WO2020063736A1 - 一种干扰测量方法和装置 - Google Patents

一种干扰测量方法和装置 Download PDF

Info

Publication number
WO2020063736A1
WO2020063736A1 PCT/CN2019/108123 CN2019108123W WO2020063736A1 WO 2020063736 A1 WO2020063736 A1 WO 2020063736A1 CN 2019108123 W CN2019108123 W CN 2019108123W WO 2020063736 A1 WO2020063736 A1 WO 2020063736A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
reference signal
interference measurement
functional entity
configuration message
Prior art date
Application number
PCT/CN2019/108123
Other languages
English (en)
French (fr)
Inventor
叶枫
唐小勇
刘凤威
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2021517472A priority Critical patent/JP2022501953A/ja
Priority to KR1020217012134A priority patent/KR20210063394A/ko
Priority to EP19865018.6A priority patent/EP3849230B1/en
Publication of WO2020063736A1 publication Critical patent/WO2020063736A1/zh
Priority to US17/213,999 priority patent/US20210219155A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present application relates to the field of communications, and more particularly, to an interference measurement method and device.
  • IAB nodes are evolved nodes of the relay technology.
  • relay nodes are usually used to achieve extended coverage or blind spot coverage, or to increase system capacity.
  • the IAB node is divided into functions: IAB mobile terminal (MT) and IAB base station distributed unit (DU).
  • IAB MT refers to the IAB as a terminal device UE, which is connected to a higher-level node.
  • IAB DU refers to the IAB as a distributed unit of the base station, which provides access services to the UE and other downstream nodes.
  • the link that the IAB DU provides to the UE is called an access link (AC), and the link that sends data to other IAB nodes is called a backhaul link (BH) ),
  • the sending and receiving status of different IAB nodes at the same time may be different, for example, when an IAB node is receiving the backhaul link or the transmission on the access link
  • it will receive interference from signals sent by another IAB node, which is called cross link interference (CLI).
  • Cross link interference will reduce the transmission capacity of IAB nodes, especially for backhaul link interference, which will cause severe performance loss. Therefore, how to perform interference measurement on IAB nodes and then take targeted interference management measures to avoid cross-link interference or mitigate the impact of cross-link transmission signals is an issue that needs to be considered in current IAB standardization.
  • the present application provides an interference measurement method and device.
  • the second functional entity of the node that generates the interference uses one or more beams corresponding to the reference signal resource identifier of the first functional entity of the node that generates the interference to send.
  • the reference signal used for interference measurement enables the interfered node to perform interference measurement quickly and accurately. It solves the interference measurement between nodes under cross-link interference, which greatly reduces the impact of cross-link transmission signals. To improve the transmission performance of the system.
  • an interference measurement method is provided, which is applied to an integrated access and backhaul IAB network, where the IAB network includes at least a first node and a second node, and the second node includes: a first functional entity and A second functional entity, the method includes:
  • the second functional entity of the second node receives an RS configuration message, where the RS configuration message includes reference signal resource indication information of the second functional entity of the second node, and the reference signal resource indication information of the second functional entity includes : A reference signal resource identifier of the first functional entity of the second node;
  • the second functional entity of the second node sends a reference signal for interference measurement according to the reference signal resource identifier of the first functional entity of the second node in the received RS configuration message.
  • the reference signal used for interference measurement is sent through the second functional entity of the interference generating node provided in the foregoing embodiment by using one or more beams corresponding to the reference signal resource identifier of the first functional entity of the interference generating node.
  • the affected node can perform interference measurement quickly and accurately, thereby greatly reducing the influence of the cross-link transmission signal and improving the transmission performance of the system.
  • an interference measurement method is applied to an integrated access and backhaul IAB network, where the IAB network includes at least a first node, a second node, and a third node, where the second node and the third node are both Including: a first functional entity and a second functional entity, the method includes:
  • the first functional entity of the third node receives an interference measurement configuration message, and the interference measurement configuration message includes: interference measurement type indication information, and the interference measurement type indication information is used to instruct the first functional entity of the third node to use the first measurement entity.
  • the reception beam of the second functional entity of the three nodes performs interference measurement; according to the interference measurement type indication in the interference measurement configuration, the first functional entity of the third node determines that the reception beam used to detect the reference signal is A receiving beam of a second functional entity of a third node;
  • the first functional entity of the third node receives a reference signal for interference measurement through the determined receiving beam.
  • the interference measurement method provided in the foregoing embodiment enables the interfered node to perform interference measurement quickly and accurately, thereby greatly reducing the influence of the cross-link transmission signal and improving the transmission performance of the system.
  • an interference measurement device includes:
  • the transceiver is configured to receive an RS configuration message, where the RS configuration message includes reference signal resource indication information of a second functional entity of the second node, and the reference signal resource indication information of the second functional entity includes: A reference signal resource identifier of the first functional entity; and sending an RS for interference measurement using the determined one or more transmission beams according to an instruction of the processor;
  • a processor configured to determine one or more transmissions corresponding to the reference signal resource identifier of the first functional entity of the second node according to the reference signal resource identifier of the first functional entity of the second node in the RS configuration message A beam, instructing the transceiver to use the determined transmission beam to send an RS for interference measurement.
  • the interference measurement method provided in the foregoing embodiment enables the interfered node to perform interference measurement quickly and accurately, thereby greatly reducing the influence of the cross-link transmission signal and improving the transmission performance of the system.
  • an interference measurement device includes:
  • a transceiver for receiving an interference measurement configuration message includes: interference measurement type indication information, and the interference measurement type indication information is used to instruct a first functional entity of a third node to adopt a second A receiving beam of a functional entity performs interference measurement; and according to an instruction of the processor, receiving a reference signal for interference measurement through the determined receiving beam;
  • a processor configured to determine, according to an interference measurement type indication in the interference measurement configuration message, that a receiving beam used to detect the reference signal is a receiving beam of a second functional entity of a third node, and instruct the transceiver to pass The determined receiving beam receives a reference signal for interference measurement.
  • the interference measurement method provided in the foregoing embodiment enables the interfered node to perform interference measurement quickly and accurately, thereby greatly reducing the influence of the cross-link transmission signal and improving the transmission performance of the system.
  • an interference measurement device includes:
  • a processor configured to execute the program stored in the memory, and when the program is executed, the processor is configured to execute the method according to any one of the first aspect or the second aspect.
  • an interference measurement device includes:
  • a computer-readable storage medium including instructions that, when run on a computer, cause the computer to perform the method according to any of the first aspect or the second aspect
  • an interference measurement device includes: a computer program product, characterized in that the computer program product includes computer program code, and when the computer program code is run on a computer, the computer executes the program as the first Aspect or the method of any of the second aspect.
  • a chip includes a memory and a processor, where the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the processor executes the claims The method according to any one of the first aspect or the second aspect.
  • FIG. 1 is a system architecture diagram to which an embodiment of the present application is applied;
  • FIG. 2 is another system architecture diagram provided by an embodiment of the present application.
  • FIG. 3 is another system architecture diagram provided by an embodiment of the present application.
  • FIG. 4a is a schematic flowchart of interference measurement according to an embodiment of the present application.
  • 4b is a schematic flowchart of another interference measurement according to an embodiment of the present application.
  • FIG. 5 is a system architecture diagram provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another interference measurement according to an embodiment of the present application.
  • FIG. 7 is a system architecture diagram provided by an embodiment of the present application.
  • 8a is a schematic flowchart of interference measurement according to an embodiment of the present application.
  • FIG. 8b is a schematic flowchart of another interference measurement according to an embodiment of the present application.
  • FIG. 9 is a system architecture diagram provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of another interference measurement according to an embodiment of the present application.
  • FIG. 11 is a system architecture diagram provided by an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of another interference measurement according to an embodiment of the present application.
  • FIG. 13a is a system architecture diagram provided by an embodiment of the present application.
  • 13b is a schematic block diagram of a frame format according to an embodiment of the present application.
  • 15 is a system architecture diagram provided by an embodiment of the present application.
  • FIG. 16 is a schematic flowchart of another interference measurement according to an embodiment of the present application.
  • FIG. 17 is a system architecture diagram provided by an embodiment of the present application.
  • FIG. 18 is a schematic block diagram of a power control apparatus according to an embodiment of the present application.
  • FIG. 19 is a schematic block diagram of another power control apparatus according to an embodiment of the present application.
  • FIG. 20 is a schematic diagram of a hardware structure of a network device according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • the communication system includes a network device and at least one terminal device.
  • the terminal device is within the coverage of the network device and communicates with the network device to implement the technical solutions provided in the embodiments of the present application described below.
  • the communication system of this embodiment can be applied to a multi-TRP scenario.
  • the embodiments of the present application describe various embodiments in combination with a network device and a terminal device.
  • the network device and the terminal device can work in a licensed frequency band or an unlicensed frequency band, among which:
  • Terminal equipment can also be called user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user Agent or user device.
  • Terminal equipment can be stations (STATION, ST) in Wireless Local Area Networks (WLAN), cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, wireless local loop (Wireless Local Loop (WLL) stations, Personal Digital Processing (PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and next-generation communication systems, For example, terminal equipment in a fifth-generation (5G) network or terminal equipment in a future evolved Public Land Mobile Network (PLMN) network, terminal equipment in an NR system, and the like.
  • 5G fifth-generation
  • PLMN Public Land Mobile Network
  • the terminal device may also be a wearable device.
  • Wearable devices can also be referred to as wearable smart devices. They are the general name for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a device that is worn directly on the body or is integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also powerful functions through software support, data interaction, and cloud interaction.
  • Broad-spectrum wearable smart devices include full-featured, large-sized, full or partial functions that do not rely on smart phones, such as smart watches or smart glasses, and only focus on certain types of application functions, and need to cooperate with other devices such as smart phones Use, such as smart bracelets, smart jewelry, etc. for physical signs monitoring.
  • network equipment is also called radio access network (RAN) equipment, which is a device that connects terminal equipment to the wireless network. It can be an evolved base station in Long Term Evolution (LTE) (Evolutional NodeB, eNB or eNodeB), or a relay station or access point, or a network device in a 5G network or a network device in a future evolved PLMN network, or a new generation base station in a NR system (newradioNodeB, gNodeB ) Etc. are not limited here.
  • LTE Long Term Evolution
  • eNB Term Evolution
  • eNodeB evolved NodeB
  • gNodeB New RadioNodeB
  • the network device provides a service to the cell, and the terminal device communicates with the network device through a transmission resource (for example, a frequency domain resource or a spectrum resource) used by the cell.
  • the cell may be a cell corresponding to a network device (for example, a base station), and the cell may belong to a macro base station or a base station corresponding to a small cell.
  • the small cells here may include: urban cells, micro cells, pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmission power. , Suitable for providing high-speed data transmission services.
  • FIG. 1 is a schematic structural diagram of a communication system applicable to an embodiment of the present application.
  • the communication system mentioned in the embodiments of the present application includes, but is not limited to, a narrow band-internet of things (NB-IoT) system, a long term evolution (LTE) system, and a next-generation 5G Mobile communication system or communication system after 5G, or device-to-device (D2D) communication system.
  • NB-IoT narrow band-internet of things
  • LTE long term evolution
  • D2D device-to-device
  • An IAB system includes at least one base station 100, one or terminal 101 served by the base station 100, one or more relay nodes (rTRP) 110, and one or more terminals 111 served by the rTRP 110.
  • the base station 100 is called a donor base station (DnNB)
  • the rTRP 110 is connected to the base station 100 through a wireless backhaul link 113.
  • the terminal is also called a terminal
  • the host base station is also called a host node, that is, a Donor node.
  • Base stations include but are not limited to: evolved node B (eNB), radio network controller (RNC), node B (NB), base station controller (BSC), Base transceiver station (BTS), home base station (for example, home nodeB, or home nodeB, HNB), baseband unit (BBU), or next-generation new air interface base station (such as gNB).
  • eNB evolved node B
  • RNC radio network controller
  • NB node B
  • BSC base station controller
  • BTS Base transceiver station
  • home base station for example, home nodeB, or home nodeB, HNB
  • BBU baseband unit
  • next-generation new air interface base station such as gNB
  • the integrated access and backhaul system can also include multiple other relay nodes, such as rTRP 120 and rTRP 130.
  • rTRP 120 is connected to the relay node rTRP 110 via the wireless backhaul link 123 to access the network.
  • RTRP 130 It is connected to the relay node rTRP 110 via the wireless backhaul link 133 to access the network, rTRP 120 serves one or more terminals 121, and rTRP 130 serves one or more terminals 131.
  • the relay nodes rTRP 110 and rTRP 120 are connected to the network through a wireless backhaul link. In this application, the wireless backhaul links are all viewed from the perspective of the relay node.
  • the wireless backhaul link 113 is the backhaul link of the relay node rTRP 110
  • the wireless backhaul link 123 is the relay node rTRP 120 Backhaul link.
  • a relay node such as 120
  • a node providing wireless backhaul link resources such as 110
  • 120 is referred to as a lower node of the relay node 110
  • a lower node can be regarded as a terminal of a higher node.
  • a relay node In the integrated access and backhaul system shown in FIG. 1, a relay node is connected to an upper node, but in the future relay system, in order to improve the reliability of the wireless backhaul link, a relay node, Such as 120, there can be multiple upper-level nodes to provide services for them at the same time.
  • rTRP 130 can also be connected to the relay node rTRP 120 through the backhaul link 134, that is, both rTRP 110 and rTRP 120 are the upper nodes of rTRP 130.
  • the terminals 101, 111, 121, 131 may be stationary or mobile devices.
  • the mobile device may be a mobile phone, a smart terminal, a tablet computer, a notebook computer, a video game console, a multimedia player, or even a mobile relay node.
  • a stationary device is usually located in a fixed location, such as a computer, an access point (connected to the network through a wireless link, such as a stationary relay node), and so on.
  • the names of the relay nodes rTRP 110, 120, 130 are not limited to the scene or network in which they are deployed, and can be any other name such as relay, RN, and so on.
  • the use of rTRP in this application is for the convenience of description only.
  • Each IAB node includes two functional entities, a distributed unit (DU) and a mobile terminal (Mobile Termination).
  • the MT functional entity is similar to The function of the UE receives downlink data from an upper node (Donor node or IAB node) or sends uplink data to a higher node.
  • the DU function entity is similar to the base station function and sends downlink data to a lower node (IAB node or mobile terminal) or receives a lower node.
  • the sent uplink data is, for example, for the IAB system provided in FIG.
  • the IAB system includes: a Donor node, and the three IAB nodes are IAB node 1, IAB node 2, and IAB node 3. Among them, IAB node 2 and IAB node 3 directly access the Donor node, IAB node 1 is a child node of IAB node 3, and the Donor node and each IAB node respectively serve one or more user UE nodes, such as UE1, UE2, UE3, and UE4.
  • the wireless link 102, 112, 122, 132, 113, 123, 133, 134 can be a bidirectional link, including uplink and downlink transmission links.
  • the wireless backhaul link 113, 123, 133, 134 can be used by higher-level nodes to provide services to lower-level nodes, such as higher-level node 100.
  • the uplink and downlink of the backhaul link may be separated, that is, the uplink and downlink are not transmitted through the same node.
  • the downlink transmission refers to an upper node, such as node 100, and the lower node, such as node 110, transmits information or data
  • the uplink transmission refers to a lower node, such as node 110, to an upper node, such as node 100, to transmit information or data.
  • the node is not limited to whether it is a network node or a terminal.
  • the terminal can serve as a relay node to serve other terminals.
  • the wireless backhaul link may be an access link in some scenarios.
  • the backhaul link 123 may be regarded as an access link for the node 110, and the backhaul link 113 is also an access link for the node 100.
  • the above-mentioned upper node may be a base station or a relay node
  • the lower node may be a relay node or a terminal having a relay function.
  • the lower node may also be a terminal.
  • a Donor node refers to a node that can access the core network through the node, or an anchor base station of a wireless access network, through which the base station can access the network.
  • the anchor base station is responsible for data processing at the packet data convergence protocol (PDCP) layer, or is responsible for receiving data from the core network and forwarding it to the relay node, or receiving data from the relay node and forwarding it to the core network.
  • PDCP packet data convergence protocol
  • the wireless backhaul link of the in-band relay coincides with the spectrum resource of the access link, that is, the backhaul link of the in-band relay has the same frequency band as the access link.
  • the backhaul link of the in-band relay has the same frequency band as the access link.
  • rTRP when rTRP is receiving on the downlink wireless backhaul link of the base station, it cannot transmit to the subordinate terminal or device; while rTRP is performing uplink transmission to the superior node on the backhaul link, it cannot receive the subordinate terminal or device to access in the uplink.
  • the half-duplex constraint of the in-band relay refers to the half-duplex constraint of simultaneous transmission and reception at the same frequency, and the time division duplexing (TDD) or frequency division duplexing method adopted by the system itself (Frequency Division Division Duplexing) , FDD) has nothing to do.
  • TDD time division duplexing
  • FDD Frequency Division Division Duplexing
  • the access link refers to the wireless link used by a node to communicate with its subordinate nodes, including uplink and downlink transmission links.
  • the uplink transmission on the access link is also called the uplink transmission of the access link, and the downlink transmission is also called the downlink transmission of the access link.
  • the nodes include, but are not limited to, the foregoing IAB nodes.
  • the backhaul link refers to the wireless link used by a node to communicate with its superior node, including uplink and downlink transmission links.
  • the uplink transmission on the backhaul link is also referred to as the uplink transmission on the backhaul link, and the downlink transmission is also referred to as the downlink transmission on the backhaul link.
  • the nodes include, but are not limited to, the foregoing IAB nodes.
  • a beam it can be understood as a spatial resource, which can refer to sending or receiving a precoding vector with directivity of energy transmission.
  • the transmitted or received precoding vector can be identified by index information.
  • the energy transmission directivity may refer to precoding processing of a signal to be transmitted through the precoding vector, and the signal after the precoding processing has a certain spatial directivity. After receiving the precoding vector, the precoding processing is performed.
  • the signal has a better received power, such as satisfying the reception demodulation signal-to-noise ratio, etc .; the energy transmission directivity may also mean that the same signal received from the different spatial positions received by the precoding vector has different received power.
  • the same communication device such as a terminal device or a network device, may have different precoding vectors, and different communication devices may also have different precoding vectors, that is, correspond to different beams.
  • a communication device can use one or more of multiple different precoding vectors at the same time, that is, one beam or multiple beams can be formed at the same time.
  • the beam information may be identified by index information.
  • the index information may correspond to a resource identifier (identity, ID) of the configuration terminal device.
  • the index information may correspond to an ID or index or resource of a channel state information reference signal (CSI-RS) configured, or may be a corresponding configured uplink sounding reference signal (Sounding Reference Signal). , SRS) ID or resource.
  • CSI-RS channel state information reference signal
  • SRS uplink sounding reference signal
  • the index information may also be displayed or implicitly carried by a signal or channel carried by a beam.
  • the index information includes, but is not limited to, a synchronization signal sent by a beam or a broadcast channel to indicate the index information.
  • Index information of the beam may be at least one of the following: time domain, frequency domain, code domain (sequence).
  • the IAB system includes: IAB equipment, for example: IAB node 1, IAB node 2, IAB node 3, terminal equipment UE served by each IAB device, and Donor node.
  • the Donor node is a superior node or parent node of the IAB node 2.
  • the IAB node 2 can perform signal transmission with the Donor node and provide services for UE2.
  • the superior node of IAB node 1 is IAB node 3, IAB Node 1 performs signal transmission with the searched IAB node 3 and also provides services for UE1.
  • IAB node 1 receives the signal sent by the Donor node through MT, and IAB node 2 sends data to IAB node 3 through MT.
  • the MT of IAB node 1 receives the downlink signal, it is interfered by the uplink signal sent by the MT of IAB node 2.
  • the source of interference here is IAB node 2, the interfered node is IAB node 1, and the cross-link interference CLI is IAB. Interference caused by MT of node 2 to MT of IAB node 1.
  • IAB node 1 receives the signal sent by the Donor node through the MT, and IAB node 2 sends the signal to the UE through the DU.
  • the MT of IAB node 1 receives the downlink signal, it is interfered by the downlink signal sent by the DU of IAB node 2.
  • the source of interference here is the DU of IAB node 2.
  • the interfered node is the MT of IAB node 1.
  • Cross link interference It is the interference caused by the DU of IAB node 2 to the MT of IAB node 1.
  • IAB node 1 receives the signal sent by the UE through the DU, and IAB node 2 sends the signal to IAB node 3 through the MT.
  • the DU of IAB node 1 receives the uplink signal, it is interfered by the MT of IAB node 2 sending the uplink signal.
  • the interference source here is the MT of IAB node 2, the interfered node is the DU of IAB node 1, and the cross-link interference. It is the interference caused by the MT of IAB node 2 to the DU of IAB node 1.
  • IAB node 1 receives the signal sent by the UE through the DU, and IAB node 3 sends the signal from IAB node 2 through the DU.
  • the DU of IAB node 1 receives the uplink signal, it is interfered by the downlink signal transmitted by the DU of IAB node 3.
  • the source of interference here is the DU of IAB node 3.
  • the interfered node is the DU of IAB node 1.
  • the cross link The interference CLI is the interference caused by the DU of IAB node 3 to the DU of IAB node 1.
  • FIG. 4a is a flowchart of an interference measurement method according to an embodiment of the present application.
  • the IAB network architecture shown in FIG. 5 is taken as an example to describe the interference measurement method in detail.
  • the above various application scenarios can be applied to the following Interference measurement method.
  • IAB node 1 receives a signal sent by DU of IAB node 3 through MT, and IAB node 2 sends data to Donor node through MT.
  • IAB node 1 receives the downlink signal, it is interfered by the uplink signal sent by the MT of IAB node 2.
  • the source of interference here is IAB node 2 and the interfered node is IAB node 1.
  • the interference may be crossover.
  • Link interference CLI which is the interference caused by the MT of IAB node 2 to the MT of IAB node 1.
  • IAB node 1 and IAB node 2 may have cross-link interference between the MT and the MT in some time slots, so the cross-link between the MT of the IAB node 1 and the MT of the IAB node 2 needs to be completed Road interference measurement, the specific interference measurement method is as follows:
  • the first node sends a reference signal (RS) configuration message, where the RS configuration message includes: reference signal resource indication information of a second functional entity of the second node, and reference signal resource indication of the second functional entity.
  • the information includes: a reference signal resource identifier of the first functional entity of the second node.
  • the RS configuration information is used to configure a reference signal sent by the second functional entity of the second node, and the reference signal sent by the second functional entity of the second node is used for interference measurement, and the interference is Interference caused by the first functional entity of the second node to the first functional entity of the third node.
  • the second node is an interference-generating node, and the third node is an interfered node; a reference signal resource identifier of a first functional entity of the second node is used to indicate the reference signal resource.
  • the first node is a Donor node
  • the second node is a node that generates interference, such as IAB node 2
  • the third node is a node that is interfered, such as IAB node 1.
  • Both the second node and the third node may include a first functional entity and a second functional entity.
  • the first functional entity is an MT
  • the second functional entity is a DU.
  • the first functional entity may be integrated with the second functional entity into one module, or may be independent and separated into different modules.
  • the first functional entity is MT or DU
  • the second functional entity is DU or MT.
  • the first node may also be an IAB node.
  • IAB node 2 may use one or more beams for signal transmission at the same time, and IAB node 1 may also use one or more beams for signal transmission at the same time.
  • the beam may be indicated by a reference signal resource identifier.
