WO2018230357A1 - 耐震補強構造および耐震補強工法 - Google Patents

耐震補強構造および耐震補強工法 Download PDF

Info

Publication number
WO2018230357A1
WO2018230357A1 PCT/JP2018/021116 JP2018021116W WO2018230357A1 WO 2018230357 A1 WO2018230357 A1 WO 2018230357A1 JP 2018021116 W JP2018021116 W JP 2018021116W WO 2018230357 A1 WO2018230357 A1 WO 2018230357A1
Authority
WO
WIPO (PCT)
Prior art keywords
building
wall
reinforcing member
vertical
reinforcement structure
Prior art date
Application number
PCT/JP2018/021116
Other languages
English (en)
French (fr)
Inventor
藤本 隆
Original Assignee
藤本 隆
小野 展康
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017117498A external-priority patent/JP6225289B1/ja
Priority claimed from JP2018020875A external-priority patent/JP6419367B1/ja
Application filed by 藤本 隆, 小野 展康 filed Critical 藤本 隆
Publication of WO2018230357A1 publication Critical patent/WO2018230357A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging

Definitions

  • the present invention relates to a seismic reinforcing structure and a seismic reinforcing method for increasing the seismic strength of a building having a ramen structure.
  • the structural form of a concrete building such as a condominium can be broadly divided into a wall type structure and a ramen structure.
  • the wall structure is a structure that supports horizontal loads such as vertical load and seismic force by a load-bearing wall without using columns or beams, and is generally excellent in seismic strength and is often applied to low-rise houses.
  • the ramen structure is a structure in which columns and beams are rigidly connected and integrated, and is a medium-rise building with steel structure (S structure), reinforced concrete structure (RC structure), and steel frame reinforced concrete structure (SRC structure). Many are adopted.
  • the outer frame and the existing building are joined, for example, by integrating anchors that are driven into predetermined locations of the two and arranged in an opposing manner with cast-in-place concrete.
  • the construction method using a steel brace is known as another seismic reinforcement means.
  • a steel brace is arranged and joined to an opening of an existing building.
  • the joining of the steel brace and the opening of the existing building is performed, for example, by integrating anchors that are driven into predetermined positions of the both and arranged in an opposing manner with cast-in-place concrete.
  • the present invention has been devised in view of the above problems, and has a ramen structure that can be implemented at a relatively low cost and in a short period of time and does not hinder the living environment during and after construction.
  • the purpose is to provide a seismic reinforcement structure and a seismic reinforcement method for buildings.
  • the present invention comprises the following aspects.
  • the “outer wall of a building” includes, in addition to the outer wall of the building in a general sense, protruding end surfaces such as a veranda, a porch, and a hallway protruding from the outer wall.
  • the horizontal reinforcing members are arranged orthogonally to the outer surface side of the vertical reinforcing member at each corner portion of the outer wall of the building, and the ground portion of the building is stressed by the vertical reinforcing member and the horizontal reinforcing member. Seismic reinforcement structure that is structured.
  • a seismic reinforcement method for a substantially box-shaped building having a rigid frame structure wherein a vertical reinforcing member having an L-shaped cross section made of a rigid material is bonded to four corners of the outer wall of the building.
  • a strip-shaped horizontal reinforcing member made of a sheet material having a predetermined tensile strength at a height position corresponding to at least a beam of the outer wall of the building, and surrounding the outer wall and forming vertical reinforcing members at each corner of the outer wall
  • a second step of adhering so as to be orthogonally arranged on the outer surface side, and the first step and the second step are a temporary scaffold installed around the outer wall of the building and the outer wall.
  • a seismic reinforcement method that uses the gap between the tip of the slab.
  • a seismic reinforcement structure for a building having a ramen structure wherein a stress skin layer made of a coating film having a predetermined toughness is formed on substantially the entire outer wall of the building, and the building is formed by the stress skin layer.
  • a vertical reinforcing member having a L-shaped cross section made of a rigid material is applied to all the vertical projecting corners of the outer wall over the stress skin layer and joined to the beam on the outer wall.
  • a band-like horizontal reinforcing member made of a sheet material having a predetermined tensile strength is joined at a corresponding height position so as to surround the outer wall in an annular shape from above the stress skin layer and the vertical reinforcing member.
  • the seismic reinforcement structure of any one of 4) to 6).
  • the outer wall has at least one vertical corner, and a vertical reinforcing member having an L-shaped cross section made of a rigid material is provided at all the vertical corners of the outer wall.
  • the vertical reinforcement member and the horizontal reinforcement member are bonded to the required part of the outer wall of the substantially box-shaped building having a rigid frame structure, so that the building is stressed (semi-monocoque). Since it is structured, the horizontal strength is increased and the seismic strength is improved.
  • the seismic reinforcement structure of 1) above especially when applied to an existing building where the bond strength between the ground frame and the pile is not necessarily sufficient, the horizontal frame due to a horizontal load during a large-scale earthquake.
  • a fail-safe function that avoids damage to the ground part, which is the living space, can be expected from the union of the stake and the pile.
  • the construction is completed simply by adhering the vertical reinforcement member and the horizontal reinforcement member to the outer wall of the building.
  • the vertical reinforcement member is formed by connecting the required number of unit bodies in the vertical series, so that it can be easily carried into the site and assembled on site.
  • the vertical reinforcing member and the horizontal reinforcing member are bonded to predetermined locations on the outer wall of the substantially box-shaped building having a rigid frame structure in both the first step and the second step. Therefore, it is possible to construct easily and quickly, there is no work that adversely affects the living environment such as anchoring to the building, etc., and the use of heavy machinery etc. is unnecessary and the installer is not limited Furthermore, the openings such as windows are not blocked by both reinforcing members after construction. Therefore, according to the seismic reinforcement method of 3) above, for example, in order to carry out large-scale renovation / repair work of a building, a temporary scaffolding has been installed around the outer wall of the building. Compared to the conventional methods described in Patent Documents 1 and 2, the construction can be performed at a low cost and in a short period of time, and there is no risk of disturbing the living environment during and after construction. .
  • the entire ground part of the building is made into a stress skin (semi-monocoque) structure by the stress skin layer formed on almost the entire outer wall of the building having a ramen structure.
  • the horizontal strength is increased by this, and the seismic strength is greatly improved.
  • the seismic reinforcement structure of 4) above by applying this to buildings where the bond strength between the ground frame and piles is not necessarily sufficient, the horizontal frame due to the horizontal load during a large earthquake The bond between the stakes and the piles can be removed, so that a fail-safe function can be expected to avoid damaging the ground part, which is the living space.
  • the construction is completed simply by performing a coating operation for forming a coating film having a predetermined toughness on almost the entire outer wall of the building. It is possible to perform construction prior to large-scale renovation / repair work in a state where temporary scaffolding is set up around the outer wall of the building in order to carry out scale renovation / repair work. Compared with the conventional construction method, the construction can be performed at a low cost and in a short period of time, and there is no possibility of disturbing the living environment during construction and after construction.
  • the stress skin layer is made of a coating film mainly composed of polyurea resin
  • a polyurea resin coating film has been formed by spraying on the surface of a concrete structure as a means for preventing peeling / deterioration of a concrete structure such as a bridge pier in the field of civil engineering.
  • the seismic reinforcement structure of it is considered that the entire ground part of the building can be made into a stress skin structure by applying it to almost the entire surface of the building's outer wall (and the rooftop), and the seismic strength can be significantly improved.
  • the coating film mainly composed of polyurea resin is excellent in rust prevention, corrosion prevention, waterproofness, soundproofing, heat insulation, etc. Can also contribute.
  • the seismic reinforcement structure of 7 the horizontal strength of the ground part of the building is obtained by the vertical reinforcement member and the horizontal reinforcement member joined to the required part of the outer wall in addition to the stress skin layer that wraps the entire outer wall of the building. Is further improved, and the seismic strength is further increased. Moreover, according to the seismic reinforcement structure of 7), the large-scale refurbishment of the vertical reinforcement member and the horizontal reinforcement member to the outer wall of the building, for example, with a temporary scaffolding standing around the outer wall of the building ⁇ Because construction can be carried out prior to repair work, construction costs can be reduced, the construction period can be shortened, and there is no risk of disturbing the living environment during and after construction.
