WO2018228421A1 - 用户终端间交叉链路干扰测量的方法、用户终端和传输接收点 - Google Patents

用户终端间交叉链路干扰测量的方法、用户终端和传输接收点 Download PDF

Info

Publication number
WO2018228421A1
WO2018228421A1 PCT/CN2018/091024 CN2018091024W WO2018228421A1 WO 2018228421 A1 WO2018228421 A1 WO 2018228421A1 CN 2018091024 W CN2018091024 W CN 2018091024W WO 2018228421 A1 WO2018228421 A1 WO 2018228421A1
Authority
WO
WIPO (PCT)
Prior art keywords
cli
measurement
user terminals
measuring
receiving point
Prior art date
Application number
PCT/CN2018/091024
Other languages
English (en)
French (fr)
Inventor
王爱玲
倪吉庆
左君
徐国珍
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2018228421A1 publication Critical patent/WO2018228421A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method for measuring cross-link interference between user terminals, a user terminal, and a transmission receiving point.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • FDD systems use different frequency bands to receive and transmit signals at the same time
  • TDD systems use different times to receive and transmit signals on the same frequency band.
  • FDD has the advantages of wide uplink coverage, simple interference processing, and does not require strict synchronization of the network.
  • the FDD must use a pair of transceiver bands to fully utilize the uplink and downlink spectrum when supporting uplink and downlink symmetric services. When supporting uplink and downlink asymmetric services, the spectrum utilization of the FDD system will be reduced.
  • the 5G (5Generation, 5th Generation) network is a personalized and diversified business application centered on the user terminal experience.
  • the demand for upstream and downstream traffic varies greatly between different services.
  • Traditional TDD and FDD systems are difficult to better match the diverse business needs of 5G networks.
  • flexible duplex technology or dynamic TDD technology is proposed.
  • the dynamic TDD technology breaks through the fixed configuration of uplink and downlink resources in the traditional cellular network system, and adaptively adjusts the uplink and downlink resources according to service requirements, thereby improving spectrum utilization.
  • the dynamic TDD technology can dynamically configure the uplink and downlink transmission directions according to the cell service state, when the neighboring cells perform information transmission in different directions (uplink or downlink) on the same time-frequency resource, as shown in FIG. Downlink (DL), cell 2 is in uplink (UL), which will bring two types of Cross-Link Interference (CLI), namely TRP (Transmission Reception Point)-TRP and UE (User Equipment) - Inter-UE interference.
  • CLI Cross-Link Interference
  • Interference ratio SINR
  • link adaptation scheduling coordination
  • power control power control
  • an embodiment of the present disclosure provides a method for measuring cross-link interference between user terminals, a user terminal, and a transmission receiving point, to implement cross-link interference measurement between user terminals.
  • a method for measuring cross-link interference between user terminals is provided, which is applied to a first transmission receiving point, and the method includes:
  • the measuring RS configuration information includes one or more of the following: measuring an RS time-frequency resource configuration, measuring an RS time domain type, measuring an RS sequence, measuring an RS antenna port number, and an RS resource set function.
  • the RS resource set function is a CLI measurement.
  • the measurement RS sequence sent by all or part of the user terminals is continuous or discrete if the symbols occupied in one slot.
  • the reported format of the reported CLI measurement is one or more of the following:
  • n CLI measurements in the CLI list are greater than a preset value
  • the CLI measurement value is an average value of the plurality of CLI measurement values corresponding to the user terminal;
  • the user terminal indicates the level of the CLI measurement value by using a specified bit
  • n is zero or a positive integer.
  • a method for measuring cross-link interference between user terminals including: transmitting configuration information of whether all or part of user terminals of the receiving point configuration service perform CLI measurement.
  • the configuration information is one of the following:
  • a method for measuring a cross-link interference between user terminals is provided, which is applied to a user terminal that is the first transmission receiving point service, and the method includes:
  • the CLI measurement is reported to the first transmission reception point.
  • the measuring RS configuration information includes one or more of the following: measuring an RS time-frequency resource configuration, measuring an RS time domain type, measuring an RS sequence, measuring an RS antenna port number, and an RS resource set function.
  • the RS resource set function is a CLI measurement.
  • the measurement RS sequence sent by all or part of the UEs is continuous or discrete if the symbols occupied in one slot.
  • the reported format of the reported CLI measurement is one or more of the following:
  • n CLI measurements in the CLI list are greater than a preset value
  • the CLI measurement value is an average value of the plurality of CLI measurement values corresponding to the user terminal;
  • the UE indicates the level of the CLI measurement value by using the specified bit
  • n is zero or a positive integer.
  • a method for measuring cross-link interference between users receiving configuration information of whether to perform CLI measurement of the first transmission receiving point configuration.
  • the configuration information is one of the following:
  • a method for measuring cross-link interference between user terminals is further provided, where the method is applied to a second transmission receiving point, where the method includes:
  • the measuring RS configuration information includes one or more of the following: measuring an RS time-frequency resource configuration, measuring an RS time domain type, measuring an RS sequence, measuring an RS antenna port number, and an RS resource set function.
  • the RS resource set function is a CLI measurement.
  • the measurement RS sequence sent by all or part of the user terminals is continuous or discrete if the symbols occupied in one slot.
  • a first transmission receiving point including: a first receiver and a first transmitter, where
  • the first receiver is configured to receive measurement RS configuration information sent by the second transmission receiving point;
  • the first transmitter is configured to send the measurement RS configuration information to all or part of user terminals of the first transmission receiving point service;
  • the first receiver is further configured to receive a cross-link interference CLI measurement value reported by all or a part of user terminals of the first transmission receiving point service.
  • the configuration information includes one or more of the following: measuring an RS time-frequency resource configuration, measuring an RS time domain type, measuring an RS sequence, and measuring an RS antenna port number, where the RS resource set function.
  • the RS resource set function is a CLI measurement.
  • the measurement RS sequence sent by all or part of the user terminals is continuous or discrete if the symbols occupied in one slot.
  • the reported format of the reported CLI measurement is one or more of the following:
  • n CLI measurements in the CLI list are greater than a preset value
  • the CLI measurement value is an average value of the plurality of CLI measurement values corresponding to the user terminal;
  • the user terminal indicates the level of the CLI measurement value by using a specified bit
  • n is zero or a positive integer.
  • the first transmitter is further configured to configure configuration information of whether all or a part of the user terminals of the service perform CLI measurement.
  • the configuration information is one of the following:
  • a user terminal is further provided, where the user terminal includes:
  • a second receiver configured to receive measurement reference signal RS configuration information sent by the first transmission receiving point from the second transmission receiving point;
  • a first processor configured to perform CLI measurement according to the received measurement RS configuration information, to obtain a CLI measurement value
  • a second transmitter configured to report the CLI measurement value to the first transmission receiving point.
  • the measuring RS configuration information includes one or more of the following: measuring an RS time-frequency resource configuration, measuring an RS time domain type, measuring an RS sequence, measuring an RS antenna port number, and an RS resource set function.
  • the RS resource set function is a CLI measurement.
  • the measurement RS sequence sent by all or part of the user terminals is continuous or discrete if the symbols occupied in one slot.
  • the reported format of the reported CLI measurement is one or more of the following:
  • n CLI measurements in the CLI list are greater than a preset value
  • the CLI measurement value is an average value of the plurality of CLI measurement values corresponding to the user terminal;
  • the user terminal indicates the level of the CLI measurement value by using a specified bit
  • n is zero or a positive integer.
  • the second receiver is further configured to: receive configuration information of whether the first transmission receiving point configuration performs CLI measurement.
  • the configuration information is one of the following:
  • a second transmission receiving point including:
  • a third transmitter configured to send measurement RS configuration information to the first transmission receiving point, where the measurement RS configuration information is sent by the first transmission receiving point to all or part of user terminals served by the first transmission receiving point .
  • the measuring RS configuration information includes one or more of the following: measuring an RS time-frequency resource configuration, measuring an RS time domain type, measuring an RS sequence, measuring an RS antenna port number, and an RS resource set function.
  • the RS resource set function is a CLI measurement.
  • the measurement RS sequence sent by all or part of the user terminals is continuous or discrete if the symbols occupied in one slot are continuous.
  • a transmission receiving point comprising: a first memory, a second processor, and a computer program stored on the first memory and operable on the second processor, The steps in the method for implementing cross-link interference measurement between user terminals as described above when the second processor executes the program.
  • a user terminal including: a second memory, a third processor, and a computer program stored on the second memory and operable on the third processor, The steps in the method for implementing cross-link interference measurement between user terminals as described above when the third processor executes the program.
  • a computer readable storage medium having stored thereon a program, the program being executed by a processor to implement a user terminal as described above Steps in the method of cross-link interference measurement.
  • the first transmission receiving point may configure all or part of the user terminals of the first transmission receiving point service according to the received configuration information from the second transmission receiving point measurement RS.
  • each UE in all or part of the user terminals performs CLI measurement according to the received RS configuration information, and obtains a CLI measurement value, thereby implementing cross-link interference measurement between user terminals.
  • the first transmission receiving point or the second transmission receiving point may be configured to perform CLI measurement only on the edge user terminal, which effectively reduces measurement overhead; the user terminal corresponds to a specific time-frequency resource location, and the adjacent user terminal only needs to measure the RS corresponding
  • the interference information of the time-frequency resource location can obtain the cross-link interference information of the user terminal corresponding to the time-frequency resource location.
  • the CLI list is optimized, and the reporting format of multiple CLI measurements is proposed to reduce the reporting cost of the CLI measurement value. .
  • Figure 1 is a schematic diagram of cross-link interference
  • FIG. 2 is a flowchart of a method for measuring cross-link interference between user terminals according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a method for measuring cross-link interference between user terminals according to another embodiment of the present disclosure
  • FIG. 4 is a flowchart of a method for measuring cross-link interference between user terminals according to another embodiment of the present disclosure
  • FIG. 5 is a flowchart of a method for measuring cross-link interference between user terminals according to another embodiment of the present disclosure
  • 6a and 6b are schematic diagrams showing the positional distribution of consecutive symbols and discrete symbols occupied by the RS measurement by the CLI;
  • FIG. 7a and 7b are schematic diagrams of a multi-beam RS transmission and CLI measurement in which a UE occupies multiple CLI measurement resource locations;
  • 8a, 8b, and 8c are schematic diagrams of SRS configurations in TDM, FDM, and TDM+FDM modes;
  • FIG. 9 is a schematic diagram of a UE multi-beam transmission measurement RS
  • FIG. 10 is a schematic diagram of two UE measurement RSs occupying two consecutive OFDM symbols
  • FIG. 11 is a schematic structural diagram of a first transmission receiving point according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a user terminal according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a second transmission receiving point according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a transmission receiving point according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a user terminal according to another embodiment of the present disclosure.
  • the transmission and reception point may be a Global System of Mobile communication (GSM) or a Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA), or may be The base station (NodeB, NB) in the Wideband Code Division Multiple Access (WCDMA) may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or may be a new radio access ( The base station in the new radio access technical, New RAT or NR), or the relay station or the access point, or the base station in the future 5G network, etc., is not limited herein.
  • GSM Global System of Mobile communication
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • NB Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • Evolutional Node B, eNB or eNodeB evolved base station
  • the base station in the new radio access technical, New RAT or NR or the relay station or the access point, or the base station in the future
  • the UE may be a wireless terminal or a wired terminal, and the wireless terminal may be a device that provides voice and/or other service data connectivity to the user terminal, a handheld device with a wireless connection function, or is connected to Other processing devices for wireless modems.
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • it may be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with a wireless access network.
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), the user agent (User Agent), and the user device (User Device or User Equipment) are not limited herein.
  • the execution body of the method is a first transmission receiving point, and includes specific steps 201 to 203.
  • Step 201 Receive configuration information of a measurement signal (reference signal) sent by the second transmission receiving point, where the second transmission receiving point is an adjacent transmission receiving point of the first transmission receiving point;
  • the RS configuration information includes one or more of the following: measuring an RS time-frequency resource configuration, measuring an RS time domain type, measuring an RS sequence, measuring an RS antenna port number, and an RS resource set function.
  • the measured RS time domain type is periodic or non-periodic or semi-persistent.
  • the RS resource set function is a CLI measurement.
  • the symbols occupied by the measurement RS sequence sent by all or part of the UEs in one slot are continuous or discrete.
  • the UE in the second transmission receiving point has a one-to-one correspondence with the time-frequency resource location, and the neighboring UE needs to know the measurement RS sequence, but does not need a specific UE ID (identification).
