部、トリフェニルホスフィン0.6質量部を加えて空気を吹き込みながら、120℃で6時間反応させた。ジシクロヘキシルメタン4,4-ジイソシアナート131質量部加えて、120℃で8時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。次いで、「アロニックスM-306」52質量部を添加し、110℃で3時間反応させた。「サイクロマーM100」162質量部、トリフェニルホスフィン1.9質量部を添加し、110℃で5時間反応させた。更に、無水コハク酸75質量部を加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(5)を得た。この酸基含有(メタ)アクリレート樹脂(5)の固形分酸価は78mgKOH/gであり、重量平均分子量は、2610であった。
(Example 5: Production of acid group-containing (meth)acrylate resin (5))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 275 parts by mass of diethylene glycol monomethyl ether acetate, 144 parts by mass of trimellitic anhydride, 44 parts by mass of pentaerythritol polyacrylate (A1) obtained in Synthesis Example 1, dibutyl. Hydroxytoluene (0.7 parts by mass), metoquinone (0.3 parts by mass) and triphenylphosphine (0.6 parts by mass) were added, and the mixture was reacted at 120° C. for 6 hours while blowing air. 131 parts by mass of dicyclohexylmethane 4,4-diisocyanate was added and reacted at 120° C. for 8 hours, and it was confirmed that the isocyanate group content was 0.1% by mass or less. Next, 52 parts by mass of “Aronix M-306” was added, and the mixture was reacted at 110° C. for 3 hours. 162 parts by mass of “Cyclomer M100” and 1.9 parts by mass of triphenylphosphine were added and reacted at 110° C. for 5 hours. Furthermore, 75 parts by mass of succinic anhydride was added and reacted at 110° C. for 5 hours to obtain a target acid group-containing (meth)acrylate resin (5). The acid value of the solid content of the acid group-containing (meth)acrylate resin (5) was 78 mgKOH/g, and the weight average molecular weight was 2610.
(実施例6:酸基含有(メタ)アクリレート樹脂(6)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート374質量部、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物173質量部、合成例1で得たペンタエリスリトールポリアクリレート(A1)53質量部、ジブチルヒドロキシトルエン0.7質量部、メトキノン0.3質量部、トリフェニルホスフィン0.7質量部を加えて空気を吹き込みながら、120℃で6時間反応させた。イソホロンジイソシアネート111質量部加えて、120℃で8時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。次いで、「アロニックスM-306」74質量部を添加し、110℃で3時間反応させた。「サイクロマーM100」220質量部、トリフェニルホスフィン2.3質量部を添加し、110℃で5時間反応させた。更に、テトラヒドロ無水フタル酸154質量部を加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(6)を得た。この酸基含有(メタ)アクリレート樹脂(6)の固形分酸価は80mgKOH/gであり、重量平均分子量は、2370であった。
(Example 6: Production of acid group-containing (meth)acrylate resin (6))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 374 parts by mass of diethylene glycol monomethyl ether acetate, 173 parts by mass of cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, obtained in Synthesis Example 1 53 parts by mass of pentaerythritol polyacrylate (A1), 0.7 parts by mass of dibutylhydroxytoluene, 0.3 parts by mass of methoquinone, and 0.7 parts by mass of triphenylphosphine were added, and the mixture was reacted at 120° C. for 6 hours while blowing air. Let 111 parts by mass of isophorone diisocyanate was added and reacted at 120° C. for 8 hours, and it was confirmed that the isocyanate group content was 0.1% by mass or less. Then, 74 parts by mass of “Aronix M-306” was added, and the mixture was reacted at 110° C. for 3 hours. 220 parts by mass of “Cyclomer M100” and 2.3 parts by mass of triphenylphosphine were added and reacted at 110° C. for 5 hours. Further, 154 parts by mass of tetrahydrophthalic anhydride was added and reacted at 110° C. for 5 hours to obtain a target acid group-containing (meth)acrylate resin (6). The acid value of the solid content of the acid group-containing (meth)acrylate resin (6) was 80 mgKOH/g, and the weight average molecular weight was 2,370.
(実施例7:酸基含有(メタ)アクリレート樹脂(7)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート341質量部、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物149質量部、合成例1で得たペンタエリスリトールポリアクリレート(A1)44質量部、ジブチルヒドロキシトルエン0.7質量部、メトキノン0.3質量部、トリフェニルホスフィン0.6質量部を加えて空気を吹き込みながら、120℃で6時間反応させた。ジシクロヘキシルメタン4,4-ジイソシアナート131質量部加えて、120℃で8時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。次いで、「アロニックスM-306」53質量部を添加し、110℃で3時間反応させた。「サイクロマーM100」165質量部、トリフェニルホスフィン1.9質量部を添加し、110℃で5時間反応させた。更に、無水コハク酸76質量部を加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(7)を得た。この酸基含有(メタ)アクリレート樹脂(7)の固形分酸価は78mgKOH/gであり、重量平均分子量は、2580であった。
(Example 7: Production of acid group-containing (meth)acrylate resin (7))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 341 parts by mass of diethylene glycol monomethyl ether acetate, 149 parts by mass of cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, obtained in Synthesis Example 1 44 parts by mass of pentaerythritol polyacrylate (A1), 0.7 parts by mass of dibutylhydroxytoluene, 0.3 parts by mass of methoquinone, and 0.6 parts by mass of triphenylphosphine were added and reacted at 120° C. for 6 hours while blowing air. Let 131 parts by mass of dicyclohexylmethane 4,4-diisocyanate was added and reacted at 120° C. for 8 hours, and it was confirmed that the isocyanate group content was 0.1% by mass or less. Next, 53 parts by mass of “Aronix M-306” was added, and the mixture was reacted at 110° C. for 3 hours. 165 parts by mass of "Cyclomer M100" and 1.9 parts by mass of triphenylphosphine were added and reacted at 110°C for 5 hours. Further, 76 parts by mass of succinic anhydride was added and reacted at 110° C. for 5 hours to obtain a target acid group-containing (meth)acrylate resin (7). The acid value of the solid content of the acid group-containing (meth)acrylate resin (7) was 78 mgKOH/g, and the weight average molecular weight was 2,580.
(実施例8:酸基含有(メタ)アクリレート樹脂(8)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート211質量部、イソホロンジイソシアネート111質量部、無水トリメリット酸144質量部、ジブチルヒドロキシトルエン0.5質量部を加えて溶解させた。窒素雰囲気下、160℃で8時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。次いで、メトキノン0.2質量部、合成例1で得たペンタエリスリトールポリアクリレート(A1)22質量部およびトリフェニルホスフィン1.6質量部を添加し、空気を吹き込みながら110℃で5時間反応させた。次いで、グリシジルメタクリレート85質量部を添加し、110℃で5時間反応させた。さらに、無水コハク酸57質量部を加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(8)を得た。この酸基含有(メタ)アクリレート樹脂(8)の固形分酸価は89mgKOH/gであり、重量平均分子量は、1850であった。
(Example 8: Production of acid group-containing (meth)acrylate resin (8))
To a flask equipped with a thermometer, a stirrer, and a reflux condenser, 211 parts by mass of diethylene glycol monomethyl ether acetate, 111 parts by mass of isophorone diisocyanate, 144 parts by mass of trimellitic anhydride, and 0.5 parts by mass of dibutylhydroxytoluene were added and dissolved. Let The reaction was carried out at 160° C. for 8 hours in a nitrogen atmosphere, and it was confirmed that the isocyanate group content was 0.1% by mass or less. Next, 0.2 parts by weight of methquinone, 22 parts by weight of pentaerythritol polyacrylate (A1) obtained in Synthesis Example 1 and 1.6 parts by weight of triphenylphosphine were added, and the mixture was reacted at 110° C. for 5 hours while blowing air. .. Then, 85 parts by mass of glycidyl methacrylate was added and reacted at 110° C. for 5 hours. Further, 57 parts by mass of succinic anhydride was added and reacted at 110° C. for 5 hours to obtain a target acid group-containing (meth)acrylate resin (8). The acid value of the solid content of this acid group-containing (meth)acrylate resin (8) was 89 mgKOH/g, and the weight average molecular weight was 1850.
(実施例9:酸基含有(メタ)アクリレート樹脂(9)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート211質量部、イソホロンジイソシアネート111質量部、無水トリメリット酸144質量部、ジブチルヒドロキシトルエン0.5質量部を加えて溶解させた。窒素雰囲気下、160℃で8時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。次いで、メトキノン0.2質量部、合成例2で得たペンタエリスリトールジアクリレート(A2)14質量部およびトリフェニルホスフィン1.6質量部を添加し、空気を吹き込みながら110℃で5時間反応させた。次いで、グリシジルメタクリレート86質量部を添加し、110℃で5時間反応させた。さらに、無水コハク酸58質量部を加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(9)を得た。この酸基含有(メタ)アクリレート樹脂(9)の固形分酸価は91mgKOH/gであり、重量平均分子量は、2120であった。
(Example 9: Production of acid group-containing (meth)acrylate resin (9))