  • the seismic reinforcement structure of 8 even when applied to a building in which a vertical entry corner is formed on the outer wall, the vertical reinforcement member is put on and joined to the vertical entry corner.
  • the same effect as the seismic reinforcement structure of 7) can be obtained.
  • FIG. 3 is a vertical sectional view taken along line III-III in FIG. 2. It is a perspective view which shows the external appearance of the building provided with the earthquake-proof reinforcement structure which concerns on 2nd Embodiment of this invention. It is a perspective view which shows the external appearance of the building provided with the earthquake-proof reinforcement structure which concerns on 3rd Embodiment of this invention. It is a perspective view which shows the external appearance of the building provided with the earthquake-proof reinforcement structure which concerns on 4th Embodiment of this invention.
  • FIG. 8 is a vertical sectional view taken along line VIII-VIII in FIG. 7. It is a vertical sectional view showing a part of a building provided with a seismic reinforcement structure according to a fifth embodiment of the present invention.
  • FIG. 1 shows a first embodiment of the present invention.
  • the seismic reinforcement structure and the seismic reinforcement method of the present invention are applied to an existing apartment (middle-rise apartment house).
  • the whole apartment (1) is substantially box-shaped, and has a ramen structure, that is, a structure in which the above-ground frame is composed of columns and beams (not shown). Yes.
  • the beam is located at the height between the window and the window at the top layer (12), and between the veranda and the window at each layer other than the top layer (12 ) (See FIG. 2).
  • the seismic reinforcement structure for the apartment (1) is made of a rigid material and bonded to the four corners (vertical corners) (11) of the outer wall (10) of the apartment (1).
  • a belt-like horizontal reinforcing member (3) bonded to the outer periphery.
  • the vertical reinforcing member (2) is made of a steel material (21) having an L-shaped cross section in which a rubber or resin adherend layer (22) is formed on the back surface.
  • a steel material (21) a high-tensile steel material is suitably used, but a normal steel material may be used.
  • the vertical reinforcing member (2) can also be formed of a rigid material other than steel, for example, a resin material, a composite material, a carbon fiber material, or the like.
  • the thickness and width of the vertical reinforcing member (2) are set after calculation so as to obtain the required strength.For example, if the normal reinforcing material (21) is mainly used, the thickness is set to It is preferable to be 10 mm or more.
  • the adherend layer (22) is formed, for example, by laminating a rubber sheet or a resin sheet on the back surface of the steel material (21) by adhesion or the like.
  • the thickness of the adherend layer (22) is preferably as small as possible within a range in which the unevenness of the outer wall (10) made of concrete or the like can be absorbed, and is usually about several millimeters.
  • Each vertical reinforcing member (2) is usually formed by connecting a predetermined number of unit bodies (20) in a vertical series as many as required according to the height of the ground part of the apartment (1). .
  • the length of the unit body (20) is set to 3600 mm or less, which is the maximum length of the scaffolding column, considering that the construction is performed with temporary scaffolding around the apartment (1) as will be described later.
  • the connecting means between the unit bodies (20) is not particularly limited.
  • the unit body (20) is joined to the surface side of the steel material (21) at the lower end of the upper unit body (20) by welding or the like.
  • both unit bodies (20) are connected by hooking the hooked portion (24) made of a steel piece bent into an inverted U shape.
  • An epoxy resin adhesive is suitably used for bonding the vertical reinforcing member (2) to the outer wall (20), but other adhesives such as an acrylic resin adhesive can also be used.
  • the material of the horizontal reinforcing member (3) has a high tensile strength and can be wound around a predetermined height position (12) of the outer wall (10) of the apartment (1), it can be bonded.
  • it is preferably a chemical fiber that has high tensile strength, is lightweight and excellent in workability, and that can reduce the risk of fire, such as aramid fiber and vinylon fiber, including flame retardant (including flameproofing).
  • Made sheets are used.
  • the width of the horizontal reinforcing member (3) is usually about 300 to 400 mm, although it depends on the structure of the apartment (1).
  • the horizontal reinforcing member (3) may be of a length required to make at least one round around the outer wall (10) of the apartment (1), but in order to obtain higher strength, the circumference of the outer wall (10) It is also possible to form a multi-layered structure having a length that makes two or more turns.
  • the horizontal reinforcing member (3) may be composed of a single high tensile strength material continuous in a strip shape, or may be a plurality of strip materials connected in series.
  • the ends (31) and (32) of the horizontal reinforcing member (3) are usually joined together by adhesion, but it is preferable to avoid the vertical reinforcing member (2) at the joining location.
  • the air supply port (13) is provided in the outer wall (10) part of the apartment (1) to which the horizontal reinforcing member (3) is bonded, it corresponds to the air supply port (13) in the horizontal reinforcing member (3). It is preferable to cut out a portion to be cut, and to bond one or a plurality of reinforcing pieces (33) made of the same material as the horizontal reinforcing member (3) around the cut-out portion to form a multilayer (see FIG. 2). ). As shown in FIGS. 2 and 3, the horizontal reinforcing member (3) is orthogonal to the outer surface side of the vertical reinforcing member (2) at each corner (11) of the outer wall (10) of the apartment (1). It is arranged.
  • the horizontal reinforcing member (3) also functions to connect and integrate the four vertical reinforcing members (2) by holding each vertical reinforcing member (2) at the corner (11) of the outer wall (10). .
  • the horizontal reinforcing member (3) and the vertical reinforcing member (2) are usually in a bonded state in consideration of the difference in thermal expansion coefficient between the two (3) and (2).
  • the step between the two (10) and (2) is filled to prevent the horizontal reinforcing member (3) from slackening in the length direction. Therefore, it is preferable to provide the filler (14) made of mortar or the like in a wedge shape when viewed from the plane (see FIG. 3).
  • an epoxy resin adhesive is preferably used for bonding the horizontal reinforcing member (3) to the outer wall (10), and the horizontal reinforcing member (3) is bonded to both ends of the horizontal reinforcing member (3). It is preferable to use an epoxy resin-based adhesive for bonding a plurality of materials constituting the material, but other adhesives such as an acrylic resin-based adhesive can also be used.
  • the horizontal reinforcing member (3) may be provided at least at the height position (12) corresponding to the beam on the outer wall (10) of the apartment (1). In addition, for example, it may be bonded to the veranda, the porch, the protruding end surface of the corridor in each layer of the apartment (1), and the outer wall (10) at the corresponding height position in a headband shape.
  • the ground part of the condominium (1) is structured as a stress skin (semi-monocoque) by the vertical reinforcement member (2) and the horizontal reinforcement member (3). Strength is increased and seismic strength is improved.
  • the horizontal load due to a large-scale earthquake causes the ground frame and It is considered that the fail-safe function can be exerted by detaching the unit from the pile and thereby avoiding damage to the ground part, which is the living space.
  • a temporary scaffold (not shown) is installed around the outer wall (10) of the apartment (1) for large-scale renovation and repair work.
  • four vertical reinforcing members (2) are prepared, and these are sequentially arranged on the four corner portions (11) of the outer wall (10) of the apartment (1) using a chain block, a scaffold lift or the like.
  • the adherend layer (22) of each vertical reinforcing member (2) is bonded to the corner portion (11) of the outer wall (10) using an epoxy resin adhesive or the like, and is cured for a predetermined period of time (first Process).
  • the seismic reinforcement structure and the seismic reinforcement method according to the present invention are used for seismic reinforcement of buildings with existing ramen structures, in particular, buildings such as condominiums based on the old seismic standards, which were urgently started before 1981 Therefore, it can be said that it is highly feasible and practical. Moreover, the seismic strengthening structure and the seismic strengthening method according to the present invention can be applied to a new building.
  • FIG. 4 shows a second embodiment of the present invention.
  • the seismic reinforcement structure according to the present invention is applied to an existing apartment (medium-rise apartment house).
  • a stress skin layer (4) made of a coating film having a predetermined toughness is formed on the entire outer wall (10) of the apartment (1). It will be.
  • the stress skin layer (4) is formed of a coating film mainly composed of polyurea resin.
  • the polyurea resin is a kind of compound mainly composed of urea bonds, and is cured by causing a chemical reaction between an isocyanate and an amino group.
