WO2018230122A1 - エステル樹脂、反可塑化剤、セルロースエステル樹脂組成物、光学フィルム及び液晶表示装置 - Google Patents

エステル樹脂、反可塑化剤、セルロースエステル樹脂組成物、光学フィルム及び液晶表示装置 Download PDF

Info

Publication number
WO2018230122A1
WO2018230122A1 PCT/JP2018/015022 JP2018015022W WO2018230122A1 WO 2018230122 A1 WO2018230122 A1 WO 2018230122A1 JP 2018015022 W JP2018015022 W JP 2018015022W WO 2018230122 A1 WO2018230122 A1 WO 2018230122A1
Authority
WO
WIPO (PCT)
Prior art keywords
residue
ester resin
glycol
acid
aryl
Prior art date
Application number
PCT/JP2018/015022
Other languages
English (en)
French (fr)
Inventor
知代 尾崎
裕輔 田尻
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201880039523.3A priority Critical patent/CN110753681B/zh
Priority to JP2019525135A priority patent/JP6631753B2/ja
Priority to KR1020197032874A priority patent/KR102483671B1/ko
Publication of WO2018230122A1 publication Critical patent/WO2018230122A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/78Benzoic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/80Phthalic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to an ester resin suitable as an antiplasticizer for a resin for optical materials, a cellulose ester resin containing the ester resin, an optical film obtained using the resin composition, and a liquid crystal display device using the same.
  • TAC triacetyl cellulose resin
  • TAC is hard and brittle, there is a problem that when it is formed into a film, the strength is insufficient and breakage easily occurs. Moreover, since TAC has high moisture permeability and dimensional change due to moisture absorption is likely to occur, it is necessary to suppress moisture absorption by additives, and various additives have been provided (see, for example, Patent Document 1).
  • the problem to be solved by the present invention is particularly suitable as an antiplasticizer for optical resins, which can increase the strength at the time of processing into a film and improve the moisture permeability. It is an object to provide an ester resin that can be used in the present invention, a resin composition containing the ester resin, an optical film obtained using the resin composition, and a liquid crystal display device using the same.
  • the present invention provides the following general formula (1) B- (GA) n -GB (1)
  • B is an aryl monocarboxylic acid residue or an aliphatic monocarboxylic acid residue
  • G is an alkylene glycol residue, an oxyalkylene glycol residue or an aryl glycol residue
  • A is an alkylene dicarboxylic acid residue.
  • Residue (A1) or aryl dicarboxylic acid residue (A2) which is the sum of alkylene dicarboxylic acid residue (A1) and aryl dicarboxylic acid residue (A2) (A1 + A2) of aryl dicarboxylic acid residue (A2)
  • the content is 70 to 100 mol%
  • n is the number of repetitions
  • G and A may be the same or different for each repetition
  • a plurality of B and G may be the same or different.
  • an ester resin that has an excellent balance between strength and moisture permeability when processed into a film and can be suitably used as an antiplasticizer for optical resins.
  • the specific ester resin particularly in an optical film containing a cellulose ester resin, it is possible to achieve both improvement in elastic modulus and suppression of moisture permeation, and it can be suitably used as an optical film used in a liquid crystal display device. it can.
  • FIG. 1 is a GPC chart of the ester resin (1-1) obtained in Example 1.
  • the ester resin of the present invention has the following general formula (1) B- (GA) n -GB (1) [In the formula (1), B is an aryl monocarboxylic acid residue or an aliphatic monocarboxylic acid residue, G is an alkylene glycol residue, an oxyalkylene glycol residue or an aryl glycol residue, and A is an alkylene dicarboxylic acid residue.
  • Residue (A1) or aryl dicarboxylic acid residue (A2) which is the sum of alkylene dicarboxylic acid residue (A1) and aryl dicarboxylic acid residue (A2) (A1 + A2) of aryl dicarboxylic acid residue (A2)
  • the content is 70 to 100 mol%
  • n is the number of repetitions
  • G and A may be the same or different for each repetition
  • a plurality of B and G may be the same or different.
  • B in the general formula (1) is an aryl monocarboxylic acid residue or an aliphatic monocarboxylic acid residue.
  • the “carboxylic acid residue” refers to a group other than —OH in the carboxy group.
  • the aryl monocarboxylic acid residue is an aryl monocarboxylic acid residue having 6 to 12 carbon atoms, which is easy to obtain raw materials, easy to esterify, and mixed with a cellulose ester resin described later.
  • benzoic acid dimethylbenzoic acid, trimethylbenzoic acid, tetramethylbenzoic acid, ethylbenzoic acid, propylbenzoic acid, butylbenzoic acid, cumin
  • examples thereof include acid, para-tert-butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, ethoxybenzoic acid, propoxybenzoic acid, anisic acid, naphthoic acid and the like, and they may be used alone or in combination of two or more.
  • a residue of benzoic acid, p-toluic acid, or dimethylbenzoic acid is preferable, and a residue of benzoic acid is more preferable.
  • the number of carbon atoms does not include the carbon atom in the carboxy group. Further, it may be a residue such as nicotinic acid or furoic acid having an aromaticity, which may have a substituent.
  • the aliphatic monocarboxylic acid residue is an aliphatic monocarboxylic acid residue having 1 to 8 carbon atoms, which is mixed with raw material availability, ease of esterification reaction, and cellulose ester resin described later. At this time, it is preferable from the viewpoint of easy balance between moisture permeability and improvement in elastic modulus, and examples thereof include residues such as acetic acid, propionic acid, butanoic acid, hexanoic acid, octanoic acid, octylic acid, and the like. The above may be included, and acetic acid is particularly preferable.
  • the number of carbon atoms does not include the carbon atom in the carboxy group.
  • G in the general formula (1) is an alkylene glycol residue, an oxyalkylene glycol residue or an aryl glycol residue.
  • the glycol residue refers to a group after removing a hydrogen atom from a hydroxyl group.
  • the alkylene glycol residue is preferably an alkylene glycol residue having 2 to 12 carbon atoms from the viewpoint of more easily exhibiting the effects of the present invention.
  • ethylene glycol, 1,2-propylene glycol, 1 3-propanediol, 1,2-butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl 1,3-propanediol (neopentyl glycol), 2,2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propane Diol (3,3-dimethylolheptane), 3-methyl-1,5-pentanediol, 1,6-hexanediol, 2, , 4-trimethyl 1,3-pent
  • those having 3 or less carbon atoms that do not include a branch between OH groups are preferable, among which ethylene glycol, It is preferably a residue of 1,2-propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, ethylene glycol, More preferred is a residue of 1,2-propylene glycol.
  • the oxyalkylene glycol residue is preferably an oxyalkylene glycol residue having 4 to 12 carbon atoms from the viewpoint of more easily expressing the effects of the present invention.
  • diethylene glycol, triethylene glycol, tetraethylene glycol And residues such as dipropylene glycol and tripropylene glycol may be used alone or in combination of two or more.
  • the aryl glycol residue is preferably an aryl glycol residue having 6 to 18 carbon atoms from the viewpoint of more easily exhibiting the effects of the present invention.
  • hydroquinone, resorcin, bisphenol A, alkylene oxide of bisphenol A examples include residues such as adducts, bisphenol F, alkylene oxide adducts of bisphenol F, biphenols, alkylene oxide adducts of biphenols, etc., which may be used alone or in combination of two or more.
  • a in the general formula (1) is an alkylene dicarboxylic acid residue (A1) or an aryl dicarboxylic acid residue (A2).
  • the dicarboxylic acid residue refers to a group excluding —OH in the carboxy group.
  • the alkylene dicarboxylic acid residue (A1) is preferably an alkylene dicarboxylic acid residue having 2 to 12 carbon atoms from the viewpoint of more easily exhibiting the effects of the present invention.
  • oxalic acid, malonic acid, Residues such as succinic acid, glutaric acid, adipic acid, maleic acid, fumaric acid, 1,2-dicarboxycyclohexane, 1,2-dicarboxycyclohexene and the like can be mentioned. Also good.
  • a residue of succinic acid, adipic acid, and 1,2-dicarboxycyclohexane is preferable, and an adipic acid residue is most preferable because an optical film having more excellent moisture resistance can be obtained.
  • Examples of the aryl dicarboxylic acid residue (A2) include phthalic acid, terephthalic acid, isophthalic acid, 1,4-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7 -Residues such as naphthalenedicarboxylic acid and 1,8-naphthalenedicarboxylic acid are mentioned, and they may be used alone or in combination of two or more.
  • a residue of phthalic acid, terephthalic acid, and isophthalic acid is preferable because an optical film having higher strength can be obtained, and a residue of phthalic acid is most preferable.
  • the content of the aryldicarboxylic acid residue (A2) in the total number of moles (A1 + A2) of the alkylenedicarboxylic acid residue (A1) and the aryldicarboxylic acid residue (A2) in A in the general formula (1) is determined according to the present invention.
  • the content is 70 to 100 mol%, and the range is preferably 75 to 100 mol%.
  • the ester resin represented by the general formula (1) wherein B, G, and A are the same, and n, that is, a mixture of compounds that differ only in the number of repetitions, or It may be a mixture of compounds in which B, G, A and n in the general formula (1) are different.
  • an alkylene dicarboxylic acid in the general formula (1) is used in order to combine improvement in moisture permeability and elastic modulus.
  • the content of the aryldicarboxylic acid residue (A2) in the sum (A1 + A2) of the residue (A1) and the aryldicarboxylic acid residue (A2) is 70 to 100 mol%, and the area ratio in GPC measurement is the above general formula.
  • n 0 component, so-called diester compound, to a specific content, it is suitably placed in the gap between the resin for optical materials, particularly the cellulose ester resin, and as a result, the effect of suppressing moisture permeability is manifested.
  • the content of components having n of 3 or more compatibility with the optical material resin can be ensured, and transparency that can be used as an optical film can be maintained.
  • the GPC measurement in the present invention was performed under the following conditions.
  • [GPC measurement conditions] Measuring device: Tosoh Corporation high-speed GPC device "HLC-8320GPC” Column: “TSK GARDCOLUMN SuperHZ-L” manufactured by Tosoh Corporation + “TSK gel SuperHZM-M” manufactured by Tosoh Corporation + “TSK gel SuperHZM-M” manufactured by Tosoh Corporation + “TSK gel SuperHZ-2000” manufactured by Tosoh Corporation "TSK gel SuperHZ-2000” manufactured by Tosoh Corporation Detector: RI (differential refractometer) Data processing: “EcoSEC Data Analysis version 1.07” manufactured by Tosoh Corporation Column temperature: 40 ° C Developing solvent: Tetrahydrofuran Flow rate: 0.35 mL / min Sample to be measured: A sample obtained by dissolving 7.5 mg of a sample in 10 ml of tetrahydrofuran and filtering the obtained solution through a microfilter
  • B is a residue of benzoic acid and acetic acid
  • G is ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, , 2-butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol residue
  • A1 is succinic acid, adipic acid, 1,2-dicarboxycyclohexane residue
  • A2 is phthalic acid , Isophthalic acid, terephthalic acid residue, particularly B is benzoic acid residue
  • G is ethylene glycol, 1,2-propylene glycol residue
  • A1 is adipic acid residue
  • A2 is a residue of phthalic acid.
  • the number average molecular weight of the ester resin of the present invention is preferably in the range of 350 to 800, particularly preferably in the range of 350 to 600, from the viewpoint of achieving both compatibility and film properties. Further, the average value of the repeating number n in the general formula (1) is preferably in the range of 0.2 to 3 from the viewpoint of achieving both compatibility and film physical properties. The number average molecular weight and the average value of n are also values measured by the GPC measurement.
  • the acid value of the ester resin of the present invention is preferably 5 or less, more preferably 1 or less, from the viewpoint of better compatibility with the resin for optical materials.
  • the hydroxyl value of the ester resin is preferably 50 or less, and more preferably 20 or less.
  • the ester resin of the present invention is produced, for example, by subjecting the above raw materials to an esterification reaction in the presence of an esterification catalyst as necessary, for example, within a temperature range of 180 to 250 ° C. for 10 to 25 hours. be able to.