To a flask equipped with a thermometer, a stirrer, and a reflux condenser, 211 parts by mass of diethylene glycol monomethyl ether acetate, 111 parts by mass of isophorone diisocyanate, 144 parts by mass of trimellitic anhydride, and 0.5 parts by mass of dibutylhydroxytoluene were added and dissolved. Let The reaction was carried out at 160° C. for 8 hours in a nitrogen atmosphere, and it was confirmed that the isocyanate group content was 0.1% by mass or less. Next, 0.2 parts by weight of methoquinone, 14 parts by weight of pentaerythritol diacrylate (A2) obtained in Synthesis Example 2 and 1.6 parts by weight of triphenylphosphine were added, and the mixture was reacted at 110° C. for 5 hours while blowing air. .. Then, 86 parts by mass of glycidyl methacrylate was added and reacted at 110° C. for 5 hours. Further, 58 parts by mass of succinic anhydride was added and reacted at 110° C. for 5 hours to obtain a target acid group-containing (meth)acrylate resin (9). The acid value of the solid content of the acid group-containing (meth)acrylate resin (9) was 91 mgKOH/g, and the weight average molecular weight was 2,120.
(実施例10:酸基含有(メタ)アクリレート樹脂(10)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート269質量部、無水トリメリット酸168質量部、合成例2で得たペンタエリスリトールジアクリレート(A2)34質量部、ジブチルヒドロキシトルエン0.7質量部、メトキノン0.2質量部、トリフェニルホスフィン0.6質量部を加えて空気を吹き込みながら、120℃で6時間反応させた。イソホロンジイソシアネート111質量部加えて、120℃で8時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。次いで、「アロニックスM-306」68質量部を添加し、110℃で3時間反応させた。グリシジルメタクリレート130質量部、トリフェニルホスフィン1.7質量部を添加し、110℃で5時間反応させた。更に、無水コハク酸87質量部、ジエチレングリコールモノメチルエーテルアセテート71質量部を加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(10)を得た。この酸基含有(メタ)アクリレート樹脂(10)の固形分酸価は92mgKOH/gであり、重量平均分子量は、2590であった。
(Example 10: Production of acid group-containing (meth)acrylate resin (10))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 269 parts by mass of diethylene glycol monomethyl ether acetate, 168 parts by mass of trimellitic anhydride, 34 parts by mass of pentaerythritol diacrylate (A2) obtained in Synthesis Example 2, dibutyl. 0.7 parts by mass of hydroxytoluene, 0.2 parts by mass of metoquinone, and 0.6 parts by mass of triphenylphosphine were added, and the mixture was reacted at 120° C. for 6 hours while blowing air. 111 parts by mass of isophorone diisocyanate was added and reacted at 120° C. for 8 hours, and it was confirmed that the isocyanate group content was 0.1% by mass or less. Next, 68 parts by mass of “Aronix M-306” was added, and the mixture was reacted at 110° C. for 3 hours. Glycidyl methacrylate (130 parts by mass) and triphenylphosphine (1.7 parts by mass) were added and reacted at 110° C. for 5 hours. Further, 87 parts by mass of succinic anhydride and 71 parts by mass of diethylene glycol monomethyl ether acetate were added and reacted at 110° C. for 5 hours to obtain a target acid group-containing (meth)acrylate resin (10). The acid value of the solid content of the acid group-containing (meth)acrylate resin (10) was 92 mgKOH/g, and the weight average molecular weight was 2,590.
(実施例11:酸基含有(メタ)アクリレート樹脂(11)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート288質量部、無水トリメリット酸168質量部、合成例1で得たペンタエリスリトールポリアクリレート(A1)53質量部、ジブチルヒドロキシトルエン0.7質量部、メトキノン0.2質量部、トリフェニルホスフィン0.7質量部を加えて空気を吹き込みながら、120℃で6時間反応させた。イソホロンジイソシアネート111質量部加えて、120℃で8時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。次いで、合成例2で得たペンタエリスリトールジアクリレート(A2)25質量部を添加し、110℃で3時間反応させた。グリシジルメタクリレート150質量部、トリフェニルホスフィン1.7質量部を添加し、110℃で5時間反応させた。更に、無水コハク酸100質量部、ジエチレングリコールモノメチルエーテルアセテート57質量部を加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(11)を得た。この酸基含有(メタ)アクリレート樹脂(11)の固形分酸価は103mgKOH/gであり、重量平均分子量は、2710であった。
(Example 11: Production of acid group-containing (meth)acrylate resin (11))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 288 parts by mass of diethylene glycol monomethyl ether acetate, 168 parts by mass of trimellitic anhydride, 53 parts by mass of pentaerythritol polyacrylate (A1) obtained in Synthesis Example 1, dibutyl. 0.7 parts by mass of hydroxytoluene, 0.2 parts by mass of methoquinone, and 0.7 parts by mass of triphenylphosphine were added and the reaction was carried out at 120° C. for 6 hours while blowing air. 111 parts by mass of isophorone diisocyanate was added and reacted at 120° C. for 8 hours, and it was confirmed that the isocyanate group content was 0.1% by mass or less. Next, 25 parts by mass of pentaerythritol diacrylate (A2) obtained in Synthesis Example 2 was added and reacted at 110° C. for 3 hours. 150 parts by mass of glycidyl methacrylate and 1.7 parts by mass of triphenylphosphine were added and reacted at 110° C. for 5 hours. Further, 100 parts by mass of succinic anhydride and 57 parts by mass of diethylene glycol monomethyl ether acetate were added and reacted at 110° C. for 5 hours to obtain a target acid group-containing (meth)acrylate resin (11). The acid value of the solid content of the acid group-containing (meth)acrylate resin (11) was 103 mgKOH/g, and the weight average molecular weight was 2710.
(実施例12:酸基含有(メタ)アクリレート樹脂(12)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート269質量部、無水トリメリット酸168質量部、合成例2で得たペンタエリスリトールジアクリレート(A2)34質量部、ジブチルヒドロキシトルエン0.7質量部、メトキノン0.2質量部、トリフェニルホスフィン0.6部を加えて空気を吹き込みながら、120℃で6時間反応させた。イソホロンジイソシアネート111質量部加えて、120℃で8時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。次いで、合成例2で得たペンタエリスリトールジアクリレート(A2)23質量部を添加し、110℃で3時間反応させた。グリシジルメタクリレート144質量部、トリフェニルホスフィン1.6質量部を添加し、110℃で5時間反応させた。更に、無水コハク酸96質量部、ジエチレングリコールモノメチルエーテルアセテート57質量部を加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(12)を得た。この酸基含有(メタ)アクリレート樹脂(12)の固形分酸価は105mgKOH/gであり、重量平均分子量は、2990であった。
(Example 12: Production of acid group-containing (meth)acrylate resin (12))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 269 parts by mass of diethylene glycol monomethyl ether acetate, 168 parts by mass of trimellitic anhydride, 34 parts by mass of pentaerythritol diacrylate (A2) obtained in Synthesis Example 2, dibutyl. 0.7 parts by mass of hydroxytoluene, 0.2 parts by mass of metoquinone, and 0.6 parts of triphenylphosphine were added and the reaction was carried out at 120° C. for 6 hours while blowing air. 111 parts by mass of isophorone diisocyanate was added and reacted at 120° C. for 8 hours, and it was confirmed that the isocyanate group content was 0.1% by mass or less. Next, 23 parts by mass of pentaerythritol diacrylate (A2) obtained in Synthesis Example 2 was added and reacted at 110° C. for 3 hours. 144 parts by mass of glycidyl methacrylate and 1.6 parts by mass of triphenylphosphine were added and reacted at 110° C. for 5 hours. Furthermore, 96 parts by mass of succinic anhydride and 57 parts by mass of diethylene glycol monomethyl ether acetate were added and reacted at 110° C. for 5 hours to obtain a target acid group-containing (meth)acrylate resin (12). The acid value of the solid content of the acid group-containing (meth)acrylate resin (12) was 105 mgKOH/g, and the weight average molecular weight was 2990.
(実施例13:酸基含有(メタ)アクリレート樹脂(13)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート269質量部、無水トリメリット酸168質量部、合成例2で得たペンタエリスリトールジアクリレート(A2)34質量部、ジブチルヒドロキシトルエン0.7質量部、メトキノン0.2質量部、トリフェニルホスフィン0.6質量部を加えて空気を吹き込みながら、120℃で6時間反応させた。イソホロンジイソシアネート111質量部加えて、120℃で8時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。次いで、合成例1で得たペンタエリスリトールポリアクリレート(A1)37質量部を添加し、110℃で3時間反応させた。グリシジルメタクリレート140質量部、トリフェニルホスフィン1.6質量部を添加し、110℃で5時間反応させた。更に、無水コハク酸94質量部、ジエチレングリコールモノメチルエーテルアセテート62質量部を加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(13)を得た。この酸基含有(メタ)アクリレート樹脂(13)の固形分酸価は101mgKOH/gであり、重量平均分子量は、2590であった。