  • Polyurea resin mainly composed of urea bond has stronger bonding power and faster curing time than polyurethane resin mainly composed of urethane bond, so it has excellent water resistance, corrosion resistance and chemical resistance, shortening construction period and large area. Is possible. Further, the polyurea resin is characterized by excellent toughness, that is, strength and flexibility even in an environment of ⁇ 50 ° C. to 150 ° C. Furthermore, the polyurea resin is a solvent-free, catalyst-free, plasticizer-free, environmentally friendly and highly safe material. However, as long as the coating film has the same toughness as the polyurea resin coating film, it may be a coating film mainly composed of a resin other than the polyurea resin.
  • the thickness of the stress skin layer (4) made of the coating film is not particularly limited, but is about 2 mm, for example.
  • the stress skin layer (4) is formed on the entire surface of the outer wall (10) and wraps almost the entire ground portion of the apartment (1) from all sides.
  • the outer wall (10) forming the stress skin layer (4) may include ridges, verandas, corridors, pouches and the like. If necessary, the weather resistance of the outer wall (10) of the condominium (1) can be formed by applying UV-resistant paint on the stress skin layer (4) to form a topcoat layer (not shown). Further, the design property may be maintained / improved.
  • the entire ground part of the apartment (1) is structured into a stress skin (semi-monocoque) by the stress skin layer (4) formed so as to wrap the outer wall (10) from all sides.
  • the horizontal strength is increased and the seismic strength is greatly improved.
  • the horizontal load due to a large-scale earthquake causes the ground frame and It is considered that the fail-safe function is demonstrated by the union with the pile.
  • the outer wall (10) of the ground part of the condominium (1) (including walls, verandas, corridors, pouches, etc.) is subjected to a stress outside consisting of a coating mainly composed of polyurea resin.
  • a stress outside consisting of a coating mainly composed of polyurea resin.
  • a method for constructing the seismic reinforcement structure in the apartment (1) will be described.
  • a temporary scaffold (not shown) for large-scale renovation / repair work is erected around the outer wall (10) of the apartment (1).
  • a gap of about 300 to 400 mm is provided between the outer wall (10) and the temporary scaffold.
  • a paint mainly composed of polyurea resin is applied to the outer wall (10) by roller coating or the like and cured for a predetermined period.
  • a stress skin layer (4) comprising a coating film mainly composed of polyurea resin is formed.
  • a top coat layer is formed by applying an ultraviolet resistant paint or the like on the stress skin layer (4).
  • the above process is performed using a gap between the temporary scaffold side and the outer wall (10).
  • the construction of the earthquake-proof reinforcement structure is completed.
  • temporary scaffolding illustrated around the outer wall (10) for large-scale renovation and repair work. It is possible to perform construction prior to large-scale renovation / repair work, with the construction of a stress skin layer (4) on the outer wall (10). Since it is only a process to perform, the construction period can be shortened and the construction cost can be reduced.
  • construction can be carried out with the resident living in the apartment (1), and there is no risk of the living environment being damaged by vibration or noise during construction. Since the openings such as are not obstructed, the living environment is not hindered.
  • FIG. 5 shows a third embodiment of the present invention.
  • This embodiment is substantially the same as the second embodiment shown in FIG. 4 except for the following points. That is, as shown in FIG. 5, in the seismic reinforcement structure of the third embodiment, in addition to the stress skin layer (4) formed on the entire outer wall (10) of the apartment (1), the apartment (1) On the entire surface of the roof (10X), a stress skin layer (4) made of a coating mainly composed of polyurea resin is formed. That is, the entire above-ground part of the apartment (1) is completely wrapped by the stress skin layer (4) from all sides and above. Therefore, according to the seismic reinforcement structure of this embodiment, the entire ground portion of the apartment (1) is more completely structured by the stress outer skin layer (4), and thereby the horizontal strength is improved. The seismic strength is further improved.
  • [Fourth Embodiment] 6 to 8 show a fourth embodiment of the present invention.
  • the seismic reinforcement structure of this embodiment is made of a rigid material and has an outer wall (10) of a condominium (1) in addition to the stress skin layer (4) similar to that of the second embodiment (see FIG. 4).
  • a vertical reinforcing member (2) having an L-shaped cross section, which is covered with and joined to the four corners (vertical protruding corners) (11) from above the stress skin layer (4), and has a predetermined tensile strength
  • the outer wall (10) is formed in an annular shape from above the stress skin layer (4) and the vertical reinforcing member (2) at a height position (12) made of sheet material and corresponding to the beam on the outer wall (10) of the apartment (1).
  • a strip-shaped horizontal reinforcing member (3) joined together.
  • the vertical reinforcing member (2) and the horizontal reinforcing member (3) have substantially the same configuration as that of the first embodiment, detailed description thereof will be omitted.
  • the level difference between both (4) and (2) is filled so that the horizontal reinforcing member (3) does not loosen in the length direction.
  • the filler (14) made of mortar or the like in a wedge shape when seen from the plane (see FIG. 8).
  • the vertical reinforcing member (2) and the horizontal reinforcing member (3) are bonded to the outer wall (10) when the stress outer skin layer (4) is a coating mainly composed of polyurea resin.
  • a resin an epoxy resin adhesive or the like may be used.
  • the seismic reinforcement structure of the fourth embodiment in addition to the stress skin layer (4), the vertical reinforcement member (2) and the horizontal reinforcement member (3) strongly stress the entire ground part of the apartment (1). Since the outer skin (semi-monocoque) is structured, it is considered that the horizontal proof stress is dramatically increased and the seismic strength is further improved.
  • the horizontal load at the time of a large-scale earthquake causes the ground and the pile of the apartment (1) to bind. It is considered that the fail-safe function can be exhibited.
  • the seismic reinforcement structure of the fourth embodiment When constructing the seismic reinforcement structure of the fourth embodiment, with the temporary scaffolding standing around the outer wall (10) of the condominium (1), first the outer wall (10 ) A stress skin layer (4) is formed on the entire surface. Next, in the same manner as in the first embodiment, the vertical reinforcing member (2) and the horizontal reinforcing member (3) are bonded to the required portions of the outer wall (10) of the apartment (1) and cured for a predetermined period. Thereafter, if necessary, the surface layer of the stress outer skin layer (4), the vertical reinforcing member (2) and the horizontal reinforcing member (3) is coated with an ultraviolet resistant paint or the like and cured for a predetermined period of time, thereby forming a top coat layer. Form. Thus, the construction of the earthquake-proof reinforcement structure is completed.
  • FIG. 9 shows a fifth embodiment of the present invention.
  • the seismic reinforcement structure according to the present invention is applied to an apartment (1X) having a ramen structure in which at least one vertical corner (15) is formed on the outer wall (10). Except for the following points, it has substantially the same configuration as the seismic reinforcement structure (FIGS. 6 to 8) of the fourth embodiment, and has substantially the same operational effects as the structure. That is, in the seismic reinforcing structure of this embodiment, the vertical reinforcing members (2X) having a L-shaped cross section made of a rigid material are provided at all the vertical corners (15) of the outer wall (10), and the stress outer skin layer (4). Further, the horizontal reinforcing member (3) is put on and joined from above.
  • the vertical reinforcement member (2X) joined to the vertical entry corner (15) can be substantially the same as the vertical reinforcement member (2) joined to the vertical exit corner (11).
  • Joining of the vertical reinforcing member (2X) to the outer wall (10) is preferably performed using a polyurea resin as an adhesive when the stress skin layer (4) is a coating film mainly composed of a polyurea resin.
  • an epoxy resin adhesive or the like may be used.
  • the step of joining the vertical reinforcing member (2X) is performed after the step of joining the horizontal reinforcing member (3).
  • the vertical reinforcing member (2X) since the vertical reinforcing member (2X) is joined from above the horizontal reinforcing member (3), the vertical reinforcing member (2X) has a function of suppressing the horizontal reinforcing member (3) from floating at the vertical entry corner (15).
  • the vertical reinforcing member (2X) is completely cut off from the ground and is in an edge cut state.
  • the entire ground part of the apartment building (1X) in which the vertical corner (15) is formed on the outer wall (10), the stress skin layer (4), the vertical reinforcing member (2) (2X) and the horizontal reinforcing member (3) make a strong stress outer shell (semi-monocoque) structure, and can greatly improve the seismic strength.
  • the present invention is suitably used as a seismic reinforcement structure and a seismic reinforcement method for buildings such as condominiums, office buildings, schools, hospitals, hotels, etc. having a ramen structure.