  • Step 202 Send configuration information of the measurement RS to all or part of user terminals of the first transmission receiving point service;
  • the above partial UE may be an edge UE of a serving cell to reduce measurement overhead.
  • the first transmission and receiving point may determine whether the UE is an edge user terminal according to a CQI (Channel Quality Indicator) or a RSRP (Reference Signal Receiving Power) of the downlink measurement channel information of the UE. It is not limited to this.
  • Step 203 Receive cross-link interference CLI measurement values reported by all or part of user terminals of the first transmission receiving point service, where the CLI measurement value is determined by each user terminal of all or part of user terminals according to the received Each measurement RS is obtained by performing CLI measurement.
  • the first transmission receiving point notifies each user terminal of the first transmission receiving point service that is small or all of the user terminals to send the CLI measurement value from the CLI list according to the specified reporting format.
  • the specified reporting format is any one of the following:
  • n CLI measurements are: n CLI measurements time-frequency resource locations and quantized CLI measurements corresponding to each location value;
  • the CLI measurement values being an average of a plurality of CLI measurements corresponding to the user terminal;
  • the user terminal indicates the level of the CLI measurement value by using a specified bit, for example, bit 0 indicates that the CLI measurement value is less than a certain preset value, and bit 1 indicates that the CLI measurement value is greater than a certain preset value;
  • n is zero or a positive integer.
  • the first transmission receiving point may configure all or part of the user terminals of the first transmission receiving point service to perform CLI measurement according to the received configuration information from the second transmission receiving point measurement RS, and all or part of the user terminals.
  • Each user terminal performs CLI measurement on each time-frequency resource location corresponding to each measurement RS according to the configuration information, thereby implementing cross-link interference measurement between user terminals.
  • the first transmission and reception point configuration may be used to perform CLI measurement only on the edge user terminal, which effectively reduces measurement overhead; the user terminal corresponds to a specific time-frequency resource location, and the adjacent user terminal only needs to measure interference information corresponding to the time-frequency resource location.
  • the cross-link interference information of the UE corresponding to the time-frequency resource location can be obtained; considering the influence of multiple beams of the user terminal, the problem of interference mutation caused by beam transformation can be effectively dealt with; in addition, the CLI list is optimized and various The reporting format of the CLI measurement value reduces the overhead of reporting CLI measurements.
  • FIG. 3 a flow of a method for cross-link interference measurement between user terminals according to another embodiment is shown.
  • the method is performed by a user terminal located in a serving cell of a first transmission receiving point, optionally, The user terminal may be an edge user terminal of the serving cell, and the method includes specific steps 301 to 303.
  • Step 301 Receive measurement RS configuration information sent by a second transmission receiving point sent by a first transmission receiving point, where the second transmission receiving point is an adjacent transmission receiving point of the first transmission receiving point;
  • the measurement RS configuration information includes one or more of the following: measuring an RS time-frequency resource configuration, measuring an RS time domain type, measuring an RS sequence, measuring an RS antenna port number, and an RS resource set function, where the The RS resource set function is measured by the CLI.
  • the RS time domain type refers to periodic or aperiodic or semi-persistent.
  • the symbols occupied by the measurement RS sequence sent by all or part of the user terminals in a slot are continuous or discrete.
  • the user terminal has a one-to-one correspondence with the time-frequency resource location, and the neighboring user terminal needs to know the specific user terminal ID (identification) that measures the RS sequence but does not need it.
  • Step 302 Perform CLI measurement on each time-frequency resource location corresponding to the user terminal according to the received measurement RS configuration information, to obtain a CLI measurement value.
  • Step 303 Report a CLI measurement value to the first transmission receiving point.
  • step 303 an indication message sent by the first transmission receiving point is received, where the indication message is used to specify a reporting format of the CLI measurement value, and the first transmission is sent from the CLI list according to the specified reporting format according to the indication message.
  • the receiving point sends a CLI measurement value, and the CLI list records the CLI measurement value obtained by the user terminal performing CLI measurement on each time-frequency resource location.
  • the specified reporting format is any one of the following:
  • n CLI measurements are: n CLI measurements time-frequency resource locations and quantized CLI measurements corresponding to each location value;
  • the CLI measurement values being an average of a plurality of CLI measurements corresponding to the UE
  • the user terminal indicates the level of the CLI measurement value by using a specified bit, for example, bit 0 indicates that the CLI measurement value is less than a certain preset value, and bit 1 indicates that the CLI measurement value is greater than a certain preset value;
  • n is zero or a positive integer.
  • the first transmission receiving point may configure all or part of the user terminals of the first transmission receiving point service to perform CLI measurement according to the received configuration information from the second transmission receiving point measurement RS, in all or part of the UE.
  • Each user terminal performs CLI measurement on each time-frequency resource location corresponding to each measurement RS according to the RS configuration information, thereby implementing cross-link interference measurement between user terminals.
  • the first transmission and reception point configuration may be used to perform CLI measurement only on the edge user terminal, which effectively reduces measurement overhead; the user terminal corresponds to a specific time-frequency resource location, and the adjacent user terminal only needs to measure interference information corresponding to the time-frequency resource location.
  • the cross-link interference information corresponding to the location of the time-frequency resource corresponding to the user terminal can be obtained; considering the influence of multiple beams of the user terminal, the problem of interference mutation caused by beam transformation can be effectively dealt with; in addition, the CLI list is optimized and proposed
  • the reporting format of the CLI measurement value reduces the reporting overhead of the CLI measurement value.
  • FIG. 4 a flow of a method for cross-link interference measurement between user terminals according to another embodiment is shown.
  • the execution body of the method is a second transmission receiving point, and the specific steps are as follows:
  • Step 401 Send configuration information of the measurement RS to the first transmission receiving point, where the configuration information of the measurement RS is sent by the first transmission receiving point to all or part of user terminals served by the first transmission receiving point, where The second transmission receiving point is an adjacent transmission receiving point of the first transmission receiving point.
  • the measurement RS configuration information includes one or more of the following: measuring an RS time-frequency resource configuration, measuring an RS time domain type, measuring an RS sequence, measuring an RS antenna port number, and an RS resource set function, where the The RS resource set function is measured by the CLI.
  • the RS time domain type refers to periodic or aperiodic or semi-persistent.
  • the symbols occupied by the measurement RS sequence sent by all or part of the user terminals in a slot are continuous or discrete.
  • the second transmission receiving point may send configuration information of the measurement RS to the first transmission receiving point, where the first transmission receiving point configures all or part of the user terminals of the first transmission receiving point service to perform CLI measurement, all or Each of the partial user terminals performs CLI measurement on each time-frequency resource location corresponding to each user terminal according to the configuration information, thereby implementing cross-link interference measurement between the user terminals.
  • FIG. 5 there is shown a flow of a method for cross-link interference measurement between user terminals according to another embodiment, including specific steps 501 to 504.
  • Step 501 The transmission receiving point configures measurement of the cross-link interference between the measurement RS sent by all or part of the user terminals in the cell and the user terminal.
  • the cell edge user terminal is subject to more serious cross-link interference problems than the central user terminal. Therefore, it is considered that the transmission receiving point only configures the measurement RS and CLI measurement sent by the cell edge user terminal.
  • the transmission receiving point may determine whether the user terminal is an edge user terminal according to a CQI (Channel Quality Indicator) or a RSRP (Reference Signal Receiving Power) of the downlink measurement channel information of the user equipment, and of course Not limited to this.
  • CQI Channel Quality Indicator
  • RSRP Reference Signal Receiving Power
  • the transmission and reception point may also configure all the user terminals in the cell to perform measurement RS transmission and CLI measurement by using RRC signaling or other manners.
  • Step 502 The transmission receiving point performs measurement RS configuration and CLI measurement configuration on the user terminal by using RRC signaling.
  • the RS configuration information includes one or more of the following: measuring an RS time-frequency resource configuration, measuring an RS time domain type, measuring an RS sequence, measuring an RS antenna port number, and an RS resource set function, where the RS resource set function is CLI measurement.
  • the measuring RS time domain type refers to periodic or aperiodic or semi-persistent.
  • the location of the time-frequency resource of the measurement RS transmitted by the plurality of user terminals may be continuous (see FIG. 6a), or the location of the time-frequency resource of the measurement RS transmitted by the plurality of user terminals may also be discrete (see FIG. 6b). For example, when six user terminals need to send measurement RSs, the symbol positions occupied by the measurement RSs are shown in FIG. 6a and FIG. 6b.
  • the configuration information of the CLI measurement may include: the CLI measures the time-frequency resource location, that is, the transmission receiving point may configure the time-frequency resource location of the user terminal by using RRC signaling.
  • the CLI measurement time-frequency resource configured by the transmission receiving point may be related to the number of UEs in the cell that need to measure the CLI.
  • the configured CLI measurement time-frequency resource may also be related to the number of beams supported by each UE.
  • OFDM symbols are used to transmit measurement RSs and perform CLI measurements, Indicates the rounding up function.
  • a user terminal may occupy multiple CLIs to measure time-frequency resources and support multi-beam measurement. If there are x user terminals that need to send measurement RSs and one OFDM symbol supports CLI measurement of one user terminal in m beams, the cell needs a total of x ⁇ m CLIs measure time-frequency resource locations.
  • the continuous time-frequency resource is occupied as shown in FIG. 7a, and it may also occupy a discontinuous time-frequency resource, as shown in FIG. 7b.
  • a plurality of neighboring cells may be configured to measure time-frequency resources with different CLIs.
  • Step 503 The neighboring cell user terminal measures the CLI measurement reference signal of each time-frequency resource location, and obtains interference information of each time-frequency resource location.
  • each cell alternately transmits a CLI measurement reference signal and performs a CLI measurement.
  • the user terminal has a one-to-one correspondence with the time-frequency resource location, and the neighboring user terminal needs to know the CLI measurement RS sequence, but does not need a specific user terminal ID (identification).
  • the measuring RS sequence is related to at least a cell ID
  • an NR (Sounding Reference Signal) pattern is used as the measurement RS.
  • the form of the SRS is configured in TDM (Time Division Multiplex Mode), FDM (Frequency Division Multiplexing Mode), or TDM+FDM mode.
  • the transmission receiving point knows that each CLI measures the correspondence between the time-frequency resource location and each user terminal. Therefore, the user terminal only needs to feed back the CLI information of each CLI to measure the time-frequency resource location.
  • Step 504 The interference information of each time-frequency resource location is processed in the cell, and reported to the local transmission receiving point.
  • the report format can be:
  • n CLIs measuring time-frequency resource locations and quantized CLI measurements corresponding to each location (required to be greater than a certain preset value);
  • the third mode is to report only the CLI measurement value of the n user terminals, where the value is the maximum value of the plurality of CLI measurements corresponding to the multiple beams of the user terminal, including: n CLI measurement time-frequency resource locations and corresponding positions Quantized CLI measurements (required to be greater than a certain preset value);
  • Each user terminal only supports single-beam CLI measurement, and only reports the CLI measurement value of n user terminals (required to be greater than a certain preset value);
  • the user terminal may choose to report the CLI measurement level with 1 bit. For example, Bit 0 indicates that the CLI interference information is less than a certain preset value, and Bit 1 indicates that the CLI interference is greater than a certain preset value.
  • the first transmission receiving point may instruct the UE to select a format to report the interference list in the format 2 to format 6 through RRC signaling.
  • TRP2 Transmission Receive Point 2
  • the transmission receiving point 2 configures two edge user terminals (UE 1 , UE 2 ) in the cell to perform CLI measurement.
  • the transmission receiving point 2 configures two edge user terminals (UE 1 , UE 2 ) of the cell to send measurement RSs, and the transmission receiving point 1 (TRP1) configures the cell edge user terminal (UE 1 ) to perform CLI measurement according to the received measurement RS.
  • TRP1 transmission receiving point 1
  • the transmission receiving point performs interference measurement RS configuration on the user terminal through RRC signaling.
  • the transmission receiving point 2 configures two edge user terminals (UE 1 , UE 2 ) of the cell to measure the RS time-frequency resource location as shown in FIG. 10, and the RS time-frequency resource positions of the two edge user terminals (UE 1 , UE 2 ) occupy Two consecutive OFDM symbols, each OFDM symbol supporting two edge user terminals (UE 1 , UE 2 ) transmitting measurement RSs in one beam, the beams of each user terminal being staggered in the frequency domain.
  • the transmission receiving point 2 configures two edge user terminals (UE 1 , UE 2 ) of the cell to measure the RS sequence, for example, the measurement RS sequences of different beam configurations of different user terminals are the same.
  • the transmission receiving point 2 configures two edge user terminals (UE 1 , UE 2 ) of the current cell to measure the RS transmission period, for example, the measurement RS information is periodically transmitted in a period of 10 ms.
  • the neighboring cell user terminal performs CLI measurement on the corresponding measured RS time-frequency resource location.
  • the transmission receiving point 2 exchanges the configuration of the measurement RS (time-frequency resource location, sequence, period, etc.) information to the neighboring cell transmission receiving point 1 through the information between the transmission receiving points, and is indicated by the transmission receiving point 1 to the transmission receiving point.