(Example 13: Production of acid group-containing (meth)acrylate resin (13))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 269 parts by mass of diethylene glycol monomethyl ether acetate, 168 parts by mass of trimellitic anhydride, 34 parts by mass of pentaerythritol diacrylate (A2) obtained in Synthesis Example 2, dibutyl. 0.7 parts by mass of hydroxytoluene, 0.2 parts by mass of metoquinone, and 0.6 parts by mass of triphenylphosphine were added, and the mixture was reacted at 120° C. for 6 hours while blowing air. 111 parts by mass of isophorone diisocyanate was added and reacted at 120° C. for 8 hours, and it was confirmed that the isocyanate group content was 0.1% by mass or less. Then, 37 parts by mass of pentaerythritol polyacrylate (A1) obtained in Synthesis Example 1 was added, and the mixture was reacted at 110° C. for 3 hours. Glycidyl methacrylate (140 parts by mass) and triphenylphosphine (1.6 parts by mass) were added and reacted at 110° C. for 5 hours. Further, 94 parts by mass of succinic anhydride and 62 parts by mass of diethylene glycol monomethyl ether acetate were added and reacted at 110° C. for 5 hours to obtain a target acid group-containing (meth)acrylate resin (13). The acid value of the solid content of the acid group-containing (meth)acrylate resin (13) was 101 mgKOH/g, and the weight average molecular weight was 2,590.
(実施例14:酸基含有(メタ)アクリレート樹脂(14)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート332質量部、無水トリメリット酸168質量部、「アロニックスM-306」97質量部、ジブチルヒドロキシトルエン0.8質量部、メトキノン0.3質量部、トリフェニルホスフィン0.8部を加えて空気を吹き込みながら、120℃で6時間反応させた。イソホロンジイソシアネート111質量部加えて、120℃で8時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。次いで、合成例1で得たペンタエリスリトールポリアクリレート(A1)46質量部を添加し、110℃で3時間反応させた。グリシジルメタクリレート153質量部、トリフェニルホスフィン1.9部を添加し、110℃で5時間反応させた。更に、無水コハク酸102質量部、ジエチレングリコールモノメチルエーテルアセテート56質量部を加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(14)を得た。この酸基含有(メタ)アクリレート樹脂(14)の固形分酸価は94mgKOH/gであり、重量平均分子量は、2330であった。
(Example 14: Production of acid group-containing (meth)acrylate resin (14))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 332 parts by mass of diethylene glycol monomethyl ether acetate, 168 parts by mass of trimellitic anhydride, 97 parts by mass of "Aronix M-306", 0.8 part by mass of dibutylhydroxytoluene. Then, 0.3 parts by mass of methoquinone and 0.8 part of triphenylphosphine were added and the reaction was carried out at 120° C. for 6 hours while blowing air. 111 parts by mass of isophorone diisocyanate was added and reacted at 120° C. for 8 hours, and it was confirmed that the isocyanate group content was 0.1% by mass or less. Next, 46 parts by mass of pentaerythritol polyacrylate (A1) obtained in Synthesis Example 1 was added, and the mixture was reacted at 110° C. for 3 hours. 153 parts by mass of glycidyl methacrylate and 1.9 parts of triphenylphosphine were added and reacted at 110° C. for 5 hours. Further, 102 parts by mass of succinic anhydride and 56 parts by mass of diethylene glycol monomethyl ether acetate were added and reacted at 110° C. for 5 hours to obtain a target acid group-containing (meth)acrylate resin (14). The acid value of the solid content of the acid group-containing (meth)acrylate resin (14) was 94 mgKOH/g, and the weight average molecular weight was 2330.
(実施例15:酸基含有(メタ)アクリレート樹脂(15)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート332質量部、無水トリメリット酸168質量部、「アロニックスM-306」97質量部、ジブチルヒドロキシトルエン0.8質量部、メトキノン0.3質量部、トリフェニルホスフィン0.8部を加えて空気を吹き込みながら、120℃で6時間反応させた。イソホロンジイソシアネート111質量部加えて、120℃で8時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。次いで、合成例2で得たペンタエリスリトールジアクリレート(A2)29質量部を添加し、110℃で3時間反応させた。グリシジルメタクリレート153質量部、トリフェニルホスフィン1.8部を添加し、110℃で5時間反応させた。更に、無水コハク酸102質量部、ジエチレングリコールモノメチルエーテルアセテート46質量部を加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(15)を得た。この酸基含有(メタ)アクリレート樹脂(15)の固形分酸価は96mgKOH/gであり、重量平均分子量は、2490であった。
(Example 15: Production of acid group-containing (meth)acrylate resin (15))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 332 parts by mass of diethylene glycol monomethyl ether acetate, 168 parts by mass of trimellitic anhydride, 97 parts by mass of "Aronix M-306", 0.8 part by mass of dibutylhydroxytoluene. Then, 0.3 parts by mass of methoquinone and 0.8 part of triphenylphosphine were added and the reaction was carried out at 120° C. for 6 hours while blowing air. 111 parts by mass of isophorone diisocyanate was added and reacted at 120° C. for 8 hours, and it was confirmed that the isocyanate group content was 0.1% by mass or less. Then, 29 parts by mass of pentaerythritol diacrylate (A2) obtained in Synthesis Example 2 was added and reacted at 110° C. for 3 hours. 153 parts by mass of glycidyl methacrylate and 1.8 parts of triphenylphosphine were added and reacted at 110° C. for 5 hours. Further, 102 parts by mass of succinic anhydride and 46 parts by mass of diethylene glycol monomethyl ether acetate were added and reacted at 110° C. for 5 hours to obtain a target acid group-containing (meth)acrylate resin (15). The acid value of the solid content of the acid group-containing (meth)acrylate resin (15) was 96 mgKOH/g, and the weight average molecular weight was 2,490.
(実施例16:酸基含有(メタ)アクリレート樹脂(16)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート392質量部、イソホロンジイソシアネートのイソシアヌレート変性体(EVONIK社製「VESTANAT T-1890/100」、イソシアネート基含有量17.2質量%)244質量部、無水トリメリット酸192質量部、ジブチルヒドロキシトルエン1.0質量部を加えて溶解させた。窒素雰囲気下、160℃で5時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。メトキノン0.3質量部、合成例1で得たペンタエリスリトールポリアクリレート(A1)81質量部およびトリフェニルホスフィン1.4質量部を添加し、空気を吹き込みながら110℃で5時間反応させた。次いで、グリシジルメタクリレート165質量部、トリフェニルホスフィン1.8質量部を添加し、110℃で5時間反応させた。更に、テトラヒドロ無水フタル酸110質量部、ジエチレングリコールモノメチルエーテルアセテート67質量部を加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(16)を得た。この酸基含有(メタ)アクリレート樹脂(16)の固形分酸価は86mgKOH/gであり、重量平均分子量は、7450であった。
(Example 16: Production of acid group-containing (meth)acrylate resin (16))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 392 parts by mass of diethylene glycol monomethyl ether acetate, an isocyanurate modified product of isophorone diisocyanate (“VESTANAT T-1890/100” manufactured by EVONIK, isocyanate group content 17. (2 mass %) 244 mass parts, trimellitic anhydride 192 mass parts, and dibutyl hydroxytoluene 1.0 mass part were added and dissolved. The reaction was carried out at 160° C. for 5 hours in a nitrogen atmosphere, and it was confirmed that the isocyanate group content was 0.1% by mass or less. 0.3 parts by weight of methoquinone, 81 parts by weight of pentaerythritol polyacrylate (A1) obtained in Synthesis Example 1 and 1.4 parts by weight of triphenylphosphine were added, and the mixture was reacted at 110° C. for 5 hours while blowing air. Next, 165 parts by mass of glycidyl methacrylate and 1.8 parts by mass of triphenylphosphine were added, and the reaction was carried out at 110° C. for 5 hours. Further, 110 parts by mass of tetrahydrophthalic anhydride and 67 parts by mass of diethylene glycol monomethyl ether acetate were added and reacted at 110° C. for 5 hours to obtain a target acid group-containing (meth)acrylate resin (16). The acid value of the solid content of the acid group-containing (meth)acrylate resin (16) was 86 mgKOH/g, and the weight average molecular weight was 7,450.
(実施例17:酸基含有(メタ)アクリレート樹脂(17)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート418質量部、無水トリメリット酸192質量部、合成例1で得たペンタエリスリトールポリアクリレート(A1)26質量部、ジブチルヒドロキシトルエン1.0質量部、メトキノン0.3質量部、トリフェニルホスフィン0.7質量部を加えて空気を吹き込みながら、120℃で6時間反応させた。「VESTANAT T-1890/100」244質量部加えて、120℃で10時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。次いで、「アロニックスM-306」79質量部を添加し、110℃で3時間反応させた。グリシジルメタクリレート167質量部、トリフェニルホスフィン2.7質量部を添加し、110℃で5時間反応させた。更に、無水コハク酸112質量部、ジエチレングリコールモノメチルエーテルアセテート57質量部を加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(17)を得た。この酸基含有(メタ)アクリレート樹脂(17)の固形分酸価は84mgKOH/gであり、重量平均分子量は、7390であった。