  • an esterification catalyst as necessary, for example, within a temperature range of 180 to 250 ° C. for 10 to 25 hours. be able to.
  • conditions, such as temperature of esterification reaction and time are not specifically limited, You may set suitably.
  • the monocarboxylic acid and dicarboxylic acid the acid itself may be used as a raw material, or an esterified product, an acid chloride, an anhydride of dicarboxylic acid, or the like may be used as a raw material.
  • esterification catalyst examples include titanium catalysts such as tetraisopropyl titanate and tetrabutyl titanate; tin catalysts such as dibutyltin oxide; and organic sulfonic acid catalysts such as p-toluenesulfonic acid.
  • the amount of the esterification catalyst used may be set as appropriate, but usually it is preferably used in the range of 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the total amount of raw materials.
  • the properties of the ester resin of the present invention vary depending on factors such as the number average molecular weight and the combination of raw materials, but are usually liquid, solid, paste, etc. at room temperature.
  • an ester resin there is a method of reacting a monocarboxylic acid with a compound having a hydroxyl group at the terminal obtained by using the above-mentioned alkylene glycol, oxyalkylene glycol or aryl glycol and dicarboxylic acid.
  • the alkylene glycol, oxyalkylene glycol or aryl glycol, dicarboxylic acid and monocarboxylic acid may be charged into the reaction system in a lump and reacted with each other, or alkylene glycol, oxyalkylene glycol or aryl glycol and dicarboxylic acid may be reacted.
  • a sequential reaction in which a monocarboxylic acid is further charged into the reaction system may be used.
  • the ester resin obtained above may be used as the ester resin of the present invention as long as the composition defined by the present invention is obtained by determining the composition for each repetition of n by the GPC measurement, or
  • the raw material used for the ester resin and the raw material of the diester compound prepared separately may be the same or different.
  • B2-G2-B2 (2) (In the formula, B2 is an aryl monocarboxylic acid residue or an aliphatic monocarboxylic acid residue, G2 is an alkylene glycol residue, an oxyalkylene glycol residue or an aryl glycol residue, and a plurality of B2 are the same or different. May be.)
  • B2 in the general formula (2) is an aryl monocarboxylic acid residue or an aliphatic monocarboxylic acid residue.
  • the “carboxylic acid residue” refers to a group other than —OH in the carboxy group.
  • the aryl monocarboxylic acid residue is an aryl monocarboxylic acid residue having 6 to 12 carbon atoms, which is easy to obtain raw materials, easy to esterify, and mixed with a cellulose ester resin described later.
  • benzoic acid dimethylbenzoic acid, trimethylbenzoic acid, tetramethylbenzoic acid, ethylbenzoic acid, propylbenzoic acid, butylbenzoic acid, cumin
  • examples thereof include acid, para-tert-butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, ethoxybenzoic acid, propoxybenzoic acid, anisic acid, naphthoic acid and the like, and they may be used alone or in combination of two or more.
  • a residue of benzoic acid, p-toluic acid, or dimethylbenzoic acid is preferable, and a residue of benzoic acid is more preferable.
  • the number of carbon atoms does not include the carbon atom in the carboxy group. Further, it may be a residue such as nicotinic acid or furoic acid having an aromaticity, which may have a substituent.
  • the aliphatic monocarboxylic acid residue is an aliphatic monocarboxylic acid residue having 1 to 8 carbon atoms, which is mixed with raw material availability, ease of esterification reaction, and cellulose ester resin described later.
  • residues such as acetic acid, propionic acid, butanoic acid, hexanoic acid, octanoic acid, octylic acid, and the like. It may have both of the above, and is particularly preferably a residue of acetic acid.
  • the number of carbon atoms does not include the carbon atom in the carboxy group.
  • G in the general formula (1) is an alkylene glycol residue, an oxyalkylene glycol residue or an aryl glycol residue.
  • the glycol residue refers to a group after removing a hydrogen atom from a hydroxyl group.
  • the alkylene glycol residue is preferably an alkylene glycol residue having 2 to 12 carbon atoms from the viewpoint of more easily exhibiting the effects of the present invention.
  • ethylene glycol, 1,2-propylene glycol, 1 3-propanediol, 1,2-butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl 1,3-propanediol (neopentyl glycol), 2,2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propane Diol (3,3-dimethylolheptane), 3-methyl-1,5-pentanediol, 1,6-hexanediol, 2, , 4-trimethyl 1,3-pent
  • 1,2-propylene glycol 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 2-methyl-1,3-propane It is preferably a residue of diol or 1,5-pentanediol.
  • the oxyalkylene glycol residue is preferably an oxyalkylene glycol residue having 4 to 12 carbon atoms from the viewpoint of more easily expressing the effects of the present invention.
  • diethylene glycol, triethylene glycol, tetraethylene glycol And residues such as dipropylene glycol and tripropylene glycol may be used alone or in combination of two or more.
  • the aryl glycol residue is preferably an aryl glycol residue having 6 to 18 carbon atoms from the viewpoint of more easily exhibiting the effects of the present invention.
  • hydroquinone, resorcin, bisphenol A, alkylene oxide of bisphenol A examples include residues such as adducts, bisphenol F, alkylene oxide adducts of bisphenol F, biphenols, alkylene oxide adducts of biphenols, etc., which may be used alone or in combination of two or more.
  • B2 is a residue of benzoic acid or acetic acid
  • G is 1,2-propylene glycol, 1,3-propanediol
  • 1,2- The residue is preferably a residue of butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, diethylene glycol or dipropylene glycol.
  • the diester compound (II) may be synthesized or commercially available.
  • diester compound (II) you may use the several thing which consists of a different raw material.
  • the ester resin of the present invention obtained by such a method or the like can be made to have an excellent balance between moisture permeability and elastic modulus of the resulting film by blending it with the resin for optical materials. It can be used as an antiplasticizer, and can be particularly suitably used as an optical film.
  • the resin for optical material is not particularly limited as long as it is highly transparent and can be processed into a film shape.
  • the range is from 1 to 50 parts by mass, preferably from 1 to 30 parts by mass, and more preferably from 5 to 20 parts by mass.
  • cellulose ester resin examples include those obtained by esterifying part or all of the hydroxyl groups of cellulose obtained from cotton linter, wood pulp, kenaf and the like.
  • cellulose ester resin examples include cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose nitrate.
  • cellulose acetate is used. Is preferable because a film having excellent mechanical properties and transparency can be obtained.
  • These cellulose ester resins may be used alone or in combination of two or more.
  • the cellulose acetate preferably has a polymerization degree in the range of 250 to 400, and an acetylation degree in the range of 54.0 to 62.5% by mass, preferably 58.0 to 62.5. More preferably, it is in the range of mass%. If the cellulose acetate has a polymerization degree and an acetylation degree within a range, a film having excellent mechanical properties can be obtained. In the present invention, it is more preferable to use so-called cellulose triacetate.
  • the acetylation degree said by this invention is the mass ratio of the acetic acid produced
  • the number average molecular weight of the cellulose acetate is preferably in the range of 70,000 to 300,000, and more preferably in the range of 80,000 to 200,000. When the number average molecular weight of the cellulose acetate is within this range, a film having excellent mechanical properties can be easily obtained.
  • the optical film in the present invention uses the cellulose ester resin composition containing the ester resin of the present invention and the cellulose ester resin, and uses a resin composition containing other various additives as necessary. Also good.
  • an unstretched optical film can be extruded using an extruder equipped with a T die, a circular die, or the like.
  • a resin composition obtained by melting and kneading the ester resin, cellulose ester resin, and other additives in advance can be used. However, it can be extruded as it is.
  • additives examples include other modifiers other than the ester resin of the present invention, thermoplastic resins, ultraviolet absorbers, matting agents, deterioration inhibitors (for example, antioxidants, peroxide decomposers, radical prohibitions). Agents, metal deactivators, acid scavengers, etc.) and dyes.
  • ester resins other than the ester resins defined in the present invention examples include ester resins other than the ester resins defined in the present invention, phosphate esters such as triphenyl phosphate (TPP), tricresyl phosphate, and cresyl diphenyl phosphate, dimethyl phthalate, diethyl phthalate, Phthalic acid esters such as dibutyl phthalate and di-2-ethylhexyl phthalate, ethyl phthalyl ethyl glycolate, butyl phthalyl butyl glycolate, trimethylol propane tribenzoate, pentaerythritol tetraacetate, tributyl acetylcitrate, etc. It can be used as long as the effect is not impaired.
  • phosphate esters such as triphenyl phosphate (TPP), tricresyl phosphate, and cresyl diphenyl phosphate
  • dimethyl phthalate
  • thermoplastic resin is not particularly limited, and examples thereof include polyester resins other than the ester resin of the present invention, polyester ether resins, polyurethane resins, epoxy resins, and toluenesulfonamide resins.
  • the ultraviolet absorber is not particularly limited, and examples thereof include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, and the like.
  • the ultraviolet absorber is preferably used in the range of 0.01 to 2 parts by mass with respect to 100 parts by mass of the cellulose ester resin.
  • Examples of the matting agent include silicon oxide, titanium oxide, aluminum oxide, calcium carbonate, calcium silicate, aluminum silicate, magnesium silicate, calcium phosphate, kaolin, and talc.
  • the matting agent is preferably used in the range of 0.1 to 0.3 parts by mass with respect to 100 parts by mass of the cellulose ester resin.
  • the type and amount of the dye are not particularly limited as long as they do not impair the object of the present invention.
  • the optical film is obtained by casting a resin solution obtained by dissolving the cellulose ester resin composition in an organic solvent on a metal support, and then the organic solvent. It can also be obtained by forming by a so-called solution casting method (solvent casting method) by distilling off and drying.
  • solution casting method solvent casting method
  • the resulting film can exhibit substantially optical isotropy.
  • the film showing optical isotropy can be used for an optical material such as a liquid crystal display, and is particularly useful as a protective film for a polarizing plate.
  • the film obtained by the said method cannot form an unevenness
  • the solution casting method generally includes a first step in which the cellulose ester resin composition is dissolved in an organic solvent, and the resulting resin solution is cast on a metal support, and in the cast resin solution.
  • Examples of the metal support used in the first step include endless belt-shaped or drum-shaped metal supports, for example, stainless steel with a mirror-finished surface can be used. .
  • the drying method in the second step is not particularly limited.
  • it is included in the cast resin solution by applying air in a temperature range of 30 to 50 ° C. to the upper surface and / or the lower surface of the metal support.
  • Examples thereof include a method of evaporating 50 to 80% by mass of an organic solvent to form a film on the metal support.
  • the third step is a step in which the film formed in the second step is peeled off from the metal support and is heated and dried under a temperature condition higher than that in the second step.
  • a heat drying method for example, a method in which the temperature is raised stepwise under a temperature condition of 100 to 160 ° C. is preferable because good dimensional stability can be obtained.
  • the organic solvent remaining in the film after the second step can be almost completely removed by heating and drying under the temperature condition.
  • the organic solvent can be recovered and reused.
  • the organic solvent that can be used when the resin composition is mixed and dissolved in an organic solvent is not particularly limited as long as it can dissolve them.