  • the reference signal resource identifier of the first functional entity of the second node is the reference signal resource identifier of the MT of the IAB node 2, and is used to instruct one or more reference signal resources used by the MT of the IAB node 2 to send a reference signal,
  • the one or more reference signal resources correspond to transmission beams of one or more MTs.
  • the reference signal resource identifier of the first functional entity of the second node may be a resource identifier (identity, ID) of a reference signal configured by the IAB node, for example, a channel status information reference signal (Channel status information Reference Signal, CSI- (RS) resource identifier (CSI-RS-ResourceId) or sounding reference signal (SRS-ResourceId).
  • ID resource identifier
  • CSI- Channel status information Reference Signal
  • SRS-ResourceId sounding reference signal
  • the reference signal configuration message may be carried in a Radio Resource Control (RRC) protocol message, or may be carried in a message based on the F1-AP (F1-application protocol) protocol through the F1 interface, for example, downlink Radio resource control transfer message (DL RRC TRANSFER message), the F1 interface is the F1 interface between the distributed unit (DU) of the IAB node 2 and the centralized unit (CU) of the Donor node, or is carried on the F1 interface DCI (Downlink Control Information) message or MAC CE (Media Access Control element).
  • RRC Radio Resource Control
  • F1-AP F1-application protocol
  • DL RRC TRANSFER message downlink Radio resource control transfer message
  • DCI Downlink Control Information
  • MAC CE Media Access Control element
  • the reference signal configuration message may also be sent by the Donor node to the MT of IAB node 2 through RRC, DCI or MAC CE, and then the MT of IAB node 2 notifies the DU of IAB node 2 through internal signaling interaction.
  • the reference signal configuration message may be sent periodically or semi-statically.
  • the reference signal configuration message includes: one or more reference signal resource indication information, and each reference signal resource indication information includes a reference signal resource identifier.
  • the specific format of the reference signal resource indication information is as follows:
  • Method 1 Define a new type of reference signal resource indication information.
  • the format of the specific indication information is as follows:
  • RS-Resource is reference signal resource indication information
  • RS-ResourceId is a reference signal resource identifier
  • the reference signal resource identifier can be understood to instruct the DU of IAB node 2 to use the beam of the MT of IAB node 2 corresponding to the identifier to send the reference signal.
  • the reference signal resource indication information may further include one or more of the following:
  • the power control of the reference signal indicates the transmit power used by the DU of the IAB node 2 to send the reference signal.
  • the transmission power of the reference signal is configured as the transmission power of the MT of the IAB node 2.
  • periodicityAndOffset indicates the sending period of the reference signal for the interference measurement pair, and / or the time slot offset within each period.
  • Method 2 The reference signal resource indication information adopts a unified format, for example, an existing CSI-RS-Resource message format is adopted, and the CSI-RS-Resource message is extended.
  • the CSI-RS resource indication information shown below is CSI-RS-Resource:
  • CSI-RS-Resource is reference signal resource indication information
  • CSI-RS-ResourceId is a conventional reference signal resource identifier for CSI measurement, and is used to instruct the DU of IAB node 2 to use the DU's own configured beam to send the reference signal for CSI measurement;
  • SRS-ResourceId is a reference signal resource identifier
  • the reference signal resource identifier is used to instruct the DU of IAB node 2 to use the beam of the MT of IAB node 2 corresponding to the identifier to send the reference signal.
  • resourceMapping used to indicate the time-frequency resource location of the reference signal mapping
  • the power control of the reference signal which indicates the transmit power used by the DU of the IAB node 2 to send the reference signal
  • periodicityAndOffset indicates the sending period of the reference signal for the interference measurement pair, and / or the time slot offset within each period.
  • the Donor node sends a reference signal configuration message to the DU of IAB node 2
  • the DU of IAB node 2 recognizes the SRS-ResourceId contained in it, it can be known that the current reference signal configuration is used for interference measurement, specifically cross-chain Road interference measurement.
  • the powerControl field indicates the power used to send the reference signal. If the current reference signal resource for channel state information CSI measurement is indicated, this field will be set to the CSI-RS transmission power information; when cross link interference is indicated When the CLI measures the reference signal resource, this field will be set to the SRS transmit power information.
  • step S400 uses FIG. 5 as an example, which can be understood as:
  • the Donor node When the MT of IAB node 1 is interfered by the MT of IAB node 2, the Donor node generates an RS configuration message, and the RS configuration message is used to configure a reference signal for interference measurement sent by the DU of IAB node 2.
  • the reference signal for interference measurement is used to measure the interference caused by the MT of IAB node 1 to the MT of IAB node 2.
  • the RS configuration message includes the reference signal resource identifier of the DU of IAB node 2 such as: ⁇ 3,4 5 ⁇ , the reference signal resource identifier corresponds to the beam of the MT of the IAB node 2.
  • the second functional entity of the second node configures a reference signal for interference measurement according to the received RS configuration message.
  • the DU of the IAB node 2 selects a corresponding beam to send a reference signal according to a reference signal resource identifier.
  • the DU can interact with the MT, so that the DU can also identify SRI ⁇ 3,4 , 5 ⁇ What are the specific MT beams, for example, the three physical beams indicated by the shadows in FIG. 5.
  • the MT of IAB node 2 uses the reference signal resource identifier ⁇ 3,4,5 ⁇ to correspond to the beam set ⁇ a, b, c ⁇ for signal transmission.
  • the MT of IAB node 1 interferes with the MT of IAB node 2
  • the DU of IAB node 2 interacts with the MT of IAB node 2 to obtain the beam set ⁇ a, b, c ⁇ of the MT of IAB node 2 corresponding to the reference signal resource identifier ⁇ 3,4,5 ⁇
  • the DU of IAB node 2 uses the beam set ⁇ a, b, c ⁇ to send a reference signal for interference measurement.
  • the interaction between the MT and the DU of the IAB node 2 may be the interaction between hardware modules, or the integration may be implemented by software when the MT and the DU are integrated.
  • the reference signal resource indication information in the configuration message further includes one or more of the following combinations:
  • the DU of IAB node 2 needs to configure the reference signal used for interference measurement according to the configuration information of MT of IAB node 2, sending the reference signal by using the DU of IAB node 2 instead of the MT of IAB node 2 enables IAB node 1 to The reference signal for interference measurement is accurately detected, thereby measuring the interference and then eliminating the interference, which greatly improves the performance of the IAB network.
  • the second functional entity of the second node sends a reference signal for interference measurement.
  • the DU of the IAB node 2 sends the interference measurement reference signal by using one or more beams corresponding to the reference signal resource identifier in the RS configuration message, which is convenient for the MT of the IAB node 1 to perform interference measurement.
  • the DU of IAB node 2 can also send a reference signal for interference measurement on a specified time-frequency resource. If periodic measurement is required, the DU of IAB node 2 will also periodically within a specified transmission period.
  • the reference signal is transmitted, and the above-mentioned reference signal is transmitted using a specified transmission power.
  • the reference signal may include one or more of the following: synchronization signal SSB, channel state information reference signal CSI-RS, demodulation reference signal DMRS, tracking reference signal TRS, phase tracking reference signal PTRS, sounding reference signal SRS, or other RS.
  • the first node performs interference measurement configuration on the first functional entity of the third node, and sends an interference measurement configuration message.
  • the step S406 may be performed before sending the reference signal for interference measurement in step S404, and is not limited to after step S404.
  • the interference measurement configuration message sent by the Donor node to the MT of IAB node 1 can be sent by Donor to the MT of IAB node 1 based on the RRC (Radio Resource Control, Radio Resource Control) protocol, and is carried by the RRC protocol specific message. in. It can also be indicated by MAC CE.
  • RRC Radio Resource Control, Radio Resource Control
  • IAB node 1 uses the measurement configuration for interference measurement insensitivity.
  • the interference measurement configuration message sent by the MT to the IAB node 1 will include specific reference signal resource indication information, such as the position and period of the time-frequency resource of the reference signal. It also includes reference signal resource identifiers, and the number of reference signal resource identifiers here, that is, the number of reference signal resources to be measured is consistent with the number of reference signal resources of the DU that Donor sends to IAB node 2.
  • the first functional entity of the third node detects the reference signal sent by the second functional entity of the second node for interference measurement according to the measurement configuration described in step S406, and performs interference measurement.
  • the MT of the IAB node 1 detects the reference signal sent by the DU of the IAB node 2 for interference measurement at the indicated resource location.
  • this embodiment of the present invention also provides another embodiment, which briefly describes the foregoing process by using the second node, as shown in FIG. 4b:
  • An interference measurement method is applied to an integrated access and backhaul IAB network.
  • the IAB network includes at least a first node and a second node, and the second node includes a first functional entity and a second functional entity.
  • the methods include:
  • the second functional entity of the second node receives a reference signal configuration message, where the reference signal configuration message includes reference signal resource indication information of the second functional entity of the second node, and the reference of the second functional entity.
  • the signal resource indication information includes a reference signal resource identifier of the first functional entity of the second node.
  • the reference signal resource indication information further includes any combination of one or more of the following:
  • the time-frequency resource location of the RS mapping used for the interference measurement, the power control of the RS used for the interference measurement, and the RS transmission period used for the interference measurement is the time-frequency resource location of the RS mapping used for the interference measurement, the power control of the RS used for the interference measurement, and the RS transmission period used for the interference measurement.
  • the second functional entity of the second node sends an RS for interference measurement according to the reference signal resource identifier of the first functional entity of the second node in the received reference signal configuration message.
  • the second functional entity of the second node determines the reference of the first functional entity of the second node according to the reference signal resource identifier of the first functional entity of the second node in the received reference signal configuration message.
  • the second functional entity of the second node sends the RS for interference measurement using the determined one or more beams.
  • the power control of the RS for interference measurement is the transmission power of the first functional entity of the second node.
  • the method further includes:
  • the present application provides an interference measurement method and device.
  • a second functional entity of a node that generates an interference uses one or more beams corresponding to a reference signal resource identifier of the first functional entity of the node that generates the interference to send for interference.
  • the measured RS enables the interfered node to perform interference measurement quickly and accurately, thereby greatly reducing the influence of the cross-link transmission signal and improving the transmission performance of the system.
  • An embodiment of the present invention also provides another embodiment, as shown in FIG. 6.
  • the IAB network architecture diagram of FIG. 7 is taken as an example for illustration, but is not limited to FIG. 7 and can be applied to the various network architecture diagrams above.
  • IAB node 1 receives a signal sent by DU of IAB node 3 through MT, and IAB node 2 sends data to Donor node through MT.
  • IAB node 1 receives the downlink signal, it is interfered by the uplink signal sent by the MT of IAB node 2.
  • the source of interference here is IAB node 2 and the interfered node is IAB node 1.
  • the interference may be crossover.
  • Link interference CLI which is the interference caused by the MT of IAB node 2 to the MT of IAB node 1.
  • IAB node 1 and IAB node 2 may have cross-link interference between MT and MT in some time slots. Therefore, the cross-link between MT of IAB node 1 and MT of IAB node 2 needs to be completed Road interference measurement, the specific interference measurement method is as follows:
  • the first node is a Donor node
  • the second node is a node that generates interference, such as IAB node 2
  • the third node is a interfered node, such as IAB node 1.
  • Both the second node and the third node may include a first functional entity and a second functional entity.
  • the first functional entity is an MT
  • the second functional entity is a DU.
  • the first functional entity may be integrated with the second functional entity into one module, or may be independent and separated into different modules.
  • the first functional entity is MT or DU
  • the second functional entity is DU or MT.
  • the first node may also be an IAB node.
  • the first node sends an interference measurement indication message, where the interference measurement indication message is used to instruct a second functional entity of the second node to report a reference signal configuration message for interference measurement.
  • the Donor node sends an interference measurement indication message to the DU of the IAB node 2, instructing the DU of the IAB node 2 to generate reference signal configuration information for interference measurement and report it.
  • the interference measurement indication message may be carried in a Radio Resource Control (RRC) protocol message, or may be carried in a message based on the F1-AP (F1-application protocol) protocol through the F1 interface, for example, downlink Radio resource control transfer message (DL RRC TRANSFER message), the F1 interface is an F1 interface between a distributed unit (DU) of the IAB node 2 and a centralized unit (CU) of the Donor node.
  • RRC Radio Resource Control
  • F1-AP F1-application protocol
  • DL RRC TRANSFER message downlink Radio resource control transfer message
  • the interference measurement indication message may also be sent by the Donor node to the MT of IAB node 2 through RRC, DCI, or MAC, and then the MT of IAB node 2 notifies the DU of IAB node 2 through internal signaling interaction, so that the IAB node The DU of 2 generates reference signal configuration information for interference measurement and reports it.
  • the specific implementation methods of the interference measurement indication message are as follows:
  • Method 1 Indication is performed by one bit, and the second functional entity of the second node is triggered to generate reference signal configuration information for interference measurement and report it, for example, it is represented by CLI-Meas-Indicator: 0 or 1.
  • the interference measurement indication message includes one or more of the following: a sending time slot or sending period of a reference signal for interference measurement sent by the second functional entity of the second node, and triggering the second through the above message.
  • the second functional entity of the node generates reference signal configuration information for interference measurement and reports it. For example, this is achieved by the message format of the following indication message:
  • sfnForCliMeas indicates the sending time slot of the reference signal for the interference measurement pair
  • periodicityAndOffset indicates the sending period of the reference signal for the interference measurement pair, and / or the slot offset within each period.
  • Method 3 The combination of Method 1 and Method 2 is implemented. Specifically, the method triggers the second functional entity of the second node to generate the reference signal configuration information for interference measurement through the first method, and then instructs the second functional entity of the second node to use the reference signal for the interference measurement from the second method. Transmission time slot or transmission period.
  • the second functional entity of the second node reports a reference signal configuration message for interference measurement, where the reference signal configuration message includes reference signal resource indication information of the second functional entity of the second node, and the second functional entity.
  • the reference signal resource indication information includes: a reference signal resource identifier of a second functional entity of the second node.
  • the second functional entity of the second node generates reference signal resource indication information of the second functional entity
  • the reference signal resource indication information of the second functional entity includes: a reference signal of the second functional entity of the second node Resource ID.
  • the reference signal resource identifier of the second functional entity of the second node is obtained by the second functional entity of the second node according to the transmission beam of the first functional entity of the second node.
  • the transmit power of the first functional entity of the second node is used as a reference for the second functional entity of the second node.
  • the transmission power of the signal and at the same time configure itself the time-frequency resource used by the reference signal and the transmission period of the reference signal.
  • the second functional entity of the second node includes the transmission power, the time-frequency resource, and the transmission period in the reference signal resource indication information, and reports it to the first through a reference signal configuration message used for interference measurement.
  • the specific reference signal resource indication information format is as follows:
  • a new type of reference signal resource indication information is defined.
  • the format of the specific indication information is as follows:
  • RS-Resource is reference signal resource indication information
  • RS-ResourceId is the reference signal resource identifier.
  • the reference signal resource indication information may further include one or more of the following:
  • resourceMapping time-frequency resource location of the reference signal mapping
  • the power control of the reference signal which indicates the transmit power used by the DU of the IAB node 2 to send the reference signal.
  • the transmission power of the reference signal is configured as the transmission power of the MT of the IAB node 2.
  • periodicityAndOffset indicates the sending period of the reference signal for the interference measurement pair, and / or the time slot offset within each period.
  • the reference signal configuration messages provided in FIG. 4a, 4b and FIG. 5 may be sent to the second functional entity of the second node, It may also be a second functional entity that sends the transmission power and the time-frequency resource to a second node by using other messages.
  • the process of obtaining the transmit beam of the first functional entity of the second node and the transmit power of the first functional entity of the second node is as follows:
  • the DU of IAB node 2 obtains the transmission wave speed and transmission power of its own MT by performing information interaction with its own MT.
  • the DU of IAB node 2 generates a reference signal resource according to the obtained transmission wave speed of the MT.
  • the transmitted beam information here may be the beam or beam set used by the MT to send the SRS last time, or it may be the beam or beam set corresponding to the Donor-configured SRI received by the MT of the IAB node 2 last time, and these beams are each Corresponds to an SRI.
  • the DU of IAB node 2 will use the transmit beam and transmit power of the MT of IAB node 2 to send a reference signal for interference measurement.
  • the reference signal configuration message used for interference measurement generated by the DU of IAB node 2 includes one or more reference signal resource indication information, and each reference signal resource indication information corresponds to one transmission beam. For example, if the number of beams notified by the MT to the DU is 16, the DU will generate 16 reference resource indication information, which is included in the reference signal configuration message.
  • the reference signal configuration message generated by the DU of the IAB node 2 and sent to the Donor node for interference measurement may be carried in a Radio Resource Control (RRC) protocol message, or may be carried in a In the F1-AP (F1-application protocol) message, the F1 interface is the F1 interface between the distributed unit (DU) of the IAB node 2 and the centralized unit (CU) of the Donor node.
  • RRC Radio Resource Control
  • F1 interface is the F1 interface between the distributed unit (DU) of the IAB node 2 and the centralized unit (CU) of the Donor node.
  • the second functional entity of the second node sends a reference signal for interference measurement according to a reference signal configuration message for interference measurement.
  • the DU of IAB node 2 obtains the reference signal at the transmission wave speed of its MT.
  • the DU of IAB node 2 sends a reference signal for interference measurement on its own configuration or specified time-frequency resources. If periodic measurement is required, it will also periodically send within its own configuration or specified transmission period.
  • the reference signal is transmitted using the specified or self-configured transmission power.
  • the reference signal may include one or more of the following: a synchronization signal SSB (SS / PBCH block), a channel state information reference signal CSI-RS, a demodulation reference signal DMRS (Demodulation Reference Signal), and a tracking reference signal TRS (Tracking Reference) Signal), phase tracking reference signal PTRS (Phase Tracking Reference Signal), sounding reference signal SRS, or other reference signal RS.
  • SSB synchronization signal
  • CSI-RS channel state information reference signal
  • DMRS Demodulation Reference Signal
  • TRS Tracking Reference Signal
  • PTRS Phase Tracking Reference Signal
  • sounding reference signal SRS sounding reference signal SRS, or other reference signal RS.
  • the first node performs interference measurement configuration on the first functional entity of the third node according to the reference signal configuration message used for interference measurement, and sends the interference measurement configuration message to the first functional entity of the third node.
  • the first functional entity of the third node detects the reference signal sent by the second functional entity of the second node for interference measurement according to the interference measurement configuration, and performs interference measurement.
  • the MT of IAB node 1 detects the reference signal for interference measurement sent by the DU of IAB node 2 at the indicated resource location.
  • the present application provides an interference measurement method and device.
  • a second functional entity of an interfering node uses one or more beams corresponding to a reference signal resource identifier of the first functional entity of the interfering node to send for interference measurement.
  • the reference signal enables the interfered node to perform interference measurement quickly and accurately, thereby greatly reducing the influence of the cross-link transmission signal and improving the transmission performance of the system.
  • An embodiment of the present invention also provides another embodiment, as shown in FIG. 8a.
  • the IAB network architecture diagram of FIG. 9 is taken as an example for illustration, but it is not limited to FIG. 9 and can be applied to the above various network architecture diagrams.
  • IAB node 1 receives a signal sent by a lower-level IAB node or a terminal device through a DU, and IAB node 2 sends data to a lower-level IAB node or a terminal device through the DU.
  • the source of interference here is the DU of IAB node 2.
  • the interfered node is the DU of IAB node 1.
  • the interference It may be a cross-link interference CLI, which is the interference caused by the DU of IAB node 2 to the DU of IAB node 1.
  • IAB node 1 and IAB node 2 may have cross-link interference between DU and DU on some time slots. Therefore, it is necessary to complete the cross-link between DU of IAB node 1 and DU of IAB node 2.
  • Road interference measurement the specific interference measurement method is as follows:
  • the first node sends an RS configuration message to the second functional entity of the second node, where the RS configuration message includes reference signal resource indication information of the second functional entity of the second node, and the second function of the second node.
  • the reference signal resource indication information of the entity includes one or more of the following combinations:
  • the reference signal resource identifier of the second functional entity the reference signal transmission power of the second functional entity, the time-frequency resource mapped by the reference signal of the second functional entity, and the reference signal of the second functional entity. Send cycle.
  • the reference signal resource indication information adopts a uniform format, for example, an existing CSI-RS-resource information format is used.
  • the CSI-RS resource indication information shown below is CSI-RS-Resource:
  • CSI-RS-Resource is reference signal resource indication information
  • CSI-RS-Resource id is a conventional reference signal resource identifier for CSI measurement, and is used to instruct the DU of IAB node 2 to use the DU's own configured beam to send the reference signal for CSI measurement;
  • Time-frequency resources for reference signal mapping such as: resource Mapping
  • Power control of the reference signal indicates that the power control of the reference signal indicates the transmit power used by the DU of the IAB node 2 to send the reference signal.
  • periodicityAndOffset indicates the sending period of the reference signal for the interference measurement pair, and / or the slot offset within each period.
  • the RS configuration message may be carried in a Radio Resource Control (RRC) protocol message, or may be carried in a message based on the F1-AP (F1-application protocol) protocol through the F1 interface, for example, downlink radio.
  • RRC Radio Resource Control
  • F1-AP F1-application protocol
  • DL RRC TRANSFER message Resource control transfer message
  • the F1 interface is the F1 interface between the distributed unit (DU) of the IAB node 2 and the centralized unit (CU) of the Donor node.
  • the reference signal configuration message may be sent periodically or semi-statically.
  • the first node sends an interference measurement configuration message to the first functional entity of the third node, where the interference measurement configuration message includes reference signal resource indication information and / or an interference measurement type of the second functional entity of the second node. Indication information, where the interference measurement type indication information is used to instruct the first functional entity of the third node to use the receiving beam of the second functional entity of the third node to perform interference measurement.
  • the interference measurement type indication information can be extended by formatting the DUtoDU-Meas-Type by extending the format of the reference signal resource indication information of the second functional entity of the second node in S800. It is added to the reserved field of the above reference signal resource indication information format, and the interference measurement type indication information such as DUtoDU-Meas-Type may also be placed in the reserved field of the RS configuration message.
  • the interference measurement configuration message sent by the first node to the first functional entity of the third node may be sent by the first node to the first functional entity of the third node based on the RRC (Radio Resource Control) protocol, and is carried in the RRC Protocol-specific messages. It can also be indicated by MAC CE.
  • RRC Radio Resource Control
  • the configuration for interference measurement sent by the Donor node to the MT of IAB node 1 can be sent by Donor to the MT of IAB node 1 based on the RRC (Radio Resource Control) protocol. , Carried in a specific message of the RRC protocol. It can also be indicated by MAC CE.
  • RRC Radio Resource Control
  • the second functional entity of the second node sends a reference signal for interference measurement according to the reference signal configuration message of the first node.
  • the DU of the IAB node 2 sends the reference signal at its own transmission wave speed.
  • the DU of IAB node 2 sends a reference signal for interference measurement on a specified time-frequency resource. If periodic measurement is required, the reference signal is also sent periodically within a specified transmission period, and the The reference signal is transmitted at a specified transmission power.
  • the reference signal may include one or more of the following: synchronization signal SSB, channel state information reference signal CSI-RS, demodulation reference signal DMRS, tracking reference signal TRS, phase tracking reference signal PTRS, sounding reference signal SRS, or other RS.
  • the first functional entity of the third node detects an interference measurement reference signal sent by the second functional entity of the second node for interference measurement according to the interference measurement type indication in the interference measurement configuration.