(Example 17: Production of acid group-containing (meth)acrylate resin (17))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 418 parts by mass of diethylene glycol monomethyl ether acetate, 192 parts by mass of trimellitic anhydride, 26 parts by mass of pentaerythritol polyacrylate (A1) obtained in Synthesis Example 1, dibutyl. 1.0 parts by mass of hydroxytoluene, 0.3 parts by mass of methoquinone, and 0.7 parts by mass of triphenylphosphine were added and the reaction was carried out at 120° C. for 6 hours while blowing air. After adding 244 parts by mass of "VESTANAT T-1890/100" and reacting at 120°C for 10 hours, it was confirmed that the isocyanate group content was 0.1% by mass or less. Next, 79 parts by mass of “Aronix M-306” was added, and the mixture was reacted at 110° C. for 3 hours. 167 parts by mass of glycidyl methacrylate and 2.7 parts by mass of triphenylphosphine were added and reacted at 110° C. for 5 hours. Further, 112 parts by mass of succinic anhydride and 57 parts by mass of diethylene glycol monomethyl ether acetate were added and reacted at 110° C. for 5 hours to obtain a target acid group-containing (meth)acrylate resin (17). The acid value of the solid content of the acid group-containing (meth)acrylate resin (17) was 84 mgKOH/g, and the weight average molecular weight was 7,390.
(実施例18:酸基含有(メタ)アクリレート樹脂(18)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート211質量部、イソホロンジイソシアネート111質量部、無水トリメリット酸144質量部、ジブチルヒドロキシトルエン0.5質量部を加えて溶解させた。窒素雰囲気下、160℃で8時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。次いで、メトキノン0.2質量部、合成例3で得たジペンタエリスリトールポリアクリレート(A3)22質量部およびトリフェニルホスフィン1.6質量部を添加し、空気を吹き込みながら110℃で5時間反応させた。次いで、グリシジルメタクリレート85質量部を添加し、110℃で5時間反応させた。さらに、無水コハク酸57質量部を加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(18)を得た。この酸基含有(メタ)アクリレート樹脂(18)の固形分酸価は83mgKOH/gであり、重量平均分子量は、1910であった。
(Example 18: Production of acid group-containing (meth)acrylate resin (18))
To a flask equipped with a thermometer, a stirrer, and a reflux condenser, 211 parts by mass of diethylene glycol monomethyl ether acetate, 111 parts by mass of isophorone diisocyanate, 144 parts by mass of trimellitic anhydride, and 0.5 parts by mass of dibutylhydroxytoluene were added and dissolved. Let The reaction was carried out at 160° C. for 8 hours in a nitrogen atmosphere, and it was confirmed that the isocyanate group content was 0.1% by mass or less. Next, 0.2 parts by weight of methquinone, 22 parts by weight of dipentaerythritol polyacrylate (A3) obtained in Synthesis Example 3 and 1.6 parts by weight of triphenylphosphine were added, and the mixture was reacted at 110° C. for 5 hours while blowing air. It was Then, 85 parts by mass of glycidyl methacrylate was added and reacted at 110° C. for 5 hours. Further, 57 parts by mass of succinic anhydride was added and reacted at 110° C. for 5 hours to obtain a target acid group-containing (meth)acrylate resin (18). The acid value of the solid content of this acid group-containing (meth)acrylate resin (18) was 83 mgKOH/g, and the weight average molecular weight was 1910.
(実施例19:酸基含有(メタ)アクリレート樹脂(19)の製造)
温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート345質量部、無水トリメリット酸168質量部、合成例3で得たジペンタエリスリトールポリアクリレート(A3)110質量部、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.3質量部、トリフェニルホスフィン0.8質量部を加えて空気を吹き込みながら、120℃で6時間反応させた。イソホロンジイソシアネート111質量部加えて、120℃で8時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。次いで、「アロニックスM-306」87質量部を添加し、110℃で3時間反応させた。グリシジルメタクリレート148質量部、トリフェニルホスフィン2.1質量部を添加し、110℃で5時間反応させた。更に、無水コハク酸99質量部を加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(19)を得た。この酸基含有(メタ)アクリレート樹脂(19)の固形分酸価は85mgKOH/gであり、重量平均分子量は、2480であった。
(Example 19: Production of acid group-containing (meth)acrylate resin (19))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 345 parts by mass of diethylene glycol monomethyl ether acetate, 168 parts by mass of trimellitic anhydride, 110 parts by mass of dipentaerythritol polyacrylate (A3) obtained in Synthesis Example 3, 0.9 parts by mass of dibutylhydroxytoluene, 0.3 parts by mass of metoquinone, and 0.8 parts by mass of triphenylphosphine were added and the reaction was carried out at 120° C. for 6 hours while blowing air. 111 parts by mass of isophorone diisocyanate was added and reacted at 120° C. for 8 hours, and it was confirmed that the isocyanate group content was 0.1% by mass or less. Then, 87 parts by mass of “Aronix M-306” was added and reacted at 110° C. for 3 hours. 148 parts by mass of glycidyl methacrylate and 2.1 parts by mass of triphenylphosphine were added and reacted at 110° C. for 5 hours. Further, 99 parts by mass of succinic anhydride was added and reacted at 110° C. for 5 hours to obtain a target acid group-containing (meth)acrylate resin (19). The acid value of the solid content of the acid group-containing (meth)acrylate resin (19) was 85 mgKOH/g, and the weight average molecular weight was 2,480.
(実施例20:酸基含有(メタ)アクリレート樹脂(20)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート258質量部、無水トリメリット酸139質量部、合成例2で得たペンタエリスリトールジアクリレート(A2)52質量部、ジブチルヒドロキシトルエン0.6質量部、メトキノン0.2質量部、トリフェニルホスフィン0.6質量部を加えて空気を吹き込みながら、120℃で6時間反応させた。イソホロンジイソシアネート111質量部加えて、120℃で12時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。次いで、「アロニックスM-306」65質量部を添加し、110℃で3時間反応させた。グリシジルメタクリレート111質量部、トリフェニルホスフィン1.6質量部を添加し、110℃で5時間反応させた。更に、無水コハク酸74質量部、ジエチレングリコールモノメチルエーテルアセテート53質量部を加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(20)を得た。この酸基含有(メタ)アクリレート樹脂(20)の固形分酸価は85mgKOH/gであり、重量平均分子量は、2340であった。
(Example 20: Production of acid group-containing (meth)acrylate resin (20))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 258 parts by mass of diethylene glycol monomethyl ether acetate, 139 parts by mass of trimellitic anhydride, 52 parts by mass of pentaerythritol diacrylate (A2) obtained in Synthesis Example 2, dibutyl. Hydroxytoluene (0.6 parts by mass), methoquinone (0.2 parts by mass) and triphenylphosphine (0.6 parts by mass) were added, and the mixture was reacted at 120° C. for 6 hours while blowing air. 111 parts by mass of isophorone diisocyanate was added and reacted at 120° C. for 12 hours, and it was confirmed that the isocyanate group content was 0.1% by mass or less. Next, 65 parts by mass of “Aronix M-306” was added, and the mixture was reacted at 110° C. for 3 hours. 111 parts by mass of glycidyl methacrylate and 1.6 parts by mass of triphenylphosphine were added and reacted at 110° C. for 5 hours. Further, 74 parts by mass of succinic anhydride and 53 parts by mass of diethylene glycol monomethyl ether acetate were added and reacted at 110° C. for 5 hours to obtain a target acid group-containing (meth)acrylate resin (20). The acid value of the solid content of the acid group-containing (meth)acrylate resin (20) was 85 mgKOH/g, and the weight average molecular weight was 2340.
(実施例21:酸基含有(メタ)アクリレート樹脂(21)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート279質量部、無水トリメリット酸197質量部、合成例2で得たペンタエリスリトールジアクリレート(A2)15質量部、ジブチルヒドロキシトルエン0.7質量部、メトキノン0.3質量部、トリフェニルホスフィン0.6質量部を加えて空気を吹き込みながら、120℃で6時間反応させた。イソホロンジイソシアネート111質量部加えて、120℃で12時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。次いで、「アロニックスM-306」70質量部を添加し、110℃で3時間反応させた。グリシジルメタクリレート160質量部、トリフェニルホスフィン1.9質量部を添加し、110℃で5時間反応させた。更に、無水コハク酸88質量部、ジエチレングリコールモノメチルエーテルアセテート86質量部を加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(21)を得た。この酸基含有(メタ)アクリレート樹脂(21)の固形分酸価は100mgKOH/gであり、重量平均分子量は、2750であった。