  • organic halogen compounds such as methylene chloride and dioxolanes are preferably used.
  • a poor solvent such as methanol, ethanol, 2-propanol, n-butanol, cyclohexane, cyclohexanone together with the good solvent in order to improve the production efficiency of the film.
  • the concentration of the cellulose ester resin in the resin solution is preferably 10 to 50% by mass, more preferably 15 to 35% by mass.
  • the unstretched optical film obtained by the above-described method is stretched by uniaxially stretching in the mechanical flow direction and transversely uniaxially stretching in the direction orthogonal to the mechanical flow direction, as necessary.
  • the obtained optical film can be obtained.
  • the stretched film biaxially stretched can be obtained by stretching by a sequential biaxial stretching method of roll stretching and tenter stretching, a simultaneous biaxial stretching method by tenter stretching, a biaxial stretching method by tubular stretching, or the like.
  • the draw ratio is preferably 0.1% or more and 1000% or less in at least one direction, more preferably 0.2% or more and 600% or less, and more preferably 0.3% or more and 300% or less. Especially preferred. By designing in this range, a stretched optical film preferable in terms of birefringence, heat resistance and strength can be obtained.
  • the optical film of the present invention is excellent in moisture permeation resistance, transparency and elastic modulus, and can be used, for example, as an optical film for liquid crystal display devices.
  • the optical film of the liquid crystal display device include a protective film for a polarizing plate, a retardation film, a reflective film, a viewing angle improving film, an antiglare film, an antireflective film, an antistatic film, and a color filter.
  • a protective film for polarizing plates preferably as a protective film for polarizing plates.
  • the film thickness of the optical film is preferably in the range of 20 to 120 ⁇ m, more preferably in the range of 25 to 100 ⁇ m, and particularly preferably in the range of 25 to 80 ⁇ m.
  • a film thickness in the range of 25 to 80 ⁇ m is suitable for reducing the thickness of the liquid crystal display device, and has sufficient film strength and Rth stability. Excellent performance such as moisture permeability resistance can be maintained.
  • the optical film of the present invention is characterized in that the elastic modulus is higher than when no ester resin is blended.
  • a polyester resin blended for the purpose of enhancing the processability of cellulose ester resin is sometimes referred to as “plasticizer”, but the ester resin of the present invention is more optical than plasticizing effect. From the viewpoint of improving the strength of the resin for materials, it has a performance different from the conventional one in that it is used as an antiplasticizer.
  • the polarizing plate protective film can be adjusted to a desired Rth without causing bleed under high temperature and high humidity, so that it can be used widely in various liquid crystal display systems depending on the application. Can do.
  • liquid crystal display method examples include IPS (In-Plane Switching), TN (Twisted Nematic), VA (Vertically Aligned), and OCB (Optical Compensatory Bend).
  • IPS In-Plane Switching
  • TN Transmission Nematic
  • VA Very Aligned
  • OCB Optical Compensatory Bend
  • An example is Optically Compensatory Bend).
  • the optical film according to the present invention includes, as an optical material, a polarizing plate protective film used for a display such as a liquid crystal display device, a plasma display, an organic EL display, a field emission display, a rear projection television, a quarter wavelength plate, and a half. It can be suitably used for a retardation film such as a wave plate, a viewing angle control film, a liquid crystal optical compensation film, a display front plate and the like.
  • the resin composition of the present invention is also used in the fields of optical communication systems, optical switching systems, and optical measurement systems, such as waveguides, lenses, optical fibers, optical fiber substrates, coating materials, LED lenses, and lens covers. It can also be used.
  • Synthesis example 1 405 g of 1,2-propylene glycol (PG) as the glycol component, 79 g of adipic acid (AA) as the dicarboxylic acid, 240 g of phthalic anhydride (PA), 586 g of benzoic acid (BzA) as the monocarboxylic acid, and tetraisopropyl titanate as the esterification catalyst (TIPT) 0.08 g was charged into a two-liter four-necked flask equipped with a thermometer, stirrer, and reflux condenser, and the temperature was raised stepwise to 230 ° C. while stirring under a nitrogen stream. The reaction was continued at 230 ° C.
  • PG 1,2-propylene glycol
  • AA adipic acid
  • PA phthalic anhydride
  • BzA benzoic acid
  • TIPT tetraisopropyl titanate
  • FIG. 1 shows a chart obtained by GPC measurement.
  • Synthesis example 2 The ester resin (1-2) was obtained by synthesizing in the same manner as in Synthesis Example 1 using PG 405 g as the glycol component, 320 g PA as the dicarboxylic acid component, and 586 g BzA and 0.08 g TIPT as the monocarboxylic acid component. The properties are also shown in Table 1.
  • Synthesis example 3 The ester resin (1-3) was synthesized by synthesizing in the same manner as in Synthesis Example 1 using 330 g of ethylene glycol (EG) as the glycol component, AA 79 g, PA 240 g as the dicarboxylic acid component, and BzA 586 g and TIPT 0.08 g as the monocarboxylic acid component. Obtained. The properties are also shown in Table 1.
  • EG ethylene glycol
  • Synthesis example 5 By synthesizing in the same manner as in Synthesis Example 1 using 479 g of 2-methyl-1,3-propanediol (2MPD) as the glycol component, 79 Ag and PA 240 g as the dicarboxylic acid component, 586 g of BzA and 0.08 g of TIPT as the monocarboxylic acid component, An ester resin (1-5) was obtained. The properties are also shown in Table 1.
  • 2MPD 2-methyl-1,3-propanediol
  • Synthesis Example 6 The ester resin (1-6) was obtained by synthesizing in the same manner as in Synthesis Example 1 using PG 341 g as the glycol component, AA 53 g and PA 160 g as the dicarboxylic acid component, and BzA 586 g and TIPT 0.08 g as the monocarboxylic acid component. The properties are shown in Table 1.
  • Synthetic Example 7 Thin Film Distilled Product
  • the ester resin (1-1) obtained in Synthetic Example 1 was distilled using a thin film distillation apparatus (thin film molecular distillation apparatus AS-MDA-65FJ-S manufactured by Asahi Seisakusho) Distillation was performed under the conditions of a temperature of 180 ° C., a feed tube temperature of 100 ° C., a condenser temperature of 40 ° C., and a degree of vacuum of 0.012 Pa to obtain an ester resin (1′-1).
  • the number average molecular weight (Mn) of the ester resin (1′-1) was 515, and the content of the ester resin having a molecular weight smaller than 350 was 2%.
  • Synthesis Example 9 Diester compound (II-2) The ester compound (II-2) was obtained by synthesizing in the same manner as in Synthesis Example 8 using 730 g of 1,3-propanediol, 1954 g of benzoic acid, and 0.2 g of tetraisopropyl titanate.
  • Synthesis Example 10 Diester compound (II-3) The ester compound (II-3) was obtained by synthesis in the same manner as in Synthesis Example 8 using 1000 g of 1,5-pentanediol, 1954 g of benzoic acid, and 0.2 g of tetraisopropyl titanate.
  • Synthesis Example 11 Diester compound (II-4) The ester compound (II-4) was obtained by synthesizing in the same manner as in Synthesis Example 8 using 572 g of diethylene glycol, 293 g of dipropylene glycol, 1930 g of benzoic acid, and 0.2 g of tetraisopropyl titanate.
  • Synthesis Example 12 Diester Compound (II-5) The ester compound (II-5) was obtained by synthesizing in the same manner as in Synthesis Example 8 using PG 648 g, dipropylene glycol 109 g, benzoic acid 1980 g, and tetraisopropyl titanate 0.2 g.
  • Synthesis Example 13 The ester resin (1′-2) was obtained by synthesizing in the same manner as in Synthesis Example 1 using PG 405 g as the glycol component, AA 158 g and PA 160 g as the dicarboxylic acid component, and BzA 586 g and TIPT 0.08 g as the monocarboxylic acid component. The properties are also shown in Table 1.
  • Synthesis Example 14 The ester resin (1′-3) was obtained by synthesizing in the same manner as in Synthesis Example 1 using PG 405 g as the glycol component, AA 237 g and PA 80 g as the dicarboxylic acid component, and BzA 586 g and TIPT 0.08 g as the monocarboxylic acid component. The properties are also shown in Table 1.
  • Synthesis Example 15 The ester resin (1′-4) was obtained by synthesizing in the same manner as in Synthesis Example 1 using PG 405 g as the glycol component, 316 g AA as the dicarboxylic acid component, and BzA 586 g and TIPT 0.08 g as the monocarboxylic acid component. The properties are also shown in Table 1.
  • Synthesis Example 16 The ester resin (1′-5) was obtained by synthesizing in the same manner as in Synthesis Example 1 using 730 g of PG as the glycol component, 1954 g of BzA as the monocarboxylic acid component, and 0.2 g of TIPT. The properties are also shown in Table 1.
  • Synthesis Example 17 The ester resin (1′-6) was obtained by synthesizing in the same manner as in Synthesis Example 1 using PG 426 g as the glycol component, AA 146 g and PA 444 g as the dicarboxylic acid component, and BzA 195 g and TIPT 0.08 g as the monocarboxylic acid component. The properties are also shown in Table 1.
  • Example 1 The ester resin (1′-1) obtained in Synthesis Example 7 and the diester compound (II-1) obtained in Synthesis Example 8 are mixed so that the content of the diester compound (II-1) is 20% by mass. By mixing, an ester resin (1-7) was obtained. The ester resin (1-7) after mixing was measured by GPC. The results are shown in Table 2.
  • Example 2 ester resins (1-8) to (1-17) were obtained in the same manner as in Example 1, except that the diester compound used and the content thereof were changed as shown in Table 2. The properties are also shown in Table 2.
  • Example 12 (Preparation of cellulose ester resin composition and optical film of the present invention) 100 parts by weight of triacetyl cellulose resin ("LT-35" manufactured by Daicel Corporation) and 10 parts by weight of ester resin (1-1) were added to a mixed solvent consisting of 810 parts by weight of methylene chloride and 90 parts by weight of methanol and dissolved.
  • the dope liquid which is the cellulose ester resin composition of the present invention was prepared. This dope solution is cast on a glass plate to a thickness of 0.8 mm and 0.5 mm, dried at room temperature for 16 hours, then dried at 50 ° C. for 30 minutes and further at 120 ° C. for 30 minutes.
  • the optical film of the present invention was obtained. The thickness of the obtained film was 60 ⁇ m and 40 ⁇ m.
  • Examples 13 to 28 An optical film was obtained in the same manner as in Example 1 except that ester resins (1-2) to (1-17) were used in place of ester resin (1-1).
  • Comparative Example 1 100 parts by mass of a triacetyl cellulose resin (“LT-35” manufactured by Daicel Corporation) was added to a mixed solvent consisting of 810 parts by mass of methylene chloride and 90 parts by mass of methanol to prepare a dope solution.
  • This dope solution is cast on a glass plate to a thickness of 0.8 mm and 0.5 mm, dried at room temperature for 16 hours, then dried at 50 ° C. for 30 minutes and further at 120 ° C. for 30 minutes.
  • An optical film was obtained. The thickness of the obtained film was 60 ⁇ m and 40 ⁇ m.
  • Comparative Examples 2-7 An optical film was obtained in the same manner as in Example 12 except that ester resins (1′-1) to (1′-6) were used in place of the ester resin (1-1).
  • the elastic modulus, moisture permeability, and HAZE of the optical film obtained above were evaluated by the following methods.
  • a film with a film thickness of 40 ⁇ m was used, and for the other evaluations, a film with a film thickness of 60 ⁇ m was used.
  • the obtained results are shown in Table 3.
  • Measurement was performed according to the method described in JIS Z 0208.
  • the measurement conditions were a temperature of 40 ° C. and a relative humidity of 90%. It represents that it is excellent in moisture permeability resistance, so that the value obtained is small.
  • ⁇ Moist heat test> The film was exposed to an environment of 85 ° C. and a relative humidity of 90% (in a moist heat environment) for 120 hours.
  • HAZE> The HAZE value was measured according to JIS K 7105 using a turbidimeter (“NDH 5000” manufactured by Nippon Denshoku Industries Co., Ltd.). The closer the value obtained is to 0%, the more transparent it is.
  • HAZE value is less than 0.6%.
  • HAZE value is 0.6% or more and less than 0.7.
  • X HAZE value is 0.7% or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polarising Elements (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