Abstract

【課題】比較的廉価で短期間に施行することができ、施工中および施工後に居住環境を阻害するおそれのない、ラーメン構造を有する建物のための耐震補強構造および耐震補強工法を提供する。 【解決手段】耐震補強構造は、剛性材料からなりかつ建物1の外壁10の4つのコーナー部11に接着されて地面から縁切り状態となされた横断面L形の垂直補強部材2と、所定の引張強度を有するシート材からなりかつ建物1の外壁10のうち少なくとも梁に対応する高さ位置12に外壁10を取り巻くように接着された帯状の水平補強部材3とを備えている。水平補強部材3は、建物1の外壁10の各コーナー部11において、垂直補強部材2の外表面側に直交状に配されている。これらの垂直補強部材2および水平補強部材3によって建物1の地上部が応力外皮構造化されている。

Description

耐震補強構造および耐震補強工法
 この発明は、ラーメン構造を有する建物の耐震強度を高めるための耐震補強構造および耐震補強工法に関する。
 例えばマンション等のコンクリート建物の構造形式には、大きく分けて、壁式構造とラーメン構造とがある。
 壁式構造は、柱や梁を使用せずに、耐力壁によって鉛直荷重や地震力のような水平荷重を支える構造であって、一般に耐震強度に優れており、低層住宅に多く適用されている。
 これに対して、ラーメン構造は、柱と梁を剛接合して一体化した構造であって、鉄骨造(S造)、鉄筋コンクリート造(RC造)、鉄骨鉄筋コンクリート造(SRC造)の中高層の建物に多く採用されている。ラーメン構造の建物の場合、柱と梁の接合箇所に地震時の荷重が加わるため、壁式構造の建物に比べて耐震強度に劣ると言われている。特に、1981年以前に着工されたラーメン構造の建物については、同年施行の新耐震基準(日本国建築基準法)を満たしておらず耐震性能に問題のあるものが多いと考えられる。
 ラーメン構造を有する既存建物の耐震補強手段として、PC外付けフレーム工法と呼ばれるものが知られている。この工法は、例えば特許文献1に記載されているように、既存建物の外側に、プレキャスト鉄筋コンクリート(PC)よりなる外フレームを構築して、外フレームを既存建物の柱や梁と接合するものである。外フレームと既存建物との接合は、例えば、両者の所定箇所に打ち込んで対向状に配置したアンカーを、場所打ちコンクリートによって一体化することにより行われる。
 また、その他の耐震補強手段として、鉄骨ブレースを用いる工法が知られている。この工法は、例えば特許文献2に記載されているように、既存建物の開口部に鉄骨ブレースを配置して接合するものである。鉄骨ブレースと既存建物の開口部との接合は、例えば、両者の所定箇所に打ち込んで対向状に配置したアンカーを、場所打ちコンクリートによって一体化することにより行われる。
特開2006-22572号公報 特開平11-71906号公報
 しかしながら、特許文献1,2記載の従来工法の場合、いずれも既存建物への後付け施工であるため、工事が大掛かりなものとなり、工期も半年ないし1年程度の長期間に亘り、工事費用が高価となる。また、これらの従来工法では、既存建物にアンカーを打ち込んで工事を行うため、施工中、振動や騒音によって居住者の生活環境が著しく阻害され、さらには、施工後も、一部の居住箇所では、外付けフレームや鉄骨ブレースによって窓等の開口部が部分的に遮られるという問題があった。
 そのため、特に、分譲マンション等の既存住宅においては、上記の工法による耐震補強対策は十分に進んでおらず、大規模地震の発生による建物損壊のリスクが依然として解消されないままであった。
 この発明は、上記の課題に鑑みて考案されたものであって、比較的廉価でかつ短期間で施行することができ、施工中および施工後に居住環境を阻害するおそれのない、ラーメン構造を有する建物のための耐震補強構造および耐震補強工法を提供することを目的としている。
 この発明は、上記の目的を達成するために、以下の態様からなる。
 なお、以下において、「建物の外壁」には、一般的な意味での建物の外壁の他に、外壁から突出したベランダ、ポーチ、廊下等の突出端面を含むものとする。
1)ラーメン構造を有する略箱形の建物のための耐震補強構造であって、剛性材料からなりかつ前記建物の外壁の4つのコーナー部に接着されて地面から縁切り状態となされた横断面L形の垂直補強部材と、所定の引張強度を有するシート材からなりかつ前記建物の外壁のうち少なくとも梁に対応する高さ位置に外壁を取り巻くように接着された帯状の水平補強部材とを備えており、水平補強部材は、前記建物の外壁の各コーナー部において、垂直補強部材の外表面側に直交状に配されており、これらの垂直補強部材および水平補強部材によって前記建物の地上部が応力外皮構造化されている、耐震補強構造。
2)垂直補強部材が、所定長さの単位体を前記建物の地上部の高さに合わせて必要数だけ上下直列状に連結することにより形成されている、上記1)の耐震補強構造。
3)ラーメン構造を有する略箱形の建物のための耐震補強工法であって、前記建物の外壁の4つのコーナー部に、剛性材料からなる横断面L形の垂直補強部材を接着する第1の工程と、前記建物の外壁のうち少なくとも梁に対応する高さ位置に、所定の引張強度を有するシート材からなる帯状の水平補強部材を、外壁を取り巻くとともに外壁の各コーナー部において垂直補強部材の外表面側に直交状に配されるように接着する第2の工程とを含んでおり、第1の工程および第2の工程は、前記建物の外壁と同外壁の周囲に設置された仮設足場の先端との隙間を利用して行われる、耐震補強工法。
4)ラーメン構造を有する建物のための耐震補強構造であって、前記建物の外壁のほぼ全面に、所定の強靭性を有する塗膜よりなる応力外皮層が形成され、前記応力外皮層によって前記建物の地上部全体が応力外皮構造化されている、耐震補強構造。
5)さらに、前記建物の屋上のほぼ全面に、前記塗膜よりなる応力外皮層が形成されている、上記4)の耐震補強構造。
6)前記応力外皮層が、ポリウレア樹脂を主体とする塗膜よりなる、上記4)または5)の耐震補強構造。
7)さらに、前記外壁の全ての垂直出隅部に、剛性材料よりなる横断面L形の垂直補強部材が、前記応力外皮層の上から被せられて接合されているとともに、前記外壁における梁に対応する高さ位置に、所定の引張強度を有するシート材よりなる帯状の水平補強部材が、前記応力外皮層および前記垂直補強部材の上から前記外壁を環状に取り巻くように接合されている、上記4)~6)のいずれか1つの耐震補強構造。
8)前記外壁が少なくとも1つの垂直入隅部を有しており、前記外壁の全ての垂直入隅部に、剛性材料よりなる横断面L形の垂直補強部材が、前記応力外皮層および前記水平補強部材の上から被せられて接合されている、上記7)の耐震補強構造。
 上記1)の耐震補強構造によれば、ラーメン構造を有する略箱形の建物の外壁の所要箇所に垂直補強部材および水平補強部材が接着されることにより、同建物がいわば応力外皮(セミモノコック)構造化されるので、それによって水平耐力が高められ、耐震強度が向上する。また、上記1)の耐震補強構造の場合、とりわけ、地上部の躯体と杭との結束強度が必ずしも十分とは言えない既存建物に適用すれば、大規模地震時の水平荷重により地上部の躯体と杭との結束が外れ、それによって居住空間である地上部の損壊を免れるフェイルセーフ機能も期待できる。
 また、上記1)の耐震補強構造によれば、垂直補強部材および水平補強部材を建物の外壁に接着するだけで施工が完了するため、例えば、建物の大規模改修・補修工事を行うために建物の外壁の周囲に仮設足場を設置した状態で、大規模改修・補修工事に先行して施工することが可能であり、したがって、特許文献1,2記載の従来工法と比べて、廉価でかつ短期間で施工を行うことができる上、施工中および施工後に居住環境を阻害するおそれもない。
 上記2)の耐震補強構造によれば、垂直補強部材が、所要数の単位体を上下直列状に連結してなるので、現場への搬入や現場での組立作業を容易に行うことができる。
 上記3)の耐震補強工法にあっては、第1の工程および第2の工程共に、ラーメン構造を有する略箱形の建物の外壁の所定箇所に垂直補強部材や水平補強部材を接着するものであるため、簡単かつ迅速に施工することが可能であって、建物へのアンカー打ち等のような居住環境に悪影響を及ぼす作業がなく、また、重機等の使用が不要で施工者も限定されず、さらには、施工後に窓等の開口部が両補強部材によって遮られることがない。
 したがって、上記3)の耐震補強工法によれば、例えば、建物の大規模改修・補修工事を行うために建物の外壁の周囲に仮設足場を設置した状態で、大規模改修・補修工事に先行して施工することが可能であって、特許文献1,2記載の従来工法と比べて、廉価でかつ短期間で施工を行うことができる上、施工中および施工後に居住環境を阻害するおそれもない。
 上記4)の耐震補強構造によれば、ラーメン構造を有する建物の外壁のほぼ全面に形成された応力外皮層によって、同建物の地上部全体が応力外皮(セミモノコック)構造化されるので、それによって水平耐力が高められ、耐震強度が大幅に向上する。しかも、上記4)の耐震補強構造の場合、これを地上部の躯体と杭との結束強度が必ずしも十分とは言えない建物に適用することにより、大規模地震時の水平荷重により地上部の躯体と杭との結束が外れ、それによって、居住空間である地上部の損壊を免れるフェイルセーフ機能が期待できる。
 また、上記4)の耐震補強構造によれば、建物の外壁のほぼ全面に所定の強靭性を有する塗膜を形成するための塗布作業を行うだけで施工が完了するため、例えば、建物の大規模改修・補修工事を行うために建物の外壁の周囲に仮設足場を立設した状態で、大規模改修・補修工事に先行して施工することが可能であり、したがって、特許文献1,2記載の従来工法と比べて、廉価でかつ短期間で施工を行うことができる上、施工中および施工後に居住環境を阻害するおそれがない。
 上記5)の耐震補強構造によれば、建物の外壁に加えて屋上にも応力外皮層が形成されているので、建物の地上部全体がより一層強固に応力外皮(セミモノコック)構造化され、耐震強度がさらに向上する
 上記6)の耐震補強構造によれば、応力外皮層が、ポリウレア樹脂を主体とする塗膜よりなるので、高い強靭性が得られる。従来、ポリウレア樹脂塗膜は、土木の分野において橋脚等のコンクリート構造物の剥離・劣化防止手段として、同構造物の表面に吹付塗布して形成されることはあったが、上記4)または5)の耐震補強構造では、建物の外壁のほぼ全面(さらには屋上)に塗工することで、建物の地上部全体を応力外皮構造化して、耐震強度を著しく向上させうると考えられる。