  • the edge user terminal of the service (UE 1 ).
  • the UE 1 performs CLI measurement on the corresponding measured RS time-frequency resource location according to the received measurement RS configuration information, obtains interference information of each time-frequency resource, and establishes a CLI interference list as:
  • UE 1 UE 1 beam1/CLI_value is the maximum of two CLI measurements corresponding to two beams of UE 1
  • UE 1 UE 2 beam2/CLI_value is the largest of the two CLI measurements corresponding to the two beams of UE 2 value.
  • the transmission receiving point 1 indicates that the user terminal UE 1 reports the interference list according to the above-mentioned reporting format 3 through the RRC signaling, that is, the UE 1 only needs to report the [UE 1 UE 1 beam 1 / CLI_value; UE 1 UE 2 beam 2 / in the CLI interference list. CLI_value] CLI information.
  • the transmission receiving point 1 After the transmission receiving point 1 obtains the interference list, the information is exchanged to the transmission receiving point 2, and the transmission receiving point 2 knows the correspondence between the CLI measurement time-frequency resource location and each UE, and therefore the measurement RS in the CLI interference list reported by the UE.
  • the time-frequency resource location can analyze the corresponding UE ID.
  • a first transmission receiving point is further provided in the embodiment of the present disclosure.
  • the principle of the first transmission receiving point solving problem is similar to the cross-link interference measurement method between user terminals in the embodiment of the present disclosure.
  • the implementation of the first transmission receiving point can be referred to the implementation of the method, and the repetition is not described.
  • the first transmission receiving point 1100 includes: a first receiver 1101 and a first transmitter 1102, where
  • the first receiver 1101 is configured to receive configuration information of a measurement RS sent by a second transmission receiving point, where the second transmission receiving point is an adjacent transmission receiving point of the first transmission receiving point;
  • the first transmitter 1102 is configured to send configuration information of the measurement RS to all or part of user terminals of the first transmission receiving point service;
  • the first receiver 1101 is further configured to receive a cross-link interference CLI measurement value reported by all or a part of user terminals of the first transmission receiving point service, where the CLI measurement value is in all or part of user terminals.
  • Each user terminal performs CLI measurement on each time-frequency resource location corresponding to each of the user terminals according to the configuration information.
  • the RS configuration information includes one or more of the following: measuring an RS time-frequency resource configuration, measuring an RS time domain type, measuring an RS sequence, measuring an RS antenna port number, and an RS resource set function, where the RS The resource set function is measured by the CLI.
  • the measuring RS time domain type refers to periodic or aperiodic or semi-persistent.
  • the symbols occupied by the measurement RS sequence sent by all or part of the user terminals in a slot are continuous or discrete.
  • the first transmitter 1102 is further configured to indicate that each user terminal in all or part of the user terminals in the serving cell of the first transmission receiving point sends the CLI measurement according to the specified reporting format from the CLI list.
  • the CLI list records CLI measurements obtained by the user terminal performing CLI measurement on the corresponding time-frequency resource locations.
  • the specified reporting format is any one of the following:
  • n CLI measurements in the CLI list are greater than a preset value
  • the CLI measurement value is the maximum value of the plurality of CLI measurement values corresponding to the plurality of beams of the user terminal;
  • the CLI measurement value of the n user terminals is reported, and the CLI measurement value is an average value of multiple CLI measurement values corresponding to multiple beams of the user terminal;
  • Each user terminal only supports single-beam CLI measurement, and only reports CLI measurements for n user terminals;
  • the user terminal indicates the level of the CLI measurement value by using a specified bit
  • n is zero or a positive integer.
  • the first transmitter 1102 is further configured to configure, by using RRC signaling, all or a part of the user terminals of the service to send whether to perform CLI measurement.
  • the first transmission and reception point provided in this embodiment may perform the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again in this embodiment.
  • a UE is also provided in the embodiment of the present disclosure.
  • the principle of the problem is solved by the UE in the embodiment of the present disclosure. Implementation, repetitions are not repeated.
  • the user terminal 1200 includes:
  • a second receiver 1201 configured to receive, by the first transmission receiving point, configuration information of a measurement reference signal RS sent by a second transmission receiving point, where the second transmission receiving point is the first transmission receiving point Adjacent transmission receiving point;
  • the first processor 1202 is configured to perform CLI measurement on each time-frequency resource location corresponding to the UE according to the received measurement RS configuration information, to obtain a CLI measurement value;
  • the second transmitter 1203 is configured to report the CLI measurement value to the first transmission receiving point.
  • the measurement RS configuration information includes one or more of the following: measuring an RS time-frequency resource configuration, measuring an RS time domain type, measuring an RS sequence, measuring an RS antenna port number, and an RS resource set function, where the The RS resource set function is measured by the CLI.
  • the measuring RS time domain type refers to periodic or aperiodic or semi-persistent.
  • the symbols occupied by the measurement RS sequence sent by all or part of the user terminals in a slot are continuous or discrete.
  • the second receiver is further configured to receive a notification message sent by the first transmission receiving point, where the notification message carries a specified reporting format of a CLI measurement value;
  • the second transmitter is further configured to send a CLI measurement value to the first transmission receiving point according to the specified reporting format according to the indication message, where the user terminal is recorded in each time-frequency resource in the CLI list.
  • the CLI measurement obtained by CLI measurement at the location.
  • the specified reporting format is any one of the following:
  • n CLI measurements in the CLI list are greater than a preset value
  • the CLI measurement value is the maximum value of the plurality of CLI measurement values corresponding to the plurality of beams of the user terminal;
  • the CLI measurement value of the n user terminals is reported, and the CLI measurement value is an average value of multiple CLI measurement values corresponding to multiple beams of the user terminal;
  • Each user terminal only supports single-beam CLI measurement, and only reports CLI measurements for n user terminals;
  • the user terminal indicates the level of the CLI measurement value by using a specified bit
  • n is zero or a positive integer.
  • the second receiver 1201 is further configured to: receive configuration information of whether the first transmission receiving point configuration performs CLI measurement.
  • the UE provided in this embodiment may perform the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again in this embodiment.
  • a second transmission receiving point is further provided in the embodiment of the present disclosure.
  • the principle of the second transmission receiving point solving the problem is similar to the cross-link interference measurement method between the user terminals in the embodiment of the present disclosure.
  • the implementation of the first transmission receiving point can be referred to the implementation of the method, and the repetition is not described.
  • the second transmission receiving point 1300 includes:
  • a third transmitter 1301 configured to send configuration information of the measurement RS to the first transmission receiving point, where the configuration information of the measurement RS is sent by the first transmission receiving point to all of the first transmission receiving point service or And a part of the user terminal, wherein the second transmission receiving point is an adjacent transmission receiving point of the first transmission receiving point.
  • the measurement RS configuration information includes one or more of the following: measuring an RS time-frequency resource configuration, measuring an RS time domain type, measuring an RS sequence, measuring an RS antenna port number, and an RS resource set function, where the The RS resource set function is measured by the CLI.
  • the measuring RS time domain type refers to periodic or aperiodic or semi-persistent.
  • the symbols occupied by the measurement RS sequence sent by the multiple user terminals in one time slot are continuous or discrete.
  • a hardware structure diagram of a transmission receiving point and a user terminal is also provided in the following embodiments.
  • FIG. 14 is a schematic structural diagram of a transmission receiving point according to an embodiment of the present disclosure.
  • the transmission receiving point 1400 includes an antenna 1401, a radio frequency device 1402, and a baseband device 1403.
  • the antenna 1401 is connected to the radio frequency device 1402.
  • the radio frequency device 1402 receives information through the antenna 1401, and transmits the received information to the baseband device 1403 for processing.
  • the baseband device 1403 processes the information to be transmitted and transmits it to the radio frequency device 1402.
  • the radio frequency device 1402 processes the received information and transmits it through the antenna 1401.
  • the above-described band processing device may be located in the baseband device 1403.
  • the method performed by the network side device in the above embodiment may be implemented in the baseband device 1403, and the baseband device 1403 includes a second processor 14031 and a first memory 14032.
  • the baseband device 1403 may include, for example, at least one baseband board, and the baseband board is provided with a plurality of chips, as shown in FIG. 14, one of the chips is, for example, a second processor 14031, connected to the first memory 14032 to call the first memory.
  • the program in 14032 performs the network side device operation shown in the above method embodiment.
  • the baseband device 1403 may further include a first network interface 14033 for interacting with the radio frequency device 1402, such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the processor here may be a processor or a collective name of multiple processing elements.
  • the processor may be a CPU, an ASIC, or one configured to implement the method performed by the network side device.
  • a plurality of integrated circuits such as one or more microprocessor DSPs, or one or more field programmable gate array FPGAs, and the like.
  • the save component can be a memory or a collective name for multiple save components.
  • the first memory 14032 can be either volatile memory or non-volatile memory, or can include both volatile and non-volatile memory.
  • the non-volatile memory may be a Read-Only Memory (ROM), a Programmable ROM (Programmable ROM), or an Erasable PROM (EPROM). , electrically erasable programmable read only memory (EEPROM) or flash memory.
  • the volatile memory may be a Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous).
  • the first memory 14032 described in this disclosure is intended to comprise, without being limited to, these and any other suitable types of memory.
  • the second processor 14031 invokes a program in the first memory 14032 to execute the method performed by the first transmission reception point and the second transmission reception point in the above embodiment.
  • FIG. 15 is a schematic structural diagram of a user terminal according to another embodiment of the present disclosure.
  • the user terminal 1500 shown in FIG. 15 includes at least one third processor 1501, a second memory 1502, at least one second network interface 1504, and a user terminal interface 1503.
  • the various components in user terminal 1500 are coupled together by bus system 1505.
  • bus system 1505 is used to implement connection communication between these components.
  • Bus system 1505 includes, in addition to the data bus, a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 1505 in FIG.
  • the user terminal interface 1503 may include a display, a keyboard, or a pointing device (eg, a mouse, a trackball, a touchpad, or a touch screen, etc.).
  • a pointing device eg, a mouse, a trackball, a touchpad, or a touch screen, etc.
  • the second memory 1502 in the embodiments of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be a read-only memory (ROM), a programmable read only memory (Programmable ROM (PROM), an erasable programmable read only memory (ErasablePROM, EPROM), and an electrically erasable Program an read only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SDRAM Synchronous Connection Dynamic Random Access Memory
  • DirectRambusRAM Direct Memory Bus Random Memory
  • the memory 902 of the systems and methods described in the embodiments of the present disclosure is intended to comprise, without being limited to, these and any other suitable types of memory.
  • the second memory 1502 holds the following elements, executable modules or data structures, or a subset thereof, or their extended set: operating system 15021 and application 15022.
  • the operating system 15021 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 15022 includes various applications, such as a media player (Media Player), a browser (Browser), etc., for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the application 15022.
  • the third processor 1501 may execute the method executed by the user terminal.
  • the method disclosed in the above embodiments of the present disclosure may be applied to the third processor 1501 or implemented by the third processor 1501.
  • the third processor 1501 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the third processor 1501 or an instruction in a form of software.
  • the third processor 1501 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or Other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present disclosure may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the second memory 1502, and the third processor 1501 reads the information in the second memory 1502 and completes the steps of the above method in combination with the hardware thereof.
  • the embodiments described in the embodiments of the present disclosure may be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described in this disclosure In an electronic unit or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the techniques described in the embodiments of the present disclosure may be implemented by modules (eg, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the third processor 1501 may invoke a program or instruction saved by the second memory 1502 to execute the method performed by the UE in the foregoing method embodiment.
  • Embodiments of the present disclosure also provide a computer readable storage medium having a data transfer program stored thereon, the data transfer program being executed by a processor to implement a cross-link between user terminals as described above The steps in the method of interference cancellation.
  • system and “network” are used interchangeably herein.
  • B corresponding to A means that B is associated with A, and B can be determined from A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed method and apparatus may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes a number of instructions for causing a computer device (which may be a personal computer, a server, or a network side device, etc.) to perform part of the steps of the transceiving method of the various embodiments of the present disclosure.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种用户终端间交叉链路干扰测量的方法、用户终端和传输接收点。方法包括:接收第二传输接收点发送的测量参考信号配置信息;将所述测量参考信号配置信息发送给所述第一传输接收点服务的全部或部分用户终端;接收所述第一传输接收点服务的全部或部分用户终端上报的交叉链路干扰测量值,所述交叉链路测量值是所述全部或部分用户终端根据接收到的所述测量参考信号配置信息进行交叉链路干扰测量得到的。