フィルム状に加工した際の強度を高め、耐透湿性を向上させることができ、光学用樹脂の反可塑化剤として使用できるエステル樹脂、樹脂組成物と、該樹脂組成物を用いて得られる光学フィルム及び液晶表示装置を提供する。具体的には B-(G-A)n-G-B 〔Bはモノカルボン酸残基、Gはアルキレングリコール残基、オキシアルキレングリコール残基又はアリールグリコール残基、Aはアルキレンジカルボン残基(A1)又はアリールジカルボン酸残基(A2)で、(A1+A2)における(A2)の含有率が70~100モル%、nは繰り返し数〕で表されるエステル樹脂であり、GPC測定における面積比率でn=0成分が10~70%、且つnが3以上の成分の面積%とn=0成分の面積%との比(n≧3)/(n=0)が3以下であるエステル樹脂、これを含むセルロースエステル樹脂組成物、該組成物を含む光学フィルム及び液晶表示装置。

Description

エステル樹脂、反可塑化剤、セルロースエステル樹脂組成物、光学フィルム及び液晶表示装置
 本発明は、光学材料用樹脂の反可塑化剤として好適なエステル樹脂、及びこれを含むセルロースエステル樹脂と、該樹脂組成物を用いて得られる光学フィルム及びこれを用いた液晶表示装置に関する。
 近年、液晶ディスプレイは薄膜化が進んでおり、偏光板保護フィルムも従来の80μmから40μm~25μmへと薄膜化が進んでいる。偏光板の保護フィルムには偏光子との張り合わせが容易である観点より、従来トリアセチルセルロース樹脂(以下、TAC)が多く使用されてきた。
 しかしながらTACは硬脆いため、膜にしたときに強度が不足し、破損が起こりやすいといった問題が生じている。また、TACは透湿性が高く、吸湿による寸法変化が起こりやすいため、添加剤により吸湿を抑制する必要があり、種々添加剤が提供されてきた(例えば、特許文献1参照)。
 通常、透湿を抑制するために添加剤を添加すると、同時に樹脂の可塑化が起こるため、得られるフィルムの強度と耐透湿性を両立させることが困難である。したがって、透湿抑制と弾性率の向上を両立できる添加剤(=反可塑化剤)の開発が求められている。
特開2013-151699号公報
 上記実情に鑑み、本発明が解決しようとする課題は、特にフィルム状に加工した際の強度を高めるとともに、耐透湿性を向上させることができ、光学用樹脂に対して反可塑化剤として好適に使用できるエステル樹脂、これを含む樹脂組成物と、該樹脂組成物を用いて得られる光学フィルム及びこれを用いた液晶表示装置を提供することにある。
 本発明者らは鋭意検討を行った結果、エステル樹脂における繰り返す数が異なる成分の組成比を制御することにより、上記課題が解決できることを見出し、本発明を完成するに至った。
 即ち、本発明は、下記一般式(1)
 B-(G-A)-G-B (1)
〔式(1)中、Bはアリールモノカルボン酸残基又は脂肪族モノカルボン酸残基であり、Gはアルキレングリコール残基、オキシアルキレングリコール残基又はアリールグリコール残基であり、Aはアルキレンジカルボン残基(A1)又はアリールジカルボン酸残基(A2)であって、アルキレンジカルボン酸残基(A1)とアリールジカルボン酸残基(A2)の合計(A1+A2)におけるアリールジカルボン酸残基(A2)の含有率が70~100モル%であり、nは繰り返し数であり、繰り返しごとにG、Aは同一でも異なっていてもよく、また複数あるB、Gは同一でも異なっていてもよい。〕
で表されるエステル樹脂であり、
ゲルパーミエーションクロマトグラフィー(GPC)測定における面積比率で前記一般式(1)中のn=0成分が10~70%であり、且つnが3以上の成分の面積%とn=0成分の面積%との比(n≧3)/(n=0)が3以下であることを特徴とするエステル樹脂とこれを含む樹脂組成物、並びに該組成物を用いて得られる光学用フィルム、及び当該光学用フィルムを用いた液晶表示装置を提供するものである。
 本発明によれば、フィルム状に加工した際の強度と耐透湿性とのバランスに優れ、光学用樹脂に対する反可塑化剤として好適に用いることができるエステル樹脂を提供することができる。また、当該特定のエステル樹脂を用いることにより、特にセルロースエステル樹脂を含む光学フィルムにおいて、弾性率の向上と透湿抑制の両立が可能であり、液晶表示装置に用いる光学フィルムとして好適に用いることができる。
図1は実施例1で得られたエステル樹脂(1-1)のGPCチャートである。
 本発明のエステル樹脂は下記一般式(1)
 B-(G-A)-G-B (1)
〔式(1)中、Bはアリールモノカルボン酸残基又は脂肪族モノカルボン酸残基であり、Gはアルキレングリコール残基、オキシアルキレングリコール残基又はアリールグリコール残基であり、Aはアルキレンジカルボン残基(A1)又はアリールジカルボン酸残基(A2)であって、アルキレンジカルボン酸残基(A1)とアリールジカルボン酸残基(A2)の合計(A1+A2)におけるアリールジカルボン酸残基(A2)の含有率が70~100モル%であり、nは繰り返し数であり、繰り返しごとにG、Aは同一でも異なっていてもよく、また複数あるB、Gは同一でも異なっていてもよい。〕
で表されるエステル樹脂であり、
GPC測定における面積比率で前記一般式(1)中のn=0成分が10~70%であり、且つnが3以上の成分の面積%とn=0成分の面積%との比(n≧3)/(n=0)が3以下であることを特徴とする。
 前記一般式(1)中のBは、アリールモノカルボン酸残基または脂肪族モノカルボン酸残基である。ここで、「カルボン酸残基」とは、カルボキシ基中の-OH以外の基を示す。前記アリールモノカルボン酸残基としては、炭素原子数6~12のアリールモノカルボン酸残基であることが、原料入手容易性とエステル化反応の容易性、並びに後述するセルロースエステル樹脂と混合した際に、耐透湿性と弾性率の向上のバランスがとりやすい観点から好ましく、例えば、安息香酸、ジメチル安息香酸、トリメチル安息香酸、テトラメチル安息香酸、エチル安息香酸、プロピル安息香酸、ブチル安息香酸、クミン酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、エトキシ安息香酸、プロポキシ安息香酸、アニス酸、ナフトエ酸等が挙げられ、単独でも2種以上を併有していてもよい。特に、本発明の効果をより発現しやすい観点より、安息香酸、パラトルイル酸、ジメチル安息香酸の残基であることが好ましく、安息香酸の残基であることがより好ましい。尚ここで炭素原子数はカルボキシ基中の炭素原子は含まないものとする。また、置換基を有していてもよい、芳香族性を有するニコチン酸、フロ酸等の残基であってもよい。
 前記脂肪族モノカルボン酸残基としては、炭素原子数1~8の脂肪族モノカルボン酸残基であることが原料入手容易性とエステル化反応の容易性、並びに後述するセルロースエステル樹脂と混合した際に、耐透湿性と弾性率の向上のバランスがとりやすい観点から好ましく、例えば、酢酸、プロピオン酸、ブタン酸、ヘキサン酸、オクタン酸、オクチル酸等の残基が挙げられ、単独でも2種以上を併有していてもよく、特に酢酸であることが好ましい。尚ここで炭素原子数はカルボキシ基中の炭素原子は含まないものとする。
 前記一般式(1)中のGはアルキレングリコール残基、オキシアルキレングリコール残基又はアリールグリコール残基である。グリコール残基とは、水酸基から水素原子を除去した後の基を示す。
 前記アルキレングリコール残基としては、炭素原子数2~12のアルキレングリコール残基であることが、本発明の効果をより発現しやすい観点から好ましく、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロ-ルペンタン)、2-n-ブチル-2-エチル-1,3-プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2,4-トリメチル1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール等の残基が挙げられ、単独でも2種以上を併有していても良い。これらの中でも、後述するセルロースエステル樹脂と混合した際の相溶性により優れるエステル樹脂である観点から、OH基間の分岐を含まない炭素原子数が3以下であるものが好ましく、なかでもエチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオールの残基であることが好ましく、エチレングリコール、1,2-プロピレングリコールの残基であることがより好ましい。
 前記オキシアルキレングリコール残基としては、炭素原子数4~12のオキシアルキレングリコール残基であることが、本発明の効果をより発現しやすい観点から好ましく、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等の残基が挙げられ、単独でも、2種以上を併有していても良い。
 前記アリールグリコール残基としては、炭素数6~18のアリールグリコール残基であることが、本発明の効果をより発現しやすい観点から好ましく、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールAのアルキレンオキシド付加物、ビスフェノールF、ビスフェノールFのアルキレンオキシド付加物、ビフェノール、ビフェノールのアルキレンオキシド付加物等の残基が挙げられ、単独でも、2種以上を併有していても良い。
 また、前記一般式(1)中のAはアルキレンジカルボン酸残基(A1)又はアリールジカルボン酸残基(A2)である。ここで、ジカルボン酸残基とは、カルボキシ基中の-OHを除いた基を言う。
 前記アルキレンジカルボン酸残基(A1)としては、炭素原子数2~12のアルキレンジカルボン酸残基であることが、本発明の効果をより発現しやすい観点から好ましく、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、マレイン酸、フマル酸、1,2-ジカルボキシシクロヘキサン、1,2-ジカルボキシシクロヘキセン等の残基が挙げられ、単独でも、2種以上を併有していてもよい。これらの中でも、より耐透湿性に優れる光学フィルムが得られることから、コハク酸、アジピン酸、1,2-ジカルボキシシクロヘキサンの残基であることが好ましく、アジピン酸の残基が最も好ましい。
 前記アリールジカルボン酸残基(A2)としては、例えば、フタル酸、テレフタル酸、イソフタル酸、1,4-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸等の残基が挙げられ、単独でも、2種以上を併有していてもよい。これらの中でも、より強度が高い光学フィルムが得られることから、フタル酸、テレフタル酸、イソフタル酸の残基であることが好ましく、フタル酸の残基が最も好ましい。
 前記一般式(1)中のAにおけるアルキレンジカルボン酸残基(A1)とアリールジカルボン酸残基(A2)の合計モル数(A1+A2)におけるアリールジカルボン酸残基(A2)の含有率は、本発明の効果である強度と耐透湿性の両立のためには、70~100モル%であることを必須とし、75~100モル%の範囲であることが好ましい。
 本発明では、前記一般式(1)で表されるエステル樹脂であって、B,G,Aが同一のものからなり、n、すなわち繰り返し数のみが異なる化合物の混合物であっても、あるいは、一般式(1)中のB,G,Aおよびnがそれぞれ異なる化合物の混合物であってもよい。本発明では、後述する光学材料用樹脂、特にはセルロースエステル樹脂と混合して得られる光学フィルムにおいて、耐透湿性と弾性率の向上を兼備させるために、一般式(1)中のアルキレンジカルボン酸残基(A1)とアリールジカルボン酸残基(A2)の合計(A1+A2)におけるアリールジカルボン酸残基(A2)の含有率が70~100モル%にあり、且つGPC測定における面積比率で前記一般式(1)中のn=0成分が10~70%であり、且つnが3以上の成分の面積%とn=0成分の面積%との比(n≧3)/(n=0)が3以下であることを必須とする。
 このような、n=0成分、いわゆるジエステル化合物を特定含有率とすることにより、光学材料用樹脂、特にはセルロースエステル樹脂の隙間に好適に配置され、その結果として透湿性を抑制する効果が発現されるとともに、nが3以上の成分の含有率を比較的少なくすることで、光学材料用樹脂との相溶性を確保し、光学フィルムとして使用できる透明性を維持することができる。
 これらの効果がより一層発現される観点から、GPC測定における面積比率で前記一般式(1)中のn=0成分が20~50%であることが好ましく、また、nが3以上の成分の面積%とn=0成分の面積%との比(n≧3)/(n=0)が0.2~2の範囲であることが好ましい。n=0成分が過剰に多く含まれる場合は、揮発性が高くなることにより、製造工程における生産ラインの汚染が発生しやすくなる。また、高分子量成分が過剰に多く含まれると、得られる光学フィルムの透明性が損なわれることが起こり、また耐透湿性にも影響が出ることがある。
 尚、本発明でのGPC測定は下記条件で実施したものである。
 [GPC測定条件]
 測定装置:東ソー株式会社製高速GPC装置「HLC-8320GPC」
 カラム:東ソー株式会社製「TSK GURDCOLUMN SuperHZ-L」+東ソー株式会社製「TSK gel SuperHZM-M」+東ソー株式会社製「TSK gel SuperHZM-M」+東ソー株式会社製「TSK gel SuperHZ-2000」+東ソー株式会社製「TSK gel SuperHZ-2000」
 検出器:RI(示差屈折計)
 データ処理:東ソー株式会社製「EcoSEC Data Analysis バージョン1.07」
 カラム温度:40℃
 展開溶媒:テトラヒドロフラン
 流速:0.35mL/分
 測定試料:試料7.5mgを10mlのテトラヒドロフランに溶解し、得られた溶液をマイクロフィルターでろ過したものを測定試料とした。
 試料注入量:20μl
 標準試料:前記「HLC-8320GPC」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
 (単分散ポリスチレン)
 東ソー株式会社製「A-300」
 東ソー株式会社製「A-500」
 東ソー株式会社製「A-1000」
 東ソー株式会社製「A-2500」
 東ソー株式会社製「A-5000」
 東ソー株式会社製「F-1」
 東ソー株式会社製「F-2」
 東ソー株式会社製「F-4」
 東ソー株式会社製「F-10」
 東ソー株式会社製「F-20」
 東ソー株式会社製「F-40」
 東ソー株式会社製「F-80」
 東ソー株式会社製「F-128」
 東ソー株式会社製「F-288」
 (GPC解析条件)
 本発明のエステル樹脂におけるn=0成分とnが3以上の成分の面積%は、次のようにして算出することができる。エステル樹脂のGPC測定を行って、検出されたピークに対応する各成分のポリスチレン換算分子量を求め、検出されたピーク面積の比から検出されたピークに対応する各成分の含有割合(面積分率)を算出した。
 本発明の効果がより一層発現される観点から、一般式(1)において、Bが安息香酸、酢酸の残基、Gがエチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオールの残基、A1がコハク酸、アジピン酸、1,2-ジカルボキシシクロヘキサンの残基、A2がフタル酸、イソフタル酸、テレフタル酸の残基であることが好ましく、特に、Bが安息香酸の残基であり、Gがエチレングリコール、1,2-プロピレングリコールの残基であり、A1がアジピン酸残基であり、A2がフタル酸の残基であることが最も好ましい。