(Example 21: Production of acid group-containing (meth)acrylate resin (21))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 279 parts by mass of diethylene glycol monomethyl ether acetate, 197 parts by mass of trimellitic anhydride, 15 parts by mass of pentaerythritol diacrylate (A2) obtained in Synthesis Example 2, dibutyl. Hydroxytoluene (0.7 parts by mass), metoquinone (0.3 parts by mass) and triphenylphosphine (0.6 parts by mass) were added, and the mixture was reacted at 120° C. for 6 hours while blowing air. 111 parts by mass of isophorone diisocyanate was added and reacted at 120° C. for 12 hours, and it was confirmed that the isocyanate group content was 0.1% by mass or less. Then, 70 parts by mass of "Aronix M-306" was added and reacted at 110°C for 3 hours. 160 parts by mass of glycidyl methacrylate and 1.9 parts by mass of triphenylphosphine were added and reacted at 110° C. for 5 hours. Further, 88 parts by mass of succinic anhydride and 86 parts by mass of diethylene glycol monomethyl ether acetate were added and reacted at 110° C. for 5 hours to obtain a target acid group-containing (meth)acrylate resin (21). The acid value of the solid content of the acid group-containing (meth)acrylate resin (21) was 100 mgKOH/g, and the weight average molecular weight was 2750.
(実施例22:酸基含有(メタ)アクリレート樹脂(22)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート254質量部、無水トリメリット酸168質量部、合成例1で得たペンタエリスリトールポリアクリレート(A1)53質量部、ジブチルヒドロキシトルエン0.6質量部、メトキノン0.2質量部、トリフェニルホスフィン0.7質量部を加えて空気を吹き込みながら、120℃で6時間反応させた。1,5-ペンタメチレンジイソシアネート77質量部加えて、120℃で8時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。次いで、「アロニックスM-306」64質量部を添加し、110℃で3時間反応させた。グリシジルメタクリレート131質量部、トリフェニルホスフィン1.6質量部を添加し、110℃で5時間反応させた。更に、無水コハク酸88質量部、ジエチレングリコールモノメチルエーテルアセテート75質量部を加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(22)を得た。この酸基含有(メタ)アクリレート樹脂(22)の固形分酸価は95mgKOH/gであり、重量平均分子量は、2050であった。
(Example 22: Production of acid group-containing (meth)acrylate resin (22))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 254 parts by mass of diethylene glycol monomethyl ether acetate, 168 parts by mass of trimellitic anhydride, 53 parts by mass of pentaerythritol polyacrylate (A1) obtained in Synthesis Example 1, dibutyl. Hydroxytoluene (0.6 parts by mass), methoquinone (0.2 parts by mass) and triphenylphosphine (0.7 parts by mass) were added, and the mixture was reacted at 120° C. for 6 hours while blowing air. 77 parts by mass of 1,5-pentamethylene diisocyanate was added and reacted at 120° C. for 8 hours, and it was confirmed that the isocyanate group content was 0.1% by mass or less. Next, 64 parts by mass of “Aronix M-306” was added, and the mixture was reacted at 110° C. for 3 hours. 131 parts by mass of glycidyl methacrylate and 1.6 parts by mass of triphenylphosphine were added and reacted at 110° C. for 5 hours. Further, 88 parts by mass of succinic anhydride and 75 parts by mass of diethylene glycol monomethyl ether acetate were added and reacted at 110° C. for 5 hours to obtain a target acid group-containing (meth)acrylate resin (22). The acid value of the solid content of the acid group-containing (meth)acrylate resin (22) was 95 mgKOH/g, and the weight average molecular weight was 2050.
(実施例23:酸基含有(メタ)アクリレート樹脂(23)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジメチルアセトアミド271質量部、無水トリメリット酸168質量部、合成例1で得たペンタエリスリトールポリアクリレート(A1)53質量部、ジブチルヒドロキシトルエン0.7質量部、メトキノン0.2質量部、トリフェニルホスフィン0.7質量部を加えて空気を吹き込みながら、120℃で6時間反応させた。1,3-ビス(イソシアナトメチル)ベンゼン(三井化学株式会社製「タケネート500」)94質量部加えて、120℃で6時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。次いで、「アロニックスM-306」68質量部を添加し、110℃で3時間反応させた。グリシジルメタクリレート140質量部、トリフェニルホスフィン1.7質量部を添加し、110℃で5時間反応させた。更に、無水コハク酸93質量部、ジメチルアセトアミド80質量部を加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(23)を得た。この酸基含有(メタ)アクリレート樹脂(23)の固形分酸価は94mgKOH/gであり、重量平均分子量は、2450であった。
(Example 23: Production of acid group-containing (meth)acrylate resin (23))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 271 parts by mass of dimethylacetamide, 168 parts by mass of trimellitic anhydride, 53 parts by mass of pentaerythritol polyacrylate (A1) obtained in Synthesis Example 1, dibutylhydroxytoluene. 0.7 parts by mass, 0.2 parts by mass of metoquinone, and 0.7 parts by mass of triphenylphosphine were added, and the mixture was reacted at 120° C. for 6 hours while blowing air. 94 parts by mass of 1,3-bis(isocyanatomethyl)benzene (“Takenate 500” manufactured by Mitsui Chemicals, Inc.) was added, and the mixture was reacted at 120° C. for 6 hours to give an isocyanate group content of 0.1% by mass or less. I confirmed that. Next, 68 parts by mass of “Aronix M-306” was added, and the mixture was reacted at 110° C. for 3 hours. Glycidyl methacrylate (140 parts by mass) and triphenylphosphine (1.7 parts by mass) were added and reacted at 110° C. for 5 hours. Further, 93 parts by mass of succinic anhydride and 80 parts by mass of dimethylacetamide were added and reacted at 110° C. for 5 hours to obtain a target acid group-containing (meth)acrylate resin (23). The acid value of the solid content of the acid group-containing (meth)acrylate resin (23) was 94 mgKOH/g, and the weight average molecular weight was 2,450.
(比較例1:酸基含有アクリレート樹脂(C1)の製造)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート101質量部を入れ、オルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」、エポキシ当量:214)428質量部を溶解し、酸化防止剤としてジブチルヒドロキシトルエン4質量部、熱重合禁止剤としてメトキノン0.4質量部加えた後、アクリル酸144質量部、トリフェニルホスフィン1.6質量部を添加し、空気を吹き込みながら120℃で10時間エステル化反応を行なった。その後、ジエチレングリコールモノメチルエーテルアセテート311質量部、テトラヒドロ無水フタル酸160質量部を加え110℃で2.5時間反応し、目的の酸基含有アクリレート樹脂(C1)を得た。この酸基含有アクリレート樹脂(C1)の固形分酸価は85mgKOH/gであった。
(Comparative Example 1: Production of acid group-containing acrylate resin (C1))
A flask equipped with a thermometer, a stirrer, and a reflux condenser was charged with 101 parts by mass of diethylene glycol monomethyl ether acetate, and orthocresol novolac type epoxy resin (“EPICLON N-680” manufactured by DIC Corporation, epoxy equivalent: 214) 428 After dissolving 4 parts by weight of dibutylhydroxytoluene as an antioxidant and 0.4 parts by weight of methquinone as a thermal polymerization inhibitor, 144 parts by weight of acrylic acid and 1.6 parts by weight of triphenylphosphine were added, The esterification reaction was carried out at 120° C. for 10 hours while blowing air. Then, 311 parts by mass of diethylene glycol monomethyl ether acetate and 160 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110° C. for 2.5 hours to obtain a target acid group-containing acrylate resin (C1). The acid value of the solid content of the acid group-containing acrylate resin (C1) was 85 mgKOH/g.
(実施例24:硬化性樹脂組成物(1)の調製)
 実施例1で得た酸基含有(メタ)アクリレート樹脂(1)、硬化剤としてオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」)と、ジペンタエリスリトールヘキサアクリレートと、ジエチレングリコールモノエチルエーテルアセテートと、光重合開始剤(IGM社製「Omnirad 907」)と、2-エチル-4-メチルイミダゾールと、フタロシアニングリーンとを表1に示す質量部で配合し、ロールミルにより混錬して硬化性樹脂組成物(1)を得た。
(Example 24: Preparation of curable resin composition (1))
The acid group-containing (meth)acrylate resin (1) obtained in Example 1, an orthocresol novolac type epoxy resin (“EPICLON N-680” manufactured by DIC Corporation) as a curing agent, dipentaerythritol hexaacrylate, and diethylene glycol mono Ethyl ether acetate, a photopolymerization initiator (“OMNIRAD 907” manufactured by IGM Co., Ltd.), 2-ethyl-4-methylimidazole, and phthalocyanine green were mixed in a mass part shown in Table 1 and kneaded by a roll mill. Curable resin composition (1) was obtained.
(実施例25~46:硬化性樹脂組成物(2)~(23)の調製)
 実施例24で用いた酸基含有(メタ)アクリレート樹脂(1)の代わりに、実施例2~23で得た酸基含有(メタ)アクリレート樹脂(2)~(23)をそれぞれ用いた以外は、実施例24と同様にして硬化性樹脂組成物(2)~(23)を得た。
(Examples 25 to 46: Preparation of curable resin compositions (2) to (23))
Instead of the acid group-containing (meth)acrylate resin (1) used in Example 24, the acid group-containing (meth)acrylate resins (2) to (23) obtained in Examples 2 to 23 were used, respectively. Curable resin compositions (2) to (23) were obtained in the same manner as in Example 24.
(比較例2:硬化性樹脂組成物(C2)の調製)
 実施例24で用いた酸基含有アクリレート樹脂(1)の代わりに、比較例1で得た酸基含有アクリレート樹脂(C1)を用いた以外は、実施例24と同様にして硬化性樹脂組成物(C2)を得た。
(Comparative Example 2: Preparation of curable resin composition (C2))