 また、ポリウレア樹脂を主体とする塗膜は、防錆性、防食性、防水性、防音性、断熱性等にも優れているので、建物の外壁、屋上の耐久性や居住性の向上等にも寄与しうる。
 上記7)の耐震補強構造によれば、建物の外壁全体を包み込んでいる応力外皮層に加えて、外壁の所要箇所に接合された垂直補強部材および水平補強部材により、建物の地上部の水平耐力がさらに向上して、耐震強度がより一層高められる。
 また、上記7)の耐震補強構造によれば、建物の外壁への垂直補強部材および水平補強部材の接合についても、例えば、建物の外壁の周囲に仮設足場を立設した状態で、大規模改修・補修工事に先行して施工することが可能であるから、施工費が抑えられ、工期も短期間で済む上、さらに施工中および施工後に居住環境を阻害するおそれもない。
 上記8)の耐震補強構造によれば、外壁に垂直入隅部が形成されている建物に適用した場合であっても、同垂直入隅部に垂直補強部材を被せて接合することにより、上記7)の耐震補強構造と同様の効果が得られる。
この発明の第1の実施形態に係る耐震補強構造を備えた建物の斜視図である。 同建物の要部を拡大して示す正面図である。 図2のIII-III線に沿う垂直断面図である。 この発明の第2の実施形態に係る耐震補強構造を備えた建物の外観を示す斜視図である。 この発明の第3の実施形態に係る耐震補強構造を備えた建物の外観を示す斜視図である。 この発明の第4の実施形態に係る耐震補強構造を備えた建物の外観を示す斜視図である。 図6の建物の要部を拡大して示す正面図である。 図7のVIII-VIII線に沿う垂直断面図である。 この発明の第5の実施形態に係る耐震補強構造を備えた建物の一部を示す垂直断面図である。
[第1の実施形態]
 図1~図3は、この発明の第1の実施形態を示したものである。
 図示の実施形態は、既存のマンション(中層集合住宅)に対して、この発明の耐震補強構造および耐震補強工法を適用したものである。
 図1に示すように、マンション(1)は、全体が略箱形のものであって、ラーメン構造、すなわち、地上部の躯体が柱および梁(図示略)によって構成された構造を有している。梁は、マンション(1)の外壁(10)のうち、最上層における庇と窓との間の高さ位置(12)および最上層以外の各層におけるベランダと窓との間の高さ位置(12)に対応して設けられている(図2参照)。
 そして、上記マンション(1)のための耐震補強構造は、剛性材料からなりかつマンション(1)の外壁(10)の4つのコーナー部(垂直出隅部)(11)にそれぞれ接着された横断面L形の垂直補強部材(2)と、所定の引張強度を有するシート材からなりかつマンション(1)の外壁(10)における梁に対応する高さ位置(12)に外壁(10)を取り巻くように接着された帯状の水平補強部材(3)とを備えている。
 垂直補強部材(2)は、裏面にゴム製または樹脂製の被接着層(22)が形成された横断面L形の鋼材(21)からなる。鋼材(21)としては、高張力鋼材が好適に用いられるが、通常の鋼材であってもよい。また、垂直補強部材(2)は、鋼材以外の剛性材料、例えば、樹脂材、複合材、炭素繊維材等で形成することも可能である。垂直補強部材(2)の厚さおよび幅は、必要な強度が得られるように計算した上で設定されるが、例えば、通常の鋼材(21)を主体とする場合であれば、厚さを10mm以上とするのが好ましい。被接着層(22)は、例えばゴムシートや樹脂シートを、鋼材(21)の裏面に接着等によって積層することにより形成されている。被接着層(22)の厚さは、コンクリート等よりなる外壁(10)の凹凸を吸収できる範囲内で極力小さくするのが好ましく、通常、数ミリ程度となされる。
 各垂直補強部材(2)は、通常、所定長さの単位体(20)を、マンション(1)の地上部の高さに合わせて必要数だけ上下直列状に連結することにより形成されている。単位体(20)の長さは、後述するようにマンション(1)の周囲に仮設足場を組んだ状態で施工が行われることを考慮して、足場支柱の最大長さである3600mm以下とするのが好ましい。単位体(20)どうしの連結手段は、特に限定されないが、例えば図2に示すように、上位の単位体(20)の下端部における鋼材(21)の表面側に溶接等によって接合されかつ横断面略U形に折り曲げられた鋼片よりなる掛止部(23)に、下位の単位体(20)の上端部における鋼材(21)の表面側に溶接等によって接合されかつ上部が横断面略逆U形に折り曲げられた鋼片よりなる被掛止部(24)を掛け止めることにより、両単位体(20)を連結する構造を採用することができる。
 垂直補強部材(2)の外壁(20)への接着には、エポキシ樹脂系接着剤が好適に用いられるが、その他の接着剤、例えばアクリル樹脂系接着剤等を使用することも可能である。
 水平補強部材(3)の材料は、高い引張強度を有し、マンション(1)の外壁(10)の所定高さ位置(12)に巻き付けて接着施工することが可能なものであれば、特に限定されないが、好適には、引張強度が高く、軽量で施工性に優れ、また、火災のリスクを低減することができるアラミド繊維、ビニロン繊維等の難燃性(防炎性を含む)化学繊維製シートが用いられる。水平補強部材(3)の幅は、マンション(1)の構造等にもよるが、通常300~400mm程度となされる。水平補強部材(3)は、少なくともマンション(1)の外壁(10)の周囲を1周させるのに必要な長さであればよいが、より高い強度を得るために、外壁(10)の周囲を2周以上させる長さを有するものとして、複層構造化してもよい。水平補強部材(3)は、帯状に連続した単一の高引張強度材料によって構成される他、複数の帯状材料を直列状に繋ぎ合わせたものであってもよい。水平補強部材(3)の両端部(31)(32)どうしは、通常、接着によって接合されるが、接合箇所は、垂直補強部材(2)を避けるのが好ましい。また、水平補強部材(3)を接着するマンション(1)の外壁(10)部分に給気口(13)が設けられている場合、水平補強部材(3)における給気口(13)に対応する箇所を切り抜くとともに、切り抜いた部分の周囲に、水平補強部材(3)と同一の材料よりなる1枚または複数枚の補強片(33)を接着して多層化するのが好ましい(図2参照)。
 図2および図3に示すように、水平補強部材(3)は、マンション(1)の外壁(10)の各コーナー部(11)において、垂直補強部材(2)の外表面側に直交状に配されている。したがって、水平補強部材(3)は、各垂直補強部材(2)を外壁(10)のコーナー部(11)に保持して、4つの垂直補強部材(2)を連結一体化する機能も果たしている。水平補強部材(3)と垂直補強部材(2)とは、通常、両者(3)(2)の熱膨張率の相違を考慮して、被接着状態となされる。また、外壁(10)と垂直補強部材(2)との境界部には、両者(10)(2)の段差を埋めて水平補強部材(3)に長さ方向の弛みが生じないようにするために、モルタル等よりなる充填材(14)を平面より見て楔状に設けるのが好ましい(図3参照)。
 水平補強部材(3)の外壁(10)への接着には、エポキシ樹脂系接着剤が好適に用いられ、また、水平補強部材(3)の両端部どうしの接着や、水平補強部材(3)を構成する複数の材料どうしの接着にも、エポキシ樹脂系接着剤を用いるのが好ましいが、その他の接着剤、例えばアクリル樹脂系接着剤等を使用することも可能である。
 なお、水平補強部材(3)は、図1,2に示すように、少なくともマンション(1)の外壁(10)における梁に対応する高さ位置(12)に設けられていれば足りるが、これに加えて、例えば、マンション(1)の各層におけるベランダ、ポーチ、廊下の突出端面およびこれらに対応する高さ位置の外壁(10)部分に鉢巻状に接着されていてもよい。
 上記の耐震補強構造によれば、マンション(1)の地上部が、垂直補強部材(2)および水平補強部材(3)によって、いわば応力外皮(セミモノコック)構造化されているので、それによって水平耐力が高められ、耐震強度が向上する。また、上記の耐震補強構造によれば、マンション(1)の地上部の躯体と杭との結束強度が必ずしも十分とは言えない場合には、大規模地震時の水平荷重により地上部の躯体と杭との結束が外れ、それによって居住空間である地上部の損壊を免れるフェイルセーフ機能が発揮されうると考えられる。
 次に、既存のマンション(1)に上記耐震補強構造を適用するための施工方法(耐震補強工法)の一例について説明する。
 まず、マンション(1)の外壁(10)の周囲には、大規模改修・補修工事を行うための仮設足場(図示略)が設置されている。
 そして、4つの垂直補強部材(2)を用意し、これらを、チェーンブロックや足場リフト等を用いて、マンション(1)の外壁(10)の4つのコーナー部(11)に順次配置する。そして、各垂直補強部材(2)の被接着層(22)を、エポキシ樹脂系接着剤等を用いて、外壁(10)のコーナー部(11)に接着し、所定期間養生させる(第1の工程)。
 次いで、所要数の水平補強部材(3)を用意し、これらを、エポキシ樹脂系接着剤等を用いて、マンション(1)の外壁(10)における梁に対応する高さ位置(12)に接着し、所定期間養生させる(第2の工程)。
 その後、必要に応じて、垂直補強部材(2)および水平補強部材(3)が目立たないように、これらの部材(2)(3)の表面を、外壁(10)とほぼ同色の塗料を用いて塗装する。
 上記の各工程は、外壁(10)と仮設足場の先端との間の300~400mm程度の隙間を利用して、大規模改修・補修工事に先行して行われる。
 こうして、耐震補強構造の施工が完了する。
 したがって、上記の耐震補強工法によれば、既存のマンション(1)において、大規模改修・補修工事を行うためにマンション(1)の外壁(10)の周囲に仮設足場(図示略)を設置した状態で、大規模改修・補修工事に先行して施工することが可能であって、施工自体も、実質的には、外壁(10)の所定箇所(11)(12)に垂直補強部材(2)および水平補強部材(3)を接着する工程のみであるため、工期が短期間で済む上、施工費用も安く抑えられる。また、上記工法によれば、重機等の使用を必要とせず、施工者も選ばない。さらに、上記工法によれば、垂直補強部材(2)を地面に打ち込んだり、垂直補強部材(2)および水平補強部材(3)を取り付けるためにマンション(1)自体にアンカーを打ち込んだりする必要がないので、マンション(1)に居住者が居住したままで施工することができ、施工中も振動や騒音によって居住環境が損なわれるおそれがなく、さらには、施工後も、窓等の開口部が垂直補強部材(2)および水平補強部材(3)によって遮られることがないので、居住環境は阻害されない。