 また本発明のエステル樹脂としては、その数平均分子量は相溶性とフィルム物性を両立させる観点から、350~800の範囲であることが好ましく、特に350~600の範囲であることが好ましい。また、前記一般式(1)中の繰り返し数nの平均値としては、同じく相溶性とフィルム物性を両立させる観点から、0.2~3の範囲であることが好ましい。尚、この数平均分子量及びnの平均値も前記GPC測定にて測定した値である。
 更に本発明のエステル樹脂の酸価としては、光学材料用樹脂との相溶性がより良好である観点から5以下であることが好ましく、1以下がより好ましい。また、同様の観点より、エステル樹脂の水酸基価は50以下であることが好ましく、20以下であることがより好ましい。
 本発明のエステル樹脂は、例えば、前記の原料を、必要に応じてエステル化触媒の存在下で、例えば、180~250℃の温度範囲内で10~25時間、エステル化反応させることにより製造することができる。尚、エステル化反応の温度、時間などの条件は特に限定せず、適宜設定してよい。モノカルボン酸やジカルボン酸については、原料として酸そのものを使用してもよく、あるいは、そのエステル化物、酸塩化物、ジカルボン酸の無水物等を原料としてもよい。
 前記エステル化触媒としては、例えば、テトライソプロピルチタネート、テトラブチルチタネート等のチタン系触媒;ジブチル錫オキサイド等のスズ系触媒;p-トルエンスルホン酸等の有機スルホン酸系触媒などが挙げられる。
 前記エステル化触媒の使用量は、適宜設定すればよいが、通常、原料の全量100質量部に対して、0.001~0.1質量部の範囲で使用することが好ましい。
 本発明のエステル樹脂の性状は、その数平均分子量や原料の組み合わせなどの要因により異なるが、通常、常温にて液体、固体、ペースト状などである。
 より具体的なエステル樹脂の製造方法としては、前述のアルキレングリコール、オキシアルキレングリコール又はアリールグリコールと、ジカルボン酸とを用いて得られる末端に水酸基を有する化合物と、モノカルボン酸とを反応させる方法が挙げられる。ここで、前記アルキレングリコール、オキシアルキレングリコール又はアリールグリコールとジカルボン酸とモノカルボン酸とは一括で反応系に仕込み、これらを反応させてもよく、あるいは、アルキレングリコール、オキシアルキレングリコール又はアリールグリコールとジカルボン酸とを用いて得られる末端に水酸基を有する化合物を得た後、更に、モノカルボン酸を反応系に仕込む、逐次反応であってもよい。
 前記で得られたエステル樹脂を前記のGPC測定によって、nの繰り返しごとの組成を求め、本発明で規定するものが得られていればそのまま本発明のエステル樹脂として使用してもよく、あるいは、例えば、薄膜蒸留装置による留去法、カラム吸着法、溶媒分離抽出法などの方法により、n=0成分の含有率、高分子量成分の含有率を調整してもよい。特に、薄膜蒸留装置によってn=0成分の含有率をGPC測定による面積比率で8%以下まで留去してから、別で用意したジエステル化合物(II)をn=0成分として添加して、GPC測定における面積比率で前記一般式(1)中のn=0成分が10~70%であり、且つnが3以上の成分の面積%とn=0成分の面積%との比(n≧3)/(n=0)が3以下であることを満たすようなエステル樹脂とする方法であってもよい。この時エステル樹脂に用いた原料と、別で用意したジエステル化合物の原料とは同一であっても、異なっていてもよい。
 前記製法を採用する場合に、後から添加するジエステル化合物(II)は、下記一般式(2)で表されるものが好ましい。
 B2-G2-B2    (2)
(式中、B2はアリールモノカルボン酸残基または脂肪族モノカルボン酸残基であり、G2はアルキレングリコール残基、オキシアルキレングリコール残基又はアリールグリコール残基であり、複数あるB2は同一でも異なっていてもよい。)
 前記一般式(2)中のB2は、アリールモノカルボン酸残基又は脂肪族モノカルボン酸残基である。ここで、「カルボン酸残基」とは、カルボキシ基中の-OH以外の基を示す。前記アリールモノカルボン酸残基としては、炭素原子数6~12のアリールモノカルボン酸残基であることが、原料入手容易性とエステル化反応の容易性、並びに後述するセルロースエステル樹脂と混合した際に、耐透湿性と弾性率の向上のバランスがとりやすい観点から好ましく、例えば、安息香酸、ジメチル安息香酸、トリメチル安息香酸、テトラメチル安息香酸、エチル安息香酸、プロピル安息香酸、ブチル安息香酸、クミン酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、エトキシ安息香酸、プロポキシ安息香酸、アニス酸、ナフトエ酸等が挙げられ、単独でも2種以上を併有していてもよい。特に、本発明の効果をより発現しやすい観点より、安息香酸、パラトルイル酸、ジメチル安息香酸の残基であることが好ましく、安息香酸の残基であることがより好ましい。尚ここで炭素原子数はカルボキシ基中の炭素原子は含まないものとする。また、置換基を有していてもよい、芳香族性を有するニコチン酸、フロ酸等の残基であってもよい。
 前記脂肪族モノカルボン酸残基としては、炭素原子数1~8の脂肪族モノカルボン酸残基であることが原料入手容易性とエステル化反応の容易性、並びに後述するセルロースエステル樹脂と混合した際に、耐透湿性と弾性率の向上のバランスがとりやすい観点から好ましく、例えば、酢酸、プロピオン酸、ブタン酸、ヘキサン酸、オクタン酸、オクチル酸等の残基が挙げられ、単独でも2種以上を併有していてもよく、特に酢酸の残基であることが好ましい。尚ここで炭素原子数はカルボキシ基中の炭素原子は含まないものとする。
 前記一般式(1)中のGはアルキレングリコール残基、オキシアルキレングリコール残基又はアリールグリコール残基である。グリコール残基とは、水酸基から水素原子を除去した後の基を示す。
 前記アルキレングリコール残基としては、炭素原子数2~12のアルキレングリコール残基であることが、本発明の効果をより発現しやすい観点から好ましく、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロ-ルペンタン)、2-n-ブチル-2-エチル-1,3-プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2,4-トリメチル1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール等の残基が挙げられ、単独でも2種以上を併有していても良い。これらの中でも、フィルムの強度を向上させる観点から、1,2-プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオールの残基であることが好ましい。
 前記オキシアルキレングリコール残基としては、炭素原子数4~12のオキシアルキレングリコール残基であることが、本発明の効果をより発現しやすい観点から好ましく、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等の残基が挙げられ、単独でも、2種以上を併有していても良い。
 前記アリールグリコール残基としては、炭素数6~18のアリールグリコール残基であることが、本発明の効果をより発現しやすい観点から好ましく、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールAのアルキレンオキシド付加物、ビスフェノールF、ビスフェノールFのアルキレンオキシド付加物、ビフェノール、ビフェノールのアルキレンオキシド付加物等の残基が挙げられ、単独でも、2種以上を併有していても良い。
 本発明の効果がより一層発現される観点から、一般式(2)において、B2が安息香酸、酢酸の残基、Gが1,2-プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、ジエチレングリコール、ジプロピレングリコールの残基であることが好ましい。
 前記ジエステル化合物(II)は、合成したものであっても、市販されているものであってもよく、合成する際には、前述のエステル化反応と同様の手法を用いて製造し、前記一般式(1)におけるn=0の成分を蒸留やカラム等の操作を用いて単離する方法等、公知の手法にて得ることができ、その方法として限定されるものではない。また、n=0成分以外の副成分が含まれていてもよく、エステル樹脂(I)と均一に混合したあとのGPC測定において、本発明で規定する条件を満たすことができるものであれば、ジエステル化合物(II)として、異なる原料からなる複数のものを使用してもよい。
 このような方法等で得られる本発明のエステル樹脂は、これを光学材料用樹脂に配合することにより、得られるフィルムの耐透湿性と弾性率のバランスに優れたものとすることができ、いわゆる反可塑化剤として用いることができるものであり、特に光学フィルムとして好適に用いることができる。
 前記光学材料用樹脂としては、透明性の高いものであって、且つフィルム状に加工できるものであれば、特に限定されるものではなく、例えば、(メタ)アクリル樹脂、環状オレフィン系樹脂、ポリカーボネート樹脂、セルロースエステル樹脂等が挙げられる。特に本発明の効果がより一層奏される観点から、セルロースエステル樹脂を用いることが好ましい。
 光学材料用樹脂に対する本発明のエステル樹脂の配合量は、目的とする性能(耐透湿性、弾性率等)に応じて決定すればよく、例えば、光学材料用樹脂100質量部に対して0.1~50質量部の範囲であり、1~30質量部の範囲であることが好ましく、特に5~20質量部の範囲であることがより好ましい。
 前記セルロースエステル樹脂としては、例えば、綿花リンター、木材パルプ、ケナフ等から得られるセルロースの有する水酸基の一部又は全部がエステル化されたものなどが例示できる。
 前記セルロースエステル樹脂としては、例えば、セルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート、硝酸セルロース等が挙げられ、偏光板用保護フィルムとして使用する場合には、セルロースアセテートを用いることが、機械的物性及び透明性に優れたフィルムを得ることができるので、好ましい。これらセルロースエステル樹脂は、単独でも2種以上を併用してもよい。
 前記セルロースアセテートとしては、重合度が250~400の範囲であることが好ましく、且つ、酢化度が54.0~62.5質量%の範囲であることが好ましく、58.0~62.5質量%の範囲であることがより好ましい。前記セルロースアセテートの重合度と酢化度がかかる範囲であれば、優れた機械的物性を有するフィルムを得ることができる。本発明では、所謂セルローストリアセテートを使用することがより好ましい。尚、本発明でいう酢化度とは、セルロースアセテートの全量に対する、該セルロースアセテートをケン化することによって生成する酢酸の質量割合である。
 前記セルロースアセテートの数平均分子量は、70,000~300,000の範囲であることが好ましく、80,000~200,000の範囲であることがより好ましい。前記セルロースアセテートの数平均分子量がこの範囲であると、優れた機械的物性を有するフィルムを容易に得ることができる。
 本発明における光学フィルムは、本発明のエステル樹脂とセルロースエステル樹脂を含むセルロースエステル樹脂組成物を用いるものであり、必要に応じてその他の各種添加剤等を含有してなる樹脂組成物を用いてもよい。
 本発明の光学フィルムを得るには、例えば、押し出し成形、キャスト成形等の手法が用いられる。具体的には、例えば、Tダイ、円形ダイ等が装着された押出機等を用いて、未延伸状態の光学フィルムを押し出し成形することができる。押し出し成形により本発明の光学フィルムを得る場合は、事前に前記エステル樹脂、セルロースエステル樹脂、その他添加剤等を溶融混錬して得られる樹脂組成物を用いることもできれば、押し出し成形時に溶融混錬し、そのまま押し出し成形することもできる。
 前記添加剤としては、例えば、本発明のエステル樹脂以外のその他の改質剤、熱可塑性樹脂、紫外線吸収剤、マット剤、劣化防止剤(例えば、酸化防止剤、過酸化物分解剤、ラジカル禁止剤、金属不活性化剤、酸捕獲剤等)、染料などが挙げられる。
 前記その他の改質剤としては、本発明で規定するエステル樹脂以外のエステル樹脂や、トリフェニルホスフェート(TPP)、トリクレジルホスフェート、クレジルジフェニルホスフェート等のリン酸エステル、ジメチルフタレート、ジエチルフタレート、ジブチルフタレート、ジ-2-エチルヘキシルフタレート等のフタル酸エステル、エチルフタリルエチルグリコレート、ブチルフタリルブチルグリコレート、トリメチロールプロパントリベンゾエート、ペンタエリスリトールテトラアセテート、アセチルクエン酸トリブチル等を、本発明の効果を損なわない範囲で使用することができる。
 前記熱可塑性樹脂としては、特に限定しないが、例えば、本発明のエステル樹脂以外のポリエステル樹脂、ポリエステルエーテル樹脂、ポリウレタン樹脂、エポキシ樹脂、トルエンスルホンアミド樹脂等が挙げられる。
 前記紫外線吸収剤としては、特に限定しないが、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等が挙げられる。前記紫外線吸収剤は、前記セルロースエステル樹脂100質量部に対して、0.01~2質量部の範囲で用いることが好ましい。
 前記マット剤としては、例えば、酸化珪素、酸化チタン、酸化アルミニウム、炭酸カルシウム、珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム、リン酸カルシウム、カオリン、タルク等が挙げられる。前記マット剤は、前記セルロースエステル樹脂100質量部に対して、0.1~0.3質量部の範囲で用いることが好ましい。
 前記染料としては、本発明の目的を阻害しない範囲であれば、種類や配合量など特に限定しない。
 また、前記光学フィルムは、前記成形方法の他に、例えば、前記セルロースエステル樹脂組成物を有機溶剤中に溶解して得られる樹脂溶液を、金属支持体上に流延させ、次いで、前記有機溶剤を留去し乾燥させる、いわゆる溶液流延法(ソルベントキャスト法)で成形することによって得ることもできる。
 前記溶液流延法によれば、成形途中でのフィルム中における前記セルロースエステル樹脂の配向を抑制することができるため、得られるフィルムは実質的に光学等方性を示すことができる。前記光学等方性を示すフィルムは、例えば液晶ディスプレイなどの光学材料に使用することができ、中でも偏光板用保護フィルムに有用である。また、前記方法によって得られたフィルムは、その表面に凹凸が形成されにくく、表面平滑性にも優れる。
 前記溶液流延法は、一般に、前記セルロースエステル樹脂組成物を有機溶剤中に溶解させ、得られた樹脂溶液を金属支持体上に流延させる第1工程と、流延させた前記樹脂溶液中に含まれる有機溶剤を留去し乾燥させてフィルムを形成する第2工程、それに続く、金属支持体上に形成されたフィルムを金属支持体から剥離し加熱乾燥させる第3工程からなる。
 前記第1工程で使用する金属支持体としては、無端ベルト状又はドラム状の金属製のものなどを例示でき、例えば、ステンレス製でその表面が鏡面仕上げの施されたものを使用することができる。
 前記金属支持体上に樹脂溶液を流延させる際には、得られるフィルムに異物が混入することを防止するために、フィルターで濾過した樹脂溶液を使用することが好ましい。