Curable resin composition in the same manner as in Example 24 except that the acid group-containing acrylate resin (C1) obtained in Comparative Example 1 was used instead of the acid group-containing acrylate resin (1) used in Example 24. (C2) was obtained.
 上記の実施例及び比較例で得られた硬化性樹脂組成物(1)~(23)、及び(C2)を用いて、下記の評価を行った。 The following evaluations were carried out using the curable resin compositions (1) to (23) and (C2) obtained in the above Examples and Comparative Examples.
[光感度の評価方法]
 各実施例及び比較例で得られた硬化性樹脂組成物を、アプリケーターを用いてガラス基材上に膜厚50μmとなるように塗布した後、80℃でそれぞれ30分間乾燥させた。次いで、コダック社製のステップタブレットNo.2を介し、メタルハライドランプを用いて1000mJ/cmの紫外線を照射した。これを1質量%の炭酸ナトリウム水溶液で180秒現像し、残存した段数で評価した。なお、残存段数が多いほど光感度が高い。
[Evaluation method of light sensitivity]
The curable resin compositions obtained in Examples and Comparative Examples were applied on a glass substrate with an applicator so as to have a film thickness of 50 μm, and then dried at 80° C. for 30 minutes each. Then, a step tablet No. manufactured by Kodak Co. Ultraviolet rays of 1000 mJ/cm 2 were radiated through the No. 2 using a metal halide lamp. This was developed with a 1 mass% sodium carbonate aqueous solution for 180 seconds, and the number of remaining steps was evaluated. The higher the number of remaining steps, the higher the photosensitivity.
[アルカリ現像性の評価方法]
 各実施例及び比較例で得られた硬化性樹脂組成物を、アプリケーターを用いてガラス基材上に膜厚50μmとなるように塗布した後、80℃でそれぞれ30分間、40分間、50分間、60分間乾燥させ、乾燥時間が異なるサンプルを作成した。これらを1%炭酸ナトリウム水溶液で30℃180秒間現像し、基板上に残渣が残らなかったサンプルの80℃での乾燥時間を乾燥管理幅として評価した。なお、乾燥管理幅が長いほどアルカリ現像性が優れていることを示す。
[Evaluation method of alkali developability]
The curable resin composition obtained in each Example and Comparative Example was applied on a glass substrate using an applicator so as to have a film thickness of 50 μm, and then at 80° C. for 30 minutes, 40 minutes, and 50 minutes, respectively. The sample was dried for 60 minutes to prepare samples having different drying times. These were developed with a 1% aqueous sodium carbonate solution at 30° C. for 180 seconds, and the drying time at 80° C. of the sample in which no residue remained on the substrate was evaluated as the drying control width. It should be noted that the longer the dry control width, the better the alkali developability.
 実施例24~46で作製した硬化性樹脂組成物(1)~(23)、及び比較例2で作製した硬化性樹脂組成物(C2)の組成及び評価結果を表1及び表2に示す。 Tables 1 and 2 show the compositions and evaluation results of the curable resin compositions (1) to (23) produced in Examples 24 to 46 and the curable resin composition (C2) produced in Comparative Example 2.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(実施例47:硬化性樹脂組成物(24)の調製)
 実施例1で得た酸基含有(メタ)アクリレート樹脂(1)、硬化剤としてオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」)、光重合開始剤として2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(IGM社製「Omnirad-907」)、有機溶剤としてジエチレングリコールモノメチルエーテルアセテートを表1に示す質量部で配合して、硬化性樹脂組成物(24)を得た。
(Example 47: Preparation of curable resin composition (24))
The acid group-containing (meth)acrylate resin (1) obtained in Example 1, an orthocresol novolac type epoxy resin (“EPICLON N-680” manufactured by DIC Corporation) as a curing agent, and 2-methyl-1 as a photopolymerization initiator. -(4-Methylthiophenyl)-2-morpholinopropan-1-one (“OMNIRAD-907” manufactured by IGM) and diethylene glycol monomethyl ether acetate as an organic solvent were mixed in a mass ratio shown in Table 1 to prepare a curable resin. A composition (24) was obtained.
(実施例48~69:硬化性樹脂組成物(25)~(46)の調製)
 実施例47で用いた酸基含有(メタ)アクリレート樹脂(1)の代わりに、実施例2~23で得た酸基含有(メタ)アクリレート樹脂(2)~(23)をそれぞれ用いた以外は、実施例47と同様にして硬化性樹脂組成物(25)~(46)を得た。
(Examples 48 to 69: Preparation of curable resin compositions (25) to (46))
The acid group-containing (meth)acrylate resins (2) to (23) obtained in Examples 2 to 23 were used instead of the acid group-containing (meth)acrylate resin (1) used in Example 47, respectively. Curable resin compositions (25) to (46) were obtained in the same manner as in Example 47.
(比較例3:硬化性樹脂組成物(C3)の調製)
 実施例47で用いた酸基含有(メタ)アクリレート樹脂(1)の代わりに、比較例1で得た酸基含有(メタ)アクリレート樹脂(C1)を用いた以外は、実施例47と同様にして硬化性樹脂組成物(C3)を得た。
(Comparative Example 3: Preparation of curable resin composition (C3))
The same procedure as in Example 47 was repeated except that the acid group-containing (meth)acrylate resin (C1) obtained in Comparative Example 1 was used instead of the acid group-containing (meth)acrylate resin (1) used in Example 47. Thus, a curable resin composition (C3) was obtained.
 上記の実施例及び比較例で得られた硬化性樹脂組成物(24)~(46)、及び(C3)を用いて、下記の評価を行った。 The following evaluations were carried out using the curable resin compositions (24) to (46) and (C3) obtained in the above Examples and Comparative Examples.
[耐熱性の評価方法]
<試験片の作成>
 銅箔(古河産業株式会社製、電解銅箔「F2-WS」18μm)上に実施例及び比較例で得られた硬化性樹脂組成物を50μmのアプリケーターで塗布し、80℃で30分間乾燥させた。メタルハライドランプを用いて1000mJ/cmの紫外線を照射した後、160℃で1時間加熱した。銅箔から硬化物を剥離し、試験片(硬化物)を得た。
[Heat resistance evaluation method]
<Creation of test pieces>
The curable resin compositions obtained in Examples and Comparative Examples were applied on a copper foil (manufactured by Furukawa Sangyo Co., Ltd., electrolytic copper foil “F2-WS” 18 μm) with an applicator of 50 μm and dried at 80° C. for 30 minutes. It was After irradiating with 1000 mJ/cm< 2 > ultraviolet rays using a metal halide lamp, it heated at 160 degreeC for 1 hour. The cured product was peeled off from the copper foil to obtain a test piece (cured product).
 前記試験片を6mm×40mmの大きさに切り出し、粘弾性測定装置(DMA:レオメトリック社製固体粘弾性測定装置「RSAII」、引張り法:周波数1Hz、昇温速度3℃/分)を用いて、弾性率変化が最大となる(tanδ変化率が最も大きい)温度をガラス転移温度(Tg)として評価した。 The test piece was cut into a size of 6 mm×40 mm, and a viscoelasticity measuring device (DMA: solid viscoelasticity measuring device “RSAII” manufactured by Rheometric Co., tension method: frequency 1 Hz, temperature rising rate 3° C./min) was used The glass transition temperature (Tg) was evaluated as the temperature at which the change in elastic modulus was maximum (the change rate of tan δ was the largest).
 実施例47~69で作製した硬化性樹脂組成物(24)~(46)、及び比較例3で作製した硬化性樹脂組成物(C3)の組成及び評価結果を表3及び表4に示す。 Tables 3 and 4 show the compositions and evaluation results of the curable resin compositions (24) to (46) produced in Examples 47 to 69 and the curable resin composition (C3) produced in Comparative Example 3.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 なお、表1~4中の「酸基含有(メタ)アクリレート樹脂」の質量部は、溶液値である。 The parts by mass of the “acid group-containing (meth)acrylate resin” in Tables 1 to 4 are solution values.
 表1~4中の「硬化剤」は、オルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」、エポキシ当量:214)を示す。 “Curing agent” in Tables 1 to 4 indicates an ortho-cresol novolac type epoxy resin (“EPICLON N-680” manufactured by DIC Corporation, epoxy equivalent: 214).
 表1~4中の「有機溶剤」は、ジエチレングリコールモノメチルエーテルアセテートを示す。 “Organic solvent” in Tables 1 to 4 indicates diethylene glycol monomethyl ether acetate.
 表1~4中の「光重合開始剤」は、IGM社製「Omnirad-907」を示す。 "Photoinitiator" in Tables 1 to 4 indicates "Omnirad-907" manufactured by IGM.
 表1~4に示した実施例22~63は、本発明の酸基含有(メタ)アクリレート樹脂を用いた硬化性樹脂組成物の例である。この硬化性樹脂組成物は、優れた光感度及びアルカリ現像性を有しており、また硬化物において優れた耐熱性を有することが確認できた。 Examples 22 to 63 shown in Tables 1 to 4 are examples of curable resin compositions using the acid group-containing (meth)acrylate resin of the present invention. It was confirmed that this curable resin composition had excellent photosensitivity and alkali developability, and that the cured product had excellent heat resistance.
 一方、比較例2及び3は、本発明の酸基含有(メタ)アクリレート樹脂を用いない硬化性樹脂組成物の例である。この硬化性樹脂組成物は、光感度が著しく不十分であり、また、硬化物における耐熱性に関しても著しく不十分であることが確認できた。 On the other hand, Comparative Examples 2 and 3 are examples of curable resin compositions that do not use the acid group-containing (meth)acrylate resin of the present invention. It was confirmed that this curable resin composition had remarkably insufficient photosensitivity and remarkably insufficient heat resistance in the cured product.