Description

用户终端间交叉链路干扰测量的方法、用户终端和传输接收点
相关申请的交叉引用
本申请主张在2017年6月14日在中国提交的中国专利申请No.201710447190.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种用户终端间交叉链路干扰测量的方法、用户终端和传输接收点。
背景技术
传统移动通信系统中有两种双工方式,即FDD(频分双工)和TDD(时分双工)。FDD系统是在同一时间使用不同的频带来接收和发送信号,而TDD系统是在同一频带上使用不同的时间来接收和发送信号。和TDD相比,FDD具有上行覆盖广,干扰处理简单等优势,并且不需要网络的严格同步。FDD必须采用成对的收发频带,在支持上下行对称业务时能够充分利用上下行频谱,在支持上下行非对称业务时,FDD系统的频谱利用率将有所降低。
5G(5Generation,第五代)网络是以用户终端体验为中心,实现个性化、多样化的业务应用。不同业务上下行流量需求差异大,传统的TDD和FDD系统难以更好的匹配5G网络多样化的业务需求。为了满足上下行业务灵活变化,提出了灵活双工技术,或动态TDD技术。
动态TDD技术突破了传统蜂窝网系统中上下行资源固定配置方式,根据业务需求自适应调整上下行资源,从而提升频谱利用率。虽然动态TDD技术可以根据小区业务状态动态配置上下行传输方向,但当相邻小区在同一时频资源上进行不同方向(上行或下行)的信息传输时,如图1所示,其中小区1处于下行(DL),小区2处于上行(UL),此时将会带来两种类型的交叉链路干扰(Cross-Link Interference,CLI),即TRP(Transmission Reception Point,传输接收点)-TRP和UE(User Equipment,用户终端)-UE间干扰。由于TRP的传输功率通常远大于UE的传输功率,并且天线位置一般部署位置较 高,天线间传播衰减损耗和衰减较少,TRP-TRP之间的交叉链路干扰会大大降低上行信号的信号噪声干扰比(SINR),因此在传统的LTE系统中,为了提高系统吞吐量,主要关注了如何避免下行传输对上行传输的TRP-TRP干扰。一些典型的干扰消除方案,例如链路自适应、调度协调以及功率控制等方案都是基于TRP-TRP干扰测量进行的。
因此,亟需提供一种UE-UE间交叉链路干扰测量技术。
发明内容
鉴于上述技术问题,本公开实施例提供一种用户终端间交叉链路干扰测量的方法、用户终端和传输接收点,实现用户终端间交叉链路干扰测量。
依据本公开实施例的一个方面,提供了一种用户终端间交叉链路干扰测量方法,应用于第一传输接收点,所述方法包括:
接收第二传输接收点发送的测量参考信号RS配置信息;
将所述测量参考信号RS配置信息发送给所述第一传输接收点服务的全部或部分用户终端;
接收所述第一传输接收点服务的全部或部分用户终端上报的交叉链路干扰CLI测量值,所述CLI测量值是所述全部或部分用户终端根据所述测量RS配置信息进行交叉链路干扰测量得到的。
可选地,所述测量RS配置信息包括以下一项或多项:测量RS时频资源配置,测量RS时域类型,测量RS序列,测量RS天线端口数,RS资源集功能。其中,所述RS资源集功能为CLI测量。
可选地,所述全部或部分用户终端发送的测量RS序列若在一个时隙(slot)中占用的符号是连续的,或者是离散的。
可选地,所述上报的CLI测量值的上报格式为以下任一项或多项:
上报所有CLI列表中的CLI测量值;
只上报CLI列表中n个CLI测量值,所述n个CLI测量值均大于预设值;
只上报n个用户终端的CLI测量值,所述CLI测量值是对应用户终端对应的多个CLI测量值的平均值;
用户终端用指定比特指示上报CLI测量值级别;
其中,n为零或正整数。
依据本公开实施例的第二个方面,还提供了一种用户终端间交叉链路干扰测量方法,包括:传输接收点配置服务的全部或部分用户终端是否进行CLI测量的配置信息。
可选地,所述配置信息为下列一项:
显式的,通过无线资源控制RRC信令配置所述服务的全部或部分用户终端是否进行CLI测量;
隐式的配置所述服务的全部或部分用户终端是否进行CLI测量。
依据本公开实施例的第三个方面,还提供了一种用户终端间交叉链路干扰测量方法,应用于第一传输接收点服务的用户终端,所述方法包括:
接收所述第一传输接收点发送的来自第二传输接收点的测量参考信号RS配置信息;
根据接收到的所述测量RS配置信息在与所述测量RS对应的时频资源位置上进行CLI测量,得到CLI测量值;
向所述第一传输接收点上报所述CLI测量值。
可选地,所述测量RS配置信息包括以下一项或多项:测量RS时频资源配置,测量RS时域类型,测量RS序列,测量RS天线端口数,RS资源集功能。其中,所述RS资源集功能为CLI测量。
可选地,所述全部或部分UE发送的测量RS序列若在一个时隙(slot)中占用的符号是连续的,或者是离散的。
可选地,所述上报的CLI测量值的上报格式为以下任一项或多项:
上报所有CLI列表中的CLI测量值;
只上报CLI列表中n个CLI测量值,所述n个CLI测量值均大于预设值;
只上报n个用户终端的CLI测量值,所述CLI测量值是对应用户终端对应的多个CLI测量值的平均值;
UE用指定比特指示上报CLI测量值级别;
其中,n为零或正整数。
依据本公开实施例的第四个方面,还提供了一种用户间交叉链路干扰测量方法:接收第一传输接收点配置的是否进行CLI测量的配置信息。
可选地,所述配置信息为下列一项:
显式的,通过无线资源控制RRC信令配置所述服务的全部或部分用户终端是否进行CLI测量;
隐式的配置所述服务的全部或部分用户终端是否进行CLI测量。
依据本公开实施例的第五个方面,还提供了一种用户终端间交叉链路干扰测量的方法,应用于第二传输接收点,所述方法包括:
向第一传输接收点发送测量RS配置信息,由所述第一传输接收点将所述测量RS配置信息发送给所述第一传输接收点服务的全部或部分用户终端。
可选地,所述测量RS配置信息包括以下一项或多项:测量RS时频资源配置,测量RS时域类型,测量RS序列,测量RS天线端口数,RS资源集功能。其中,所述RS资源集功能为CLI测量。
可选地,所述全部或部分用户终端发送的测量RS序列若在一个时隙(slot)中占用的符号是连续的,或者是离散的。
依据本公开实施例的第六个方面,还提供了一种第一传输接收点,包括:第一接收器和第一发送器,其中,
所述第一接收器用于接收第二传输接收点发送的测量RS配置信息;
所述第一发送器用于将所述测量RS配置信息发送给所述第一传输接收点服务的全部或部分用户终端;
所述第一接收器还用于接收所述第一传输接收点服务的全部或部分用户终端上报的交叉链路干扰CLI测量值。
可选地,所述配置信息包括以下一项或多项:测量RS时频资源配置,测量RS时域类型,测量RS序列,测量RS天线端口数,其中,RS资源集功能。其中,所述RS资源集功能为CLI测量。
可选地,所述全部或部分用户终端发送的测量RS序列若在一个时隙(slot)中占用的符号是连续的,或者是离散的。
可选地,所述上报的CLI测量值的上报格式为以下任一项或多项:
上报所有CLI列表中的CLI测量值;
只上报CLI列表中n个CLI测量值,所述n个CLI测量值均大于预设值;
只上报n个用户终端的CLI测量值,所述CLI测量值是对应用户终端对 应的多个CLI测量值的平均值;
用户终端用指定比特指示上报CLI测量值级别;
其中,n为零或正整数。
可选地,所述第一发送器还用于通配置所述服务的全部或部分用户终端是否进行CLI测量的配置信息。
可选地,所述配置信息为下列一项:
显式的,通过RRC信令配置所述服务的全部或部分用户终端是否进行CLI测量;
隐式的配置所述服务的全部或部分用户终端是否进行CLI测量。
依据本公开实施例的第七个方面,还提供了一种用户终端,所述用户终端包括:
第二接收器,用于接收第一传输接收点发送的来自第二传输接收点的测量参考信号RS配置信息;
第一处理器,用于根据接收到的所述测量RS配置信息进行CLI测量,得到CLI测量值;
第二发送器,用于向所述第一传输接收点上报所述CLI测量值。
可选地,所述测量RS配置信息包括以下一项或多项:测量RS时频资源配置,测量RS时域类型,测量RS序列,测量RS天线端口数,RS资源集功能。其中,所述RS资源集功能为CLI测量。
可选地,所述全部或部分用户终端发送的测量RS序列若在一个时隙(slot)中占用的符号是连续的,或者是离散的。
可选地,所述上报的CLI测量值的上报格式为以下任一项或多项:
上报所有CLI列表中的CLI测量值;
只上报CLI列表中n个CLI测量值,所述n个CLI测量值均大于预设值;
只上报n个用户终端的CLI测量值,所述CLI测量值是对应用户终端对应的多个CLI测量值的平均值;
用户终端用指定比特指示上报CLI测量值级别;
其中,n为零或正整数。
可选地,所述第二接收器还用于:接收所述第一传输接收点配置的是否 进行CLI测量的配置信息。
可选地,所述配置信息为下列一项:
显式的,通过RRC信令配置所述服务的全部或部分用户终端是否进行CLI测量;
隐式的配置所述服务的全部或部分用户终端是否进行CLI测量。
依据本公开实施例的第八个方面,还提供了一种第二传输接收点,包括:
第三发送器,用于向第一传输接收点发送测量RS配置信息,由所述第一传输接收点将所述测量RS配置信息发送给所述第一传输接收点服务的全部或部分用户终端。
可选地,所述测量RS配置信息包括以下一项或多项:测量RS时频资源配置,测量RS时域类型,测量RS序列,测量RS天线端口数,RS资源集功能。其中,所述RS资源集功能为CLI测量。
可选地,所述全部或部分用户终端发送的测量RS序列若在一个时隙(slot)内占用的符号是连续的,或者是离散的。
依据本公开实施例的第九个方面,还提供了一种传输接收点,包括:第一存储器、第二处理器及保存在第一存储器上并可在第二处理器上运行的计算机程序,所述第二处理器执行所述程序时实现如上所述的用户终端间交叉链路干扰测量的方法中的步骤。
依据本公开实施例的第十个方面,还提供了一种用户终端,包括:第二存储器、第三处理器及存储在第二存储器上并可在第三处理器上运行的计算机程序,所述第三处理器执行所述程序时实现如上所述的用户终端间交叉链路干扰测量的方法中的步骤。
依据本公开实施例的第十一个方面,还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如上所述的用户终端间交叉链路干扰测量的方法中的步骤。
上述技术方案中的一个技术方案具有如下优点或有益效果:第一传输接收点可以根据接收到的来自第二传输接收点测量RS的配置信息,配置第一传输接收点服务的全部或部分用户终端进行CLI测量,全部或部分用户终端中的每个UE根据接收到的RS配置信息进行CLI测量,得到CLI测量值, 从而实现用户终端间交叉链路干扰测量。
进一步地,可以通过第一传输接收点或第二传输接收点配置只对边缘用户终端进行CLI测量,有效减少测量开销;用户终端与特定时频资源位置对应,相邻用户终端只需测量RS对应时频资源位置的干扰信息,即可得到和时频资源位置相对应用户终端的交叉链路干扰信息;另外,优化处理CLI列表,提出多种CLI测量值的上报格式,减少CLI测量值上报开销。
附图说明
图1为交叉链路干扰示意图;
图2为本公开一个实施例中用户终端间交叉链路干扰测量的方法的流程图;
图3为本公开另一个实施例中用户终端间交叉链路干扰测量的方法的流程图;
图4为本公开另一个实施例中用户终端间交叉链路干扰测量的方法的流程图;
图5为本公开另一个实施例中用户终端间交叉链路干扰测量的方法的流程图;
图6a和图6b分别为CLI测量RS占用的连续符号和离散符号的位置分布示意图;
图7a和图7b为一个UE占用多个CLI测量资源位置进行多波束RS发送和CLI测量的示意图;
图8a、图8b和图8c分布为TDM、FDM、TDM+FDM模式配置SRS示意图;
图9为UE多波束发送测量RS的示意图;
图10为两个UE测量RS占用两个连续OFDM符号的示意图;
图11为本公开一个实施例中第一传输接收点的结构示意图;
图12为本公开一个实施例中用户终端的结构示意图;
图13为本公开一个实施例中第二传输接收点的结构示意图;
图14为本公开一个实施例中传输接收点的结构示意图;
图15为本公开另一个实施例中用户终端的结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
在本实施例中,传输接收点可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),还可以是新无线接入(New radio access technical,New RAT或NR)中的基站,或者中继站或接入点,或者未来5G网络中的基站等,在此并不限定。
在本实施例中,UE可以是无线终端也可以是有线终端,该无线终端可以是指向用户终端提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
参见图2,图中示出了一个实施例中的用户终端间交叉链路干扰测量的方法的流程,该方法的执行主体为第一传输接收点,包括具体步骤201至203。
步骤201、接收第二传输接收点发送的测量RS(Reference Signal,参考信号)的配置信息,第二传输接收点为所述第一传输接收点的相邻传输接收点;
其中,所述RS配置信息包括以下一项或多项:测量RS时频资源配置,测量RS时域类型,测量RS序列,测量RS天线端口数,和RS资源集功能。
所述测量RS时域类型是周期性或非周期性或半持续性。所述RS资源集功能为CLI测量。
可选地,所述全部或部分UE发送的测量RS序列在一个时隙(slot)中占用的符号是连续的,或者是离散的。
在本实施例中,第二传输接收点中的UE与时频资源位置有一一对应关系,相邻UE需要知道测量RS序列,但不需要具体的UE ID(标识)。
步骤202、将测量RS的配置信息发送给第一传输接收点服务的全部或部分用户终端;