 前記第2工程の乾燥方法としては、特に限定しないが、例えば30~50℃の温度範囲の風を前記金属支持体の上面及び/又は下面に当てることで、流延した前記樹脂溶液中に含まれる有機溶剤の50~80質量%を蒸発させ、前記金属支持体上にフィルムを形成させる方法が挙げられる。
 次いで、前記第3工程は、前記第2工程で形成されたフィルムを金属支持体上から剥離し、前記第2工程よりも高い温度条件下で加熱乾燥させる工程である。前記加熱乾燥方法としては、例えば100~160℃の温度条件にて段階的に温度を上昇させる方法が、良好な寸法安定性を得ることができるため、好ましい。前記温度条件にて加熱乾燥することにより、前記第2工程後のフィルム中に残存する有機溶剤をほぼ完全に除去することができる。
 尚、前記第1工程~第3工程で、有機溶媒は回収し再使用することも可能である。
 前記樹脂組成物を有機溶剤に混合させ溶解する際に使用できる有機溶剤としては、それらを溶解可能なものであれば特に限定しないが、例えばセルロースエステルとしてセルロースアセテートを使用する場合は、良溶媒として、例えばメチレンクロライド等の有機ハロゲン化合物やジオキソラン類を使用することが好ましい。
 また、前記良溶媒と共に、例えばメタノール、エタノール、2-プロパノール、n-ブタノール、シクロヘキサン、シクロヘキサノン等の貧溶媒を併用することが、フィルムの生産効率を向上させるうえで好ましい。
 前記良溶媒と貧溶媒との混合割合は、良溶媒/貧溶媒=75/25~95/5質量比の範囲であることが好ましい。
 前記樹脂溶液中のセルロースエステル樹脂の濃度は、10~50質量%が好ましく、15~35質量%がより好ましい。
 本発明においては、例えば、前記の方法で得られる未延伸状態の光学フィルムを必要に応じて、機械的流れ方向に縦一軸延伸、機械的流れ方向に直行する方向に横一軸延伸することで延伸された光学フィルムを得ることができる。また、ロール延伸とテンター延伸の逐次2軸延伸法、テンター延伸による同時2軸延伸法、チューブラー延伸による2軸延伸法等によって延伸することにより2軸延伸された延伸フィルムを得ることができる。延伸倍率は少なくともどちらか一方向に0.1%以上1000%以下であることが好ましく、0.2%以上600%以下であることがさらに好ましく、0.3%以上300%以下であることがとりわけ好ましい。この範囲に設計することにより、複屈折、耐熱性、強度の観点で好ましい延伸された光学フィルムが得られる。
 本発明の光学フィルムは、耐透湿性、透明性に優れ、且つ弾性率に優れていることから、例えば、液晶表示装置の光学フィルムに使用できる。前記液晶表示装置の光学フィルムとしては、例えば、偏光板用保護フィルム、位相差フィルム、反射フィルム、視野角向上フィルム、防眩フィルム、無反射フィルム、帯電防止フィルム、カラーフィルター等が挙げられ、それらの中でも、偏光板用保護フィルムとして好ましく使用する事ができる。
 前記光学フィルムの膜厚は、20~120μmの範囲であることが好ましく、25~100μmの範囲であることがより好ましく、25~80μmの範囲であることが特に好ましい。前記光学フィルムを偏光板用保護フィルムとして用いる場合には、膜厚が25~80μmの範囲であれば、液晶表示装置の薄型化を図る際に好適であり、且つ充分なフィルム強度、Rth安定性、耐透湿性などの優れた性能を維持することができる。
 本発明の光学フィルムは、弾性率がエステル樹脂を配合しない場合よりも高くなることを特徴とする。一般的にセルロースエステル樹脂に対してはその加工性を高めることを目的として配合されるポリエステル樹脂は「可塑剤」と称されることもあるが、本発明のエステル樹脂は可塑化効果よりも光学材料用樹脂に強度を向上させることができる観点から、反可塑化剤として使用するものである点において、従来とは異なる性能を有するものである。
 また、前記偏光板用保護フィルムは、高温多湿下でのブリードを生ずることなく、所望のRthに調整することも可能であることから、用途に応じて様々な液晶表示方式に広範囲に使用することができる。
 前記液晶表示方式としては、例えばIPS(イン-プラン スイッチング:In-Plane Switching)、TN(ツイスティッド ネマチック:Twisted Nematic)、VA(バーティカリー アラインド:Vertically Aligned)、OCB(オプティカリー コンペンセートリー ベンド:Optically Compensatory Bend)等が例示できる。
 本発明に係る光学フィルムは、光学材料として、液晶表示装置、プラズマディスプレイ、有機ELディスプレイ、フィールドエミッションディスプレイ、リアプロジェクションテレビ等のディスプレイに用いられる偏光板保護フィルム、1/4波長板、1/2波長板、視野角制御フィルム、液晶光学補償フィルム等の位相差フィルム、ディスプレイ前面板等に好適に用いることができる。また、本発明の樹脂組成物は、その他にも、光通信システム、光交換システム、光計測システムの分野において、導波路、レンズ、光ファイバー、光ファイバーの基材、被覆材料、LEDのレンズ、レンズカバーなどにも用いることができる。
 以下、本発明を実施例に基づき更に具体的に説明する。例中の部及び%は断りがない限り質量基準である。
 合成例1
 グリコール成分として1,2-プロピレングリコール(PG)405g、ジカルボン酸としてアジピン酸(AA)79g、無水フタル酸(PA)240g、モノカルボン酸として安息香酸(BzA)586g及びエステル化触媒としてテトライソプロピルチタネート(TIPT)0.08gを、温度計、攪拌器、還流冷却器を付した内容積2リットルの四ツ口フラスコに仕込み、窒素気流下で攪拌しながら230℃まで段階的に昇温し、その後230℃で反応を継続させ、合計19時間脱水縮合反応させて反応物(酸価0.22、水酸基価16)を得た。この反応物であるエステル樹脂(1-1)の数平均分子量(Mn)は405であった。図1にGPC測定で得られたチャート図を示す。GPCチャートにおいてn=0成分の面積%は31%、nが3以上の成分の面積%は20%であった。
 合成例2
 グリコール成分としてPG405g、ジカルボン酸成分としてPA320g、モノカルボン酸成分としてBzA586g及びTIPT0.08gを用いて合成例1と同様にして合成することでエステル樹脂(1-2)を得た。その性状についても表1に示した。
 合成例3
 グリコール成分としてエチレングリコール(EG)330g、ジカルボン酸成分としてAA79g、PA240g、モノカルボン酸成分としてBzA586g及びTIPT0.08gを用いて合成例1と同様にして合成することでエステル樹脂(1-3)を得た。その性状についても表1に示した。
 合成例4
 グリコール成分として1,3-プロパンジオール(13PG)405g、ジカルボン酸成分としてAA79g、PA240g、モノカルボン酸成分としてBzA586g及びTIPT0.08gを用いて合成例1と同様にして合成することでエステル樹脂(1-4)を得た。その性状についても表1に示した。
 合成例5
 グリコール成分として2-メチル-1,3-プロパンジオール(2MPD)479g、ジカルボン酸成分としてAA79g、PA240g、モノカルボン酸成分としてBzA586g及びTIPT0.08gを用いて合成例1と同様にして合成することでエステル樹脂(1-5)を得た。その性状についても表1に示した。
 合成例6
 グリコール成分としてPG341g、ジカルボン酸成分としてAA53g、PA160g、モノカルボン酸成分としてBzA586g及びTIPT0.08gを用いて合成例1と同様にして合成することでエステル樹脂(1-6)を得た。その性状については表1に示した。
 合成例7:薄膜蒸留品
 合成例1で得られたエステル樹脂(1-1)を薄膜蒸留装置(株式会旭製作所製の薄膜式分子蒸留装置AS-MDA-65FJ-S)を用いて蒸留管温度180℃、フィード管温度100℃、コンデンサ温度40℃、減圧度0.012Paの条件で蒸留し、エステル樹脂(1’-1)を得た。エステル樹脂(1’-1)の数平均分子量(Mn)は515で、分子量が350よりも小さいエステル樹脂の含有率は2%であった。GPCチャートにおいてn=0成分の面積%は5%であり、nが3以上の成分の面積%は28%である。
 合成例8:ジエステル化合物(II-1)
 温度計、攪拌器、及びキシレンを満たした水分離器を備えた内容積3リットルの四つ口フラスコに、PG730g、BzA1954g、及び、TIPT0.2gを仕込み、240℃まで8時間かけて昇温した。その後、240℃で10時間反応させた。反応後、190℃にて未反応原料を減圧除去し、常温液体であるジエステル化合物(II-1)を得た。この化合物(II-1)の酸価は0.1、水酸基価は10、数平均分子量は265であった。GPCチャートにおいてn=0成分の面積%は100%であり、nが3以上の成分の面積%は0%である。
 合成例9:ジエステル化合物(II-2)
 1,3-プロパンジオール730g、安息香酸1954g、及び、テトライソプロピルチタネート0.2gを用いて合成例8と同様にして合成することでエステル化合物(II-2)を得た。
 合成例10:ジエステル化合物(II-3)
 1,5-ペンタンジオール1000g、安息香酸1954g、及び、テトライソプロピルチタネート0.2gを用いて合成例8と同様にして合成することでエステル化合物(II-3)を得た。
 合成例11:ジエステル化合物(II-4)
 ジエチレングリコール572g、ジプロピレングリコール293g、安息香酸1930g、及び、テトライソプロピルチタネート0.2gを用いて合成例8と同様にして合成することでエステル化合物(II-4)を得た。
 合成例12:ジエステル化合物(II-5)
 PG648g、ジプロピレングリコール109g、安息香酸1980g、及び、テトライソプロピルチタネート0.2gを用いて合成例8と同様にして合成することでエステル化合物(II-5)を得た。
 合成例13
 グリコール成分としてPG405g、ジカルボン酸成分としてAA158g、PA160g、モノカルボン酸成分としてBzA586g及びTIPT0.08gを用いて合成例1と同様にして合成することでエステル樹脂(1’-2)を得た。その性状についても表1に示した。
 合成例14
 グリコール成分としてPG405g、ジカルボン酸成分としてAA237g、PA80g、モノカルボン酸成分としてBzA586g及びTIPT0.08gを用いて合成例1と同様にして合成することでエステル樹脂(1’-3)を得た。その性状についても表1に示した。
 合成例15
 グリコール成分としてPG405g、ジカルボン酸成分としてAA316g、モノカルボン酸成分としてBzA586g及びTIPT0.08gを用いて合成例1と同様にして合成することでエステル樹脂(1’-4)を得た。その性状についても表1に示した。
 合成例16
 グリコール成分としてPG730g、モノカルボン酸成分としてBzA1954g、及び、TIPT0.2gを用いて合成例1と同様にして合成することでエステル樹脂(1’-5)を得た。その性状についても表1に示した。
 合成例17
 グリコール成分としてPG426g、ジカルボン酸成分としてAA146g、PA444g、モノカルボン酸成分としてBzA195g及びTIPT0.08gを用いて合成例1と同様にして合成することでエステル樹脂(1’-6)を得た。その性状についても表1に示した。
Figure JPOXMLDOC01-appb-T000001
 表において、略号は下記のとおり。
 BzA:安息香酸
 PG:1,2-プロピレングリコール
 EG:エチレングリコール
 13PG:1,3-プロパンジオール
 2MPD:2-メチル-1,3-プロパンジオール
 AA:アジピン酸
 PA:無水フタル酸
 実施例1
 合成例7で得られたエステル樹脂(1’-1)と合成例8で得られたジエステル化合物(II-1)を、ジエステル化合物(II-1)の含有量が20質量%となるように混合し、エステル樹脂(1-7)を得た。混合後のエステル樹脂(1-7)をGPC測定した。結果を表2に示す。
 実施例2~11
 実施例1において、用いるジエステル化合物とその含有量を表2に示すように変更した以外は実施例1と同様にして、エステル樹脂(1-8)~(1-17)を得た。その性状についても表2に示した。
Figure JPOXMLDOC01-appb-T000002
 実施例12(本発明のセルロースエステル樹脂組成物及び光学フィルムの調製)
 トリアセチルセルロース樹脂(株式会社ダイセル製「LT-35」)100質量部、エステル樹脂(1-1)10質量部を、メチレンクロライド810質量部及びメタノール90質量部からなる混合溶剤に加えて溶解し、本発明のセルロースエステル樹脂組成物であるドープ液を調製した。このドープ液をガラス板上に厚さ0.8mm、0.5mmとなるように流延し、室温で16時間乾燥させた後、50℃で30分、さらに120℃で30分乾燥させることで、本発明の光学フィルムを得た。得られたフィルムの厚みは60μm、40μmであった。
 実施例13~28
 実施例1において、エステル樹脂(1-1)の代わりにエステル樹脂(1-2)~(1-17)を用いる以外は実施例1と同様にして光学フィルムを得た。
 比較例1
 トリアセチルセルロース樹脂(株式会社ダイセル製「LT-35」)100質量部を、メチレンクロライド810質量部及びメタノール90質量部からなる混合溶剤に加えて溶解し、ドープ液を調製した。このドープ液をガラス板上に厚さ0.8mm、0.5mmとなるように流延し、室温で16時間乾燥させた後、50℃で30分、さらに120℃で30分乾燥させることで、光学フィルムを得た。得られたフィルムの厚みは60μm、40μmであった。
 比較例2~7
 実施例12において、エステル樹脂(1-1)の代わりにエステル樹脂(1’-1)~(1’-6)を用いる以外は実施例12と同様にして光学フィルムを得た。
 前記で得られた光学フィルムの弾性率、透湿性、HAZEについて、下記の方法により評価を行った。弾性率の測定は、膜厚40μmのフィルムを使用し、それ以外の評価は膜厚60μmのフィルムを使用した。得られた結果を表3に示す。
 <弾性率測定>
  装置   :(株)島津製作所製オートグラフAG-IS
  試験片  :150mm×10mm短冊形
  チャック間:100mm
  試験速度 :10mm/min
  膜厚   :40μm
 <弾性率の評価方法>
 ×:弾性率が添加剤なし(比較例1)と同等(4.3GPa)以下である。
 ○:弾性率が添加剤なし(比較例1)よりも高い弾性率(4.4GPa以上)である。
 <透湿性>
 JIS Z 0208に記載の方法に従い、測定した。測定条件は、温度40℃、相対湿度90%で行なった。得られる値が小さい程、耐透湿性に優れることを表す。
 <耐透湿性の評価方法>
 ○:透湿度が550g/m×24h未満である。
 △:透湿度が550g/m×24h以上、560g/m×24h未満である。
 ×:透湿度が560g/m×24h以上である。
 <湿熱試験>
 フィルムを85℃、相対湿度90%の環境下(湿熱環境下)に120時間晒した。
 <HAZE>
 HAZE値は、濁度計(日本電色工業株式会社製「NDH 5000」)を用いて、JIS K 7105に準じて測定した。得られる値が0%に近い程、透明であること表す 
 <HAZEの評価方法>
 ○:HAZE値が0.6%未満である。
 △:HAZE値が0.6%以上、0.7未満である。
 ×:HAZE値が0.7%以上である。
Figure JPOXMLDOC01-appb-T000003