  • the MT of the IAB node 1 uses the reception beam of the DU of the IAB node 1 to detect the reference signal sent by the DU of the IAB node 2 according to the interference measurement type indication, and performs interference measurement.
  • the MT of the IAB node 1 may also detect the reference signal for interference measurement sent by the DU of the IAB node 2 according to the time-frequency resource indicated in the interference configuration and the period.
  • this embodiment of the present invention also provides another embodiment, which briefly describes the foregoing process by using the third node, as shown in FIG. 8b:
  • An interference measurement method is applied to an integrated access and backhaul IAB network.
  • the IAB network includes at least a first node, a second node, and a third node.
  • the second node and the third node both include: A functional entity and a second functional entity, the method includes:
  • the first functional entity of the third node receives an interference measurement configuration message, where the interference measurement configuration message includes: interference measurement type indication information, and the interference measurement type indication information is used to indicate the first function of the third node.
  • the entity uses the reception beam of the second functional entity of the third node to perform interference measurement;
  • S802 ' the first functional entity of the third node determines to be used for detecting the reference according to the interference measurement type indication in the interference measurement configuration.
  • the receiving beam used by the signal is the receiving beam of the second functional entity of the third node;
  • the first functional entity of the third node receives a reference signal for interference measurement through the determined receiving beam.
  • the interference measurement configuration message further includes: reference signal resource indication information of the second functional entity of the second node, and the reference signal resource indication information of the second functional entity of the second node includes one of the following or Multiple combinations:
  • the reference signal resource identifier of the second functional entity of the second node, the RS transmission power of the second functional entity of the second node for the interference measurement, and the use of the second functional entity of the second node A time-frequency resource location mapped on the RS of the interference measurement, or an RS transmission period of the second functional entity of the second node for the interference measurement.
  • the method further includes:
  • the first node generates an interference measurement configuration message.
  • the above method also includes:
  • the first node sends an RS configuration message to the second functional entity of the second node, and the RS configuration message includes reference signal resource indication information of the second functional entity of the second node.
  • the present application provides an interference measurement method, so that an interfered node can perform interference measurement quickly and accurately, thereby greatly reducing the influence of a cross link on a transmission signal and improving the transmission performance of the system.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • An embodiment of the present invention also provides another embodiment, as shown in FIG. 10.
  • the IAB network architecture diagram of FIG. 11 is taken as an example for illustration, but it is not limited to FIG. 11 and can be applied to the various network architecture diagrams above.
  • IAB node 1 receives a signal sent by a lower-level IAB node or a terminal device through a DU, and IAB node 2 sends data to a lower-level IAB node or a terminal device through the DU.
  • the interference source here is the DU of IAB node 2
  • the interfered node is the DU of IAB node 1.
  • the interference It may be a cross-link interference CLI, which is the interference caused by the DU of IAB node 2 to the DU of IAB node 1.
  • IAB node 1 and IAB node 2 may have cross-link interference between DUs and DUs in some time slots. Therefore, it is necessary to complete the cross-link between DUs of IAB node 1 and DUs of IAB node 2.
  • Road interference measurement the specific interference measurement method is as follows:
  • the second functional entity of the second node reports a reference signal configuration message, where the reference signal configuration message includes reference signal resource indication information of the second functional entity of the second node, and the reference signal resource indication of the second functional entity.
  • the information includes: a reference signal resource identifier of the second functional entity of the second node.
  • the second functional entity of the second node generates reference signal resource indication information of the second functional entity
  • the reference signal resource indication information of the second functional entity includes: a reference signal of the second functional entity of the second node Resource ID.
  • the reference signal resource identifier of the second functional entity of the second node is obtained by the second functional entity of the second node according to the transmission beam of the second functional entity of the second node.
  • the time-frequency resource used by the reference signal and the transmission period of the reference signal, the second functional entity of the second node includes the transmission power in the reference signal resource indication information, and A reference signal configuration message for interference measurement is reported to the first node.
  • the reference signal configuration message used for interference measurement generated by the DU of the IAB node 2 may be carried in a Radio Resource Control (RRC) protocol message, or may be carried through an F1-AP-based (F1 In the application-protocol) message, the F1 interface is an F1 interface between a distributed unit (DU) of the IAB node 2 and a centralized unit (CU) of the Donor node.
  • RRC Radio Resource Control
  • F1-AP-based (F1 In the application-protocol) message the F1 interface is an F1 interface between a distributed unit (DU) of the IAB node 2 and a centralized unit (CU) of the Donor node.
  • the first node sends an interference measurement configuration message to the first functional entity of the third node.
  • the interference measurement configuration message includes reference signal resource indication information and interference measurement type indication information of the second functional entity of the second node.
  • the interference measurement type indication information is used to instruct the first functional entity of the first node to use the receiving beam of the second functional entity of the first node to perform interference measurement.
  • the interference measurement type indication information can be extended by formatting the reference signal resource indication information of the second functional entity of the second node in the above S1000 to the DUtoDU-Meas-Type. It is added to the reserved field of the above reference signal resource indication information format, and the interference measurement type indication information such as DUtoDU-Meas-Type may also be placed in the reserved field of the RS configuration message.
  • the interference measurement configuration message sent by the first node to the first functional entity of the third node may be sent by the first node to the first functional entity of the third node based on the RRC (Radio Resource Control) protocol.
  • RRC protocol specific messages It can also be indicated by MAC CE.
  • the configuration for interference measurement sent by the Donor node to the MT of IAB node 1 can be sent by Donor to the MT of IAB node 1 based on the RRC (Radio Resource Control) protocol. , Carried in a specific message of the RRC protocol. It can also be indicated by MAC CE.
  • RRC Radio Resource Control
  • the second functional entity of the second node sends a reference signal for interference measurement according to the configuration of its own reference signal.
  • the DU of the IAB node 2 sends the reference signal at its own transmission wave speed.
  • the reference signal may include one or more of the following: synchronization signal SSB, channel state information reference signal CSI-RS, demodulation reference signal DMRS, tracking reference signal TRS, phase tracking reference signal PTRS, sounding reference signal SRS, or other RS.
  • the first functional entity of the third node detects an interference measurement reference signal sent by the second functional entity of the second node for interference measurement according to the interference measurement type indication in the interference measurement configuration.
  • the MT of the IAB node 1 uses the reception beam of the DU of the IAB node 1 to detect the reference signal sent by the DU of the IAB node 2 according to the interference measurement type indication, and performs interference measurement.
  • the MT of the IAB node 1 may also detect the reference signal for interference measurement sent by the DU of the IAB node 2 according to the time-frequency resource indicated in the interference configuration and the period.
  • the present application provides an interference measurement method, so that an interfered node can perform interference measurement quickly and accurately, thereby greatly reducing the influence of a cross link on a transmission signal and improving the transmission performance of the system.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • An embodiment of the present invention also provides another embodiment, as shown in FIG. 12.
  • the network architecture diagram of the IAB in FIG. 13a is taken as an example for illustration, but it is not limited to FIG. 13a, and can be applied to the various network architecture diagrams above.
  • IAB node 1 receives a signal sent by IAB node 3 through MT, and IAB node 2 sends data to Donor node through MT.
  • IAB node 1 receives the downlink signal, it is interfered by the uplink signal sent by the MT of IAB node 2.
  • the source of interference here is IAB node 2 and the interfered node is IAB node 1.
  • the interference may be crossover.
  • Link interference CLI which is the interference caused by the MT of IAB node 2 to the MT of IAB node 1.
  • IAB node 1 and IAB node 2 may have cross-link interference between the MT and the MT on some time slots, so the cross-link between the MT of the IAB node 1 and the MT of the IAB node 2 needs to be completed Road interference measurement, the specific interference measurement method is as follows:
  • the first node sends a reference signal configuration message for interference measurement to a first functional entity of the second node, where the reference signal configuration message includes: a reference signal resource used by the first functional entity of the second node for interference measurement.
  • the indication information and the reference signal transmission timing indication information wherein the reference signal transmission timing indication information is used to instruct the first functional entity of the second node to use the downlink transmission timing of the second functional entity of the second node to transmit the reference signal.
  • the reference signal resource indication information used by the first functional entity of the second node for interference measurement includes: one or more of the following combinations:
  • a reference signal resource identifier of the first functional entity a reference signal transmission power of the first functional entity, a time-frequency resource mapped by the reference signal of the first functional entity, and a reference signal of the first functional entity. Send cycle.
  • the specific implementation manner of the reference signal resource indication information to which it belongs may be:
  • the reference signal resource indication information may use an existing format, for example, an existing SRS-resource information format.
  • SRS-Resource is reference signal resource indication information
  • srs-ResourceId is a conventional reference signal resource identifier used for uplink measurement
  • resource Mapping is the time-frequency resource location mapped by the reference signal
  • resourceType indicates that the type of the reference signal is aperiodic transmission, and / or semi-continuous transmission, and / or periodic transmission, and the transmission period and the offset within the period when semi-persistent and / or periodic transmission.
  • the powercontrol indicates the transmission power used by the first functional entity of the second node to send the reference signal.
  • the time-frequency resource location of the reference signal mapping may be in a downlink transmission slot of the second node.
  • Method 2 Define a new reference signal resource indication information cli-meas-RS-Resource for interference measurement, and the specific format of the information is the same as the information format in Method 1 above;
  • a specific implementation manner of the reference signal sending timing indication information may be:
  • Method 1 Use one bit to indicate, for example, use srs-use-dl-timing: 0 or 1, to explicitly indicate that the first functional entity of the second node adopts the second functional entity of the second node.
  • the reference signal sending timing indication information can be added to the above reference signal resource indication information by expanding the format of the above reference signal resource indication information. Format reserved field, srs-use-dl-timing can also be placed in the reserved field of the reference signal configuration message
  • Method 2 Through a new type of reference signal resource indication information used for interference measurement, that is, the above-mentioned reference signal resource indication information, the method 2 implicitly instructs the first functional entity of the second node to adopt the second function of the second node The entity sends a reference signal at the downlink transmission timing;
  • the reference signal configuration message for interference measurement sent by the first node to the first functional entity of the second node may be based on the RRC (Radio Resource Control) protocol, from the first node to the first functional entity of the second node Sent, carried in a specific message of the RRC protocol. It can also be indicated by MAC CE.
  • RRC Radio Resource Control
  • the reference signal configuration message sent by the Donor node to the MT of the IAB node 2 can be sent by the Donor to the MT of the IAB node 2 based on the RRC (Radio Resource Control) protocol, and the specific message carried in the RRC protocol is carried. in. It can also be indicated by MAC CE.
  • RRC Radio Resource Control
  • the first functional entity of the second node After receiving the reference signal configuration message for interference measurement, the first functional entity of the second node passes the reference signal resource indication information therein to the second functional entity of the second node. After receiving the reference signal resource indication information, the second functional entity of the second node adjusts its own downlink transmission.
  • the second functional entity of the second node recognizes the reference signal identifier, the time-frequency resource location, the transmission period, and the offset within the period indicated in the reference signal configuration message, and responds to it during normal downlink transmission.
  • the normal downlink physical channel is not mapped on the beam, time-frequency resource position, transmission period, and offset position within the period.
  • the MT of the IAB node 2 passes the reference signal resource indication information to the DU of the IAB node 2 through internal interaction.
  • the time-frequency resource location of the reference signal for interference measurement is transmitted by the DU of IAB node 2 at the MT of IAB node 2 and will not Map any normal downlink physical channel.
  • the first functional entity of the second node sends the reference signal within the corresponding time-frequency resource and period according to the reference signal configuration message sent by the first node.
  • the reference signal may include one or more of the following: synchronization signal SSB, channel state information reference signal CSI-RS, demodulation reference signal DMRS, tracking reference signal TRS, phase tracking reference signal PTRS, sounding reference signal SRS, or other RS.
  • the MT of the IAB node 2 will send the SRS at two symbol positions in one downlink slot, and use the downlink timing to send it.
  • the first node performs interference measurement configuration on the first functional entity of the third node, and sends an interference measurement configuration message.
  • the interference measurement configuration message will include reference signal resource indication information.
  • the reference signal resource indication information is consistent with the content of the reference signal resource indication information in the reference signal configuration message sent by the first node in S1100.
  • the interference measurement configuration message further includes reference signal type indication information.
  • the reference signal type indication information is used to indicate the type of the currently configured reference signal to the first functional entity of the third node.
  • the implementation of the reference signal type indication information may be:
  • Method 1 Use a specific information field reference-signal-type to indicate. You can extend the format of the reference signal resource indication information by adding the reference-signal-type to the reserved field of the format of the reference signal resource indication information. , The reference-signal-type can also be placed in the reserved field of the interference measurement configuration message;
  • Method 2 If the reference signal resource indication information in the interference measurement configuration message is a conventional reference signal resource indication information format, the corresponding reference signal type is already displayed and no additional indication is required. For example, if the reference signal resource If the indication is SRS-Resource, the corresponding reference signal type is SRS. For another example, if the reference signal resource is CSI-RS-Resource, the corresponding reference signal type is CSI-RS.
  • the step S1106 may be performed before the reference signal for interference measurement is sent in the step S1104, and is not limited to after the step S1100.
  • the Donor node performs interference measurement configuration and sends an interference measurement configuration message.
  • the reference signal resources to be detected by the MT of the IAB node 1 will be indicated, including the identification of these reference signal resources, which time-frequency resources are mapped to, the reference signal transmission period and the time slot deviation within the period. The amount of shift, the transmit power of the reference signal, etc.
  • the interference measurement configuration also indicates the type of the corresponding reference signal, which is used by the MT of the IAB node 1 to detect the reference signal.
  • the first functional entity of the third node detects the reference signal for interference measurement sent by the first functional entity of the second node according to the interference measurement configuration described in step S1106, and performs interference measurement.
  • the MT of IAB node 1 uses the reception beam of the MT of IAB node 1 according to the interference measurement configuration, and uses the sequence corresponding to the indicated reference signal type on the reference signal resource specified in the interference measurement configuration.
  • the reference signal sent by the MT of IAB node 2 is detected.
  • This application provides the above-mentioned interference measurement method, so that the affected node can perform interference measurement quickly and accurately, thereby greatly reducing the influence of the cross-link transmission signal and improving the transmission performance of the system.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • An embodiment of the present invention also provides a schematic flowchart of a method according to another embodiment, as shown in FIG. 14.
  • the IAB network architecture diagram in FIG. 15 is taken as an example for illustration, but is not limited to FIG. 15 and can be applied to the above various network architecture diagrams.
  • IAB node 1 receives a signal sent by its lower node or terminal through DU, and IAB node 2 sends data to Donor node through MT.
  • the DU of IAB node 1 receives the uplink signal, it is interfered by the uplink signal sent by the MT of IAB node 2.
  • the source of interference here is IAB node 2 and the interfered node is IAB node 1.
  • the interference can be specifically crossover.
  • Link interference CLI the CLI is the interference generated by the MT of IAB node 2 to the DU of IAB node 1.
  • IAB node 1 and IAB node 2 may have cross-link interference between the DU and the MT in some time slots, so the cross-link between the DU of the IAB node 1 and the MT of the IAB node 2 needs to be completed Road interference measurement, the specific interference measurement method is as follows:
  • the first node sends a reference signal (RS) configuration message.
  • the RS configuration message includes: reference signal resource indication information of a second functional entity of the second node, and reference signal resource indication of the second functional entity.
  • the information includes: a reference signal resource identifier of the first functional entity of the second node.
  • the RS configuration information is used to configure a reference signal sent by the second functional entity of the second node, and the reference signal sent by the second functional entity of the second node is used for interference measurement, and the interference is Interference caused by the first functional entity of the second node to the first functional entity of the third node.
  • the second node is an interference-generating node, and the third node is an interfered node; a reference signal resource identifier of a first functional entity of the second node is used to indicate the reference signal resource.
  • the first node is a Donor node
  • the second node is a node that generates interference, such as IAB node 2
  • the third node is a node that is interfered, such as IAB node 1.
  • Both the second node and the third node may include a first functional entity and a second functional entity.
  • the first functional entity is an MT
  • the second functional entity is a DU.
  • the first functional entity may be integrated with the second functional entity into one module, or may be independent and separated into different modules.
  • the first functional entity is MT or DU
  • the second functional entity is DU or MT.
  • the first node may also be an IAB node.
  • IAB node 2 may use one or more beams for signal transmission at the same time, and IAB node 1 may also use one or more beams for signal transmission at the same time.
  • the beam may be indicated by a reference signal resource identifier.
  • the reference signal resource identifier of the first functional entity of the second node is the reference signal resource identifier of the MT of the IAB node 2, and is used to instruct one or more reference signal resources used by the MT of the IAB node 2 to send a reference signal,
  • the one or more reference signal resources correspond to transmission beams of one or more MTs.
  • the reference signal resource identifier of the first functional entity of the second node may be a resource identifier (identity, ID) of a reference signal configured by the IAB node, for example, a channel status information reference signal (Channel status information Reference Signal, CSI- (RS) resource identifier (CSI-RS-ResourceId) or sounding reference signal (SRS-ResourceId).
  • ID resource identifier
  • CSI- Channel status information Reference Signal
  • SRS-ResourceId sounding reference signal
  • the reference signal configuration message may be carried in a Radio Resource Control (RRC) protocol message, or may be carried in a message based on the F1-AP (F1-application protocol) protocol through the F1 interface, for example, downlink Radio resource control transfer message (DL RRC TRANSFER message), the F1 interface is the F1 interface between the distributed unit (DU) of the IAB node 2 and the centralized unit (CU) of the Donor node, or is carried on the F1 interface DCI (Downlink Control Information) message or MAC CE (Media Access Control element).
  • RRC Radio Resource Control
  • F1-AP F1-application protocol
  • DL RRC TRANSFER message downlink Radio resource control transfer message
  • DCI Downlink Control Information
  • MAC CE Media Access Control element
  • the reference signal configuration message may also be sent by the Donor node to the MT of IAB node 2 through RRC, DCI or MAC CE, and then the MT of IAB node 2 notifies the DU of IAB node 2 through internal signaling interaction.
  • the reference signal configuration message may be sent periodically or semi-statically.
  • the reference signal configuration message includes: one or more reference signal resource indication information, and each reference signal resource indication information includes a reference signal resource identifier.
  • the specific format of the reference signal resource indication information is as follows:
  • Method 1 Define a new type of reference signal resource indication information.
  • the format of the specific indication information is as follows:
  • RS-Resource is reference signal resource indication information
  • RS-ResourceId is a reference signal resource identifier
  • the reference signal resource identifier can be understood to instruct the DU of IAB node 2 to use the beam of the MT of IAB node 2 corresponding to the identifier to send the reference signal.
  • the reference signal resource indication information may further include one or more of the following:
  • the power control of the reference signal indicates the transmission power used by the DU of the IAB node 2 to send the reference signal.
  • the transmission power of the reference signal is configured as the transmission power of the MT of the IAB node 2.
  • periodicityAndOffset indicates the sending period of the reference signal for the interference measurement pair, and / or the time slot offset within each period.
  • Method 2 The reference signal resource indication information adopts a unified format, for example, an existing CSI-RS-Resource message format is adopted, and the CSI-RS-Resource message is extended.
  • the CSI-RS resource indication information shown below is CSI-RS-Resource:
  • CSI-RS-Resource is reference signal resource indication information
  • CSI-RS-ResourceId is a conventional reference signal resource identifier for CSI measurement, and is used to instruct the DU of IAB node 2 to use the DU's own configured beam to send the reference signal for CSI measurement;
  • SRS-ResourceId is a reference signal resource identifier
  • the reference signal resource identifier is used to instruct the DU of IAB node 2 to use the beam of the MT of IAB node 2 corresponding to the identifier to send the reference signal.
  • resourceMapping used to indicate the time-frequency resource location of the reference signal mapping
  • the power control of the reference signal which indicates the transmit power used by the DU of the IAB node 2 to send the reference signal
  • periodicityAndOffset indicates the sending period of the reference signal for the interference measurement pair, and / or the time slot offset within each period.
  • the Donor node sends a reference signal configuration message to the DU of IAB node 2
  • the DU of IAB node 2 recognizes the SRS-ResourceId contained in it, it can be known that the current reference signal configuration is used for interference measurement, specifically cross-chain Road interference measurement.
  • the powerControl field indicates the power used to send the reference signal. If the current reference signal resource for channel state information CSI measurement is indicated, this field will be set to the CSI-RS transmission power information; when cross link interference is indicated When the CLI measures the reference signal resource, this field will be set to the SRS transmit power information.
  • step S1400 uses FIG. 15 as an example, which can be understood as:
  • the Donor node When the DU of IAB node 1 is interfered by the MT of IAB node 2, the Donor node generates an RS configuration message, and the RS configuration message is used to configure a reference signal sent by the DU of IAB node 2 for interference measurement.
  • the reference signal for interference measurement is used to measure the interference caused by the MT of IAB node 1 to the MT of IAB node 2.
  • the RS configuration message includes the reference signal resource identifier of the DU of IAB node 2 such as: ⁇ 3,4 5 ⁇ , the reference signal resource identifier corresponds to the beam of the MT of the IAB node 2.
  • the second functional entity of the second node configures a reference signal for interference measurement according to the received RS configuration message.
  • the DU of the IAB node 2 selects a corresponding beam to send a reference signal according to a reference signal resource identifier.
  • the DU can interact with the MT, so that the DU can also identify SRI ⁇ 3,4 , 5 ⁇ What are the specific MT beams, for example, the three physical beams indicated by the shadows in Figure 15 below.
  • the MT of IAB node 2 uses the reference signal resource identifier ⁇ 3,4,5 ⁇ to correspond to the beam set ⁇ a, b, c ⁇ for signal transmission.
  • the MT of IAB node 1 interferes with the MT of IAB node 2
  • the DU of IAB node 2 interacts with the MT of IAB node 2 to obtain the beam set ⁇ a, b, c ⁇ of the MT of IAB node 2 corresponding to the reference signal resource identifier ⁇ 3,4,5 ⁇
  • the DU of IAB node 2 uses the beam set ⁇ a, b, c ⁇ to send a reference signal for interference measurement.
  • the interaction between the MT and the DU of the IAB node 2 may be the interaction between hardware modules, or the integration may be implemented by software when the MT and the DU are integrated.
  • the reference signal resource indication information in the RS configuration message further includes one or more of the following combinations:
  • the DU of IAB node 2 configures the reference signal for interference measurement according to the information (transmission beam and transmit power) of the MT of IAB node 2, the DU of IAB node 2 sends the reference signal instead of the MT of IAB node 2. , So that the IAB node 1 can accurately detect the reference signal for interference measurement, thereby measuring the interference, and then eliminating the interference, which greatly improves the performance of the IAB network.
  • the first node sends an interference measurement configuration message to the first functional entity of the third node, where the interference measurement configuration message includes reference signal resource indication information of the second functional entity of the second node and / or an interference measurement type. Indication information, where the interference measurement type indication information is used to instruct the first functional entity of the third node to use the receiving beam of the second functional entity of the third node to perform interference measurement.
  • the interference measurement type indication information such as MTtoDU-Meas-Type may be extended to the MTtoDU-Meas-Type by expanding the format of the reference signal resource indication information of the second functional entity of the second node in the above S800. It is added to the reserved field of the above reference signal resource indication information format, and interference measurement type indication information such as MTtoDU-Meas-Type may also be placed in the reserved field of the RS configuration message.
  • the interference measurement configuration message sent by the first node to the first functional entity of the third node may be sent by the first node to the first functional entity of the third node based on the RRC (Radio Resource Control) protocol, and is carried in the RRC Protocol-specific messages. It can also be indicated by MAC CE.