Claims (13)

  1.  酸基及び/または酸無水物基を有するアミドイミド樹脂(A)と、水酸基含有(メタ)アクリレート化合物(B)と、エポキシ基含有(メタ)アクリレート化合物(C)と、ポリカルボン酸無水物(D)とを必須の反応原料とする酸基含有(メタ)アクリレート樹脂であって、
    前記アミドイミド樹脂(A)が、ポリイソシアネート化合物(a1)及びポリカルボン酸無水物(a2)の反応物(A-1)、または、ポリイソシアネート化合物(a1)、ポリカルボン酸無水物(a2)及び水酸基含有(メタ)アクリレート化合物(a3)の反応物(A-2)であり、
    前記水酸基含有(メタ)アクリレート化合物(B)または前記水酸基含有(メタ)アクリレート化合物(a3)のいずれか一方または両方が、水酸基を2つ有する(メタ)アクリレート化合物、及び/または水酸基を3つ有する(メタ)アクリレート化合物を含有するものであることを特徴とする酸基含有(メタ)アクリレート樹脂。
    Amidoimide resin (A) having an acid group and/or an acid anhydride group, a hydroxyl group-containing (meth)acrylate compound (B), an epoxy group-containing (meth)acrylate compound (C), and a polycarboxylic acid anhydride (D). ) And an acid group-containing (meth)acrylate resin, which are essential reaction raw materials,
    The amide-imide resin (A) is a reaction product (A-1) of a polyisocyanate compound (a1) and a polycarboxylic acid anhydride (a2), or a polyisocyanate compound (a1), a polycarboxylic acid anhydride (a2) and A reaction product (A-2) of a hydroxyl group-containing (meth)acrylate compound (a3),
    Either or both of the hydroxyl group-containing (meth)acrylate compound (B) and the hydroxyl group-containing (meth)acrylate compound (a3) have (meth)acrylate compound having two hydroxyl groups, and/or have three hydroxyl groups. An acid group-containing (meth)acrylate resin containing a (meth)acrylate compound.
  2.  前記ポリイソシアネート化合物(a1)が、脂肪族ジイソシアネート、または脂環式ジイソシアネートである請求項1記載の酸基含有(メタ)アクリレート樹脂。 The acid group-containing (meth)acrylate resin according to claim 1, wherein the polyisocyanate compound (a1) is an aliphatic diisocyanate or an alicyclic diisocyanate.
  3.  前記水酸基を2つ有する(メタ)アクリレート化合物が、ペンタエリスリトールジ(メタ)アクリレート、及び/またはジペンタエリスリトールテトラ(メタ)アクリレート化合物を含むものである請求項1記載の酸基含有(メタ)アクリレート樹脂。 The acid group-containing (meth)acrylate resin according to claim 1, wherein the (meth)acrylate compound having two hydroxyl groups contains a pentaerythritol di(meth)acrylate and/or a dipentaerythritol tetra(meth)acrylate compound.
  4.  前記水酸基を3つ有する(メタ)アクリレート化合物が、ペンタエリスリトールモノ(メタ)アクリレート、及び/またはジペンタエリスリトールトリ(メタ)アクリレートを含むものである請求項1記載の酸基含有(メタ)アクリレート樹脂。 The acid group-containing (meth)acrylate resin according to claim 1, wherein the (meth)acrylate compound having three hydroxyl groups contains pentaerythritol mono(meth)acrylate and/or dipentaerythritol tri(meth)acrylate.
  5.  前記反応物(A-2)が、前記ポリカルボン酸無水物(a2)及び前記水酸基含有(メタ)アクリレート化合物(a3)の中間反応生成物と、前記ポリイソシアネート化合物(a1)との反応物であり、
    前記水酸基含有(メタ)アクリレート化合物(a3)が有する水酸基1モルに対する前記ポリカルボン酸無水物(a2)のモル数が、2~8の範囲である請求項1記載の酸基含有(メタ)アクリレート樹脂。
    The reaction product (A-2) is a reaction product of the intermediate reaction product of the polycarboxylic acid anhydride (a2) and the hydroxyl group-containing (meth)acrylate compound (a3) with the polyisocyanate compound (a1). Yes,
    The acid group-containing (meth)acrylate according to claim 1, wherein the number of moles of the polycarboxylic acid anhydride (a2) per mole of the hydroxyl group of the hydroxyl group-containing (meth)acrylate compound (a3) is in the range of 2 to 8. resin.
  6.  請求項1~5のいずれか1項記載の酸基含有(メタ)アクリレート樹脂と、光重合開始剤とを含有することを特徴とする硬化性樹脂組成物。 A curable resin composition comprising the acid group-containing (meth)acrylate resin according to any one of claims 1 to 5 and a photopolymerization initiator.
  7.  さらに、有機溶剤と、硬化剤とを含有するものである請求項6記載の硬化性樹脂組成物。 The curable resin composition according to claim 6, further comprising an organic solvent and a curing agent.
  8.  さらに、請求項1~5のいずれか1項記載の酸基含有(メタ)アクリレート樹脂以外の酸基及び重合性不飽和結合を有する樹脂(E)を含有するものである請求項6記載の硬化性樹脂組成物。 7. The curing according to claim 6, further comprising a resin (E) having an acid group and a polymerizable unsaturated bond other than the acid group-containing (meth)acrylate resin according to any one of claims 1 to 5. Resin composition.
  9.  請求項6~8のいずれか1項記載の硬化性樹脂組成物の硬化反応物であることを特徴とする硬化物。 A cured product, which is a cured reaction product of the curable resin composition according to any one of claims 6 to 8.
  10.  請求項6~8のいずれか1項記載の硬化性樹脂組成物からなることを特徴とする絶縁材料。 An insulating material comprising the curable resin composition according to any one of claims 6 to 8.
  11.  請求項6~8のいずれか1項記載の硬化性樹脂組成物からなることを特徴とするソルダーレジスト用樹脂材料。 A resin material for solder resist, comprising the curable resin composition according to any one of claims 6 to 8.
  12.  請求項11記載のソルダーレジスト用樹脂材料からなることを特徴とするレジスト部材。 A resist member comprising the resin material for solder resist according to claim 11.
  13.  酸基及び/または酸無水物基を有するアミドイミド樹脂(A)と、水酸基含有(メタ)アクリレート化合物(B)と、エポキシ基含有(メタ)アクリレート化合物(C)と、ポリカルボン酸無水物(D)とを反応させて得られる酸基含有(メタ)アクリレート樹脂の製造方法であって、
    前記アミドイミド樹脂(A)が、ポリイソシアネート化合物(a1)及びポリカルボン酸無水物(a2)を反応させて得られる反応物(A-1)、または、ポリイソシアネート化合物(a1)、ポリカルボン酸無水物(a2)及び水酸基含有(メタ)アクリレート化合物(a3)を反応させて得られる反応物(A-2)であり、
    前記水酸基含有(メタ)アクリレート化合物(B)または前記水酸基含有(メタ)アクリレート化合物(a3)のいずれか一方または両方が、水酸基を2つ有する(メタ)アクリレート化合物、及び/または水酸基を3つ有する(メタ)アクリレート化合物を含有するものであることを特徴とする酸基含有(メタ)アクリレート樹脂の製造方法。
    Amidoimide resin (A) having an acid group and/or an acid anhydride group, a hydroxyl group-containing (meth)acrylate compound (B), an epoxy group-containing (meth)acrylate compound (C), and a polycarboxylic acid anhydride (D). ) And a method for producing an acid group-containing (meth)acrylate resin obtained by reacting
    The reaction product (A-1) obtained by reacting the amide-imide resin (A) with the polyisocyanate compound (a1) and the polycarboxylic acid anhydride (a2), or the polyisocyanate compound (a1) and the polycarboxylic acid anhydride. A reaction product (A-2) obtained by reacting the compound (a2) with a hydroxyl group-containing (meth)acrylate compound (a3),
    Either or both of the hydroxyl group-containing (meth)acrylate compound (B) and the hydroxyl group-containing (meth)acrylate compound (a3) have (meth)acrylate compound having two hydroxyl groups, and/or have three hydroxyl groups. A method for producing an acid group-containing (meth)acrylate resin, which comprises a (meth)acrylate compound.
PCT/JP2019/047584 2018-12-19 2019-12-05 Acid-group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member WO2020129667A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020537671A JP6780809B1 (en) 2018-12-19 2019-12-05 Acid group-containing (meth) acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist and resist member
KR1020217014292A KR102500020B1 (en) 2018-12-19 2019-12-05 Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist and resist member
CN201980084081.9A CN113195574B (en) 2018-12-19 2019-12-05 Acid group-containing (meth) acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-237342 2018-12-19
JP2018237342 2018-12-19