Claims (15)

  1.  下記一般式(1)
     B-(G-A)-G-B (1)
    〔式(1)中、Bはアリールモノカルボン酸残基又は脂肪族モノカルボン酸残基であり、Gはアルキレングリコール残基、オキシアルキレングリコール残基又はアリールグリコール残基であり、Aはアルキレンジカルボン残基(A1)又はアリールジカルボン酸残基(A2)であって、アルキレンジカルボン酸残基(A1)とアリールジカルボン酸残基(A2)の合計(A1+A2)におけるアリールジカルボン酸残基(A2)の含有率が70~100モル%であり、nは繰り返し数であり、繰り返しごとにG、Aは同一でも異なっていてもよく、また複数あるB、Gは同一でも異なっていてもよい。〕
    で表されるエステル樹脂であり、
    GPC測定における面積比率で前記一般式(1)中のn=0成分が10~70%であり、且つnが3以上の成分の面積%とn=0成分の面積%との比(n≧3)/(n=0)が3以下であることを特徴とするエステル樹脂。
  2.  前記一般式(1)中のBが、炭素原子数6~12のアリールモノカルボン酸残基又は炭素原子数1~8の脂肪族モノカルボン酸残基であり、Gが炭素原子数2~12のアルキレングリコール残基、炭素原子数4~12のオキシアルキレングリコール残基又は炭素数6~18のアリールグリコール残基であり、Aにおけるアルキレンジカルボン酸残基(A1)が炭素原子数2~12のアルキレンジカルボン酸残基であり、Aにおけるアリールジカルボン酸残基(A2)が炭素原子数6~12のアリールジカルボン酸残基であり、nの平均値が0.2~3である請求項1記載のエステル樹脂。
  3.  前記エステル樹脂の数平均分子量が350~800の範囲である請求項1又は2記載のエステル樹脂。
  4.  前記一般式(1)中のBが酢酸、安息香酸、パラトルイル酸及びジメチル安息香酸からなる群から選ばれる1種以上の残基であり、Gがエチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール及び2-メチルペンチルグリコールからなる群から選ばれる1種以上の残基であり、A1がコハク酸、アジピン酸及びジカルボキシシクロヘキサンからなる群から選ばれる1種以上の残基であり、A2がフタル酸、テレフタル酸及びイソフタル酸からなる群から選ばれる1種以上の残基である請求項1~3の何れか1項記載のエステル樹脂。
  5.  前記一般式(1)中のAにおけるアルキレンジカルボン酸残基(A1)とアリールジカルボン酸残基(A2)の合計モル数(A1+A2)におけるアリールジカルボン酸残基(A2)の含有率が75~100モル%である請求項1~4の何れか1項記載のエステル樹脂。
  6.  光学材料用樹脂の反可塑化剤である請求項1~5のいずれか1記載のエステル樹脂。
  7.  請求項1~5の何れか1項記載のエステル樹脂とセルロースエステル樹脂とを含有することを特徴とするセルロースエステル樹脂組成物。
  8.  請求項7記載のセルロースエステル樹脂組成物を含有することを特徴とする光学フィルム。
  9.  偏光板保護用である請求項8記載の光学フィルム。
  10.  請求項8又は9の光学フィルムを有することを特徴とする液晶表示装置。
  11.  下記一般式(1)
     B-(G-A)-G-B (1)
    〔式(1)中、Bはアリールモノカルボン酸残基又は脂肪族モノカルボン酸残基であり、Gはアルキレングリコール残基、オキシアルキレングリコール残基又はアリールグリコール残基であり、Aはアルキレンジカルボン残基(A1)又はアリールジカルボン酸残基(A2)であって、アルキレンジカルボン酸残基(A1)とアリールジカルボン酸残基(A2)の合計(A1+A2)におけるアリールジカルボン酸残基(A2)の含有率が70~100モル%であり、nは繰り返し数であり、繰り返しごとにG、Aは同一でも異なっていてもよく、また複数あるB、Gは同一でも異なっていてもよい。〕
    で表され、GPC測定における面積比率で前記一般式(1)中のn=0成分が10~70%であり、且つnが3以上の成分の面積%とn=0成分の面積%との比(n≧3)/(n=0)が3以下であるエステル樹脂の製造方法であり、
    アリールモノカルボン酸又は脂肪族モノカルボン酸と、アルキレングリコール、オキシアルキレングリコール又はアリールグリコールと、アルキレンジカルボン酸、アリールジカルボン酸とを反応させてエステル樹脂(I)を得、薄膜蒸留を行って、前記一般式(1)中のn=0の含有率をGPC測定における面積%で8%以下まで除去した後、ジエステル化合物(II)を添加することを特徴とするエステル樹脂の製造方法。
  12.  前記ジエステル化合物(II)が、下記一般式(2)
     B2-G2-B2    (2)
    (式中、B2はアリールモノカルボン酸残基又は脂肪族モノカルボン酸残基であり、G2はアルキレングリコール残基、オキシアルキレングリコール残基又はアリールグリコール残基であり、複数あるB2は同一でも異なっていてもよい。)
    で表されるものである請求項11記載の製造方法。
  13.  前記一般式(2)中のB2が、炭素原子数6~12のアリールモノカルボン酸残基又は炭素原子数1~8の脂肪族モノカルボン酸残基であり、G2が炭素原子数2~12のアルキレングリコール残基、炭素原子数4~12のオキシアルキレングリコール残基又は炭素数6~18のアリールグリコール残基である請求項12記載の製造方法。
  14.  前記一般式(2)中のB2が酢酸、安息香酸、パラトルイル酸及びジメチル安息香酸からなる群から選ばれる1種以上の残基であり、G2がアルキレングリコール及びオキシアルキレングリコールからなる群から選ばれる1種以上の残基である請求項12又は13記載の製造方法。
  15.  前記一般式(2)中のB2が安息香酸、パラトルイル酸及びジメチル安息香酸からなる群から選ばれる1種以上の残基であり、G2が1,2-プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、2-メチルペンチルグリコール、ジエチレングリコール及びジプロピレングリコールより選ばれる1種以上の残基である請求項12~14の何れか1項記載の製造方法。
PCT/JP2018/015022 2017-06-14 2018-04-10 エステル樹脂、反可塑化剤、セルロースエステル樹脂組成物、光学フィルム及び液晶表示装置 WO2018230122A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880039523.3A CN110753681B (zh) 2017-06-14 2018-04-10 酯树脂、反增塑剂、纤维素酯树脂组合物、光学薄膜和液晶显示装置
JP2019525135A JP6631753B2 (ja) 2017-06-14 2018-04-10 エステル樹脂、反可塑化剤、セルロースエステル樹脂組成物、光学フィルム及び液晶表示装置
KR1020197032874A KR102483671B1 (ko) 2017-06-14 2018-04-10 광학 재료용 수지의 반가소화제, 셀룰로오스에스테르 수지 조성물, 광학 필름, 액정 표시 장치 및 에스테르 수지의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-116761 2017-06-14
JP2017116761 2017-06-14