  • RRC Radio Resource Control
  • the configuration for interference measurement sent by the Donor node to the MT of IAB node 1 can be sent by Donor to the MT of IAB node 1 based on the RRC (Radio Resource Control) protocol. , Carried in a specific message of the RRC protocol. It can also be indicated by MAC CE.
  • RRC Radio Resource Control
  • the second functional entity of the second node sends a reference signal for interference measurement.
  • the DU of IAB node 2 sends the reference signal of interference measurement by using one or more beams corresponding to the reference signal resource identifier in the RS configuration message, which is convenient for the MT of IAB node 1 to perform interference measurement.
  • the DU of IAB node 2 can also send a reference signal for interference measurement on a specified time-frequency resource. If periodic measurement is required, the DU of IAB node 2 will also periodically within a specified transmission period.
  • the reference signal is transmitted, and the above-mentioned reference signal is transmitted using a specified transmission power.
  • the reference signal may include one or more of the following: synchronization signal SSB, channel state information reference signal CSI-RS, demodulation reference signal DMRS, tracking reference signal TRS, phase tracking reference signal PTRS, sounding reference signal SRS, or other RS.
  • the first functional entity of the third node detects an interference measurement reference signal sent by the second functional entity of the second node for interference measurement according to the interference measurement type indication in the interference measurement configuration.
  • the MT of the IAB node 1 uses the reception beam of the DU of the IAB node 1 to detect the reference signal sent by the DU of the IAB node 2 according to the interference measurement type indication, and performs interference measurement.
  • the MT of the IAB node 1 may also detect the reference signal for interference measurement sent by the DU of the IAB node 2 according to the time-frequency resource indicated in the interference configuration and the period.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • An embodiment of the present invention also provides a method flowchart of another embodiment, as shown in FIG. 16.
  • the network architecture diagram of the IAB in FIG. 17 is taken as an example for illustration, but it is not limited to FIG. 17 and can be applied to the various network architecture diagrams above.
  • IAB node 1 receives a signal sent by its lower node or terminal through DU, and IAB node 2 sends data to Donor node through MT.
  • the DU of IAB node 1 receives the uplink signal, it is interfered by the uplink signal sent by the MT of IAB node 2.
  • the source of interference here is IAB node 2 and the interfered node is IAB node 1.
  • the interference can be specifically crossover.
  • Link interference CLI the CLI is the interference generated by the MT of IAB node 2 to the DU of IAB node 1.
  • IAB node 1 and IAB node 2 may have cross-link interference between DU and MT on some time slots. Therefore, it is necessary to complete the cross-link between DU of IAB node 1 and MT of IAB node 2 Road interference measurement, the specific interference measurement method is as follows:
  • the first node sends an interference measurement indication message, where the interference measurement indication message is used to instruct a second functional entity of the second node to report a reference signal configuration message for interference measurement.
  • the Donor node sends an interference measurement indication message to the DU of IAB node 2, instructing the DU of IAB node 2 to generate reference signal configuration information for interference measurement and report it.
  • the interference measurement indication message may be carried in a Radio Resource Control (RRC) protocol message, or may be carried in a message based on the F1-AP (F1-application protocol) protocol through the F1 interface, for example, downlink Radio resource control transfer message (DL RRC TRANSFER message), the F1 interface is an F1 interface between a distributed unit (DU) of the IAB node 2 and a centralized unit (CU) of the Donor node.
  • RRC Radio Resource Control
  • F1-AP F1-application protocol
  • DL RRC TRANSFER message downlink Radio resource control transfer message
  • the interference measurement indication message may also be sent by the Donor node to the MT of IAB node 2 through RRC, DCI, or MAC, and then the MT of IAB node 2 notifies the DU of IAB node 2 through internal signaling interaction, so that the IAB node The DU of 2 generates reference signal configuration information for interference measurement and reports it.
  • the specific implementation methods of the interference measurement indication message are as follows:
  • Method 1 Indication is performed by one bit, and the second functional entity of the second node is triggered to generate reference signal configuration information for interference measurement and report it, for example, it is represented by CLI-Meas-Indicator: 0 or 1.
  • the interference measurement indication message includes one or more of the following: a sending time slot or sending period of a reference signal for interference measurement sent by the second functional entity of the second node, and triggering the second through the above message.
  • the second functional entity of the node generates reference signal configuration information for interference measurement and reports it. For example, this is achieved by the message format of the following indication message:
  • sfnForCliMeas indicates the sending time slot of the reference signal for the interference measurement pair
  • periodicityAndOffset indicates the sending period of the reference signal for the interference measurement pair, and / or the slot offset within each period.
  • Method 3 The combination of Method 1 and Method 2 is implemented. Specifically, the method triggers the second functional entity of the second node to generate the reference signal configuration information for interference measurement through the first method, and then instructs the second functional entity of the second node to use the reference signal for the interference measurement from the second method. Transmission time slot or transmission period.
  • the second functional entity of the second node reports a reference signal configuration message for interference measurement, where the reference signal configuration message includes reference signal resource indication information of the second functional entity of the second node, and the second functional entity
  • the reference signal resource indication information includes: a reference signal resource identifier of a second functional entity of the second node.
  • the second functional entity of the second node generates reference signal resource indication information of the second functional entity
  • the reference signal resource indication information of the second functional entity includes: a reference signal of the second functional entity of the second node Resource ID.
  • the reference signal resource identifier of the second functional entity of the second node is obtained by the second functional entity of the second node according to the transmission beam of the first functional entity of the second node.
  • the transmit power of the first functional entity of the second node is used as a reference for the second functional entity of the second node.
  • the transmission power of the signal and at the same time configure itself the time-frequency resource used by the reference signal and the transmission period of the reference signal.
  • the second functional entity of the second node includes the transmission power, the time-frequency resource, and the transmission period in the reference signal resource indication information, and reports it to the first through a reference signal configuration message used for interference measurement.
  • the specific reference signal resource indication information format is as follows:
  • a new type of reference signal resource indication information is defined.
  • the format of the specific indication information is as follows:
  • RS-Resource is reference signal resource indication information
  • RS-ResourceId is the reference signal resource identifier.
  • the reference signal resource indication information may further include one or more of the following:
  • resourceMapping time-frequency resource location of the reference signal mapping
  • the power control of the reference signal which indicates the transmit power used by the DU of the IAB node 2 to send the reference signal.
  • the transmission power of the reference signal is configured as the transmission power of the MT of the IAB node 2.
  • periodicityAndOffset indicates the sending period of the reference signal for the interference measurement pair, and / or the time slot offset within each period.
  • the reference signal configuration messages provided in FIG. 4a, 4b and FIG. 5 may be sent to the second functional entity of the second node, It may also be a second functional entity that sends the transmission power and the time-frequency resource to a second node by using other messages.
  • the process of obtaining the transmit beam of the first functional entity of the second node and the transmit power of the first functional entity of the second node is as follows:
  • the DU of IAB node 2 obtains the transmission wave speed and transmission power of its own MT by performing information interaction with its own MT.
  • the DU of IAB node 2 generates a reference signal resource according to the obtained transmission wave speed of the MT.
  • the transmitted beam information here may be the beam or beam set used by the MT to send the SRS last time, or it may be the beam or beam set corresponding to the Donor-configured SRI received by the MT of the IAB node 2 last time, and these beams are each Corresponds to an SRI.
  • the DU of IAB node 2 will use the transmit beam and transmit power of the MT of IAB node 2 to send a reference signal for interference measurement.
  • the reference signal configuration message used for interference measurement generated by the DU of IAB node 2 includes one or more reference signal resource indication information, and each reference signal resource indication information corresponds to one transmission beam. For example, if the number of beams notified by the MT to the DU is 16, the DU will generate 16 reference resource indication information, which is included in the reference signal configuration message.
  • the reference signal configuration message generated by the DU of the IAB node 2 and sent to the Donor node for interference measurement may be carried in a Radio Resource Control (RRC) protocol message, or may be carried in a In the F1-AP (F1-application protocol) message, the F1 interface is the F1 interface between the distributed unit (DU) of the IAB node 2 and the centralized unit (CU) of the Donor node.
  • RRC Radio Resource Control
  • F1 interface is the F1 interface between the distributed unit (DU) of the IAB node 2 and the centralized unit (CU) of the Donor node.
  • the first node sends an interference measurement configuration message to a first functional entity of a third node, where the interference measurement configuration message includes reference signal resource indication information and / or an interference measurement type of the second functional entity of the second node. Indication information, where the interference measurement type indication information is used to instruct the first functional entity of the third node to use the receiving beam of the second functional entity of the third node to perform interference measurement.
  • the interference measurement type indication information such as MTtoDU-Meas-Type may be extended to the MTtoDU-Meas-Type by expanding the format of the reference signal resource indication information of the second functional entity of the second node in the above S800. It is added to the reserved field of the above reference signal resource indication information format, and interference measurement type indication information such as MTtoDU-Meas-Type may also be placed in the reserved field of the RS configuration message.
  • the interference measurement configuration message sent by the first node to the first functional entity of the third node may be sent by the first node to the first functional entity of the third node based on the RRC (Radio Resource Control) protocol, and is carried in the RRC Protocol-specific messages. It can also be indicated by MAC CE.
  • RRC Radio Resource Control
  • the configuration for interference measurement sent by the Donor node to the MT of IAB node 1 can be sent by Donor to the MT of IAB node 1 based on the RRC (Radio Resource Control) protocol. , Carried in a specific message of the RRC protocol. It can also be indicated by MAC CE.
  • RRC Radio Resource Control
  • the second functional entity of the second node sends a reference signal for interference measurement according to a reference signal configuration message for interference measurement.
  • the DU of the IAB node 2 obtains the transmission beams of its own MT, and sends the reference signals on these beams.
  • the DU of IAB node 2 sends a reference signal for interference measurement on its own configuration or specified time-frequency resources. If periodic measurement is required, it will also periodically send within its own configuration or specified transmission period.
  • the reference signal is transmitted using the specified or self-configured transmission power.
  • the reference signal may include one or more of the following: synchronization signal SSB, channel state information reference signal CSI-RS, demodulation reference signal DMRS, tracking reference signal TRS, phase tracking reference signal PTRS, sounding reference signal SRS, or other RS.
  • the first functional entity of the third node detects the reference signal sent by the second functional entity of the second node for interference measurement according to the interference measurement type indication in the interference measurement configuration, and performs interference measurement.
  • the MT of the IAB node 1 uses the reception beam of the DU of the IAB node 1 to detect the reference signal sent by the DU of the IAB node 2 according to the interference measurement type indication, and performs interference measurement.
  • the MT of the IAB node 1 may also detect the reference signal for interference measurement sent by the DU of the IAB node 2 according to the time-frequency resource indicated in the interference configuration and the period.
  • FIG. 18 shows a schematic block diagram of an interference measurement apparatus according to an embodiment of the present application.
  • the apparatus is configured to execute the method in the first method embodiment.
  • the specific form of the apparatus may be a relay node or a chip in a relay node, or may be a terminal device or a chip in a terminal device. This embodiment of the present application does not limit this.
  • the interference measurement device is a second node.
  • the device includes:
  • the transceiver 1802 is configured to receive an RS configuration message, where the RS configuration message includes reference signal resource indication information of a second functional entity of the second node, and the reference signal resource indication information of the second functional entity includes: A reference signal resource identifier of the first functional entity; and according to an instruction of the processor, using the determined one or more transmission beams to send an RS for interference measurement.
  • a processor 1804 configured to determine, according to the reference signal resource identifier of the first functional entity of the second node in the RS configuration message, one or more corresponding to the reference signal resource identifier of the first functional entity of the second node A transmission beam, instructing the transceiver to use the determined transmission beam to send an RS for interference measurement.
  • the interference measurement device is used to perform the interference measurement methods shown in Figs. 4a, 4b and 5; the relevant technical features have been described in detail above in conjunction with the methods shown in Figs. 4a, 4b and 5; To repeat. It should be noted that, in the interference measurement device used to perform the interference measurement methods shown in FIG. 4a, 4b, and FIG. 5, the foregoing is directed to each node in the first embodiment, such as the first node, the second node, and the third node.
  • Each of the nodes includes a transceiver and a processor. The sending or receiving actions of the nodes in the method embodiment may be performed by the transceiver, and other processing and determination actions are performed by the processor.
  • the embodiment of the present invention is also used for the above device structure.
  • the device includes: a transceiver and a processor, where the transmission and reception of each node are involved. The steps are executed by the transceivers of each node, and the specific processing, determination, calculation, and judgment operations are performed by the processors of each node, which will not be repeated here.
  • the present application provides an interference measurement device.
  • a second functional entity of an interference generating node uses one or more beams corresponding to the reference signal resource identifier of the first functional entity of the interference generating node to send an interference measurement signal.
  • the reference signal enables the interfered node to perform interference measurement quickly and accurately, thereby greatly reducing the influence of the cross-link transmission signal and improving the transmission performance of the system.
  • FIG. 19 is a schematic diagram of a logical structure of another interference measurement device according to an embodiment of the present invention.
  • the power interference measurement apparatus may be a network device or a relay device, and the relay device may be a base station.
  • the interference measurement device includes a transceiver 1902 and a processor 1904. Taking Figures 8a, 8b and Figure 9 as examples, the interference measurement device is a third node.
  • the transceiver 1902 is configured to receive an interference measurement configuration message, where the interference measurement configuration message includes: interference measurement type indication information, and the interference measurement type indication information is used to instruct the first functional entity of the third node to use the third node's first
  • the receiving beam of the two functional entities performs interference measurement; and according to an instruction of the processor, a reference signal for interference measurement is received through the determined receiving beam.
  • a processor 1904 configured to determine, according to an interference measurement type indication in the interference measurement configuration message, that a receiving beam used to detect the reference signal is a receiving beam of a second functional entity of a third node, and instruct the transceiver A reference signal for interference measurement is received through the determined receiving beam.
  • the interference measurement configuration message further includes: reference signal resource indication information of the second functional entity of the second node, and the reference signal resource indication information of the second functional entity of the second node includes one of the following or Multiple combinations:
  • the reference signal resource identifier of the second functional entity of the second node, the RS transmission power of the second functional entity of the second node for the interference measurement, and the use of the second functional entity of the second node A time-frequency resource location mapped on the RS of the interference measurement, or an RS transmission period of the second functional entity of the second node for the interference measurement.
  • the processor is further configured to determine, according to the reference signal resource indication information in the interference measurement configuration message, the time-frequency resource indicated in the interference measurement configuration message, and instruct the transceiver to use the The determined time-frequency resource receives a reference signal for interference measurement.
  • the above interference measurement device is used to perform the interference measurement methods shown in Figs. 8a, 8b, and Fig. 9.
  • the related technical features have been described in detail above in conjunction with the methods shown in Figs. 8a, 8b, and Fig. 9, so they are not described here. More details.
  • Each node in the node includes a transceiver and a processor, and the sending or receiving actions involved in the method embodiments of the nodes may be performed by the transceiver, and other processing and determination actions are performed by the processor.
  • the embodiment of the present invention is also used for the above device structure.
  • the device includes: a transceiver and a processor, where the transmission and reception of each node are involved. The steps are executed by the transceivers of each node, and the specific processing, determination, calculation, and judgment operations are performed by the processors of each node, which will not be repeated here.
  • This application provides the interference measurement device as described above, so that the interfered node can perform interference measurement quickly and accurately, thereby greatly reducing the influence of the cross link on the transmission signal and improving the transmission performance of the system.
  • the interference measurement apparatus may be a network device or a relay device, and the relay device may be a base station.
  • the interference measurement device includes a transceiver and a processor.
  • the detection methods corresponding to the fifth embodiment to the seventh embodiment corresponding to FIG. 12 to FIG. 17 are also used in the above device structure, in which the transmitting and receiving steps related to each node are performed by the transceivers of each node, involving specific Actions such as processing, determining, computing, and judging are all performed by the processors of each node, and are not repeated here.
  • the network device includes a processor 2002, a transceiver 2004, a plurality of antennas 2006, a memory 2008, an I / O (Input / Output, Input / Output) interface 2010, and a bus 2012.
  • the transceiver 2004 further includes a transmitter 20042 and a receiver 20044, and the memory 2008 is further used to store instructions 20082 and data 20084.
  • the processor 2002, the transceiver 2004, the memory 2008, and the I / O interface 2010 are communicatively connected to each other through a bus 2012, and a plurality of antennas 2006 are connected to the transceiver 2004.
  • the processor 2002 may be a general-purpose processor, such as, but not limited to, a Central Processing Unit (CPU), or a special-purpose processor, such as, but not limited to, a Digital Signal Processor (DSP), an application Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA), etc.
  • the processor 2002 may be a combination of multiple processors.
  • the processor 2002 may be used to execute, for example, the operations performed by the processing unit in FIG. 18 and FIG. 19 described above, and the method embodiments in the first to seventh embodiments. The action performed.
  • the processor 2002 may be a processor specifically designed to perform the above steps and / or operations, or may be a processor that performs the above steps and / or operations by reading and executing instructions 20082 stored in the memory 2008.
  • the processor 2002 Data 20084 may be needed during the above steps and / or operations.
  • the transceiver 2004 includes a transmitter 20042 and a receiver 20044, wherein the transmitter 20042 is configured to transmit a signal through at least one of the multiple antennas 2006.
  • the receiver 20044 is configured to receive a signal through at least one of the multiple antennas 2006.
  • the transmitter 20042 may be specifically configured to be executed by at least one antenna among the multiple antennas 2006, for example, the operations performed by the processing unit in FIG. 18 and FIG. 19 described above. And the operations performed by the transceiver unit among the operations performed in the method embodiments of the first to fifth embodiments.
  • the memory 2008 may be various types of storage media, such as Random Access Memory (RAM), Read Only Memory (ROM), Non-Volatile RAM (NVRAM), Programming ROM (Programmable ROM, PROM), Erasable PROM (Erasable PROM, EPROM), Electrically Erasable PROM (Electrically Erasable PROM, EEPROM), flash memory, optical memory and registers, etc.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • NVRAM Non-Volatile RAM
  • PROM Programming ROM
  • PROM Programming ROM
  • Erasable PROM Erasable PROM
  • EPROM Erasable PROM
  • Electrically Erasable PROM Electrically Erasable PROM
  • flash memory optical memory and registers, etc.
  • the memory 2008 is specifically used to store the instructions 20082 and data 20084.
  • the processor 2002 may perform the steps and / or operations described above by reading and executing the instructions 20082 stored in the memory 2008, and perform the above operations and / or steps.
  • the I / O interface 2010 is used to receive instructions and / or data from a peripheral device and output instructions and / or data to the peripheral device.
  • the relay node may also include other hardware devices, which will not be listed one by one in this article.
  • the hardware structure diagram of the foregoing node device may be the hardware structure diagram of the network equipment of the operations performed by the processing units in FIG. 18 and FIG. 19 and the operations performed by the method embodiments of the first to fifth embodiments.
  • An interference measurement device provided by an embodiment of the present invention may also be used to execute the method described in any one of the first embodiment to the seventh embodiment.
  • An embodiment of the present invention further provides a computer-readable storage medium, including instructions, which, when run on a computer, cause the computer to execute the method according to any one of the first embodiment to the seventh embodiment.
  • An embodiment of the present invention also provides a computer program product, where the computer program product includes computer program code, and when the computer program code is run on a computer, the computer is caused to execute any one of the foregoing Embodiments 1 to 7. The method described.
  • An embodiment of the present invention further provides a chip, including a memory and a processor.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the processor executes the foregoing.
  • the method according to any one of the first to seventh embodiments.
  • the solutions of the above-mentioned various methods and devices provided by the embodiments of the present invention may be implemented by a processor + transceiver.
  • the processor is used to perform various processing operations, such as, but not limited to, generating, determining, judging, searching,
  • the operations of extracting, obtaining, reading, receiving the input data to be processed and outputting the processed data are used by the transceiver to perform operations such as transmitting and receiving.
  • the processor can be implemented in the following ways:
  • the processor is a dedicated processor.
  • the processor may further include an interface circuit and a processing circuit, where the interface circuit is configured to receive data that needs to be processed by the processing circuit, and output the processing of the processing circuit.
  • the processing circuit is used to perform the various processing operations described above.
  • the processor is implemented by using a general-purpose processor + memory architecture.
  • the general-purpose processor is configured to execute processing instructions stored in the memory, and these processing instructions are used to instruct the general-purpose processor to perform the foregoing processing operations. It is not difficult to understand that the processing performed by the general-purpose processor depends on the processing instructions stored in the memory. By modifying the processing instructions in the memory, the general-purpose processor can be controlled to output different processing results.
  • the general-purpose processor and the memory may be integrated on a same chip, for example, the general-purpose processor and the memory may be integrated on a processing chip.
  • the general-purpose processor and the memory may also be provided on different chips, for example, the general-purpose processor is provided on a processing chip, and the memory is provided on a storage chip.
  • the technical solution provided by the embodiment of the present invention may also be implemented by means of a computer-readable storage medium, where the computer-readable storage medium stores processing instructions for implementing the technical solution of the embodiment of the present invention for reading by a general-purpose processing device.
  • a general-purpose processing device To complete the technical solution provided by the embodiment of the present invention.