由于小区边缘用户终端(或者称为用户终端(UE))相比小区中心UE会受到更严重的交叉链路干扰问题,所以上述部分UE可以是服务小区的边缘UE,以减小测量开销。可选地,第一传输接收点可以根据UE下行测量信道信息的CQI(Channel Quality Indicator,信道质量指示)或RSRP(Reference Signal Receiving Power,参考信号接收功率)判断该UE是否为边缘用户终端,当然也并不限于此。
步骤203、接收第一传输接收点服务的全部或部分用户终端上报的交叉链路干扰CLI测量值,所述CLI测量值是所述全部或部分用户终端中的每个用户终端根据接收到的所述每个测量RS进行CLI测量得到的。
可选地,在本实施例中,第一传输接收点通知第一传输接收点服务小的全部或部分用户终端中的每个用户终端从CLI列表中按照指定的上报格式发送CLI测量值。
其中,所述指定的上报格式为以下任一项:
上报所有CLI列表中的CLI测量值;
只上报CLI列表中n个CLI测量值,所述n个CLI测量值均大于预设值,例如n个CLI测量值是:n个CLI测量时频资源位置和各位置对应的量化后的CLI测量值;
只上报n个用户终端的CLI测量值,所述CLI测量值是对应用户终端对应的多个CLI测量值的平均值;以及
用户终端用指定比特指示上报CLI测量值级别,例如:比特0指示CLI测量值小于某一预设值,比特1指示CLI测量值大于某一预设值;
其中,n为零或正整数。
可选地,在本实施例中,通过RRC(无线资源控制)信令或其他方式配置所述服务的全部或部分用户终端是否进行CLI测量。
在本实施例中,第一传输接收点可以根据接收到的来自第二传输接收点测量RS的配置信息,配置第一传输接收点服务的全部或部分用户终端进行CLI测量,全部或部分用户终端中的每个用户终端根据配置信息在与每个测量RS对应的各个时频资源位置上进行CLI测量,从而实现了用户终端间交叉链路干扰测量。
进一步地,可以通过第一传输接收点配置只对边缘用户终端进行CLI测量,有效减少测量开销;用户终端与特定时频资源位置对应,相邻用户终端只需测量对应时频资源位置的干扰信息,即可得到和时频资源位置相对应UE的交叉链路干扰信息;考虑用户终端多个波束的影响,可以有效应对波束变换导致的干扰突变等问题;另外,优化处理CLI列表,提出多种CLI测量值的上报格式,减少CLI测量值上报开销。
参见图3,图中示出另一个实施例的用户终端间交叉链路干扰测量的方法的流程,该方法的执行主体为位于第一传输接收点的服务小区内的用户终端,可选地,该用户终端可以是该服务小区的边缘用户终端,所述方法包括具体步骤301至303。
步骤301、接收第一传输接收点发送的来自第二传输接收点发送的测量RS配置信息,第二传输接收点是所述第一传输接收点的相邻传输接收点;
可选地,所述测量RS配置信息包括以下一项或多项:测量RS时频资源配置,测量RS时域类型,测量RS序列,测量RS天线端口数,RS资源集功 能,其中,所述RS资源集功能为CLI测量。
其中,所述RS时域类型是指周期性或非周期性或半持续性。
可选地,全部或部分用户终端发送的测量RS序列在一个slot中占用的符号是连续的,或者是离散的。
在本实施例中,用户终端与时频资源位置有一一对应关系,相邻用户终端需要知道测量RS序列,但不需要的具体用户终端ID(标识)。
步骤302、根据接收到的所述测量RS配置信息在与用户终端对应各个时频资源位置上进行CLI测量,得到CLI测量值。
步骤303、向第一传输接收点上报CLI测量值。
可选地,在步骤303中,接收第一传输接收点发送的指示消息,所述指示消息用于指定CLI测量值的上报格式;根据指示消息从CLI列表中按照指定的上报格式向第一传输接收点发送CLI测量值,所述CLI列表中记录有用户终端在各时频资源位置上进行CLI测量得到的CLI测量值。
其中,所述指定的上报格式为以下任一项:
上报所有CLI列表中的干扰值;
只上报CLI列表中n个CLI测量值,所述n个CLI测量值均大于预设值,例如n个CLI测量值是:n个CLI测量时频资源位置和各位置对应的量化后的CLI测量值;
只上报n个用户终端的CLI测量值,所述CLI测量值是对应UE对应的多个CLI测量值的平均值;以及
用户终端用指定比特指示上报CLI测量值级别,例如:比特0指示CLI测量值小于某一预设值,比特1指示CLI测量值大于某一预设值;
其中,n为零或正整数。
在本实施例中,第一传输接收点可以根据接收到的来自第二传输接收点测量RS的配置信息,配置第一传输接收点服务的全部或部分用户终端进行CLI测量,全部或部分UE中的每个用户终端根据RS配置信息在与每个测量RS对应的各个时频资源位置上进行CLI测量,从而实现了用户终端间交叉链路干扰测量。
进一步地,可以通过第一传输接收点配置只对边缘用户终端进行CLI测 量,有效减少测量开销;用户终端与特定时频资源位置对应,相邻用户终端只需测量对应时频资源位置的干扰信息,即可得到和时频资源位置相对应用户终端的交叉链路干扰信息;考虑用户终端多个波束的影响,可以有效应对波束变换导致的干扰突变等问题;另外,优化处理CLI列表,提出多种CLI测量值的上报格式,减少CLI测量值上报开销。
参见图4,图中示出了另一个实施例的用户终端间交叉链路干扰测量的方法的流程,该方法的执行主体为第二传输接收点,具体步骤如下:
步骤401、向第一传输接收点发送测量RS的配置信息,由所述第一传输接收点将所述测量RS的配置信息发送给所述第一传输接收点服务的全部或部分用户终端,其中,所述第二传输接收点为所述第一传输接收点的相邻传输接收点。
可选地,所述测量RS配置信息包括以下一项或多项:测量RS时频资源配置,测量RS时域类型,测量RS序列,测量RS天线端口数,RS资源集功能,其中,所述RS资源集功能为CLI测量。
所述RS时域类型是指周期性或非周期性或半持续性。可选的,所述全部或部分用户终端发送的测量RS序列在一个slot中占用的符号是连续的,或者是离散的。
在本实施例中,第二传输接收点可以将测量RS的配置信息发送给第一传输接收点,第一传输接收点配置第一传输接收点服务的全部或部分用户终端进行CLI测量,全部或部分用户终端中的每个UE根据配置信息在与该每个用户终端对应的各个时频资源位置上进行CLI测量,从而实现了用户终端间交叉链路干扰测量。
参见图5,图中示出了另一个实施例的用户终端间交叉链路干扰测量的方法的流程,包括具体步骤501至504。
步骤501、传输接收点配置小区内全部或部分用户终端发送的测量RS和用户终端间的交叉链路干扰测量;
小区边缘用户终端相比中心用户终端会受到更严重的交叉链路干扰问题,所以考虑传输接收点只配置小区边缘用户终端发送的测量RS和CLI测量;
具体的,传输接收点可以根据用户终端下行测量信道信息的CQI(Channel Quality Indicator,信道质量指示)或RSRP(Reference Signal Receiving Power,参考信号接收功率)判断该用户终端是否为边缘用户终端,当然也并不限于此。
当然可以理解的是,在本实施例中,传输接收点也可以通过RRC信令或其他方式配置小区内的所有用户终端均进行测量RS发送和CLI测量。
步骤502、传输接收点通过RRC信令对用户终端进行测量RS配置和CLI测量配置。
测量RS的配置信息包括以下一项或多项:测量RS时频资源配置,测量RS时域类型,测量RS序列,测量RS天线端口数,RS资源集功能,其中,所述RS资源集功能为CLI测量。
所述测量RS时域类型是指周期性或非周期性或半持续性。
多个用户终端发送的测量RS的时频资源的位置可以是连续的(参见图6a),或者多个用户终端发送的测量RS的时频资源的位置也可以是离散的(参见图6b)。例如:6个用户终端需要发送测量RS时,测量RS占用的符号位置示意如图6a和图6b所示。
可选地,该CLI测量的配置信息可以包括:CLI测量时频资源位置,即传输接收点可以通过RRC信令配置用户终端的CLI测量时频资源位置。
其中,传输接收点配置的CLI测量时频资源可与该小区内需要测量CLI的UE的数量相关。可选的,配置的CLI测量时频资源也可以与每个UE支持的波束数相关。
假设:小区内有x个用户终端测量CLI,每个用户终端支持m个波束;一个OFDM符号可以支持n个用户终端在一个波束内发送测量RS,那么需要配置
Figure PCTCN2018091024-appb-000001
个OFDM符号用于发送测量RS和进行CLI测量,
Figure PCTCN2018091024-appb-000002
表示向上取整函数。
一个用户终端可能占用多个CLI测量时频资源,支持多波束测量,若有x个用户终端需要发送测量RS,一个OFDM符号支持一个用户终端在m个波束内的CLI测量,则该小区共需要x×m个CLI测量时频资源位置。
例如:一个用户终端支持3波束测量时,占用连续时频资源如图7a所示, 也有可能是占用的是不连续的时频资源,如图7b所示。
需要说明的是,相邻多个小区可以配置为不同的CLI测量时频资源。
步骤503、相邻小区用户终端对各时频资源位置的CLI测量参考信号进行测量,得到各时频资源位置的干扰信息。
可选地,各小区交替发送CLI测量参考信号并进行CLI测量。
在本实施例中,用户终端与时频资源位置有一一对应关系,相邻用户终端需要知道CLI测量RS序列,但不需要的具体用户终端ID(标识)。
可选地,测量RS序列至少与小区ID有关;
可选地,用NR(新空口)SRS(Sounding Reference Signal,探测参考信号)pattern(图案)作为测量RS。
如图8a、图8b和图8c所示,以TDM(时分复用模式)、FDM(频分复用模式)或者TDM+FDM模式配置SRS的形式。
传输接收点已知各CLI测量时频资源位置与各用户终端的对应关系,因此用户终端只需反馈各CLI测量时频资源位置的CLI信息即可。
步骤504、小区内对各时频资源位置的干扰信息进行处理,并上报给本地传输接收点。
上报格式可以为:
格式一:上报所有CLI列表中的干扰值;
格式二:只上报CLI列表中的n个CLI最大值,包括:n个CLI测量时频资源位置和各位置对应的量化后的CLI测量值(要求大于某一预设值);
格式三:只上报对n个用户终端的CLI测量值,该值是此用户终端多个波束对应的多个CLI测量值中的最大值,包括:n个CLI测量时频资源位置和各位置对应的量化后的CLI测量值(要求大于某一预设值);
格式四:只上报对n个UE的CLI测量值,该值是此用户终端多个波束对应的多个CLI测量值中的平均值,包括:n个CLI测量时频资源位置和各位置对应的量化后的CLI测量值;
格式五:每个用户终端只支持单波束CLI测量,只上报对n个用户终端的CLI测量值(要求大于某一预设值);
格式六:用户终端可以选择用1比特指示上报CLI测量值级别,例:比 特0指示CLI干扰信息小于某一预设值,比特1指示CLI干扰大于某一预设值。
需要说明的是,上述格式一不需要做任何指示,UE测量后按CLI列表上报即可。第一传输接收点可通过RRC信令指示UE选择格式二至格式六的某种格式上报干扰列表。
假设有两个小区,参见图9,小区1中有一个边缘用户终端(UE 1),用一个波束(beam)接收测量RS;小区2中有两个边缘用户终端(UE 1,UE 2),传输接收点2(TRP2)对每个用户终端用两个波束(beam1,beam2)发送测量RS,具体的:
1)传输接收点2配置小区内的两个边缘用户终端(UE 1,UE 2)进行CLI测量。
传输接收点2配置本小区两个边缘用户终端(UE 1,UE 2)发送测量RS,传输接收点1(TRP1)配置本小区边缘用户终端(UE 1)根据接收到的测量RS进行CLI测量。
2)传输接收点通过RRC信令对用户终端进行干扰测量RS配置。
传输接收点2配置本小区两个边缘用户终端(UE 1,UE 2)测量RS时频资源位置如图10所示,两个边缘用户终端(UE 1,UE 2)的RS时频资源位置占用两个连续的OFDM符号,每个OFDM符号支持两个边缘用户终端(UE 1,UE 2)在一个波束内发送测量RS,每个用户终端的波束在频域上交错配置。
传输接收点2配置本小区两个边缘用户终端(UE 1,UE 2)测量RS序列,例如:不同用户终端不同波束配置的测量RS序列相同。
传输接收点2配置本小区两个边缘用户终端(UE 1,UE 2)测量RS发送周期,例如:测量RS信息以10ms为周期进行周期性发送。
3)相邻小区用户终端在相应测量RS时频资源位置上进行CLI测量。
传输接收点2将测量RS的配置(时频资源位置、序列、周期等)信息通过传输接收点间的信息交互给邻小区传输接收点1,并由传输接收点1指示给本传输接收点所服务的边缘用户终端(UE 1)。UE 1根据接收到的测量RS配置信息在相应的测量RS时频资源位置上进行CLI测量,得到各时频资源的干扰信息,并建立CLI干扰列表为:
[UE 1UE 1beam1/CLI_value,UE 1UE 2beam1/CLI_value;
UE 1UE 2beam2/CLI_value,UE 1UE 1beam2/CLI_value]。
假设其中UE 1UE 1beam1/CLI_value为UE 1两个波束对应的两个CLI测量值中的最大值,UE 1UE 2beam2/CLI_value为UE 2两个波束对应的两个CLI测量值中的最大值。
4)用户终端CLI干扰列表信息上报
传输接收点1通过RRC信令指示用户终端UE 1按照上述的上报格式三进行干扰列表上报,即UE 1只需要上报CLI干扰列表中的[UE 1UE 1beam1/CLI_value;UE 1UE 2beam2/CLI_value]CLI信息。
传输接收点1获得干扰列表后将此信息交互给传输接收点2,而传输接收点2已知CLI测量时频资源位置与各UE的对应关系,因此通过UE上报的CLI干扰列表中的测量RS时频资源位置即可分析出对应的UE ID。
基于同一发明构思,本公开实施例中还提供了一种第一传输接收点,由于该第一传输接收点解决问题的原理与本公开实施例中用户终端间交叉链路干扰测量方法相似,因此该第一传输接收点的实施可以参见方法的实施,重复之处不再敷述。
参见图11,图中示出了第一传输接收点的结构,第一传输接收点1100包括:第一接收器1101和第一发送器1102,其中,
所述第一接收器1101用于接收第二传输接收点发送的测量RS的配置信息,所述第二传输接收点为所述第一传输接收点的相邻传输接收点;