Publications (1)

Publication Number Publication Date
WO2018230122A1 true WO2018230122A1 (ja) 2018-12-20

Family

ID=64660607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015022 WO2018230122A1 (ja) 2017-06-14 2018-04-10 エステル樹脂、反可塑化剤、セルロースエステル樹脂組成物、光学フィルム及び液晶表示装置

Country Status (5)

Country Link
JP (1) JP6631753B2 (ja)
KR (1) KR102483671B1 (ja)
CN (1) CN110753681B (ja)
TW (1) TWI704165B (ja)
WO (1) WO2018230122A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045028A1 (ja) * 2018-08-30 2020-03-05 Dic株式会社 エステル樹脂、反可塑化剤、セルロースエステル樹脂組成物、光学フィルム及び液晶表示装置
WO2020049948A1 (ja) * 2018-09-05 2020-03-12 Dic株式会社 エステル樹脂、反可塑化剤、セルロースエステル樹脂組成物、光学フィルム及び液晶表示装置
EP3521357A4 (en) * 2016-09-28 2020-05-13 Adeka Corporation MODIFICATION AGENTS FOR RESIN AND RESIN COMPOSITION WITH USE THEREOF
CN113423777A (zh) * 2019-02-08 2021-09-21 Dic株式会社 光学材料用树脂组合物、光学薄膜和显示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006121026A1 (ja) * 2005-05-10 2006-11-16 Konica Minolta Opto, Inc. セルロースエステルフィルム、偏光板及び液晶表示装置
JP2008069225A (ja) * 2006-09-13 2008-03-27 Dainippon Ink & Chem Inc セルロースエステル樹脂用改質剤、及びそれを含有してなるセルロースエステルフィルム
JP2011246538A (ja) * 2010-05-25 2011-12-08 Konica Minolta Opto Inc セルロースエステルフィルムの製造方法、セルロースエステルフィルム、偏光板、及び液晶表示装置
JP2014149325A (ja) * 2013-01-31 2014-08-21 Konica Minolta Inc 光学フィルムの製造方法、偏光板の製造方法及び液晶表示装置の製造方法
WO2015012014A1 (ja) * 2013-07-23 2015-01-29 コニカミノルタ株式会社 偏光板及びva型液晶表示装置
WO2015046360A1 (ja) * 2013-09-30 2015-04-02 Dic株式会社 光学材料用樹脂組成物、光学フィルム及び液晶表示装置
WO2016158790A1 (ja) * 2015-03-31 2016-10-06 株式会社Adeka 樹脂用改質剤およびこれを用いた樹脂組成物
JP2016204495A (ja) * 2015-04-21 2016-12-08 Dic株式会社 セルロースエステル樹脂用改質剤、セルロースエステル樹脂組成物、光学フィルム及び液晶表示装置
JP2018048250A (ja) * 2016-09-21 2018-03-29 Dic株式会社 光学材料用樹脂組成物、光学フィルム及び液晶表示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7576152B2 (en) * 2002-11-12 2009-08-18 Kao Corporation Additive for polyester base synthetic resin containing plasticizer and plasticizer for biodegradable resin
JP2007326938A (ja) * 2006-06-07 2007-12-20 Mitsubishi Engineering Plastics Corp 芳香族ポリカーボネート樹脂組成物および樹脂成形体
JP2011052205A (ja) 2009-08-05 2011-03-17 Konica Minolta Opto Inc 光学フィルム及びそれを用いた偏光板

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006121026A1 (ja) * 2005-05-10 2006-11-16 Konica Minolta Opto, Inc. セルロースエステルフィルム、偏光板及び液晶表示装置
JP2008069225A (ja) * 2006-09-13 2008-03-27 Dainippon Ink & Chem Inc セルロースエステル樹脂用改質剤、及びそれを含有してなるセルロースエステルフィルム
JP2011246538A (ja) * 2010-05-25 2011-12-08 Konica Minolta Opto Inc セルロースエステルフィルムの製造方法、セルロースエステルフィルム、偏光板、及び液晶表示装置
JP2014149325A (ja) * 2013-01-31 2014-08-21 Konica Minolta Inc 光学フィルムの製造方法、偏光板の製造方法及び液晶表示装置の製造方法
WO2015012014A1 (ja) * 2013-07-23 2015-01-29 コニカミノルタ株式会社 偏光板及びva型液晶表示装置
WO2015046360A1 (ja) * 2013-09-30 2015-04-02 Dic株式会社 光学材料用樹脂組成物、光学フィルム及び液晶表示装置
WO2016158790A1 (ja) * 2015-03-31 2016-10-06 株式会社Adeka 樹脂用改質剤およびこれを用いた樹脂組成物
JP2016204495A (ja) * 2015-04-21 2016-12-08 Dic株式会社 セルロースエステル樹脂用改質剤、セルロースエステル樹脂組成物、光学フィルム及び液晶表示装置
JP2018048250A (ja) * 2016-09-21 2018-03-29 Dic株式会社 光学材料用樹脂組成物、光学フィルム及び液晶表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIYAGAWA, AZUSA: "Modification of amorphous polymers by the addition of antipalsticizers (non-official translation)", DOCTORAL DISSERTATION OF SCHOOL OF MATERIALS SCIENCE, THE JAPAN ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY, March 2016 (2016-03-01), pages 14 - 15, 43-50 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3521357A4 (en) * 2016-09-28 2020-05-13 Adeka Corporation MODIFICATION AGENTS FOR RESIN AND RESIN COMPOSITION WITH USE THEREOF
WO2020045028A1 (ja) * 2018-08-30 2020-03-05 Dic株式会社 エステル樹脂、反可塑化剤、セルロースエステル樹脂組成物、光学フィルム及び液晶表示装置
WO2020049948A1 (ja) * 2018-09-05 2020-03-12 Dic株式会社 エステル樹脂、反可塑化剤、セルロースエステル樹脂組成物、光学フィルム及び液晶表示装置
CN113423777A (zh) * 2019-02-08 2021-09-21 Dic株式会社 光学材料用树脂组合物、光学薄膜和显示装置

Also Published As

Publication number Publication date
KR102483671B1 (ko) 2023-01-03
CN110753681B (zh) 2022-05-10
JPWO2018230122A1 (ja) 2019-11-07
TWI704165B (zh) 2020-09-11
TW201905029A (zh) 2019-02-01
JP6631753B2 (ja) 2020-01-15
CN110753681A (zh) 2020-02-04
KR20200018403A (ko) 2020-02-19

Similar Documents

Publication Publication Date Title
WO2018230122A1 (ja) エステル樹脂、反可塑化剤、セルロースエステル樹脂組成物、光学フィルム及び液晶表示装置
JP6614469B2 (ja) エステル樹脂、反可塑化剤、セルロースエステル樹脂組成物、光学フィルム及び液晶表示装置
TWI664195B (zh) 纖維素酯樹脂用改質劑、纖維素酯樹脂組成物、光學薄膜、偏光板保護膜之製造方法及液晶顯示裝置
JP6849153B2 (ja) エステル樹脂、反可塑化剤、セルロースエステル樹脂組成物、光学フィルム及び液晶表示装置
TWI808243B (zh) 反增塑劑、纖維素酯樹脂組成物、光學薄膜及液晶顯示裝置
JP6628013B2 (ja) エステル樹脂、可塑化剤、セルロースエステル樹脂組成物、光学フィルム及び液晶表示装置
JP2022188923A (ja) セルロースエステル樹脂用改質剤、セルロースエステル樹脂組成物、光学フィルム及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818928

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525135

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197032874

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818928

Country of ref document: EP

Kind code of ref document: A1