  • the above-mentioned general processing device should be understood as a processing device including necessary hardware devices such as a processor and a transceiver, and the operation of these hardware devices depends on the processing instructions stored in the computer-readable storage medium.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission by wire (for example, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (for example, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (Solid State Disk (SSD)), and the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk (Solid State Disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种干扰测量的方法和装置,通过产生干扰的节点的第二功能实体使用所述产生干扰的节点的第一功能实体的参考信号资源标识对应的一个或者多个波束发送用于干扰测量的参考信号,使得受到干扰的节点能快速、准确进行干扰测量,解决了交叉链路干扰下对节点间的干扰测量,进而极大地降低了交叉链路在传输信号带来的影响,提高了系统的传输性能。

Description

一种干扰测量方法和装置
本申请要求于2018年09月28日提交国家知识产权局、申请号为201811143470.8、申请名称为“一种干扰测量方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种干扰测量方法和装置。
背景技术
在第五代通信系统(5th generation mobile networks or 5th generation wireless systems,5G)中,集成接入和回传(integrated access and backhaul,IAB)节点是中继技术的演进节点。在无线通信网络中,中继节点通常用来实现扩展覆盖或者盲区覆盖,或者用于提升系统容量。该IAB节点在功能上分为:IAB移动终端(mobile termination,MT)和IAB基站分布式单元(Distributed Unit,DU)。其中IAB MT指IAB作为终端设备UE,接入到上级节点。IAB DU指的是IAB作为基站分布式单元,给UE和其他下游节点提供接入服务的。
IAB节点在接入网络时,IAB DU给UE提供服务的链路称为接入链路(Access link,AC),向其他IAB节点发送数据的链路称为回传链路(backhaul link,BH),由于在不同的IAB节点处调度结果有所不同,会导致不同的IAB节点在同一时刻的收发状态可能有所不同,例如当一个IAB节点正在接收回程链路或者接入链路上传输的信号时,会收到另一个IAB节点发送的信号的干扰,即称为交叉链路干扰(cross link interference,CLI)。交叉链路干扰会使得IAB节点的传输能力下降,特别是对于回程链路的干扰,会造成严重的性能损失。因此,如何对IAB节点进行干扰测量,进而能有针对性地采取干扰管理措施,避免出现交叉链路干扰或者缓解交叉链路在传输信号带来的影响,是当前IAB标准化需要考虑的问题。
发明内容
有鉴于此,本申请提供一种干扰测量方法和装置,通过产生干扰的节点的第二功能实体使用所述产生干扰的节点的第一功能实体的参考信号资源标识对应的一个或者多个波束发送用于干扰测量的参考信号,使得受到干扰的节点能快速、准确进行干扰测量,解决了交叉链路干扰下对节点间的干扰测量,进而极大地降低了交叉链路在传输信号带来的影响,提高了系统的传输性能。
第一方面,提供了一种干扰测量方法,应用在集成接入和回传IAB网络,所述IAB网络至少包括:第一节点和第二节点,所述第二节点包括:第一功能实体和第二功能实体,所述方法包括:
所述第二节点的第二功能实体接收RS配置消息,所述RS配置消息包括:第二节点 的第二功能实体的参考信号资源指示信息,所述第二功能实体的参考信号资源指示信息包括:第二节点的第一功能实体的参考信号资源标识;
第二节点的第二功能实体根据接收到的RS配置消息中的第二节点的第一功能实体的参考信号资源标识,发送用于干扰测量的参考信号。
通过上述实施例中提供的通过产生干扰的节点的第二功能实体通使用所述产生干扰的节点的第一功能实体的参考信号资源标识对应的一个或者多个波束发送用于干扰测量的参考信号,使得受到干扰的节点能快速、准确进行干扰测量,进而极大地降低了交叉链路在传输信号带来的影响,提高了系统的传输性能。
第二方面,一种干扰测量方法,应用在集成接入和回传IAB网络,所述IAB网络至少包括:第一节点和第二节点以及第三节点,其中,第二节点以及第三节点均包括:第一功能实体和第二功能实体,所述方法包括:
所述第三节点的第一功能实体接收干扰测量配置消息,所述干扰测量配置消息包括:干扰测量类型指示信息,所述干扰测量类型指示信息用于指示第三节点的第一功能实体使用第三节点的第二功能实体的接收波束进行干扰测量;所述第三节点的第一功能实体根据所述干扰测量配置中的干扰测量类型指示,确定用于检测所述参考信号使用的接收波束为第三节点的第二功能实体的接收波束;
所述第三节点的第一功能实体通过所述确定的接收波束接收用于干扰测量的参考信号。
通过上述实施例中提供的干扰测量方法,使得受到干扰的节点能快速、准确进行干扰测量,进而极大地降低了交叉链路在传输信号带来的影响,提高了系统的传输性能。
第三方面,一种干扰测量装置,包括:
收发器,用于接收RS配置消息,所述RS配置消息包括:第二节点的第二功能实体的参考信号资源指示信息,所述第二功能实体的参考信号资源指示信息包括:第二节点的第一功能实体的参考信号资源标识;以及根据所述处理器的指示,使用确定的一个或者多个发送波束发送用于干扰测量的RS;
处理器,用于根据所述RS配置消息中的第二节点的第一功能实体的参考信号资源标识,确定所述第二节点的第一功能实体的参考信号资源标识对应的一个或者多个发送波束,指示所述收发器使用所述确定的发送波束发送用于干扰测量的RS。
通过上述实施例中提供的干扰测量方法,使得受到干扰的节点能快速、准确进行干扰测量,进而极大地降低了交叉链路在传输信号带来的影响,提高了系统的传输性能。
第四方面,一种干扰测量装置,其特征在于,包括:
收发器,用于接收干扰测量配置消息,所述干扰测量配置消息包括:干扰测量类型指示信息,所述干扰测量类型指示信息用于指示第三节点的第一功能实体采用第三节点的第二功能实体的接收波束进行干扰测量;根据所述处理器的指示,通过所述确定的接收波束接收用于干扰测量的参考信号;
处理器,用于根据所述干扰测量配置消息中的干扰测量类型指示,确定用于检测所述参考信号使用的接收波束为第三节点的第二功能实体的接收波束,指示所述收发器通过所述确定的接收波束接收用于干扰测量的参考信号。
通过上述实施例中提供的干扰测量方法,使得受到干扰的节点能快速、准确进行干扰 测量,进而极大地降低了交叉链路在传输信号带来的影响,提高了系统的传输性能。
第五方面,一种干扰测量装置,包括:
存储器,用于存储程序;
处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述处理器用于执行第一方面或者第二方面的任一所述的方法。
第六方面,一种干扰测量装置,包括:
一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如第一方面或者第二方面任一所述的方法
第七方面,一种干扰测量装置,包括:一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如第一方面或者第二方面任一所述的方法。
第八方面,一种芯片,包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得所述处理器执行如权利要求第一方面或者第二方面中任一所述的方法。
附图说明
图1是应用本申请实施例的系统架构图;
图2是本申请实施例的提供的另一种系统架构图;
图3是本申请实施例的提供的另一种系统架构图;
图4a是本申请实施例的提供的一种干扰测量的示意性流程图;
图4b是本申请实施例的提供的另一种干扰测量的示意性流程图;
图5是本申请实施例的提供的一种系统架构图;
图6是是本申请实施例的提供的另一种干扰测量的示意性流程图;
图7是本申请实施例的提供的一种系统架构图;
图8a是本申请实施例的提供的一种干扰测量的示意性流程图;
图8b是本申请实施例的提供的另一种干扰测量的示意性流程图;
图9是本申请实施例的提供的一种系统架构图;
图10是是本申请实施例的提供的另一种干扰测量的示意性流程图;
图11是本申请实施例的提供的一种系统架构图;
图12是本申请实施例的提供的另一种干扰测量的示意性流程图;
图13a是本申请实施例的提供的一种系统架构图;
图13b是本申请实施例的提供的一种帧格式的结构示意性框图;
图14是本申请实施例的提供的另一种干扰测量的示意性流程图;
图15是本申请实施例的提供的一种系统架构图;
图16是本申请实施例的提供的另一种干扰测量的示意性流程图;
图17是本申请实施例的提供的一种系统架构图;
图18是根据本申请实施例的功率控制的装置的示意性框图。
图19是根据本申请实施例的另一种功率控制的装置的示意性框图。
图20是根据本申请实施例的网络设备的硬件结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1为本申请实施例提供的通信系统的示意图。如图1所示,通信系统包括网络设备和至少一个终端设备,其中,终端设备处在网络设备覆盖范围内并与网络设备进行通信,以实施下述各本申请实施例提供的技术方案。本实施例的通信系统可以应用于多TRP场景。
本申请实施例结合网络设备和终端设备描述了各个实施例,该网络设备和终端设备可以工作在许可频段或免许可频段上,其中:
终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是无线局域网(Wireless Local Area Networks,WLAN)中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,第五代通信(the fifth-generation,5G)网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备,NR系统中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,网络设备又称为无线接入网(Radio Access Network,RAN)设备,是一种将终端设备接入到无线网络的设备,可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者5G网络中的网络设备或者未来演进的PLMN网络中的网络设备,或NR系统中的新一代基站(new radio Node B,gNodeB)等,在此并不限定。
另外,在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信。该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站。这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1为本申请实施例所适用的通信系统的结构示意图。
需要说明的是,本申请实施例提及的通信系统包括但不限于:窄带物联网(narrow  band-internet of things,NB-IoT)系统、长期演进(long term evolution,LTE)系统,下一代5G移动通信系统或者5G之后的通信系统,或者设备到设备(device to device,D2D)通信系统。
在图1所示的通信系统中,给出了一体化的接入和回程IAB系统。一个IAB系统至少包括一个基站100,及基站100所服务的一个或终端101,一个或多个中继节点(relay transmission reception point,rTRP)110,及该rTRP 110所服务的一个或多个终端111,通常基站100被称为宿主基站(donor next generation node B,DgNB),rTRP 110通过无线回程链路113连接到基站100。本申请中,终端又被称为终端,宿主基站在也称为宿主节点,即,Donor节点。基站包括但不限于:演进型节点B(evolved node base,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU)、或下一代新空口基站(比如gNB)等。
一体化的接入和回程系统还可以包括多个其他中继节点,例如rTRP 120和rTRP 130,rTRP 120是通过无线回程链路123连接到中继节点rTRP 110以接入到网络的,rTRP 130是通过无线回程链路133连接到中继节点rTRP 110以接入到网络的,rTRP 120为一个或多个终端121服务,rTRP 130为一个或多个终端131服务。图1中,中继节点rTRP 110和rTRP 120都通过无线回程链路连接到网络。在本申请中,所述无线回程链路都是从中继节点的角度来看的,比如无线回程链路113是中继节点rTRP 110的回程链路,无线回程链路123是中继节点rTRP 120的回程链路。如图1所示,一个中继节点,如120,可以通过无线回程链路,如123,连接另一个中继节点110,从而连接到网络,而且,中继节点可以经过多级无线中继节点连接到网络。
通常,把提供无线回程链路资源的节点,如110,称为中继节点120的上级节点,而120则称为中继节点110下级节点。通常,下级节点可以被看作是上级节点的一个终端。应理解,图1所示的一体化接入和回程系统中,一个中继节点连接一个上级节点,但是在未来的中继系统中,为了提高无线回程链路的可靠性,一个中继节点,如120,可以有多个上级节点同时为其提供服务,如图中的rTRP 130还可以通过回程链路134连接到中继节点rTRP 120,即,rTRP 110和rTRP 120都为rTRP 130的上级节点。在本申请中,所述终端101,111,121,131,可以是静止或移动设备。例如移动设备可以是移动电话,智能终端,平板电脑,笔记本电脑,视频游戏控制台,多媒体播放器,甚至是移动的中继节点等。静止设备通常位于固定位置,如计算机,接入点(通过无线链路连接到网络,如静止的中继节点)等。中继节点rTRP 110,120,130的名称并不限制其所部署的场景或网络,可以是比如relay,RN等任何其他名称。本申请使用rTRP仅是方便描述的需要。
一个或多个中继节点rTRP 110,又可以被称为IAB节点,每个IAB节点包括分布式单元(Distributed Unit,DU)和移动终端(Mobile Termination)两部分功能实体,其中MT功能实体类似于UE的功能,从上级节点(Donor节点或者IAB节点)接收下行数据或向上级节点发送上行数据,DU功能实体类似于基站功能,向下级节点(IAB节点或移动终端)发送下行数据或接收下级节点发送的上行数据,例如针对图2提供IAB系统而言,所述IAB系统包括:一个Donor节点,三个IAB节点分别为IAB节点1、IAB节点2和IAB节 点3。其中,IAB节点2和IAB节点3直接接入Donor节点,IAB节点1为IAB节点3的子节点,Donor节点与各IAB节点分别服务一个或多个用户UE节点,例如:UE1,UE2,UE3以及UE4。
在图1中,无线链路102,112,122,132,113,123,133,134可以是双向链路,包括上行和下行传输链路,特别地,无线回程链路113,123,133,134可以用于上级节点为下级节点提供服务,如上级节点100为下级节点110提供无线回程服务。应理解,回程链路的上行和下行可以是分离的,即,上行链路和下行链路不是通过同一个节点进行传输的。所述下行传输是指上级节点,如节点100,向下级节点,如节点110,传输信息或数据,上行传输是指下级节点,如节点110,向上级节点,如节点100,传输信息或数据。所述节点不限于是网络节点还是终端,例如,在D2D场景下,终端可以充当中继节点为其他终端服务。无线回程链路在某些场景下又可以是接入链路,如回程链路123对节点110来说也可以被视作接入链路,回程链路113也是节点100的接入链路。应理解,上述上级节点可以是基站,也可以是中继节点,下级节点可以是中继节点,也可以是具有中继功能的终端,如D2D场景下,下级节点也可以是终端。
图1中,Donor节点是指通过该节点可以接入到核心网的节点,或者是无线接入网的一个锚点基站,通过该锚点基站可以接入到网络。锚点基站负责分组数据汇聚协议(packet data convergence protocol,PDCP)层的数据处理,或者负责接收核心网的数据并转发给中继节点,或者接收中继节点的数据并转发给核心网。
当中继节点在半双工约束下,带内中继的无线回程链路与接入链路的频谱资源重合,即,带内中继的回传链路与接入链路具有相同频段。如,rTRP在基站的下行无线回程链路进行接收时,就不能向下属终端或设备进行传输;而rTRP在回程链路上向上级节点进行上行传输时,不能接收下属终端或设备在上行接入链路或下级节点的回程链路上的传输。应理解,带内中继的半双工约束指的是同时同频收发的半双工约束,与系统本身采用的时分双工(Time Division Duplexing,TDD)或频分双工方式(Frequency Division Duplexing,FDD)无关。
下面对一些常用的技术术语给出如下定义:
接入链路:接入链路是指某个节点和它的下级节点进行通信时所使用的无线链路,包括上行传输和下行传输的链路。接入链路上的上行传输也被称为接入链路的上行传输,下行传输也被称为接入链路的下行传输。其中的节点包括但不限于前述IAB节点。
回传链路:回传链路是指某个节点和它的上级节点进行通信时所使用的无线链路,包括上行传输和下行传输的链路。回传链路上的上行传输也被称为回传链路的上行传输,下行传输也被称为回传链路的下行传输。其中的节点包括但不限于前述IAB节点。
对于波束(beam),可以理解为空间资源,可以指具有能量传输指向性的发送或接收预编码向量。并且,该发送或接收预编码向量能够通过索引信息进行标识。其中,能量传输指向性可以指通过该预编码向量对所需发送的信号进行预编码处理,经过该预编码处理的信号具有一定的空间指向性,接收经过该预编码向量进行预编码处理后的信号具有较好的接收功率,如满足接收解调信噪比等;所述能量传输指向性也可以指通过该预编码向量接收来自不同空间位置发送的相同信号具有不同的接收功率。可选地,同一通信设备,比如终端设备或网络设备,可以有不同的预编码向量,不同的通信设备也可以有不同的预编 码向量,即对应不同的波束。
针对通信设备的配置或者能力,一个通信设备在同一时刻可以使用多个不同的预编码向量中的一个或者多个,即同时可以形成一个波束或者多个波束。波束信息可以通过索引信息进行标识,可选地,所述索引信息可以对应配置终端设备的资源标识(identity,ID)。例如,所述索引信息可以对应配置的信道状态信息参考信号(Channel status information Reference Signal,CSI-RS)的ID或者索引(index)或资源,也可以是对应配置的上行探测参考信号(Sounding Reference Signal,SRS)的ID或者资源。或者,可选地,所述索引信息也可以是通过波束承载的信号或信道显示或隐式承载的索引信息,比如,所述索引信息包括但是不限于通过波束发送的同步信号或者广播信道指示该波束的索引信息。该资源可以是以下至少一种:时域、频域、码域(序列)。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
另外,由于5G NR支持高频段,并且采用了大规模天线技术(Massive MIMO),使得信号的能量可以集中的向某个方向传输,这样使得IAB设备可以同时接收多个方向传输过来的信号,下面再介绍IAB中空分传输中的一些系统组成示意图,如图2所示。
图2所示,IAB系统包括:IAB设备,例如:IAB节点1,IAB节点2,IAB节点3,各IAB设备所服务的终端设备UE以及Donor节点。其中Donor节点是IAB节点2的上级节点或者父节点,所述IAB节点2可以与Donor节点进行信号传输,又为UE2提供服务,与此同理,IAB节点1的上级节点为IAB节点3,IAB节点1与所搜IAB节点3进行信号传输,也为UE1提供服务。
根据图2的场景,下面通过图3具体介绍各种应用场景下的干扰测量。
图3中,场景1即case1下,IAB节点1通过MT在接收Donor节点发送的信号,IAB节点2通过MT发送数据给IAB节点3。这时IAB节点1的MT在接收下行信号时,受到IAB节点2的MT的发送上行信号的干扰,这里的干扰源是IAB节点2,受干扰节点是IAB节点1,交叉链路干扰CLI是IAB节点2的MT对IAB节点1的MT产生的干扰。
图3中,场景2即case2下,IAB节点1通过MT在接收Donor节点发送的信号,IAB节点2通过DU发送信号给UE。这时IAB节点1的MT在接收下行信号时,受到IAB节点2的DU发送下行信号的干扰,这里的干扰源是IAB节点2的DU,受干扰节点是IAB节点1的MT,交叉链路干扰是IAB节点2的DU对IAB节点1的MT产生的干扰。
图3中,场景3即case3下,IAB节点1通过DU在接收UE发送的信号,IAB节点2通过MT发送信号给IAB节点3。这时IAB节点1的DU在接收上行信号时,受到IAB节点2的MT发送上行信号的干扰,这里的干扰源是IAB节点2的MT,受干扰节点是IAB节点1的DU,交叉链路干扰是IAB节点2的MT对IAB节点1的DU产生的干扰。
图3中,场景4即case4下,IAB节点1通过DU在接收UE发送的信号,IAB节点3通过DU发送IAB节点2的信号。这时IAB节点1的DU在接收上行信号时,受到IAB节点3的DU的发送下行信号的干扰,这里的干扰源是IAB节点3的DU,受干扰节点是IAB节点1的DU,交叉链路干扰CLI是IAB节点3的DU对IAB节点1的DU产生的干扰。
实施例一:
图4a为本申请实施例提供的一种干扰测量方法流程图,下面以图5所示的IAB网络架构为例,对干扰测量方法进行详细描述,上述的各种应用场景都可以应用到下面的干扰测量方法。
图5中,IAB节点1通过MT在接收IAB节点3的DU发送的信号,IAB节点2通过MT发送数据给Donor节点。这时IAB节点1的MT在接收下行信号时,受到IAB节点2的MT发送的上行信号的干扰,这里的干扰源是IAB节点2,受干扰节点是IAB节点1,所述干扰具体可以是交叉链路干扰CLI,所述CLI是IAB节点2的MT对IAB节点1的MT产生的干扰。
如图5所示,IAB节点1和IAB节点2在部分时隙上可能存在MT与MT之间的交叉链路干扰,因此需要完成IAB节点1的MT与IAB节点2的MT之间的交叉链路干扰的测量,具体干扰测量方法如下:
S400、第一节点发送参考信号(reference signal,RS)配置消息,所述RS配置消息包括:第二节点的第二功能实体的参考信号资源指示信息,所述第二功能实体的参考信号资源指示信息包括:第二节点的第一功能实体的参考信号资源标识。其中,所述RS配置信息用于对所述第二节点的第二功能实体发送的参考信号进行配置,所述第二节点的第二功能实体发送的参考信号用于干扰测量,所述干扰为第二节点的第一功能实体对第三节点的第一功能实体产生的干扰。
所述第二节点为产生干扰的节点,所述第三节点为受干扰的节点;所述第二节点的第一功能实体的参考信号资源标识用于指示所述参考信号资源。
在如图5所示的IAB网络中,第一节点为Donor节点,第二节点为产生干扰的节点例如IAB节点2,所述第三节点为受干扰的节点,例如IAB节点1。无论第二节点还是第三节点均可以包括第一功能实体和第二功能实体。其中,所述第一功能实体为MT,第二功能实体为DU。这里第一功能实体可以与第二功能实体进行集成为一个模块,也可以各自独立、分开为不同的模块。所述第一功能实体为MT,或者DU,所述第二功能实体为DU或者,MT。所述第一节点也可以为IAB node节点。
根据IAB节点2或者IAB节点1的配置或者能力,IAB节点2在同一时刻可以使用一个波束或者多个波束进行信号传输,IAB节点1在同一时刻也可以使用一个或者多个波束进行信号传输。所述波束可以通过参考信号资源标识进行指示。所述第二节点的第一功能实体的参考信号资源标识为IAB节点2的MT的参考信号资源标识,用于指示IAB节点2的MT进行参考信号发送时使用的一个或者多个参考信号资源,所述一个或者多个参考信号资源对应一个或者多个MT的发送波束。可选地,第二节点的第一功能实体的参考信号资源标识可以为配置IAB节点的参考信号的资源标识(identity,ID),例如:信道状态信息参考信号(Channel status information Reference Signal,CSI-RS)的资源标识(CSI-RS-ResourceId)或者探测参考信号(Sounding Reference Signal,SRS)的资源标识(SRS-ResourceId)。
其中,所述参考信号配置消息可以承载在无线资源控制(Radio Resource Control,RRC)协议消息中,或者,通过F1接口承载在基于F1-AP(F1-application protocol)协议的消息中,例如:下行无线资源控制转移消息(DL RRC TRANSFER message),所述F1接口为IAB节 点2的分布单元(distributed unit,DU)与Donor节点的集中单元(central unit,CU)之间的F1接口,或者承载在DCI(Downlink Control Information)消息或MAC CE(Media Access Control control element)中。