所述第一发送器1102用于将所述测量RS的配置信息发送给所述第一传输接收点服务的全部或部分用户终端;
所述第一接收器1101还用于接收所述第一传输接收点服务的全部或部分用户终端上报的交叉链路干扰CLI测量值,所述CLI测量值是所述全部或部分用户终端中的每个用户终端根据所述配置信息在与所述每个用户终端对应的各个时频资源位置上进行CLI测量得到的。
可选地,所述RS配置信息包括以下一项或多项:测量RS时频资源配置,测量RS时域类型,测量RS序列,测量RS天线端口数,RS资源集功能,其中,所述RS资源集功能为CLI测量。
所述测量RS时域类型是指周期性或非周期性或半持续性。
可选地,所述全部或部分用户终端发送的测量RS序列在一个slot中占用的符号是连续的,或者是离散的。
可选地,所述第一发送器1102还用于指示所述第一传输接收点的服务小区内的全部或部分用户终端中的每个用户终端从CLI列表中按照指定的上报格式发送CLI测量值,所述CLI列表中记录有用户终端在对应的各时频资源位置上进行CLI测量得到的CLI测量值。
可选地,所述指定的上报格式为以下任一项:
上报所有CLI列表中的CLI测量值;
只上报CLI列表中n个CLI测量值,所述n个CLI测量值均大于预设值;
只上报对n个用户终端的CLI测量值,所述CLI测量值是对应用户终端多个波束对应的多个CLI测量值中的最大值;
只上报对n个用户终端的CLI测量值,所述CLI测量值是对应用户终端多个波束对应的多个CLI测量值的平均值;
每个用户终端只支持单波束CLI测量,只上报对n个用户终端的CLI测量值;
用户终端用指定比特指示上报CLI测量值级别;
其中,n为零或正整数。
可选地,所述第一发送器1102还用于通过RRC信令配置所述服务的全部或部分用户终端发送是否进行CLI测量。
本实施例提供的第一传输接收点,可以执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
基于同一发明构思,本公开实施例中还提供了一种UE,由于该UE解决问题的原理与本公开实施例中用户终端间交叉链路干扰测量方法相似,因此该UE的实施可以参见方法的实施,重复之处不再敷述。
参见图12,图中示出了用户终端的结构,该用户终端1200包括:
第二接收器1201,用于接收所述第一传输接收点发送的来自第二传输接收点发送的测量参考信号RS的配置信息,所述第二传输接收点是所述第一传输接收点的相邻传输接收点;
第一处理器1202,用于根据接收到的所述测量RS配置信息在与所述UE对应各个时频资源位置上进行CLI测量,得到CLI测量值;
第二发送器1203,用于向所述第一传输接收点上报所述CLI测量值。
可选地,所述测量RS配置信息包括以下一项或多项:测量RS时频资源配置,测量RS时域类型,测量RS序列,测量RS天线端口数,RS资源集功能,其中,所述RS资源集功能为CLI测量。
所述测量RS时域类型是指周期性或非周期性或半持续性。
可选地,所述全部或部分用户终端发送的测量RS序列在一个slot中占用的符号是连续的,或者是离散的。
可选地,所述第二接收器还用于接收所述第一传输接收点发送的通知消息,所述通知消息中携带有CLI测量值的指定的上报格式;
所述第二发送器还用于根据所述指示消息从CLI列表中按照指定的上报格式向所述第一传输接收点发送CLI测量值,所述CLI列表中记录有用户终端在各时频资源位置上进行CLI测量得到的CLI测量值。
可选地,所述指定的上报格式为以下任一项:
上报所有CLI列表中的CLI测量值;
只上报CLI列表中n个CLI测量值,所述n个CLI测量值均大于预设值;
只上报对n个用户终端的CLI测量值,所述CLI测量值是对应用户终端多个波束对应的多个CLI测量值中的最大值;
只上报对n个用户终端的CLI测量值,所述CLI测量值是对应用户终端多个波束对应的多个CLI测量值的平均值;
每个用户终端只支持单波束CLI测量,只上报对n个用户终端的CLI测量值;
用户终端用指定比特指示上报CLI测量值级别;
其中,n为零或正整数。
可选地,所述第二接收器1201还用于:接收所述第一传输接收点配置的是否进行CLI测量的配置信息。
本实施例提供的UE,可以执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
基于同一发明构思,本公开实施例中还提供了一种第二传输接收点,由于该第二传输接收点解决问题的原理与本公开实施例中用户终端间交叉链路干扰测量方法相似,因此该第一传输接收点的实施可以参见方法的实施,重复之处不再敷述。
参见图13,图中示出了第二传输接收点的结构,该第二传输接收点1300包括:
第三发送器1301,用于向第一传输接收点发送测量RS的配置信息,由所述第一传输接收点将所述测量RS的配置信息发送给所述第一传输接收点服务的全部或部分用户终端,其中,所述第二传输接收点为所述第一传输接收点的相邻传输接收点。
可选地,所述测量RS配置信息包括以下一项或多项:测量RS时频资源配置,测量RS时域类型,测量RS序列,测量RS天线端口数,RS资源集功能,其中,所述RS资源集功能为CLI测量。
所述测量RS时域类型是指周期性或非周期性或半持续性。
可选地,所述多个用户终端发送的测量RS序列在一个时隙内占用的符号是连续的,或者是离散的。
下述实施例中还提供一种传输接收点和用户终端的硬件结构示意图。
图14为本公开一实施例提供的传输接收点的结构示意图。如图14所示,该传输接收点1400包括:天线1401、射频装置1402、基带装置1403。天线1401与射频装置1402连接。在上行方向上,射频装置1402通过天线1401接收信息,将接收的信息发送给基带装置1403进行处理。在下行方向上,基带装置1403对要发送的信息进行处理,并发送给射频装置1402,射频装置1402对收到的信息进行处理后经过天线1401发送出去。
上述频带处理装置可以位于基带装置1403中,以上实施例中网络侧设备执行的方法可以在基带装置1403中实现,该基带装置1403包括第二处理器14031和第一存储器14032。
基带装置1403例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图14所示,其中一个芯片例如为第二处理器14031,与第一存储器14032连接,以调用第一存储器14032中的程序,执行以上方法实施例中所示的网络侧设备操作。
该基带装置1403还可以包括第一网络接口14033,用于与射频装置1402交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
这里的处理器可以是一个处理器,也可以是多个处理元件的统称,例如,该处理器可以是CPU,也可以是ASIC,或者是被配置成实施以上网络侧设备所执行方法的一个或多个集成电路,例如:一个或多个微处理器DSP,或,一个或者多个现场可编程门阵列FPGA等。保存元件可以是一个存储器,也可以是多个保存元件的统称。
第一存储器14032可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,简称ROM)、可编程只读存储器(Programmable ROM,简称PROM)、可擦除可编程只读存储器(Erasable PROM,简称EPROM)、电可擦除可编程只读存储器(Electrically EPROM,简称EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,简称RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,简称SRAM)、动态随机存取存储器(Dynamic RAM,简称DRAM)、同步动态随机存取存储器(Synchronous DRAM,简称SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,简称DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,简称ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,简称SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,简称DRRAM)。本公开描述的第一存储器14032旨在包括但不限于这些和任意其它适合类型的存储器。
具体地,第二处理器14031调用第一存储器14032中的程序执行上述实施例中的第一传输接收点和第二传输接收点所执行的方法。
图15为本公开另一实施例提供的用户终端的结构示意图。
如图15所示,图15所示的用户终端1500包括:至少一个第三处理器1501、第二存储器1502、至少一个第二网络接口1504和用户终端接口1503。用户终端1500中的各个组件通过总线系统1505耦合在一起。可理解,总线系统1505用于实现这些组件之间的连接通信。总线系统1505除包括数据总 线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图15中将各种总线都标为总线系统1505。
其中,用户终端接口1503可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开实施例中的第二存储器1502可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-OnlyMemory,ROM)、可编程只读存储器(ProgrammableROM,PROM)、可擦除可编程只读存储器(ErasablePROM,EPROM)、电可擦除可编程只读存储器(ElectricallyEPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(RandomAccessMemory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(StaticRAM,SRAM)、动态随机存取存储器(DynamicRAM,DRAM)、同步动态随机存取存储器(SynchronousDRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(DoubleDataRate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(SynchlinkDRAM,SLDRAM)和直接内存总线随机存取存储器(DirectRambusRAM,DRRAM)。本公开实施例描述的系统和方法的存储器902旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,第二存储器1502保存了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统15021和应用程序15022。
其中,操作系统15021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序15022,包含各种应用程序,例如媒体播放器(MediaPlayer)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序15022中。
在本公开实施例中,通过调用第二存储器1502保存的程序或指令,具体的,可以是应用程序15022中保存的程序或指令,第三处理器1501可以执行上述用户终端所执行的方法。
上述本公开实施例揭示的方法可以应用于第三处理器1501中,或者由第三处理器1501实现。第三处理器1501可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过第三处理器1501中的硬件的集成逻辑电路或者软件形式的指令完成。上述的第三处理器1501可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific IntegratedCircuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的保存介质中。该保存介质位于第二存储器1502,第三处理器1501读取第二存储器1502中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可保存在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
具体地,第三处理器1501可以调用第二存储器1502保存的程序或指令,执行上述方法实施例中UE所执行的方法。
本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有数据传输程序,所述数据传输程序被处理器执行时实现如上所述的用户终端间交叉链路干扰消除的方法中的步骤。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一项或多项实施例中。
在本公开的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常可互换使用。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请所提供的实施例中,应理解,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
在本申请所提供的几个实施例中,应该理解到,所揭露方法和设备,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指 令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络侧设备等)执行本公开各个实施例所述收发方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以做出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (33)