 以上から分かるように、この発明による耐震補強構造および耐震補強工法は、既存のラーメン構造の建物、特に、喫緊の課題である1981年以前に着工された旧耐震基準によるマンション等の建物の耐震補強を促進する上で、実現性、実用性が高いものであると言える。
 また、この発明による耐震補強構造および耐震補強工法は、新設の建物にも適用可能である。
[第2の実施形態]
 図4は、この発明の第2の実施形態を示したものである。
 この実施形態も、第1の実施形態と同様に、この発明による耐震補強構造を、既存のマンション(中層集合住宅)に適用したものである。
 図4に示すように、第2の実施形態の耐震補強構造は、マンション(1)の外壁(10)の全面に所定の強靭性を有する塗膜よりなる応力外皮層(4)が形成されてなるものである。
 応力外皮層(4)は、ポリウレア樹脂を主体とする塗膜によって形成されている。ポリウレア樹脂は、ウレア結合が主体となった化合物の一種であって、イソシアネートとアミノ基とが化学反応を起こすことによって硬化する。ウレア結合を主体とするポリウレア樹脂は、ウレタン結合を主体とするポリウレタン樹脂と比べて結合力が強く、硬化時間も早いため、耐水性、耐食性、耐薬品性に優れており、工期短縮や大面積の施工が可能である。また、ポリウレア樹脂は、-50℃から150℃の環境下でも、強靭性、すなわち強度および柔軟性に優れているという特徴がある。さらに、ポリウレア樹脂は、無溶剤・無触媒で、可塑剤を含まず、環境にも優れた安全性の高い材料である。但し、ポリウレア樹脂塗膜と同等の強靭性を有する塗膜であれば、ポリウレア樹脂以外の樹脂を主体とする塗膜であっても構わない。上記塗膜よりなる応力外皮層(4)の厚みは、特に限定されないが、例えば約2mm程度となされる。
 応力外皮層(4)は、外壁(10)の全面に形成されており、マンション(1)の地上部のほぼ全体を四方から包み込んでいる。なお、応力外皮層(4)を形成する外壁(10)には、庇、ベランダ、廊下、ポーチ等を含めてもよい。
 また、必要に応じて、応力外皮層(4)の上に、耐紫外線塗料等を塗布してトップコート層(図示略)を形成することにより、マンション(1)の外壁(10)の耐候性および意匠性を保持・向上するようにしてもよい。
 上記の耐震補強構造によれば、マンション(1)の地上部全体が、その外壁(10)を四方から包み込むように形成された応力外皮層(4)によって、応力外皮(セミモノコック)構造化されているので、それによって水平耐力が高められ、耐震強度が大幅に向上する。
 また、上記の耐震補強構造によれば、マンション(1)の地上部の躯体と杭との結束強度が必ずしも十分とは言えない場合には、大規模地震時の水平荷重により地上部の躯体と杭との結束が外れ、それによってフェイルセーフ機能が発揮されると考えられる。
 さらに、上記の耐震補強構造によれば、マンション(1)の地上部の外壁(10)(庇、ベランダ、廊下、ポーチ等を含む。)に、ポリウレア樹脂を主体とする塗膜よりなる応力外皮層(4)が形成されることにより、外壁(10)の強靭性に加えて、防錆性、防食性、防水性、防音性、断熱性等が高められ、したがって、マンション(1)の地上部全体の耐震強度の向上に加えて、耐久性、居住性等の向上にも寄与しうると考えられる。
 次に、マンション(1)に上記耐震補強構造を施工する方法について説明する。
 まず、マンション(1)の外壁(10)の周囲に、大規模改修・補修工事を行うための仮設足場(図示略)が立設される。外壁(10)と仮設足場との間には、300~400mm程度の隙間が設けられている。
 そして、外壁(10)の全面に、通常、シーラー(プライマー)を塗布しておいてから、ポリウレア樹脂を主体とする塗料を、ローラー塗り等によって外壁(10)に塗工して所定期間養生することにより、ポリウレア樹脂を主体とする塗膜よりなる応力外皮層(4)を形成する。その後、必要に応じて、応力外皮層(4)の上に耐紫外線塗料等を塗布することによりトップコート層を形成する。上記の工程は、仮設足場側から外壁(10)との間の隙間を利用して行われる。
 こうして、耐震補強構造の施工が完了する。
 以上の通り、この実施形態の耐震補強構造の施工方法(工法)によれば、既存のマンション(1)において、大規模改修・補修工事を行うために外壁(10)の周囲に仮設足場(図示略)を立設した状態で、大規模改修・補修工事に先行して施工することが可能であって、施工自体も、実質的には、外壁(10)に応力外皮層(4)を形成する工程のみであるため、工期が短期間で済む上、施工費用も安く抑えられる。また、上記工法によれば、重機等の使用を必要とせず、施工者も選ばない。さらに、上記工法によれば、マンション(1)に居住者が居住したままで施工することができ、施工中も振動や騒音によって居住環境が損なわれるおそれがなく、さらには、施工後も、窓等の開口部が遮られることがないので、居住環境は阻害されない。
[第3の実施形態]
 図5には、この発明の第3の実施形態が示されている。
 この実施形態は、以下の点を除いて、図4に示す第2の実施形態と実質的に同一である。すなわち、図5に示すように、第3の実施形態の耐震補強構造では、マンション(1)の外壁(10)の全面に形成されている応力外皮層(4)に加えて、マンション(1)の屋上(10X)の全面にも、ポリウレア樹脂を主体とする塗膜よりなる応力外皮層(4)が形成されている。つまり、マンション(1)の地上部全体が、その四方および上方から応力外皮層(4)によって、すっぽりと包み込まれている。
 したがって、この実施形態の耐震補強構造によれば、マンション(1)の地上部全体が応力外皮層(4)によって、より完全に応力外皮(セミモノコック)構造化されており、それによって水平耐力がより一層高められ、耐震強度がさらに向上する。
[第4の実施形態]
 図6~図8には、この発明の第4の実施形態が示されている。
 この実施形態の耐震補強構造は、第2の実施形態の耐震補強構造(図4参照)と同様の応力外皮層(4)に加えて、剛性材料からなりかつマンション(1)の外壁(10)の4つのコーナー部(垂直出隅部)(11)に応力外皮層(4)の上から被せられて接合されている横断面L形の垂直補強部材(2)と、所定の引張強度を有するシート材からなりかつマンション(1)の外壁(10)における梁に対応する高さ位置(12)に応力外皮層(4)および垂直補強部材(2)の上から外壁(10)を環状に取り巻くように接合されている帯状の水平補強部材(3)とを備えている。
 垂直補強部材(2)および水平補強部材(3)については、第1の実施形態と実質的に同一の構成であるので、詳しい説明は省略する。
 なお、応力外皮層(4)と垂直補強部材(2)との境界部には、両者(4)(2)の段差を埋めて水平補強部材(3)に長さ方向の弛みが生じないようにするために、モルタル等よりなる充填材(14)を平面より見て楔状に設けるのが好ましい(図8参照)。
 また、外壁(10)への垂直補強部材(2)および水平補強部材(3)の接合は、応力外皮層(4)がポリウレア樹脂を主体とする塗膜である場合には、接着剤としてポリウレア樹脂を用いて行うのが好ましいが、その他、エポキシ樹脂系接着剤等を使用してもよい。
 第4の実施形態の耐震補強構造によれば、応力外皮層(4)に加えて、垂直補強部材(2)および水平補強部材(3)によって、マンション(1)の地上部全体が強固に応力外皮(セミモノコック)構造化されるので、それによって水平耐力が飛躍的に高められ、耐震強度がより一層向上すると考えられる。また、上記の耐震補強構造によれば、第1ないし第3の実施形態の耐震補強構造と同様に、大規模地震時の水平荷重によりマンション(1)の地上部の躯体と杭との結束が外れて、フェイルセーフ機能が発揮されうると考えられる。
 第4の実施形態の耐震補強構造を施工する場合、マンション(1)の外壁(10)の周囲に仮設足場を立設した状態で、まず、第2の実施形態と同様にして、外壁(10)の全面に応力外皮層(4)を形成する。
 次いで、第1の実施形態と同様にして、マンション(1)の外壁(10)の所要箇所に垂直補強部材(2)および水平補強部材(3)を接着し、所定期間養生させる。
 その後、必要に応じて、応力外皮層(4)、垂直補強部材(2)および水平補強部材(3)の表面に、耐紫外線塗料等を塗布して所定期間養生させることにより、トップコート層を形成する。
 こうして、耐震補強構造の施工が完了する。
[第5の実施形態]
 図9は、この発明の第5の実施形態を示すものである。
 第5の実施形態は、この発明による耐震補強構造を、外壁(10)に少なくとも1つの垂直入隅部(15)が形成されているラーメン構造のマンション(1X)に適用したものであって、以下の点を除いて、第4の実施形態の耐震補強構造(図6~図8)と実質的に同一の構成を有し、同構造と実質的に同一の作用効果を奏する。
 すなわち、この実施形態の耐震補強構造では、外壁(10)の全ての垂直入隅部(15)に、剛性材料よりなる横断面L形の垂直補強部材(2X)が、応力外皮層(4)および水平補強部材(3)の上から被せられて接合されている。
 垂直入隅部(15)に接合される垂直補強部材(2X)は、垂直出隅部(11)に接合される垂直補強部材(2)と実質的に同一のものを使用することができる。外壁(10)への垂直補強部材(2X)の接合は、応力外皮層(4)がポリウレア樹脂を主体とする塗膜である場合には、接着剤としてポリウレア樹脂を用いて行うのが好ましいが、その他、エポキシ樹脂系接着剤等を使用してもよい。垂直補強部材(2X)を接合する工程は、水平補強部材(3)を接合する工程の後で行われる。つまり、垂直補強部材(2X)は、水平補強部材(3)の上から接合されているので、垂直入隅部(15)において水平補強部材(3)が浮き上がるのを抑制する機能を奏する。垂直補強部材(2X)は、地面から完全に切り離されて、縁切り状態となされている。
 第5の実施形態の耐震補強構造によれば、外壁(10)に垂直入隅部(15)が形成されているマンション(1X)の地上部全体を、応力外皮層(4)、垂直補強部材(2)(2X)および水平補強部材(3)によって強固に応力外皮(セミモノコック)構造化し、耐震強度を大幅に向上させることができる。
 この発明は、ラーメン構造を有するマンション、オフィスビル、学校、病院、ホテル等の建物のための耐震補強構造および耐震補強工法として好適に用いられるものである。
(1)(1X):マンション(建物)
(10):外壁
(10X):屋上
(11):コーナー部(垂直出隅部)
(12):梁に対応する高さ位置
(15):垂直入隅部
(2)(2X):垂直補強部材
(3):水平補強部材
(4):応力外皮層