所述参考信号配置消息还可以是由Donor节点通过RRC、DCI或MAC CE发送给IAB节点2的MT,再由IAB节点2的MT通过内部的信令交互通知IAB节点2的DU。
所述参考信号配置消息可以是周期性发送的,也可以是半静态发送的。
所述参考信号配置消息包括:一个或者多个参考信号资源指示信息,每个参考信号资源指示信息包含参考信号资源标识。
具体所述参考信号资源指示信息格式如下:
1、方式一:定义一种新的参考信号资源指示信息,具体指示信息的格式示例如下:
Figure PCTCN2019108123-appb-000001
其中,RS-Resource为参考信号资源指示信息;
RS-ResourceId为参考信号资源标识,所述参考信号资源标识可以理解为指示IAB节点2的DU使用该标识对应的IAB节点2的MT的波束发送所述参考信号。
可选地,所述参考信号资源指示信息还可以包括下面一种或者几种:
resource Mapping:用于指示干扰测量的参考信号映射的时频资源位置;
powercontrol:参考信号的功率控制。所述参考信号的功率控制指示了IAB节点2的DU发送参考信号使用的发射功率。其中,所述参考信号的发射功率配置为IAB节点2的MT的发射功率。
periodicityAndOffset:指示了所述用于干扰测量对的参考信号的发送周期,和/或每个周期内的时隙偏移量。
2、方式二:所述参考信号资源指示信息采用统一的格式,例如采用现有的CSI-RS-Resource消息格式,通过对所述CSI-RS-Resource消息进行扩展。
具体如下:
如下所示的CSI-RS资源指示信息CSI-RS-Resource:
Figure PCTCN2019108123-appb-000002
其中,CSI-RS-Resource为参考信号资源指示信息;
CSI-RS-ResourceId为常规的用于CSI测量的参考信号资源标识,用于指示IAB节点 2的DU采用DU的自身配置的波束发送用于CSI测量的参考信号;
SRS-ResourceId为参考信号资源标识,所述参考信号资源标识用于指示IAB节点2的DU使用该标识对应的IAB节点2的MT的波束发送所述参考信号。
resourceMapping:用于指示参考信号映射的时频资源位置;
powercontrol:参考信号的功率控制,指示了IAB节点2的DU发送参考信号使用的发射功率;
periodicityAndOffset:指示了所述用于干扰测量对的参考信号的发送周期,和/或每个周期内的时隙偏移量。
当Donor节点发送参考信号配置消息给IAB节点2的DU时,如果所述IAB节点2的DU识别出其中包含的SRS-ResourceId,可知当前的参考信号配置是用于干扰测量的,具体为交叉链路干扰测量。
powerControl字段指示了发送参考信号使用的功率,如果当前指示的是用于信道状态信息CSI测量的参考信号资源,则该字段将设置为CSI-RS的发送功率信息;当指示的是交叉链路干扰CLI测量参考信号资源时,该字段将设置为SRS的发送功率信息。
具体步骤S400以图5为例,可以理解为:
当IAB节点1的MT受到IAB节点2的MT的干扰时,Donor节点生成RS配置消息,所述RS配置消息用于对IAB节点2的DU发送的用于干扰测量的参考信号进行配置,所述干扰测量的参考信号用于IAB节点1的MT对IAB节点2的MT带来的干扰进行测量,其中,所述RS配置消息包括:IAB节点2的DU的参考信号资源标识例如:{3,4,5},所述参考信号资源标识对应于IAB节点2的MT的波束。
S402、第二节点的第二功能实体根据接收的RS配置消息,对用于干扰测量的参考信号进行配置。
如图5所示,所述IAB节点2的DU根据参考信号资源标识,选择对应的波束发送参考信号。
对于IAB节点2的MT,参考信号资源标识与传输信号具体使用的波束的对应关系是知道的,而在IAB节点2内部,DU可以与MT进行交互,从而DU也可以识别出SRI{3,4,5}对应的MT的波束具体为哪些,例如图5中阴影标识的3个物理波束。
例如:所述IAB节点2的MT使用参考信号资源标识{3,4,5}对应的波束集合{a,b,c}进行信号传输,当IAB节点1的MT对IAB节点2的MT进行干扰测量时,IAB节点2的DU与IAB节点2的MT进行交互,获得与所述参考信号资源标识{3,4,5}对应的IAB节点2的MT的波束集合{a,b,c},IAB节点2的DU采用束集合{a,b,c}发送用于干扰测量的参考信号。
需要说明的是,所述IAB节点2的MT与DU的交互可以是硬件模块之间的交互,也可以是所述MT和DU进行集成时,通过软件实现上述交互。进一步地,所述配置消息中的参考信号资源指示信息还包括:下面一种或者多种组合:
IAB节点2的DU的参考信号映射的时频资源,IAB节点2的DU的参考信号发送功率,或者,IAB节点2的DU的参考信号的发送周期。
由于IAB节点2的DU需要根据IAB节点2的MT的配置信息对用于干扰测量的参考信号进行配置,通过IAB节点2的DU代替IAB节点2的MT发送所述参考信号,使 得IAB节点1能够准确地检测到干扰测量的参考信号,从而对干扰进行测量,进而对干扰进行消除,极大地提升了IAB网络的性能。
S404、第二节点的第二功能实体发送用于干扰测量的参考信号。
如图5所示,IAB节点2的DU采用RS配置消息中的参考信号资源标识对应的一个或者多个波束发送干扰测量的参考信号,便于IAB节点1的MT进行干扰测量。
进一步地,IAB节点2的DU还可以在指定的时频资源上发送用于干扰测量的参考信号,如果需要进行周期性地测量,IAB节点2的DU还会在指定的发送周期内,周期性发送该参考信号,以及使用指定的发送功率发送上述参考信号。
所述参考信号可以包括如下一种或者几种:同步信号SSB,信道状态信息参考信号CSI-RS,解调参考信号DMRS,跟踪参考信号TRS,相位跟踪参考信号PTRS,探测参考信号SRS,或其他RS。
S406、第一节点对第三节点的第一功能实体进行干扰测量配置,发送干扰测量配置消息。
所述步骤S406可以在步骤S404发送用于干扰测量的参考信号之前进行,不限制于在步骤S404之后。
如图5所示,Donor节点向IAB节点1的MT发送的干扰测量配置消息可以基于RRC(Radio Resource Control,无线资源控制)协议由Donor向IAB节点1的MT发送,承载在RRC协议的特定消息中。也可以通过MAC CE来指示。
如图5所示,Donor在对IAB节点1的MT进行干扰测量配置时,按照常规的测量配置方法对其进行干扰测量配置,也就是说IAB节点1对该测量配置是用于干扰测量不感知,例如可以按照常规的用于移动性测量的配置来进行配置。发送给IAB节点1的MT的干扰测量配置消息中,将包含具体的参考信号资源指示信息,例如参考信号的时频资源位置、周期等。其中还包含参考信号资源标识,而这里的参考信号资源标识个数,也就是需要测量的参考信号资源个数与Donor发送给IAB节点2的DU的参考信号资源个数是一致的。
S408、第三节点的第一功能实体根据步骤S406所述的测量配置,检测到第二节点的第二功能实体发送的用于干扰测量的参考信号,进行干扰测量。
如图5所示,IAB节点1的MT收到所述测量配置后,便在指示的资源位置上对IAB节点2的DU发送的用于干扰测量的参考信号进行检测。
针对上述实施例一,本本发明实施例还提供另一种实施例,以所述第二节点简单描述上述过程,如图4b所示:
一种干扰测量方法,应用在集成接入和回传IAB网络,所述IAB网络至少包括:第一节点和第二节点,所述第二节点包括:第一功能实体和第二功能实体,所述方法包括:
S400’、所述第二节点的第二功能实体接收参考信号配置消息,所述参考信号配置消息包括:第二节点的第二功能实体的参考信号资源指示信息,所述第二功能实体的参考信号资源指示信息包括:第二节点的第一功能实体的参考信号资源标识。
进一步地,所述参考信号资源指示信息还包括下面一种或多种的任意组合:
用于所述干扰测量的RS映射的时频资源位置、用于干扰测量的RS的功率控制、用于干扰测量的RS发送周期。
S402’、第二节点的第二功能实体根据接收到的参考信号配置消息中的第二节点的第 一功能实体的参考信号资源标识,发送用于干扰测量的RS。
具体为:所述第二节点的第二功能实体根据接收到的参考信号配置消息中的第二节点的第一功能实体的参考信号资源标识,确定所述第二节点的第一功能实体的参考信号资源标识对应的一个或者多个波束;
所述第二节点的第二功能实体使用所述确定的一个或者多个波束发送所述用于干扰测量的RS。
进一步地,所述用于干扰测量的RS的功率控制为第二节点的第一功能实体的发送功率。
进一步地,在所述步骤S400’之前,所述方法还包括:
所述第一节点生成所述参考信号配置消息。
上述的方法流程也适用与图4a,4b以及图5对应的实施例的描述,具体请参见相应的实施例的具体描述,这里就不再赘述。
本申请提供一种干扰测量方法和装置,通过产生干扰的节点的第二功能实体通使用所述产生干扰的节点的第一功能实体的参考信号资源标识对应的一个或者多个波束发送用于干扰测量的RS,使得受到干扰的节点能快速、准确进行干扰测量,进而极大地降低了交叉链路在传输信号带来的影响,提高了系统的传输性能。
实施例二:
本发明实施例还提供另一种实施例,如图6所示。
以图7的IAB的组网架构图为例进行举例说明,但是不限制于图7,可以应用到上面的各种组网架构图中。
图7中,IAB节点1通过MT在接收IAB节点3的DU发送的信号,IAB节点2通过MT发送数据给Donor节点。这时IAB节点1的MT在接收下行信号时,受到IAB节点2的MT发送的上行信号的干扰,这里的干扰源是IAB节点2,受干扰节点是IAB节点1,所述干扰具体可以是交叉链路干扰CLI,所述CLI是IAB节点2的MT对IAB节点1的MT产生的干扰。
如图7所示,IAB节点1和IAB节点2在部分时隙上可能存在MT与MT之间的交叉链路干扰,因此需要完成IAB节点1的MT与IAB节点2的MT之间的交叉链路干扰的测量,具体干扰测量方法如下:
在如图7所示的IAB网络中,第一节点为Donor节点,第二节点为产生干扰的节点例如IAB节点2,所述第三节点为受干扰的节点,例如IAB节点1。无论第二节点还是第三节点均可以包括第一功能实体和第二功能实体。其中,所述第一功能实体为MT,第二功能实体为DU。这里第一功能实体可以与第二功能实体进行集成为一个模块,也可以各自独立、分开为不同的模块。所述第一功能实体为MT,或者DU,所述第二功能实体为DU或者,MT。所述第一节点也可以为IAB node节点。
S600、第一节点发送干扰测量指示消息,所述干扰测量指示消息用于指示第二节点的第二功能实体上报用于干扰测量的参考信号配置消息。
如图7,Donor节点向IAB节点2的DU发送干扰测量指示消息,指示IAB节点2的DU生成用于干扰测量的参考信号配置信息,并进行上报。
其中,所述干扰测量指示消息可以承载在无线资源控制(Radio Resource Control,RRC) 协议消息中,或者,通过F1接口承载在基于F1-AP(F1-application protocol)协议的消息中,例如:下行无线资源控制转移消息(DL RRC TRANSFER message),所述F1接口为IAB节点2的分布单元(distributed unit,DU)与Donor节点的集中单元(central unit,CU)之间的F1接口。
所述干扰测量指示消息还可以是由Donor节点通过RRC、DCI或MAC CE发送给IAB节点2的MT,再由IAB节点2的MT通过内部的信令交互通知IAB节点2的DU,使得IAB节点2的DU生成用于干扰测量的参考信号配置信息,并进行上报。
干扰测量指示消息的具体实现方式有如下几种:
方式一:通过1个比特进行指示,触发第二节点的第二功能实体生成用于干扰测量的参考信号配置信息,并进行上报,例如:用CLI-Meas-Indicator:0或者1来表示。
方式二:所述干扰测量指示消息包括下面一种或者几种组合:第二节点的第二功能实体发送的用于干扰测量的参考信号的发送时隙或者发送周期,通过上述消息,触发第二节点的第二功能实体生成用于干扰测量的参考信号配置信息,并进行上报。例如,通过下面的指示消息的消息格式实现:
CLI-Meas-Indicator::=SEQUENCE{
sfnForCliMeas OPTIONAL
periodicityAndOffset
...
sfnForCliMeas指示了所述用于干扰测量对的参考信号的发送时隙,periodicityAndOffset指示了所述用于干扰测量对的参考信号的发送周期,和/或每个周期内的时隙偏移量。
方式三:方式一与方式二的组合进行实现。具体为:通过方式一触发第二节点的第二功能实体生成用于干扰测量的参考信号配置信息,然后再通过方式二指示第二节点的第二功能实体发送的用于干扰测量的参考信号的发送时隙或者发送周期。
S602、第二节点的第二功能实体上报用于干扰测量的参考信号配置消息,所述参考信号配置消息包括:第二节点的第二功能实体的参考信号资源指示信息,所述第二功能实体的参考信号资源指示信息包括:第二节点的第二功能实体的参考信号资源标识。
具体为,第二节点的第二功能实体生成所述第二功能实体的参考信号资源指示信息,所述第二功能实体的参考信号资源指示信息包括:第二节点的第二功能实体的参考信号资源标识。
上述第二节点的第二功能实体的参考信号资源标识是第二节点的第二功能实体根据所述第二节点的第一功能实体的发送波束获得的。
进一步地,当第二节点的第二功能实体自身配置所述参考信号的发送功率时,将所述第二节点的第一功能实体的发送功率作为所述第二节点的第二功能实体的参考信号的发送功率,同时自身配置所述的参考信号使用的时频资源以及所述参考信号的发送周期。所述第二节点的第二功能实体将所述发送功率,所述时频资源以及所述发送周期包含在所述参考信号资源指示信息中,通过用于干扰测量的参考信号配置消息上报给第一节点。
如图7所示,具体的参考信号资源指示信息格式如下:
定义一种新的参考信号资源指示信息,具体指示信息的格式示例如下:
Figure PCTCN2019108123-appb-000003
Figure PCTCN2019108123-appb-000004
其中,RS-Resource为参考信号资源指示信息;
RS-ResourceId为参考信号资源标识。
可选地,所述参考信号资源指示信息还可以包括下面一种或者几种:
resourceMapping:参考信号映射的时频资源位置;
powercontrol:所述参考信号的功率控制,指示了IAB节点2的DU发送参考信号使用的发射功率。其中,所述参考信号的发射功率配置为IAB节点2的MT的发射功率。
periodicityAndOffset:指示了所述用于干扰测量对的参考信号的发送周期,和/或每个周期内的时隙偏移量。
当前面涉及的所述发送功率以及所述时频资源是由第一节点配置时,可以参考图4a,4b以及图5所提供的参考信号配置消息下发给第二节点的第二功能实体,也可以是通过其它消息将所述发送功率以及所述时频资源发送给第二节点的第二功能实体。
具体的:所述第二节点的第一功能实体的发送波束以及第二节点的第一功能实体的发送功率的获得过程如下:
如图7所示,IAB节点2的DU通过与自身的MT进行信息交互,获得自身的MT的发送波速,以及发送功率,IAB节点2的DU根据所述获得的MT的发送波速生成参考信号资源标识。
这里的发送波束信息可能是MT最近一次发送SRS所使用的波束或波束集合,也可能是IAB节点2的MT最近一次收到的Donor配置的SRI所对应的波束或波束集合,并且这些波束各自都对应了一个SRI。
IAB节点2的DU将使用IAB节点2的MT的发送波束以及发送功率发送用于干扰测量的参考信号。
IAB节点2的DU生成的用于干扰测量的参考信号配置消息中包括一个或多个参考信号资源指示信息,每个参考信号资源指示信息对应一个发送波束。例如,如果MT通知给DU的波束个数有16个,则DU将产生16个参考资源指示信息,包含在参考信号配置消息。
另外,所述IAB节点2的DU生成并发送给Donor节点的用于干扰测量的参考信号配置消息可以承载在无线资源控制(Radio Resource Control,RRC)协议消息中,或者,通过F1接口承载在基于F1-AP(F1-application protocol)协议的消息中,所述F1接口为IAB节点2的分布单元(distributed unit,DU)与Donor节点的集中单元(central unit,CU)之间的F1接口。
S604、第二节点的第二功能实体根据用于干扰测量的参考信号配置消息,发送用于干扰测量的参考信号。
如图7所示,IAB节点2的DU获得自身的MT的发送波速上发送所述参考信号。
进一步地,IAB节点2的DU在自身配置或者指定的时频资源上发送用于干扰测量的参考信号,如果需要进行周期性地测量,还会在自身配置或者指定的发送周期内,周期性发送该参考信号,以及使用指定的或者自身配置的发送功率发送上述参考信号。
所述参考信号可以包括如下一种或者几种:同步信号SSB(SS/PBCH block),信道状态信息参考信号CSI-RS,解调参考信号DMRS(Demodulation Reference Signal),跟踪参考信号TRS(Tracking Reference Signal),相位跟踪参考信号PTRS(Phase TrackingReference Signal),探测参考信号SRS,或其他参考信号RS。
S606、第一节点根据用于干扰测量的参考信号配置消息,对第三节点的第一功能实体进行干扰测量配置,给第三节点的第一功能实体发送干扰测量配置消息。
所述S606的具体测量配置过程请参见图4a,4b以及图5对应的步骤S406的描述,这里不再赘述。
S608、第三节点的第一功能实体根据所述干扰测量配置,检测第二节点的第二功能实体发送的用于干扰测量的参考信号,进行干扰测量。
如图7所示,IAB节点1的MT收到所述测量配置后,便在指示的资源位置上对IAB节点2的DU发送的用于干扰测量的参考信号进行检测。
本申请提供一种干扰测量方法和装置,通过产生干扰的节点的第二功能实体使用所述产生干扰的节点的第一功能实体的参考信号资源标识对应的一个或者多个波束发送用于干扰测量的参考信号,使得受到干扰的节点能快速、准确进行干扰测量,进而极大地降低了交叉链路在传输信号带来的影响,提高了系统的传输性能。
实施例三:
本发明实施例还提供另一种实施例,如图8a所示。
以图9的IAB的组网架构图为例进行举例说明,但是不限制与图9,可以应用到上面的各种组网架构图中。
图9中,IAB节点1通过DU在接收下级IAB节点或者终端设备发送的信号,IAB节点2通过DU发送数据给下级IAB节点或终端设备。这时IAB节点1的DU在接收上行信号时,受到IAB节点2的DU的发送下行信号的干扰,这里的干扰源是IAB节点2的DU,受干扰节点是IAB节点1的DU,所述干扰可以是交叉链路干扰CLI,所述CLI是IAB节点2的DU对IAB节点1的DU产生的干扰。
如图9所示,IAB节点1和IAB节点2在部分时隙上可能存在DU与DU之间的交叉链路干扰,因此需要完成IAB节点1的DU与IAB节点2的DU之间的交叉链路干扰的测量,具体干扰测量方法如下:
S800、第一节点发送RS配置消息给第二节点的第二功能实体,所述RS配置消息包括:第二节点的第二功能实体的参考信号资源指示信息,所述第二节点的第二功能实体的参考信号资源指示信息包括:下面一种或者多种组合:
所述第二功能实体的参考信号资源标识、所述第二功能实体的参考信号发送功率,所述第二功能实体的参考信号映射的时频资源,以及所述第二功能实体的参考信号的发送周期。
所述参考信号资源指示信息采用统一的格式,例如采用现有的CSI-RS–resource信息格式。
具体如下:
如下所示的CSI-RS资源指示信息CSI-RS-Resource:
Figure PCTCN2019108123-appb-000005
其中,CSI-RS-Resource为参考信号资源指示信息;
CSI-RS-Resource Id为常规的用于CSI测量的参考信号资源标识,用于指示IAB节点2的DU采用DU的自身配置的波束发送用于CSI测量的参考信号;
参考信号映射的时频资源位置,如:resource Mapping;
所述参考信号的功率控制,如powercontrol,所述参考信号的功率控制指示了IAB节点2的DU发送参考信号使用的发射功率
periodicityAndOffset指示了所述用于干扰测量对的参考信号的发送周期,和/或每个周期内的时隙偏移量。
其中,所述RS配置消息可以承载在无线资源控制(Radio Resource Control,RRC)协议消息中,或者,通过F1接口承载在基于F1-AP(F1-application protocol)协议的消息中,例如:下行无线资源控制转移消息(DL RRC TRANSFER message),所述F1接口为IAB节点2的分布单元(distributed unit,DU)与Donor节点的集中单元(central unit,CU)之间的F1接口。
所述参考信号配置消息可以是周期性发送的,也可以是半静态发送的。
S802、第一节点发送干扰测量配置消息给第三节点的第一功能实体,所述干扰测量配置消息包括:所述第二节点的第二功能实体的参考信号资源指示信息和/或干扰测量类型指示信息,其中所述干扰测量类型指示信息用于指示第三节点的第一功能实体采用第三节点的第二功能实体的接收波束进行干扰测量。
所述第二节点的第二功能实体的参考信号资源指示信息的格式以及内容请参见步骤S800的具体描述。其中,干扰测量类型指示信息例如DUtoDU-Meas-Type,可以通过对上述S800中的所述第二节点的第二功能实体的参考信号资源指示信息的格式的扩展,将所述DUtoDU-Meas-Type新增到上述参考信号资源指示信息的格式的预留字段中,也可以干扰测量类型指示信息例如DUtoDU-Meas-Type放置在RS配置消息的预留字段中。
第一节点向第三节点的第一功能实体发送的干扰测量配置消息可以基于RRC(Radio Resource Control,无线资源控制)协议,由第一节点向第三节点的第一功能实体发送,承载在RRC协议的特定消息中。也可以通过MAC CE来指示。
如图9所示,上述描述可以理解为:Donor节点向IAB节点1的MT发送的用于干扰测量的配置可以基于RRC(Radio Resource Control,无线资源控制)协议由Donor向IAB节点1的MT发送,承载在RRC协议的特定消息中。也可以通过MAC CE来指示。
S804、第二节点的第二功能实体根据第一节点的参考信号配置消息,发送用于干扰测 量的参考信号。
如图9所示,IAB节点2的DU用自身的发送波速发送所述参考信号。
进一步地,IAB节点2的DU在指定的时频资源上发送用于干扰测量的参考信号,如果需要进行周期性地测量,还会在指定的发送周期内,周期性发送该参考信号,以及使用指定的发送功率发送上述参考信号。
所述参考信号可以包括如下一种或者几种:同步信号SSB,信道状态信息参考信号CSI-RS,解调参考信号DMRS,跟踪参考信号TRS,相位跟踪参考信号PTRS,探测参考信号SRS,或其他RS。
S806、第三节点的第一功能实体根据所述干扰测量配置中的干扰测量类型指示,检测第二节点的第二功能实体发送的用于干扰测量的参考信号,进行干扰测量。
如图7所示,IAB节点1的MT根据干扰测量类型指示,使用IAB节点1的DU的接收波束检测所述IAB节点2的DU发送的参考信号,进行干扰测量。
进一步地,,IAB节点1的MT还可以根据在干扰配置中指示的时频资源以及周期内对IAB节点2的DU发送的用于干扰测量的参考信号进行检测。
基于上述实施例三,本本发明实施例还提供另一种实施例,以所述第三节点简单描述上述过程,如图8b所示:
一种干扰测量方法,应用在集成接入和回传IAB网络,所述IAB网络至少包括:第一节点和第二节点以及第三节点,其中,第二节点以及第三节点均包括:第一功能实体和第二功能实体,所述方法包括:
S800’、所述第三节点的第一功能实体接收干扰测量配置消息,所述干扰测量配置消息包括:干扰测量类型指示信息,所述干扰测量类型指示信息用于指示第三节点的第一功能实体使用第三节点的第二功能实体的接收波束进行干扰测量;S802’、所述第三节点的第一功能实体根据所述干扰测量配置中的干扰测量类型指示,确定用于检测所述参考信号使用的接收波束为第三节点的第二功能实体的接收波束;
S804’、所述第三节点的第一功能实体通过所述确定的接收波束接收用于干扰测量的参考信号。
进一步地,所述干扰测量配置消息还包括:所述第二节点的第二功能实体的参考信号资源指示信息,所述第二节点的第二功能实体的参考信号资源指示信息包括下面一种或者多种组合:
所述第二节点的第二功能实体的参考信号资源标识、所述第二节点的第二功能实体的用于所述干扰测量的RS发送功率,所述第二节点的第二功能实体的用于所述干扰测量的RS映射的时频资源位置,或者所述第二节点的第二功能实体的用于所述干扰测量的RS发送周期。
在所述步骤S800’之前,所述方法还包括:
所述第一节点生成干扰测量配置消息。
上述方法还包括:
所述第一节点发送RS配置消息给第二节点的第二功能实体,所述RS配置消息包括:所述第二节点的第二功能实体的参考信号资源指示信息。
上述的方法流程也适用与图6以及图7对应的实施例的描述,具体请参见相应的实施例的具体描述,这里就不再赘述。
本申请提供一种干扰测量方法,使得受到干扰的节点能快速、准确进行干扰测量,进而极大地降低了交叉链路在传输信号带来的影响,提高了系统的传输性能。
实施例四:
本发明实施例还提供另一种实施例,如图10所示。
以图11的IAB的组网架构图为例进行举例说明,但是不限制与图11,可以应用到上面的各种组网架构图中。