  1. 一种用户终端间交叉链路干扰测量方法,应用于第一传输接收点,包括:
    接收第二传输接收点发送的测量参考信号RS配置信息;
    将所述测量参考信号RS配置信息发送给所述第一传输接收点服务的全部或部分用户终端;
    接收所述第一传输接收点服务的全部或部分用户终端上报的交叉链路干扰CLI测量值,所述CLI测量值是所述全部或部分用户终端根据所述测量RS配置信息进行交叉链路干扰测量得到的。
  2. 根据权利要求1所述的方法,其中,所述测量RS配置信息包括以下一项或多项:测量RS时频资源配置,测量RS时域类型,测量RS序列,测量RS天线端口数,RS资源集功能,其中,所述RS资源集功能为CLI测量。
  3. 根据权利要求2所述的方法,其中,所述全部或部分用户终端发送的测量RS序列若在一个时隙(slot)中占用的符号是连续的,或者是离散的。
  4. 根据权利要求1所述的方法,其中,所述上报的CLI测量值的上报格式为以下任一项或多项:
    上报所有CLI列表中的CLI测量值;
    只上报CLI列表中n个CLI测量值,所述n个CLI测量值均大于预设值;
    只上报n个用户终端的CLI测量值,所述CLI测量值是对应用户终端对应的多个CLI测量值的平均值;
    用户终端用指定比特指示上报CLI测量值级别;
    其中,n为零或正整数。
  5. 一种用户终端间交叉链路干扰测量方法,包括:
    传输接收点配置服务的全部或部分用户终端是否进行CLI测量的配置信息。
  6. 根据权利要求5所述方法,其中,所述配置信息为下列一项:
    显式的,通过无线资源控制RRC信令配置所述服务的全部或部分用户终端是否进行CLI测量;
    隐式的配置所述服务的全部或部分用户终端是否进行CLI测量。
  7. 一种用户终端间交叉链路干扰测量方法,应用于第一传输接收点服务的用户终端,包括:
    接收所述第一传输接收点发送的来自第二传输接收点的测量参考信号RS配置信息;
    根据接收到的所述测量RS配置信息在与所述测量RS对应的时频资源位置上进行CLI测量,得到CLI测量值;
    向所述第一传输接收点上报所述CLI测量值。
  8. 根据权利要求7所述的方法,其中,所述测量RS配置信息包括以下一项或多项:测量RS时频资源配置,测量RS时域类型,测量RS序列,测量RS天线端口数,RS资源集功能,其中,所述RS资源集功能为CLI测量。
  9. 根据权利要求8所述的方法,其中,所述全部或部分UE发送的测量RS序列若在一个时隙(slot)中占用的符号是连续的,或者是离散的。
  10. 根据权利要求7所述的方法,其中,所述上报的CLI测量值的上报格式为以下任一项或多项:
    上报所有CLI列表中的CLI测量值;
    只上报CLI列表中n个CLI测量值,所述n个CLI测量值均大于预设值;
    只上报n个用户终端的CLI测量值,所述CLI测量值是对应用户终端对应的多个CLI测量值的平均值;
    UE用指定比特指示上报CLI测量值级别;
    其中,n为零或正整数。
  11. 一种用户间交叉链路干扰测量方法,包括:接收第一传输接收点配置的是否进行CLI测量的配置信息。
  12. 根据权利要求11所述的方法,其中,所述配置信息为下列一项:
    显式的,通过无线资源控制RRC信令配置所述服务的全部或部分用户终端是否进行CLI测量;
    隐式的配置所述服务的全部或部分用户终端是否进行CLI测量。
  13. 一种用户终端间交叉链路干扰测量的方法,应用于第二传输接收点,包括:
    向第一传输接收点发送测量参考信号RS配置信息,由所述第一传输接收点将所述测量RS配置信息发送给所述第一传输接收点服务的全部或部分用户终端。
  14. 根据权利要求13所述的方法,其中,所述测量RS配置信息包括以下一项或多项:
    测量RS时频资源配置,测量RS时域类型,测量RS序列,测量RS天线端口数,RS资源集功能,其中,所述RS资源集功能为CLI测量。
  15. 根据权利要求14所述的方法,其中,所述全部或部分用户终端发送的测量RS序列若在一个时隙(slot)中占用的符号是连续的,或者是离散的。
  16. 一种第一传输接收点,包括:第一接收器和第一发送器,其中,
    所述第一接收器用于接收第二传输接收点发送的测量参考信号RS配置信息;
    所述第一发送器用于将所述测量RS配置信息发送给所述第一传输接收点服务的全部或部分用户终端;
    所述第一接收器还用于接收所述第一传输接收点服务的全部或部分用户终端上报的交叉链路干扰CLI测量值。
  17. 根据权利要求16所述的第一传输接收点,其中,所述配置信息包括以下一项或多项:
    测量RS时频资源配置,测量RS时域类型,测量RS序列,测量RS天线端口数,RS资源集功能,其中,所述RS资源集功能为CLI测量。
  18. 根据权利要求17所述的第一传输接收点,其中,所述全部或部分用户终端发送的测量RS序列若在一个时隙(slot)中占用的符号是连续的,或者是离散的。
  19. 根据权利要求16所述的第一传输接收点,其中,所述上报的CLI测量值的上报格式为以下任一项或多项:
    上报所有CLI列表中的CLI测量值;
    只上报CLI列表中n个CLI测量值,所述n个CLI测量值均大于预设值;
    只上报n个用户终端的CLI测量值,所述CLI测量值是对应用户终端对应的多个CLI测量值的平均值;
    用户终端用指定比特指示上报CLI测量值级别;
    其中,n为零或正整数。
  20. 根据权利要求16所述的第一传输接收点,其中,所述第一发送器还用于配置所述服务的全部或部分用户终端是否进行CLI测量的配置信息。
  21. 根据权利要求16所述的第一传输接收点,其中,所述配置信息为下列一项:
    显式的,通过RRC信令配置所述服务的全部或部分用户终端是否进行CLI测量;
    隐式的配置所述服务的全部或部分用户终端是否进行CLI测量。
  22. 一种用户终端,包括:
    第二接收器,用于接收第一传输接收点发送的来自第二传输接收点的测量参考信号RS配置信息;
    第一处理器,用于根据接收到的所述测量RS配置信息进行CLI测量,得到CLI测量值;
    第二发送器,用于向所述第一传输接收点上报所述CLI测量值。
  23. 根据权利要求22所述的用户终端,其中,所述测量RS配置信息包括以下一项或多项:测量RS时频资源配置,测量RS时域类型,测量RS序列,测量RS天线端口数,RS资源集功能,其中,所述RS资源集功能为CLI测量。
  24. 根据权利要求22所述的用户终端,其中,所述全部或部分用户终端发送的测量RS序列若在一个时隙(slot)中占用的符号是连续的,或者是离散的。
  25. 根据权利要求22所述的用户终端,其中,所述上报的CLI测量值的上报格式为以下任一项或多项:
    上报所有CLI列表中的CLI测量值;
    只上报CLI列表中n个CLI测量值,所述n个CLI测量值均大于预设值;
    只上报n个用户终端的CLI测量值,所述CLI测量值是对应用户终端对应的多个CLI测量值的平均值;
    用户终端用指定比特指示上报CLI测量值级别;
    其中,n为零或正整数。
  26. 根据权利要求22所述的用户终端,其中,所述第二接收器还用于:接收所述第一传输接收点配置的是否进行CLI测量的配置信息。
  27. 根据权利要求26所述的用户终端,其中,所述配置信息为下列一项:
    显式的,通过RRC信令配置所述服务的全部或部分用户终端是否进行CLI测量;
    隐式的配置所述服务的全部或部分用户终端是否进行CLI测量。
  28. 一种第二传输接收点,包括:
    第三发送器,用于向第一传输接收点发送测量参考信号RS配置信息,由所述第一传输接收点将所述测量RS配置信息发送给所述第一传输接收点服务的全部或部分用户终端。
  29. 根据权利要求28所述的第二传输接收点,其中,所述配置信息包括以下一项或多项:测量RS时频资源配置,测量RS时域类型,测量RS序列,测量RS天线端口数,RS资源集功能,其中,所述RS资源集功能为CLI测量。
  30. 根据权利要求29所述的第二传输接收点,其中,所述全部或部分用户终端发送的测量RS序列若在一个时隙(slot)内占用的符号是连续的,或者是离散的。
  31. 一种传输接收点,包括:第一存储器、第二处理器及保存在第一存储器上并可在第二处理器上运行的计算机程序,所述第二处理器执行所述程序时实现如权利要求1~4中任一项所述的用户终端间交叉链路干扰测量的方法中的步骤,或者如权利要求5~6中任一项所述的用户终端间交叉链路干扰测量的方法中的步骤,或者如权利要求13~15中任一项所述的用户终端间交叉链路干扰测量的方法中的步骤。
  32. 一种用户终端,包括:第二存储器、第三处理器及存储在第二存储器上并可在第三处理器上运行的计算机程序,所述第三处理器执行所述程序时实现如权利要求7~10中任一项所述的用户终端间交叉链路干扰测量的方法中的步骤,或者如权利要求11~12中任一项所述的用户终端间交叉链路干扰测量的方法中的步骤。
  33. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如权利要求1~4中任一项所述的用户终端间交叉链路干扰测量的方法中的步骤,或者如权利要求5~6中任一项所述的用户终端间交叉链路干扰测量的方法中的步骤,或者如权利要求7~10中任一项所述的用户终端间交叉链路干扰测量的方法中的步骤,或者如权利要求11~12中任一项所述的用户终端间交叉链路干扰测量的方法中的步骤,或者如权利要求13~15中任一项所述的用户终端间交叉链路干扰测量的方法中的步骤。
PCT/CN2018/091024 2017-06-14 2018-06-13 用户终端间交叉链路干扰测量的方法、用户终端和传输接收点 WO2018228421A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710447190.5 2017-06-14
CN201710447190.5A CN109088683B (zh) 2017-06-14 2017-06-14 一种用户终端间交叉链路干扰测量的方法、用户终端和传输接收点