Claims (8)

  1.  ラーメン構造を有する略箱形の建物のための耐震補強構造であって、剛性材料からなりかつ前記建物の外壁の4つのコーナー部に接着されて地面から縁切り状態となされた横断面L形の垂直補強部材と、所定の引張強度を有するシート材からなりかつ前記建物の外壁のうち少なくとも梁に対応する高さ位置に外壁を取り巻くように接着された帯状の水平補強部材とを備えており、水平補強部材は、前記建物の外壁の各コーナー部において、垂直補強部材の外表面側に直交状に配されており、これらの垂直補強部材および水平補強部材によって前記建物の地上部が応力外皮構造化されている、耐震補強構造。
  2.  垂直補強部材が、所定長さの単位体を前記建物の地上部の高さに合わせて必要数だけ上下直列状に連結することにより形成されている、請求項1記載の耐震補強構造。
  3.  ラーメン構造を有する略箱形の建物のための耐震補強工法であって、前記建物の外壁の4つのコーナー部に、剛性材料からなる横断面L形の垂直補強部材を接着する第1の工程と、前記建物の外壁のうち少なくとも梁に対応する高さ位置に、所定の引張強度を有するシート材からなる帯状の水平補強部材を、外壁を取り巻くとともに外壁の各コーナー部において垂直補強部材の外表面側に直交状に配されるように接着する第2の工程とを含んでおり、第1の工程および第2の工程は、前記建物の外壁と同外壁の周囲に設置された仮設足場の先端との隙間を利用して行われる、耐震補強工法。
  4.  ラーメン構造を有する建物のための耐震補強構造であって、前記建物の外壁のほぼ全面に、所定の強靭性を有する塗膜よりなる応力外皮層が形成され、前記応力外皮層によって前記建物の地上部全体が応力外皮構造化されている、耐震補強構造。
  5.  さらに、前記建物の屋上のほぼ全面に、前記塗膜よりなる応力外皮層が形成されている、請求項4記載の耐震補強構造。
  6.  前記応力外皮層が、ポリウレア樹脂を主体とする塗膜よりなる、請求項4または5記載の耐震補強構造。
  7.  さらに、前記外壁の全ての垂直出隅部に、剛性材料よりなる横断面L形の垂直補強部材が、前記応力外皮層の上から被せられて接合されているとともに、前記外壁における梁に対応する高さ位置に、所定の引張強度を有するシート材よりなる帯状の水平補強部材が、前記応力外皮層および前記垂直補強部材の上から前記外壁を環状に取り巻くように接合されている、請求項4~6のいずれか1つに記載の耐震補強構造。
  8.  前記外壁が少なくとも1つの垂直入隅部を有しており、前記外壁の全ての垂直入隅部に、剛性材料よりなる横断面L形の垂直補強部材が、前記応力外皮層および前記水平補強部材の上から被せられて接合されている、請求項7記載の耐震補強構造。
PCT/JP2018/021116 2017-06-15 2018-06-01 耐震補強構造および耐震補強工法 WO2018230357A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-117498 2017-06-15
JP2017117498A JP6225289B1 (ja) 2017-06-15 2017-06-15 耐震補強構造および耐震補強工法
JP2018-020875 2018-02-08
JP2018020875A JP6419367B1 (ja) 2018-02-08 2018-02-08 耐震補強構造およびその施工方法