图11中,IAB节点1通过DU在接收下级IAB节点或者终端设备发送的信号,IAB节点2通过DU发送数据给下级IAB节点或终端设备。这时IAB节点1的DU在接收上行信号时,受到IAB节点2的DU的发送下行信号的干扰,这里的干扰源是IAB节点2的DU,受干扰节点是IAB节点1的DU,所述干扰可以是交叉链路干扰CLI,所述CLI是IAB节点2的DU对IAB节点1的DU产生的干扰。
如图11所示,IAB节点1和IAB节点2在部分时隙上可能存在DU与DU之间的交叉链路干扰,因此需要完成IAB节点1的DU与IAB节点2的DU之间的交叉链路干扰的测量,具体干扰测量方法如下:
S1000、第二节点的第二功能实体上报参考信号配置消息,所述参考信号配置消息包括:第二节点的第二功能实体的参考信号资源指示信息,所述第二功能实体的参考信号资源指示信息包括:第二节点的第二功能实体的参考信号资源标识。
具体为,第二节点的第二功能实体生成所述第二功能实体的参考信号资源指示信息,所述第二功能实体的参考信号资源指示信息包括:第二节点的第二功能实体的参考信号资源标识。
上述第二节点的第二功能实体的参考信号资源标识是第二节点的第二功能实体根据所述第二节点的第二功能实体的发送波束获得的。
进一步地,所述参考信号使用的时频资源以及所述参考信号的发送周期,所述第二节点的第二功能实体将所述发送功率包含在所述参考信号资源指示信息中,通过用于干扰测量的参考信号配置消息上报给第一节点。
具体的参考信号资源指示信息格式请参见步骤S800中的具体指示信息的格式。
另外,所述IAB节点2的DU生成的用于干扰测量的参考信号配置消息可以承载在无线资源控制(Radio Resource Control,RRC)协议消息中,或者,通过F1接口承载在基于F1-AP(F1-application protocol)协议的消息中,所述F1接口为IAB节点2的分布单元(distributed unit,DU)与Donor节点的集中单元(central unit,CU)之间的F1接口。
S1002、第一节点发送干扰测量配置消息给第三节点的第一功能实体,所述干扰测量配置消息包括:所述第二节点的第二功能实体的参考信号资源指示信息以及干扰测量类型指示信息,其中所述干扰测量类型指示信息用于指示第一节点的第一功能实体采用第一节点的第二功能实体的接收波束进行干扰测量。
所述第二节点的第二功能实体的参考信号资源指示信息的格式以及内容请参见步骤S1000的具体描述。其中,干扰测量类型指示信息例如DUtoDU-Meas-Type,可以通过对上述S1000中的所述第二节点的第二功能实体的参考信号资源指示信息的格式的扩展,将 所述DUtoDU-Meas-Type新增到上述参考信号资源指示信息的格式的预留字段中,也可以干扰测量类型指示信息例如DUtoDU-Meas-Type放置在RS配置消息的预留字段中。
第一节点向第三节点的第一功能实体发送的干扰测量的配置消息可以基于RRC(Radio Resource Control,无线资源控制)协议,由第一节点向第三节点的第一功能实体发送,承载在RRC协议的特定消息中。也可以通过MAC CE来指示。
如图11所示,上述描述可以理解为:Donor节点向IAB节点1的MT发送的用于干扰测量的配置可以基于RRC(Radio Resource Control,无线资源控制)协议由Donor向IAB节点1的MT发送,承载在RRC协议的特定消息中。也可以通过MAC CE来指示。
S1004、第二节点的第二功能实体根据自身参考信号的配置发送用于干扰测量的参考信号。
如图11所示,IAB节点2的DU用自身的发送波速上发送所述参考信号。
所述参考信号可以包括如下一种或者几种:同步信号SSB,信道状态信息参考信号CSI-RS,解调参考信号DMRS,跟踪参考信号TRS,相位跟踪参考信号PTRS,探测参考信号SRS,或其他RS。
S1006、第三节点的第一功能实体根据所述干扰测量配置中的干扰测量类型指示,检测第二节点的第二功能实体发送的用于干扰测量的参考信号,进行干扰测量。
如图11所示,IAB节点1的MT根据干扰测量类型指示,使用IAB节点1的DU的接收波束检测所述IAB节点2的DU发送的参考信号,进行干扰测量。
进一步地,IAB节点1的MT还可以根据在干扰配置中指示的时频资源以及周期内对IAB节点2的DU发送的用于干扰测量的参考信号进行检测。
本申请提供一种干扰测量方法,使得受到干扰的节点能快速、准确进行干扰测量,进而极大地降低了交叉链路在传输信号带来的影响,提高了系统的传输性能。
实施例五:
本发明实施例还提供另一种实施例,如图12所示。
以图13a的IAB的组网架构图为例进行举例说明,但是不限制于图13a,可以应用到上面的各种组网架构图中。
图13a中,IAB节点1通过MT在接收IAB节点3发送的信号,IAB节点2通过MT发送数据给Donor节点。这时IAB节点1的MT在接收下行信号时,受到IAB节点2的MT发送的上行信号的干扰,这里的干扰源是IAB节点2,受干扰节点是IAB节点1,所述干扰具体可以是交叉链路干扰CLI,所述CLI是IAB节点2的MT对IAB节点1的MT产生的干扰。
如图13a所示,IAB节点1和IAB节点2在部分时隙上可能存在MT与MT之间的交叉链路干扰,因此需要完成IAB节点1的MT与IAB节点2的MT之间的交叉链路干扰的测量,具体干扰测量方法如下:
S1200、第一节点向第二节点的第一功能实体发送用于干扰测量的参考信号配置消息,所述的参考信号配置消息包括:第二节点的第一功能实体用于干扰测量的参考信号资源指示信息和参考信号发送定时指示信息,其中所述参考信号发送定时指示信息用于指示第二节点的第一功能实体采用第二节点的第二功能实体的下行发送定时进行参考信号发送。
所述第二节点的第一功能实体用于干扰测量的参考信号资源指示信息包括:下面一种或者多种组合:
所述第一功能实体的参考信号资源标识、所述第一功能实体的参考信号发送功率,所述第一功能实体的参考信号映射的时频资源,以及所述第一功能实体的参考信号的发送周期。
具体的,所属的参考信号资源指示信息的具体实现方式可以为:
方式一:所述参考信号资源指示信息可以采用现有的格式,例如采用现有的SRS-resource信息格式。
具体如下:
Figure PCTCN2019108123-appb-000006
其中,SRS-Resource为参考信号资源指示信息;
srs-ResourceId为常规的用于上行测量的参考信号资源标识;
resource Mapping为参考信号映射的时频资源位置;
resourceType指示了参考信号的类型为非周期发送,和/或半持续发送,和/或周期性发送,以及半持续和/或周期性发送时的发送周期和周期内的偏移量。
powercontrol指示了第二节点的第一功能实体发送参考信号使用的发射功率。
其中,所述的参考信号映射的时频资源位置可能处于第二节点的下行发送时隙内。
方式二:定义一种新的用于干扰测量的参考信号资源指示信息cli-meas-RS-Resource,信息的具体格式与上述方式一中的信息格式相同;
所述参考信号发送定时指示信息的具体实现方式可以是:
方式一:通过一个通过1个比特进行指示,例如,用srs-use-dl-timing:0或者1来表示,显式地指示第二节点的第一功能实体采用第二节点的第二功能实体的下行发送定时来发送参考信号;所述的参考信号发送定时指示信息可以通过对上述的参考信号资源指示信息的格式的扩展,将srs-use-dl-timing新增到上述参考信号资源指示信息的格式的预留字段中,也可以将srs-use-dl-timing放置在参考信号配置消息的预留字段中
方式二:通过一种新的用于干扰测量的参考信号资源指示信息,即上述的参考信号资 源指示信息方式二,隐式地指示第二节点的第一功能实体采用第二节点的第二功能实体的下行发送定时来发送参考信号;
第一节点向第二节点的第一功能实体发送的用于干扰测量的参考信号配置消息可以基于RRC(Radio Resource Control,无线资源控制)协议,由第一节点向第二节点的第一功能实体发送,承载在RRC协议的特定消息中。也可以通过MAC CE来指示。
如图13a所示,Donor节点向IAB节点2的MT发送的参考信号配置消息可以基于RRC(Radio Resource Control,无线资源控制)协议由Donor向IAB节点2的MT发送,承载在RRC协议的特定消息中。也可以通过MAC CE来指示。
S1202、第二节点的第一功能实体收到所述的用于干扰测量的参考信号配置消息后,将其中的参考信号资源指示信息传递给第二节点的第二功能实体。第二节点的第二功能实体收到该参考信号资源指示信息后,调整自己的下行发送。
具体的,第二节点的第二功能实体识别到所述参考信号配置消息中指示的参考信号标识、时频资源位置、发送周期及周期内的偏移量,在进行正常的下行发送时在对应的波束、时频资源位置、发送周期及周期内的偏移量位置上不映射正常的下行物理信道。
如图13a所示,IAB节点2的MT通过内部交互,将参考信号资源指示信息传递给IAB节点2的DU。如图13b所示,IAB节点2的DU解析出所述的参考信号资源指示信息后,IAB节点2的DU在IAB节点2的MT发送用于干扰测量的参考信号的时频资源位置,将不映射任何正常的下行物理信道。
S1204、第二节点的第一功能实体根据第一节点发送的参考信号配置消息,在对应的时频资源及周期内发送参考信号。
所述参考信号可以包括如下一种或者几种:同步信号SSB,信道状态信息参考信号CSI-RS,解调参考信号DMRS,跟踪参考信号TRS,相位跟踪参考信号PTRS,探测参考信号SRS,或其他RS。
如图13b所示,IAB节点2的MT将在一个下行时隙的两个符号位置上发送SRS,并且采用下行定时来发送。
S1206、第一节点对第三节点的第一功能实体进行干扰测量配置,发送干扰测量配置消息。在所述的干扰测量配置消息中,将包括参考信号资源指示信息。所述的参考信号资源指示信息与S1100中第一节点发送的参考信号配置消息中的参考信号资源指示信息内容一致。
所述的干扰测量配置消息中,还包括参考信号类型指示信息。所述的参考信号类型指示信息用于向第三节点的第一功能实体指示当前配置的参考信号的类型。具体的,参考信号类型指示信息的实现方式可以是:
方式一:采用具体的信息字段reference-signal-type来指示,可以通过对参考信号资源指示信息的格式进行扩展,将reference-signal-type新增到参考信号资源指示信息的格式的预留字段中,也可以将reference-signal-type放置在干扰测量配置消息的预留字段中;
方式二:如果上述的干扰测量配置消息中的参考信号资源指示信息是采用的常规的参考信号资源指示信息格式,则已经显示了对应的参考信号类型,不需要额外指示,例如,如果参考信号资源指示为SRS-Resource,则显示了对应的参考信号类型为SRS,再例如,如果参考信号资源指示为CSI-RS-Resource,则显示了对应的参考信号类型为CSI-RS。
所述步骤S1106可以在步骤S1104发送用于干扰测量的参考信号之前进行,不限制于在步骤S1100之后。
如图13a所示,对于IAB节点1的MT,Donor节点会进行干扰测量的配置,发送干扰测量配置消息。在干扰测量配置消息中,将指示IAB节点1的MT要检测的参考信号资源,具体包括这些参考信号资源的标识,映射在哪些时频资源上,参考信号的发送周期及周期内的时隙偏移量,参考信号的发送功率等。干扰测量配置也同时指示了对应的参考信号的类型,用于IAB节点1的MT进行参考信号的检测。
S1208、第三节点的第一功能实体根据步骤S1106所述的干扰测量配置,检测到第二节点的第一功能实体发送的用于干扰测量的参考信号,进行干扰测量。
如图13a所示,IAB节点1的MT根据干扰测量配置,使用IAB节点1的MT的接收波束,在干扰测量配置中指定的参考信号资源上采用指示的参考信号类型对应的序列,对所述IAB节点2的MT发送的参考信号进行检测。
本申请提供上述这种干扰测量方法,使得受到干扰的节点能快速、准确进行干扰测量,进而极大地降低了交叉链路在传输信号带来的影响,提高了系统的传输性能。
实施例六:
本发明实施例还提供另一种实施例的方法流程示意图,如图14所示。
以图15的IAB的组网架构图为例进行举例说明,但是不限制于图15,可以应用到上面的各种组网架构图中。
图15中,IAB节点1通过DU在接收其下级节点或终端发送的信号,IAB节点2通过MT发送数据给Donor节点。这时IAB节点1的DU在接收上行信号时,受到IAB节点2的MT发送的上行信号的干扰,这里的干扰源是IAB节点2,受干扰节点是IAB节点1,所述干扰具体可以是交叉链路干扰CLI,所述CLI是IAB节点2的MT对IAB节点1的DU产生的干扰。
如图15所示,IAB节点1和IAB节点2在部分时隙上可能存在DU与MT之间的交叉链路干扰,因此需要完成IAB节点1的DU与IAB节点2的MT之间的交叉链路干扰的测量,具体干扰测量方法如下:
S1400、第一节点发送参考信号(reference signal,RS)配置消息,所述RS配置消息包括:第二节点的第二功能实体的参考信号资源指示信息,所述第二功能实体的参考信号资源指示信息包括:第二节点的第一功能实体的参考信号资源标识。其中,所述RS配置信息用于对所述第二节点的第二功能实体发送的参考信号进行配置,所述第二节点的第二功能实体发送的参考信号用于干扰测量,所述干扰为第二节点的第一功能实体对第三节点的第一功能实体产生的干扰。
所述第二节点为产生干扰的节点,所述第三节点为受干扰的节点;所述第二节点的第一功能实体的参考信号资源标识用于指示所述参考信号资源。
在如图15所示的IAB网络中,第一节点为Donor节点,第二节点为产生干扰的节点例如IAB节点2,所述第三节点为受干扰的节点,例如IAB节点1。无论第二节点还是第 三节点均可以包括第一功能实体和第二功能实体。其中,所述第一功能实体为MT,第二功能实体为DU。这里第一功能实体可以与第二功能实体进行集成为一个模块,也可以各自独立、分开为不同的模块。所述第一功能实体为MT,或者DU,所述第二功能实体为DU或者,MT。所述第一节点也可以为IAB node节点。
根据IAB节点2或者IAB节点1的配置或者能力,IAB节点2在同一时刻可以使用一个波束或者多个波束进行信号传输,IAB节点1在同一时刻也可以使用一个或者多个波束进行信号传输。所述波束可以通过参考信号资源标识进行指示。所述第二节点的第一功能实体的参考信号资源标识为IAB节点2的MT的参考信号资源标识,用于指示IAB节点2的MT进行参考信号发送时使用的一个或者多个参考信号资源,所述一个或者多个参考信号资源对应一个或者多个MT的发送波束。可选地,第二节点的第一功能实体的参考信号资源标识可以为配置IAB节点的参考信号的资源标识(identity,ID),例如:信道状态信息参考信号(Channel status information Reference Signal,CSI-RS)的资源标识(CSI-RS-ResourceId)或者探测参考信号(Sounding Reference Signal,SRS)的资源标识(SRS-ResourceId)。
其中,所述参考信号配置消息可以承载在无线资源控制(Radio Resource Control,RRC)协议消息中,或者,通过F1接口承载在基于F1-AP(F1-application protocol)协议的消息中,例如:下行无线资源控制转移消息(DL RRC TRANSFER message),所述F1接口为IAB节点2的分布单元(distributed unit,DU)与Donor节点的集中单元(central unit,CU)之间的F1接口,或者承载在DCI(Downlink Control Information)消息或MAC CE(Media Access Control control element)中。
所述参考信号配置消息还可以是由Donor节点通过RRC、DCI或MAC CE发送给IAB节点2的MT,再由IAB节点2的MT通过内部的信令交互通知IAB节点2的DU。
所述参考信号配置消息可以是周期性发送的,也可以是半静态发送的。
所述参考信号配置消息包括:一个或者多个参考信号资源指示信息,每个参考信号资源指示信息包含参考信号资源标识。
具体所述参考信号资源指示信息格式如下:
1、方式一:定义一种新的参考信号资源指示信息,具体指示信息的格式示例如下:
Figure PCTCN2019108123-appb-000007
其中,RS-Resource为参考信号资源指示信息;
RS-ResourceId为参考信号资源标识,所述参考信号资源标识可以理解为指示IAB节点2的DU使用该标识对应的IAB节点2的MT的波束发送所述参考信号。
可选地,所述参考信号资源指示信息还可以包括下面一种或者几种:
resource Mapping:用于指示干扰测量的参考信号映射的时频资源位置;
powercontrol:参考信号的功率控制。所述参考信号的功率控制指示了IAB节点2的 DU发送参考信号使用的发射功率。其中,所述参考信号的发射功率配置为IAB节点2的MT的发射功率。
periodicityAndOffset:指示了所述用于干扰测量对的参考信号的发送周期,和/或每个周期内的时隙偏移量。
2、方式二:所述参考信号资源指示信息采用统一的格式,例如采用现有的CSI-RS-Resource消息格式,通过对所述CSI-RS-Resource消息进行扩展。
具体如下:
如下所示的CSI-RS资源指示信息CSI-RS-Resource:
Figure PCTCN2019108123-appb-000008
其中,CSI-RS-Resource为参考信号资源指示信息;
CSI-RS-ResourceId为常规的用于CSI测量的参考信号资源标识,用于指示IAB节点2的DU采用DU的自身配置的波束发送用于CSI测量的参考信号;
SRS-ResourceId为参考信号资源标识,所述参考信号资源标识用于指示IAB节点2的DU使用该标识对应的IAB节点2的MT的波束发送所述参考信号。
resourceMapping:用于指示参考信号映射的时频资源位置;
powercontrol:参考信号的功率控制,指示了IAB节点2的DU发送参考信号使用的发射功率;
periodicityAndOffset:指示了所述用于干扰测量对的参考信号的发送周期,和/或每个周期内的时隙偏移量。
当Donor节点发送参考信号配置消息给IAB节点2的DU时,如果所述IAB节点2的DU识别出其中包含的SRS-ResourceId,可知当前的参考信号配置是用于干扰测量的,具体为交叉链路干扰测量。
powerControl字段指示了发送参考信号使用的功率,如果当前指示的是用于信道状态信息CSI测量的参考信号资源,则该字段将设置为CSI-RS的发送功率信息;当指示的是交叉链路干扰CLI测量参考信号资源时,该字段将设置为SRS的发送功率信息。
具体步骤S1400以图15为例,可以理解为:
当IAB节点1的DU受到IAB节点2的MT的干扰时,Donor节点生成RS配置消息,所述RS配置消息用于对IAB节点2的DU发送的用于干扰测量的参考信号进行配置,所述干扰测量的参考信号用于IAB节点1的MT对IAB节点2的MT带来的干扰进行测量,其中,所述RS配置消息包括:IAB节点2的DU的参考信号资源标识例如:{3,4,5},所述参考信号资源标识对应于IAB节点2的MT的波束。
S1402、第二节点的第二功能实体根据接收的RS配置消息,对用于干扰测量的参考信号进行配置。
如图15所示,所述IAB节点2的DU根据参考信号资源标识,选择对应的波束发送参考信号。
对于IAB节点2的MT,参考信号资源标识与传输信号具体使用的波束的对应关系是知道的,而在IAB节点2内部,DU可以与MT进行交互,从而DU也可以识别出SRI{3,4,5}对应的MT的波束具体为哪些,例如下图15阴影标识的3个物理波束。
例如:所述IAB节点2的MT使用参考信号资源标识{3,4,5}对应的波束集合{a,b,c}进行信号传输,当IAB节点1的MT对IAB节点2的MT进行干扰测量时,IAB节点2的DU与IAB节点2的MT进行交互,获得与所述参考信号资源标识{3,4,5}对应的IAB节点2的MT的波束集合{a,b,c},IAB节点2的DU采用束集合{a,b,c}发送用于干扰测量的参考信号。
需要说明的是,所述IAB节点2的MT与DU的交互可以是硬件模块之间的交互,也可以是所述MT和DU进行集成时,通过软件实现上述交互。进一步地,所述RS配置消息中的参考信号资源指示信息还包括:下面一种或者多种组合:
IAB节点2的DU的参考信号映射的时频资源,IAB节点2的DU的参考信号发送功率,或者,IAB节点2的DU的参考信号的发送周期。
由于IAB节点2的DU是根据IAB节点2的MT的信息(发送波束及发送功率)对用于干扰测量的参考信号进行配置,通过IAB节点2的DU代替IAB节点2的MT发送所述参考信号,使得IAB节点1能够准确地检测到干扰测量的参考信号,从而对干扰进行测量,进而对干扰进行消除,极大地提升了IAB网络的性能。
S1404、第一节点发送干扰测量配置消息给第三节点的第一功能实体,所述干扰测量配置消息包括:所述第二节点的第二功能实体的参考信号资源指示信息和/或干扰测量类型指示信息,其中所述干扰测量类型指示信息用于指示第三节点的第一功能实体采用第三节点的第二功能实体的接收波束进行干扰测量。
所述第二节点的第二功能实体的参考信号资源指示信息的格式以及内容请参见步骤S800的具体描述。其中,干扰测量类型指示信息例如MTtoDU-Meas-Type,可以通过对上述S800中的所述第二节点的第二功能实体的参考信号资源指示信息的格式的扩展,将所述MTtoDU-Meas-Type新增到上述参考信号资源指示信息的格式的预留字段中,也可以将干扰测量类型指示信息例如MTtoDU-Meas-Type放置在RS配置消息的预留字段中。
第一节点向第三节点的第一功能实体发送的干扰测量配置消息可以基于RRC(Radio Resource Control,无线资源控制)协议,由第一节点向第三节点的第一功能实体发送,承载在RRC协议的特定消息中。也可以通过MAC CE来指示。
如图15所示,上述描述可以理解为:Donor节点向IAB节点1的MT发送的用于干扰测量的配置可以基于RRC(Radio Resource Control,无线资源控制)协议由Donor向IAB节点1的MT发送,承载在RRC协议的特定消息中。也可以通过MAC CE来指示。
S1406、第二节点的第二功能实体发送用于干扰测量的参考信号。
如图15所示,IAB节点2的DU采用RS配置消息中的参考信号资源标识对应的一个或者多个波束发送干扰测量的参考信号,便于IAB节点1的MT进行干扰测量。
进一步地,IAB节点2的DU还可以在指定的时频资源上发送用于干扰测量的参考信 号,如果需要进行周期性地测量,IAB节点2的DU还会在指定的发送周期内,周期性发送该参考信号,以及使用指定的发送功率发送上述参考信号。
所述参考信号可以包括如下一种或者几种:同步信号SSB,信道状态信息参考信号CSI-RS,解调参考信号DMRS,跟踪参考信号TRS,相位跟踪参考信号PTRS,探测参考信号SRS,或其他RS。
S1408、第三节点的第一功能实体根据所述干扰测量配置中的干扰测量类型指示,检测第二节点的第二功能实体发送的用于干扰测量的参考信号,进行干扰测量。
如图15所示,IAB节点1的MT根据干扰测量类型指示,使用IAB节点1的DU的接收波束检测所述IAB节点2的DU发送的参考信号,进行干扰测量。
进一步地,IAB节点1的MT还可以根据在干扰配置中指示的时频资源以及周期内对IAB节点2的DU发送的用于干扰测量的参考信号进行检测。
实施例七:
本发明实施例还提供另一种实施例的方法流程图,如图16所示。
以图17的IAB的组网架构图为例进行举例说明,但是不限制于图17,可以应用到上面的各种组网架构图中。
图17中,IAB节点1通过DU在接收其下级节点或终端发送的信号,IAB节点2通过MT发送数据给Donor节点。这时IAB节点1的DU在接收上行信号时,受到IAB节点2的MT发送的上行信号的干扰,这里的干扰源是IAB节点2,受干扰节点是IAB节点1,所述干扰具体可以是交叉链路干扰CLI,所述CLI是IAB节点2的MT对IAB节点1的DU产生的干扰。
如图17所示,IAB节点1和IAB节点2在部分时隙上可能存在DU与MT之间的交叉链路干扰,因此需要完成IAB节点1的DU与IAB节点2的MT之间的交叉链路干扰的测量,具体干扰测量方法如下:
S1600、第一节点发送干扰测量指示消息,所述干扰测量指示消息用于指示第二节点的第二功能实体上报用于干扰测量的参考信号配置消息。
如图17,Donor节点向IAB节点2的DU发送干扰测量指示消息,指示IAB节点2的DU生成用于干扰测量的参考信号配置信息,并进行上报。
其中,所述干扰测量指示消息可以承载在无线资源控制(Radio Resource Control,RRC)协议消息中,或者,通过F1接口承载在基于F1-AP(F1-application protocol)协议的消息中,例如:下行无线资源控制转移消息(DL RRC TRANSFER message),所述F1接口为IAB节点2的分布单元(distributed unit,DU)与Donor节点的集中单元(central unit,CU)之间的F1接口。
所述干扰测量指示消息还可以是由Donor节点通过RRC、DCI或MAC CE发送给IAB节点2的MT,再由IAB节点2的MT通过内部的信令交互通知IAB节点2的DU,使得IAB节点2的DU生成用于干扰测量的参考信号配置信息,并进行上报。
干扰测量指示消息的具体实现方式有如下几种:
方式一:通过1个比特进行指示,触发第二节点的第二功能实体生成用于干扰测量的参考信号配置信息,并进行上报,例如:用CLI-Meas-Indicator:0或者1来表示。
方式二:所述干扰测量指示消息包括下面一种或者几种组合:第二节点的第二功能实 体发送的用于干扰测量的参考信号的发送时隙或者发送周期,通过上述消息,触发第二节点的第二功能实体生成用于干扰测量的参考信号配置信息,并进行上报。例如,通过下面的指示消息的消息格式实现:
CLI-Meas-Indicator::=SEQUENCE{
sfnForCliMeas OPTIONAL
periodicityAndOffset
...