Publications (1)

Publication Number Publication Date
WO2018228421A1 true WO2018228421A1 (zh) 2018-12-20

Family

ID=64659854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091024 WO2018228421A1 (zh) 2017-06-14 2018-06-13 用户终端间交叉链路干扰测量的方法、用户终端和传输接收点

Country Status (2)

Country Link
CN (1) CN109088683B (zh)
WO (1) WO2018228421A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2567287A (en) * 2017-08-07 2019-04-10 Samsung Electronics Co Ltd Network control
WO2020144624A1 (en) * 2019-01-11 2020-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Cli measurement configuration and reporting
WO2020167019A1 (en) 2019-02-14 2020-08-20 Samsung Electronics Co., Ltd. Method, terminal device, base station, computer readable medium for measuring cross-link interference, and methods and apparatuses for random access preamble allocation, determination, and data transmission
WO2020165395A1 (en) * 2019-02-15 2020-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Technique for mitigating remote interference
WO2020170218A1 (en) * 2019-02-22 2020-08-27 Telefonaktiebolaget Lm Ericsson (Publ) Methods for flexible cli measurement reporting
US11394587B2 (en) * 2017-08-11 2022-07-19 Telefonaktiebolaget Lm Ericsson (Publ) Measurement and report for cross-link interference management based on reference signals
WO2023215120A1 (en) * 2022-05-06 2023-11-09 Qualcomm Incorporated Detection and reporting of inter-operator inter-user-equipment cross-link interference

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278119B (zh) * 2019-01-04 2024-04-19 维沃移动通信有限公司 干扰处理方法、基站及终端
CN111417199B (zh) * 2019-01-07 2023-01-13 中国移动通信有限公司研究院 Cli测量参考信号配置、收发方法、装置、介质和设备
WO2020143016A1 (en) * 2019-01-11 2020-07-16 Qualcomm Incorporated Measurement and reporting for ue-to-ue interference
WO2020164063A1 (en) * 2019-02-14 2020-08-20 Qualcomm Incorporated User equipment grouping for cross-link interference reference signal configuration
EP3925139A1 (en) * 2019-02-14 2021-12-22 Nokia Technologies Oy Cli measurement reporting in telecommunication systems
WO2020164126A1 (en) * 2019-02-15 2020-08-20 Qualcomm Incorporated Two stage cross-link interference transmission and measurement
CN112997525A (zh) * 2019-02-15 2021-06-18 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
CN112867031A (zh) * 2019-03-30 2021-05-28 华为技术有限公司 通信方法及装置
CN111988099A (zh) * 2019-05-23 2020-11-24 海信集团有限公司 一种交叉链路干扰测量的方法、网络侧设备、终端和系统
CN112087759A (zh) * 2019-06-14 2020-12-15 海信集团有限公司 一种配置cli测量资源的方法和设备
WO2021000303A1 (en) 2019-07-03 2021-01-07 Nokia Shanghai Bell Co., Ltd. Cross link interference measurement conditions reporting
KR20210004447A (ko) * 2019-07-04 2021-01-13 삼성전자주식회사 차세대 이동 통신 시스템에서 교차 링크 간섭에 대한 측정과 보고 방법 및 장치
US11683709B2 (en) * 2019-08-26 2023-06-20 Qualcomm Incorporated Indicating a user equipment capability for crosslink interference measurement
KR20220097358A (ko) 2019-11-06 2022-07-07 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 무선 통신 방법, 단말 디바이스 및 네트워크 디바이스
WO2021091229A1 (en) * 2019-11-08 2021-05-14 Samsung Electronics Co., Ltd. Method and apparatus for performing dynamic cross-link interference measurement and reporting in next-generation mobile communication system
WO2021114206A1 (zh) * 2019-12-13 2021-06-17 Oppo广东移动通信有限公司 一种cli测量的方法及装置、终端设备、网络设备
US11689945B2 (en) * 2020-03-13 2023-06-27 Qualcomm Incorporated Measuring cross link interference
CN115462111A (zh) * 2020-05-09 2022-12-09 高通股份有限公司 用于交叉链路干扰测量的参考信号
US20230188229A1 (en) * 2020-06-11 2023-06-15 Qualcomm Incorporated Cross-link interference measurement over multiple beams
WO2022056819A1 (en) * 2020-09-18 2022-03-24 Qualcomm Incorporated Cross link interference (cli) reporting based on phyiscal uplink shared channel (pusch) measurement in full duplex
EP4358441A1 (en) * 2021-06-17 2024-04-24 Beijing Xiaomi Mobile Software Co., Ltd. Communication method and apparatus
WO2023219903A1 (en) * 2022-05-09 2023-11-16 Qualcomm Incorporated Apparatus for providing an enhanced inter-user-equipment sub-band cross link interference report
CN117479212A (zh) * 2022-07-21 2024-01-30 维沃移动通信有限公司 交叉链路干扰测量及报告方法、设备及可读存储介质
CN117811683A (zh) * 2022-09-30 2024-04-02 华为技术有限公司 通信方法、装置和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103797837A (zh) * 2013-11-18 2014-05-14 华为技术有限公司 一种提高信道测量准确性的方法、基站和用户设备
WO2016126033A1 (ko) * 2015-02-08 2016-08-11 엘지전자 주식회사 풀-듀플렉스 무선 통신 시스템에서 단말간 간섭을 고려한 자원 할당 방법 및 이를 위한 장치
CN106559112A (zh) * 2015-09-24 2017-04-05 中国移动通信集团公司 信道信息反馈、资源配置方法、装置、基站及用户设备
CN106851660A (zh) * 2016-12-29 2017-06-13 上海华为技术有限公司 一种信号干扰测量方法、基站及用户设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104904295A (zh) * 2013-01-04 2015-09-09 瑞典爱立信有限公司 当使用可重配置tdd时减轻交叉链路干扰

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103797837A (zh) * 2013-11-18 2014-05-14 华为技术有限公司 一种提高信道测量准确性的方法、基站和用户设备
WO2016126033A1 (ko) * 2015-02-08 2016-08-11 엘지전자 주식회사 풀-듀플렉스 무선 통신 시스템에서 단말간 간섭을 고려한 자원 할당 방법 및 이를 위한 장치
CN106559112A (zh) * 2015-09-24 2017-04-05 中国移动通信集团公司 信道信息反馈、资源配置方法、装置、基站及用户设备
CN106851660A (zh) * 2016-12-29 2017-06-13 上海华为技术有限公司 一种信号干扰测量方法、基站及用户设备

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2567287A (en) * 2017-08-07 2019-04-10 Samsung Electronics Co Ltd Network control
GB2567287B (en) * 2017-08-07 2020-12-30 Samsung Electronics Co Ltd Network control
US11178670B2 (en) 2017-08-07 2021-11-16 Samsung Electronics Co., Ltd Method and apparatus for data communicating in a wireless communication system
US11394587B2 (en) * 2017-08-11 2022-07-19 Telefonaktiebolaget Lm Ericsson (Publ) Measurement and report for cross-link interference management based on reference signals
US12021663B2 (en) 2017-08-11 2024-06-25 Telefonaktiebolaget Lm Ericsson (Publ) Measurement and report for cross-link interference management based on reference signals
WO2020144624A1 (en) * 2019-01-11 2020-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Cli measurement configuration and reporting
WO2020167019A1 (en) 2019-02-14 2020-08-20 Samsung Electronics Co., Ltd. Method, terminal device, base station, computer readable medium for measuring cross-link interference, and methods and apparatuses for random access preamble allocation, determination, and data transmission
EP3915218A4 (en) * 2019-02-14 2022-07-13 Samsung Electronics Co., Ltd. METHOD, TERMINAL DEVICE, BASE STATION, COMPUTER READABLE MEDIUM FOR MEASURING CROSSLINK INTERFERENCE, AND METHODS AND APPARATUS FOR ALLOCATING, DETERMINING, AND TRANSMITTING DATA, OF RANDOM ACCESS PREAMBLE
US11411664B2 (en) * 2019-02-14 2022-08-09 Samsung Electronics Co., Ltd. Method, terminal device, base station, computer readable medium for measuring cross-link interference, and methods and apparatuses for random access preamble allocation, determination, and data transmission
WO2020165395A1 (en) * 2019-02-15 2020-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Technique for mitigating remote interference
WO2020170218A1 (en) * 2019-02-22 2020-08-27 Telefonaktiebolaget Lm Ericsson (Publ) Methods for flexible cli measurement reporting
WO2023215120A1 (en) * 2022-05-06 2023-11-09 Qualcomm Incorporated Detection and reporting of inter-operator inter-user-equipment cross-link interference

Also Published As

Publication number Publication date
CN109088683A (zh) 2018-12-25
CN109088683B (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
WO2018228421A1 (zh) 用户终端间交叉链路干扰测量的方法、用户终端和传输接收点
JP7354302B2 (ja) データを伝送するための方法及び端末装置
CN111345007B (zh) 信令指示和接收方法、装置及通信系统
WO2018228473A1 (zh) 测量配置方法、终端和基站
WO2020063736A1 (zh) 一种干扰测量方法和装置
CN117014020B (zh) 通信方法及装置
WO2018228532A1 (zh) 通信方法、终端及网络设备
CN110999477B (zh) 信息指示方法及相关设备
WO2018137703A1 (zh) 一种信息传输方法和装置
CN108811074B (zh) 信息传输方法及装置
US20220394504A1 (en) Beam pair training method and communication apparatus
WO2018099328A1 (zh) 通信方法、基站和终端设备
WO2018127141A1 (zh) 一种参考信号传输方法及装置
WO2021098048A1 (zh) 一种信息上报方法及装置
WO2018028501A1 (zh) 一种下行接收波束训练信号的传输方法及装置
WO2020199220A1 (zh) 接收信息、发送信息的方法和设备
WO2020020376A1 (zh) 一种参考信号发送、接收方法、装置及设备
CN111434071A (zh) 信号接收装置及方法、通信系统
WO2021261863A1 (en) Method and apparatus for uplink transmit beam selection
CN115915167A (zh) 一种通信方法及通信装置
WO2022141417A1 (zh) 一种信息上报方法及装置
WO2022027518A1 (zh) 上行数据的发送方法、装置和系统
WO2018205436A1 (zh) 波束管理的方法、网络设备及终端
US20230140502A1 (en) Beam indication method and communications apparatus
WO2021013138A1 (zh) 无线网络通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.06.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18818591

Country of ref document: EP

Kind code of ref document: A1