Publications (1)

Publication Number Publication Date
WO2018230357A1 true WO2018230357A1 (ja) 2018-12-20

Family

ID=64660343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021116 WO2018230357A1 (ja) 2017-06-15 2018-06-01 耐震補強構造および耐震補強工法

Country Status (2)

Country Link
TW (1) TW201905299A (ja)
WO (1) WO2018230357A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111946091A (zh) * 2020-08-26 2020-11-17 华侨大学 一种提高砌体墙抗震性能的加固方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001173240A (ja) * 1999-12-20 2001-06-26 Asahi Rehouse:Kk 補強外壁及び外壁の補強工法
JP2002206348A (ja) * 2001-01-10 2002-07-26 Yokohama Rubber Co Ltd:The コンクリ−ト柱の緊締用具及びそれを利用した緊締方法
US6490834B1 (en) * 2000-01-28 2002-12-10 University Of Maine System Board Of Trustees Building construction configuration and method
JP2004060197A (ja) * 2002-07-25 2004-02-26 Dyflex Holdings:Kk コンクリート剥落防止方法および補強層付きコンクリート構造物
JP2005030137A (ja) * 2003-07-10 2005-02-03 East Japan Railway Co 柱状構造物の補強構造、及び補強板材料
JP2007040023A (ja) * 2005-08-04 2007-02-15 Fuji Ultrasonic Engineering Co Ltd 建築物における耐震制震構造
JP2010001707A (ja) * 2008-06-23 2010-01-07 Mbs Inc コンクリート構造物表面の強化コーティング方法
JP2012207519A (ja) * 2011-03-16 2012-10-25 Shimizu Corp 補強材及び補強構造
JP2013104218A (ja) * 2011-11-14 2013-05-30 Okabe Co Ltd 既存住宅の補強方法および住宅
JP2013159951A (ja) * 2012-02-03 2013-08-19 Shimizu Corp 構造物およびこの補強方法
JP2013159950A (ja) * 2012-02-03 2013-08-19 Shimizu Corp 石積み構造
JP2015224494A (ja) * 2014-05-29 2015-12-14 剱持 武士 耐震補強装置
JP2016172983A (ja) * 2015-03-17 2016-09-29 株式会社Act 構造物
JP6225289B1 (ja) * 2017-06-15 2017-11-01 藤本 隆 耐震補強構造および耐震補強工法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001173240A (ja) * 1999-12-20 2001-06-26 Asahi Rehouse:Kk 補強外壁及び外壁の補強工法
US6490834B1 (en) * 2000-01-28 2002-12-10 University Of Maine System Board Of Trustees Building construction configuration and method
JP2002206348A (ja) * 2001-01-10 2002-07-26 Yokohama Rubber Co Ltd:The コンクリ−ト柱の緊締用具及びそれを利用した緊締方法
JP2004060197A (ja) * 2002-07-25 2004-02-26 Dyflex Holdings:Kk コンクリート剥落防止方法および補強層付きコンクリート構造物
JP2005030137A (ja) * 2003-07-10 2005-02-03 East Japan Railway Co 柱状構造物の補強構造、及び補強板材料
JP2007040023A (ja) * 2005-08-04 2007-02-15 Fuji Ultrasonic Engineering Co Ltd 建築物における耐震制震構造
JP2010001707A (ja) * 2008-06-23 2010-01-07 Mbs Inc コンクリート構造物表面の強化コーティング方法
JP2012207519A (ja) * 2011-03-16 2012-10-25 Shimizu Corp 補強材及び補強構造
JP2013104218A (ja) * 2011-11-14 2013-05-30 Okabe Co Ltd 既存住宅の補強方法および住宅
JP2013159951A (ja) * 2012-02-03 2013-08-19 Shimizu Corp 構造物およびこの補強方法
JP2013159950A (ja) * 2012-02-03 2013-08-19 Shimizu Corp 石積み構造
JP2015224494A (ja) * 2014-05-29 2015-12-14 剱持 武士 耐震補強装置
JP2016172983A (ja) * 2015-03-17 2016-09-29 株式会社Act 構造物
JP6225289B1 (ja) * 2017-06-15 2017-11-01 藤本 隆 耐震補強構造および耐震補強工法

Also Published As

Publication number Publication date
TW201905299A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
US10301823B2 (en) Frame supported panel
US8650831B2 (en) Reconstruction methods for structural elements
JP4160078B2 (ja) 繊維シートを接合主材として用いた建築部材の接合構造
RU2402661C2 (ru) "блоки на болтах" - система для типовых конструкций каменной кладки, имеющих предварительное напряжение с натяжением арматуры на бетон
US9919499B2 (en) Stiffened frame supported panel
US8176690B2 (en) High-strength structure
US20110258964A1 (en) Composite Thermal Insulation Wall Body of a Building
US10865562B2 (en) Foam backed panel with cantilever
KR101150392B1 (ko) 내진 보강용 철골 구조물의 접합구조 및 접합공법
JP2007239421A (ja) 既設構造物の補強工法
US20210348387A1 (en) Systems and methods for coupling prefabricated panels together and reinforcing frame structure
US20090000214A1 (en) Integrated, high strength, lightweight, energy efficient building structures
WO2018230357A1 (ja) 耐震補強構造および耐震補強工法
JP2023514035A (ja) モジュール型複合作用パネル及びそれを用いた構造システム
JP6225289B1 (ja) 耐震補強構造および耐震補強工法
JP6419367B1 (ja) 耐震補強構造およびその施工方法
US20190257108A1 (en) Insulating and storm-resistant panels
EP3978701A1 (en) Layered panel and method of construction thereof
Nacheman The Empire State Building Facade: Evaluation and Repair of an Engineering Landmark
JP3552691B2 (ja) 木造建築物の補強構造
WO2001048328A1 (fr) Construction en bois
JP4374477B2 (ja) 構造クラック、ひび割れ補強等対応のクロス状繊維シートによる補強構造
CN212641745U (zh) 一种用于矿区的装配式铝合金框架结构
NZ248942A (en) Constructing a building; form footing, place panels and then connect a perimeter beam to the inside or outside of the panel top
KR102458801B1 (ko) 연속 이음되는 pc 보강패널 유닛을 이용한 철근콘크리트 부재의 내화용 내진 보강 구조 및 이의 시공 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18817919

Country of ref document: EP

Kind code of ref document: A1