Publications (1)

Publication Number Publication Date
WO2020129667A1 true WO2020129667A1 (en) 2020-06-25

Family

ID=71100851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047584 WO2020129667A1 (en) 2018-12-19 2019-12-05 Acid-group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member

Country Status (5)

Country Link
JP (1) JP6780809B1 (en)
KR (1) KR102500020B1 (en)
CN (1) CN113195574B (en)
TW (1) TWI797403B (en)
WO (1) WO2020129667A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7183761B2 (en) * 2018-12-19 2022-12-06 Dic株式会社 Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344889A (en) * 1999-03-30 2000-12-12 Dainippon Ink & Chem Inc Production of imide (amide) resin, and energy-ray-curable resin composition prepared therefrom
JP2015155500A (en) * 2014-02-20 2015-08-27 Dic株式会社 Curable amide-imide resin and method for producing amide-imide resin
WO2018230144A1 (en) * 2017-06-14 2018-12-20 Dic株式会社 Acid group-containing (meth)acrylate resin and resin material for solder resist
WO2018230428A1 (en) * 2017-06-14 2018-12-20 Dic株式会社 Acid group-containing (meth)acrylate resin and resin material for solder resists

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243869A (en) 1985-04-19 1986-10-30 Taiyo Ink Seizo Kk Resist ink composition
JP4565293B2 (en) * 1999-03-30 2010-10-20 Dic株式会社 Method for producing curable imide resin and composition thereof
JP2001323036A (en) * 2000-05-16 2001-11-20 Nippon Kayaku Co Ltd Resin composition, solder resist resin composition and their cured product
JP6877202B2 (en) * 2016-12-28 2021-05-26 太陽インキ製造株式会社 Negative photocurable resin composition, dry film, cured product and printed wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344889A (en) * 1999-03-30 2000-12-12 Dainippon Ink & Chem Inc Production of imide (amide) resin, and energy-ray-curable resin composition prepared therefrom
JP2015155500A (en) * 2014-02-20 2015-08-27 Dic株式会社 Curable amide-imide resin and method for producing amide-imide resin
WO2018230144A1 (en) * 2017-06-14 2018-12-20 Dic株式会社 Acid group-containing (meth)acrylate resin and resin material for solder resist
WO2018230428A1 (en) * 2017-06-14 2018-12-20 Dic株式会社 Acid group-containing (meth)acrylate resin and resin material for solder resists

Also Published As

Publication number Publication date
KR102500020B1 (en) 2023-02-16
KR20210076076A (en) 2021-06-23
CN113195574B (en) 2023-10-20
JP6780809B1 (en) 2020-11-04
JPWO2020129667A1 (en) 2021-02-15
TW202031703A (en) 2020-09-01
TWI797403B (en) 2023-04-01
CN113195574A (en) 2021-07-30

Similar Documents

Publication Publication Date Title
JP7172555B2 (en) Acid group-containing (meth)acrylate resin composition, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP6780809B1 (en) Acid group-containing (meth) acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist and resist member
JP6797354B2 (en) Acid group-containing (meth) acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist and resist member
JP7310253B2 (en) Amideimide resin composition, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7188053B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP6813135B1 (en) Acid group-containing (meth) acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist and resist member
JP7183761B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7192521B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7196587B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7228093B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7151411B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7192480B2 (en) Curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7264004B2 (en) Acid group-containing (meth)acrylate resin composition, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7275898B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP6838692B1 (en) Acid group-containing (meth) acrylate resin, acid group-containing (meth) acrylate resin composition, curable resin composition, cured product, insulating material, solder resist resin material and resist member
TWI811384B (en) Acid group-containing (meth)acrylate resin composition, curable resin composition, cured product, and resin material for solder resist
JP7215105B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
WO2021220922A1 (en) Acid group-containing (meth)acrylate resin, curable resin composition, insulating material, resin material for solder resist, and resist member
WO2021065318A1 (en) Acid group-containing (meth)acrylate resin, acid group-containing (meth)acrylate resin composition, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP2022006901A (en) Acid group-containing meth(acrylate) resin, curable resin composition, cured product, insulation material, resin material for solder resist and resist member
JP2022052982A (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulation material and resist member

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020537671

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897622

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217014292

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897622

Country of ref document: EP

Kind code of ref document: A1