sfnForCliMeas指示了所述用于干扰测量对的参考信号的发送时隙,periodicityAndOffset指示了所述用于干扰测量对的参考信号的发送周期,和/或每个周期内的时隙偏移量。
方式三:方式一与方式二的组合进行实现。具体为:通过方式一触发第二节点的第二功能实体生成用于干扰测量的参考信号配置信息,然后再通过方式二指示第二节点的第二功能实体发送的用于干扰测量的参考信号的发送时隙或者发送周期。
S1602、第二节点的第二功能实体上报用于干扰测量的参考信号配置消息,所述参考信号配置消息包括:第二节点的第二功能实体的参考信号资源指示信息,所述第二功能实体的参考信号资源指示信息包括:第二节点的第二功能实体的参考信号资源标识。
具体为,第二节点的第二功能实体生成所述第二功能实体的参考信号资源指示信息,所述第二功能实体的参考信号资源指示信息包括:第二节点的第二功能实体的参考信号资源标识。
上述第二节点的第二功能实体的参考信号资源标识是第二节点的第二功能实体根据所述第二节点的第一功能实体的发送波束获得的。
进一步地,当第二节点的第二功能实体自身配置所述参考信号的发送功率时,将所述第二节点的第一功能实体的发送功率作为所述第二节点的第二功能实体的参考信号的发送功率,同时自身配置所述的参考信号使用的时频资源以及所述参考信号的发送周期。所述第二节点的第二功能实体将所述发送功率,所述时频资源以及所述发送周期包含在所述参考信号资源指示信息中,通过用于干扰测量的参考信号配置消息上报给第一节点。
如图17所示,具体的参考信号资源指示信息格式如下:
定义一种新的参考信号资源指示信息,具体指示信息的格式示例如下:
Figure PCTCN2019108123-appb-000009
其中,RS-Resource为参考信号资源指示信息;
RS-ResourceId为参考信号资源标识。
可选地,所述参考信号资源指示信息还可以包括下面一种或者几种:
resourceMapping:参考信号映射的时频资源位置;
powercontrol:所述参考信号的功率控制,指示了IAB节点2的DU发送参考信号使 用的发射功率。其中,所述参考信号的发射功率配置为IAB节点2的MT的发射功率。
periodicityAndOffset:指示了所述用于干扰测量对的参考信号的发送周期,和/或每个周期内的时隙偏移量。
当前面涉及的所述发送功率以及所述时频资源是由第一节点配置时,可以参考图4a,4b以及图5所提供的参考信号配置消息下发给第二节点的第二功能实体,也可以是通过其它消息将所述发送功率以及所述时频资源发送给第二节点的第二功能实体。
具体的:所述第二节点的第一功能实体的发送波束以及第二节点的第一功能实体的发送功率的获得过程如下:
如图17所示,IAB节点2的DU通过与自身的MT进行信息交互,获得自身的MT的发送波速,以及发送功率,IAB节点2的DU根据所述获得的MT的发送波速生成参考信号资源标识。
这里的发送波束信息可能是MT最近一次发送SRS所使用的波束或波束集合,也可能是IAB节点2的MT最近一次收到的Donor配置的SRI所对应的波束或波束集合,并且这些波束各自都对应了一个SRI。
IAB节点2的DU将使用IAB节点2的MT的发送波束以及发送功率发送用于干扰测量的参考信号。
IAB节点2的DU生成的用于干扰测量的参考信号配置消息中包括一个或多个参考信号资源指示信息,每个参考信号资源指示信息对应一个发送波束。例如,如果MT通知给DU的波束个数有16个,则DU将产生16个参考资源指示信息,包含在参考信号配置消息。
另外,所述IAB节点2的DU生成并发送给Donor节点的用于干扰测量的参考信号配置消息可以承载在无线资源控制(Radio Resource Control,RRC)协议消息中,或者,通过F1接口承载在基于F1-AP(F1-application protocol)协议的消息中,所述F1接口为IAB节点2的分布单元(distributed unit,DU)与Donor节点的集中单元(central unit,CU)之间的F1接口。
S1604、第一节点发送干扰测量配置消息给第三节点的第一功能实体,所述干扰测量配置消息包括:所述第二节点的第二功能实体的参考信号资源指示信息和/或干扰测量类型指示信息,其中所述干扰测量类型指示信息用于指示第三节点的第一功能实体采用第三节点的第二功能实体的接收波束进行干扰测量。
所述第二节点的第二功能实体的参考信号资源指示信息的格式以及内容请参见步骤S800的具体描述。其中,干扰测量类型指示信息例如MTtoDU-Meas-Type,可以通过对上述S800中的所述第二节点的第二功能实体的参考信号资源指示信息的格式的扩展,将所述MTtoDU-Meas-Type新增到上述参考信号资源指示信息的格式的预留字段中,也可以将干扰测量类型指示信息例如MTtoDU-Meas-Type放置在RS配置消息的预留字段中。
第一节点向第三节点的第一功能实体发送的干扰测量配置消息可以基于RRC(Radio Resource Control,无线资源控制)协议,由第一节点向第三节点的第一功能实体发送,承载在RRC协议的特定消息中。也可以通过MAC CE来指示。
如图17所示,上述描述可以理解为:Donor节点向IAB节点1的MT发送的用于干扰测量的配置可以基于RRC(Radio Resource Control,无线资源控制)协议由Donor向IAB节 点1的MT发送,承载在RRC协议的特定消息中。也可以通过MAC CE来指示。
S1606、第二节点的第二功能实体根据用于干扰测量的参考信号配置消息,发送用于干扰测量的参考信号。
如图17所示,IAB节点2的DU获得自身的MT的发送波束,在这些波束上发送所述参考信号。
进一步地,IAB节点2的DU在自身配置或者指定的时频资源上发送用于干扰测量的参考信号,如果需要进行周期性地测量,还会在自身配置或者指定的发送周期内,周期性发送该参考信号,以及使用指定的或者自身配置的发送功率发送上述参考信号。
所述参考信号可以包括如下一种或者几种:同步信号SSB,信道状态信息参考信号CSI-RS,解调参考信号DMRS,跟踪参考信号TRS,相位跟踪参考信号PTRS,探测参考信号SRS,或其他RS。
S1608、第三节点的第一功能实体根据所述干扰测量配置中的干扰测量类型指示,检测第二节点的第二功能实体发送的用于干扰测量的参考信号,进行干扰测量。
如图17所示,IAB节点1的MT根据干扰测量类型指示,使用IAB节点1的DU的接收波束检测所述IAB节点2的DU发送的参考信号,进行干扰测量。
进一步地,IAB节点1的MT还可以根据在干扰配置中指示的时频资源以及周期内对IAB节点2的DU发送的用于干扰测量的参考信号进行检测。
上述结合图1至图16详细描述了根据本申请实施例的干扰测量的方法。下面将结合图描述根据本申请实施例的干扰测量装置。应理解,方法实施例所描述的技术特征同样适用于以下装置实施例。
图18示出了根据本申请实施例的干扰测量的装置的示意性框图。所述装置用于执行前文方法实施例一的方法。可选地,所述装置的具体形态可以是中继节点或中继节点中的芯片,或者,可以是终端设备或终端设备中的芯片。本申请实施例对此不作限定。
以图4a,4b-图5为例,该干扰测量装置为第二节点。
所述装置包括:
收发器1802和处理器1804。
收发器1802用于接收RS配置消息,所述RS配置消息包括:第二节点的第二功能实体的参考信号资源指示信息,所述第二功能实体的参考信号资源指示信息包括:第二节点的第一功能实体的参考信号资源标识;以及根据所述处理器的指示,使用确定的一个或者多个发送波束发送用于干扰测量的RS。
处理器1804,用于根据所述RS配置消息中的第二节点的第一功能实体的参考信号资源标识,确定所述第二节点的第一功能实体的参考信号资源标识对应的一个或者多个发送波束,指示所述收发器使用所述确定的发送波束发送用于干扰测量的RS。
干扰测量装置用于执行图4a,4b以及图5所示的干扰测量方法,相关技术特征已经在上文结合图4a,4b以及图5所示的方法进行了详细的描述,因此此处不再赘述。需要说明的是,在干扰测量装置用于执行图4a,4b以及图5所示的干扰测量方法中,上述针对实施例一中的各个节点例如第一节点,第二节点以及第三节点,这些节点中的每个节点都包括 收发器和处理器,所述各节点在方法实施例中涉及的发送或者接收的动作均可以通过收发器执行,其它处理、确定等动作通过处理器执行。
进一步地,同上面,针对实施例二涉及的图6以及图7的检测方法,本发明实施例也用于上述的装置结构,所述装置包括:收发器和处理器,其中涉及各个节点的收发步骤均通过各个节点的收发器执行,涉及具体的处理,确定,运算,判断等动作均通过各个节点的处理器执行,这里不再赘述。
本申请提供一种干扰测量装置,通过产生干扰的节点的第二功能实体通使用所述产生干扰的节点的第一功能实体的参考信号资源标识对应的一个或者多个波束发送用于干扰测量的参考信号,使得受到干扰的节点能快速、准确进行干扰测量,进而极大地降低了交叉链路在传输信号带来的影响,提高了系统的传输性能。
图19是依照本发明一实施例的另一干扰测量装置的逻辑结构示意图。在具体实现过程中,该功率干扰测量装置可以是网络设备可以是中继设备,所述中继设备可以是基站。所述干扰测量装置包括收发器1902和处理器1904。以图8a,8b以及图9为例,该干扰测量装置为第三节点。
收发器1902,用于接收干扰测量配置消息,所述干扰测量配置消息包括:干扰测量类型指示信息,所述干扰测量类型指示信息用于指示第三节点的第一功能实体采用第三节点的第二功能实体的接收波束进行干扰测量;根据所述处理器的指示,通过所述确定的接收波束接收用于干扰测量的参考信号。
处理器1904,用于根据所述干扰测量配置消息中的干扰测量类型指示,确定用于检测所述参考信号使用的接收波束为第三节点的第二功能实体的接收波束,指示所述收发器通过所述确定的接收波束接收用于干扰测量的参考信号。
进一步地,所述干扰测量配置消息还包括:所述第二节点的第二功能实体的参考信号资源指示信息,所述第二节点的第二功能实体的参考信号资源指示信息包括下面一种或者多种组合:
所述第二节点的第二功能实体的参考信号资源标识、所述第二节点的第二功能实体的用于所述干扰测量的RS发送功率,所述第二节点的第二功能实体的用于所述干扰测量的RS映射的时频资源位置,或者所述第二节点的第二功能实体的用于所述干扰测量的RS发送周期。
进一步地,所述处理器还用于,根据所述干扰测量配置消息中的所述参考信号资源指示信息,确定所述干扰测量配置消息中中指示的时频资源,指示所述收发器在所述确定的时频资源接收用于干扰测量的参考信号。
上述干扰测量装置用于执行图8a,8b以及图9所示的干扰测量方法,相关技术特征已经在上文结合图8a,8b以及图9所示的方法进行了详细的描述,因此此处不再赘述。需要说明的是,在干扰测量装置用于执行8a,8b以及图9所示的干扰测量方法中,上述针对实施例一中的各个节点例如第一节点,第二节点以及第三节点,这些节点中的每个节点都包括收发器和处理器,所述各节点在方法实施例中涉及的发送或者接收的动作均可以通过收发器执行,其它处理、确定等动作通过处理器执行。
进一步地,同上面,针对实施例四涉及的图10以及图11的检测方法,本发明实施例也用于上述的装置结构,所述装置包括:收发器和处理器,其中涉及各个节点的收发步骤 均通过各个节点的收发器执行,涉及具体的处理,确定,运算,判断等动作均通过各个节点的处理器执行,这里不再赘述。
本申请提供上述这种干扰测量装置,使得受到干扰的节点能快速、准确进行干扰测量,进而极大地降低了交叉链路在传输信号带来的影响,提高了系统的传输性能。
本发明一实施例五-实施例七的另一干扰测量装置的逻辑结构示意图可以参照上述的图18以及图19,这里就不再通过图形进行示意。在具体实现过程中,该干扰测量装置可以是网络设备可以是中继设备,所述中继设备可以是基站。所述干扰测量装置包括收发器和处理器。
进一步地,同上面,针对实施例五-实施例七涉及图12-图17对应的检测方法也用于上述的装置结构,其中涉及各个节点的收发步骤均通过各个节点的收发器执行,涉及具体的处理,确定,运算,判断等动作均通过各个节点的处理器执行,这里不再赘述。
图20是依照本发明实施例一到实施例七的中继节点的硬件结构示意图。如图16所示,网络设备包括处理器2002、收发器2004、多根天线2006,存储器2008、I/O(输入/输出,Input/Output)接口2010和总线2012。收发器2004进一步包括发射器20042和接收器20044,存储器2008进一步用于存储指令20082和数据20084。此外,处理器2002、收发器2004、存储器2008和I/O接口2010通过总线2012彼此通信连接,多根天线2006与收发器2004相连。
处理器2002可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,处理器2002还可以是多个处理器的组合。特别的,在本发明实施例提供的技术方案中,处理器2002可以用于执行,例如,上述图18、图19中处理单元所执行的操作以及上述实施例一到实施例七方法实施例中所执行的操作。处理器2002可以是专门设计用于执行上述步骤和/或操作的处理器,也可以是通过读取并执行存储器2008中存储的指令20082来执行上述步骤和/或操作的处理器,处理器2002在执行上述步骤和/或操作的过程中可能需要用到数据20084。
收发器2004包括发射器20042和接收器20044,其中,发射器20042用于通过多根天线2006之中的至少一根天线发送信号。接收器20044用于通过多根天线2006之中的至少一根天线接收信号。特别的,在本发明实施例提供的技术方案中,发射器20042具体可以用于通过多根天线2006之中的至少一根天线执行,例如,上述图18、图19中处理单元所执行的操作以及上述实施例一到实施例五方法实施例中所执行的操作中收发单元所执行的操作。
存储器2008可以是各种类型的存储介质,例如随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、非易失性RAM(Non-Volatile RAM,NVRAM)、可编程ROM(Programmable ROM,PROM)、可擦除PROM(Erasable PROM,EPROM)、电可擦除PROM(Electrically Erasable PROM,EEPROM)、闪存、光存储器和寄存器等。存储器2008具体用于存储指令20082和数据20084,处理器2002可以通过读取并执行存储器2008中存储的指令20082,来执行上文所述的步骤和/或操作,在执行上述操作和/或步骤的过程中可能需要用到数据20084。
I/O接口2010用于接收来自外围设备的指令和/或数据,以及向外围设备输出指令和/或数据。
应注意,在具体实现过程中,中继节点还可以包括其他硬件器件,本文不再一一列举。
上述节点设备的硬件结构图可以为上述图18、图19中处理单元所执行的操作以及上述实施例一到实施例五方法实施例中所执行的操作的网络设备的硬件结构图。
本发明实施例提供的一种干扰测量装置,还可以用于执行上述实施例一到实施例七任意一项所述的方法。
本发明实施例还提供的一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述实施例一到实施例七任意一项所述的方法。
本发明实施例还提供的一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述实施例一到实施例七任意一项所述的方法。
本发明实施例还提供一种芯片,包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得所述处理器执行上述实施例一到实施例七任意一项所述的方法。
本发明实施例提供的上述各种方法以及装置的方案,可以通过处理器+收发器的方式来实现,其中,处理器用于执行各种处理操作,例如但不限于生成、确定、判断、查找、提取、获取、读取、接收输入的待处理数据和输出处理后的数据等操作,收发器用于执行发射和接收等操作。在具体实现过程中,处理器可以通过以下方式来实现:
第一种方式,处理器为专用处理器,在这种情况下,该处理器可以进一步包括接口电路和处理电路,其中接口电路用于接收需要由处理电路处理的数据,以及输出处理电路的处理结果,处理电路用于执行上述各种处理操作。
第二种方式,处理器采用通用处理器+存储器的架构来实现,其中,通用处理器用于执行存储器中存储的处理指令,这些处理指令用于指示该通用处理器执行上述各种处理操作。不难理解,通用处理器所执行的处理取决于存储器内存储的处理指令,通过修改存储器内的处理指令,可以控制通用处理器输出不同的处理结果。
进一步的,在上述第二种方式中,该通用处理器和存储器可以集成在同一块芯片上,例如该通用处理器和存储器均可以集成在处理芯片上。此外,该通用处理器和存储器也可以设置在不同的芯片上,例如通用处理器设置在处理芯片上,存储器设置在存储芯片上。
本发明实施例提供的技术方案,还可以通过计算机可读存储介质的方式来实现,其中该计算机可读存储介质中存储有实现本发明实施例技术方案的处理指令,以供通用处理设备读取,来完成本发明实施例提供的技术方案。其中,上述通用处理设备应理解为包含必要的处理器和收发器等硬件器件的处理设备,这些硬件器件的操作取决于上述计算机可读存储介质中存储的处理指令。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质 中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
综上所述,以上仅为本发明的实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (19)

  1. 一种干扰测量方法,应用在集成接入和回传IAB网络,所述IAB网络至少包括:第一节点和第二节点,所述第二节点包括:第一功能实体和第二功能实体,其特征在于,所述方法包括:
    所述第二节点的第二功能实体接收参考信号配置消息,所述参考信号配置消息包括:第二节点的第二功能实体的参考信号资源指示信息,所述第二功能实体的参考信号资源指示信息包括:第二节点的第一功能实体的参考信号资源标识;
    第二节点的第二功能实体根据接收到的参考信号配置消息中的第二节点的第一功能实体的参考信号资源标识,发送用于干扰测量的参考信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第二节点的第二功能实体根据接收到的参考信号配置消息中的第二节点的第一功能实体的参考信号资源标识,发送用于干扰测量的参考信号具体包括:
    所述第二节点的第二功能实体根据接收到的参考信号配置消息中的第二节点的第一功能实体的参考信号资源标识,确定所述第二节点的第一功能实体的参考信号资源标识对应的一个或者多个波束;
    所述第二节点的第二功能实体使用所述确定的一个或者多个波束发送所述用于干扰测量的参考信号。
  3. 根据权利要求1所述的方法,其特征在于,所述参考信号资源指示信息还包括下面一种或多种的任意组合:
    用于所述干扰测量的参考信号映射的时频资源位置、用于干扰测量的参考信号的功率控制、用于干扰测量的参考信号发送周期。
  4. 根据权利要求3所述的方法,其特征在于,所述用于干扰测量的参考信号的功率控制为第二节点的第一功能实体的发送功率。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一节点生成所述参考信号配置消息。
  6. 一种干扰测量方法,应用在集成接入和回传IAB网络,所述IAB网络至少包括:第一节点和第二节点以及第三节点,其中,第二节点以及第三节点均包括:第一功能实体和第二功能实体,其特征在于,所述方法包括:
    所述第三节点的第一功能实体接收干扰测量配置消息,所述干扰测量配置消息包括:干扰测量类型指示信息,所述干扰测量类型指示信息用于指示第三节点的第一功能实体使用第三节点的第二功能实体的接收波束进行干扰测量;
    所述第三节点的第一功能实体根据所述干扰测量配置中的干扰测量类型指示,确定用于检测所述参考信号使用的接收波束为第三节点的第二功能实体的接收波束;
    所述第三节点的第一功能实体通过所述确定的接收波束接收用于干扰测量的参考信号。
  7. 根据权利要求6所述的方法,其特征在于,所述干扰测量配置消息还包括:所述第二节点的第二功能实体的参考信号资源指示信息,所述第二节点的第二功能实体的参考 信号资源指示信息包括下面一种或者多种组合:
    所述第二节点的第二功能实体的参考信号资源标识、所述第二节点的第二功能实体的用于所述干扰测量的参考信号发送功率,所述第二节点的第二功能实体的用于所述干扰测量的RS映射的时频资源位置,或者所述第二节点的第二功能实体的用于所述干扰测量的RS发送周期。
  8. 根据权利要求6或者7所述的方法,其特征在于,所述方法还包括:
    所述第一节点生成干扰测量配置消息。
  9. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述第一节点发送参考信号配置消息给第二节点的第二功能实体,所述参考信号配置消息包括:所述第二节点的第二功能实体的参考信号资源指示信息。
  10. 一种干扰测量装置,其特征在于,包括:
    收发器,用于接收参考信号配置消息,所述参考信号配置消息包括:第二节点的第二功能实体的参考信号资源指示信息,所述第二功能实体的参考信号资源指示信息包括:第二节点的第一功能实体的参考信号资源标识;以及根据所述处理器的指示,使用确定的一个或者多个发送波束发送用于干扰测量的参考信号;
    处理器,用于根据所述参考信号配置消息中的第二节点的第一功能实体的参考信号资源标识,确定所述第二节点的第一功能实体的参考信号资源标识对应的一个或者多个发送波束,指示所述收发器使用所述确定的发送波束发送用于干扰测量的参考信号。
  11. 根据权利要求10所述的装置,其特征在于,所述参考信号资源指示信息还包括下面一种或多种的任意组合:
    用于所述干扰测量的参考信号映射的时频资源位置、用于干扰测量的参考信号的功率控制、用于干扰测量的参考信号发送周期。
  12. 根据权利要求10或者11所述的装置,其特征在于,所述用于干扰测量的参考信号RS的功率控制被配置为第二节点的第一功能实体的发送功率。
  13. 一种干扰测量装置,其特征在于,包括:
    收发器,用于接收干扰测量配置消息,所述干扰测量配置消息包括:干扰测量类型指示信息,所述干扰测量类型指示信息用于指示第三节点的第一功能实体采用第三节点的第二功能实体的接收波束进行干扰测量;根据所述处理器的指示,通过所述确定的接收波束接收用于干扰测量的参考信号;
    处理器,用于根据所述干扰测量配置消息中的干扰测量类型指示,确定用于检测所述参考信号使用的接收波束为第三节点的第二功能实体的接收波束,指示所述收发器通过所述确定的接收波束接收用于干扰测量的参考信号。
  14. 根据权利要求13所述的装置,其特征在于,所述干扰测量配置消息还包括:所述第二节点的第二功能实体的参考信号资源指示信息,所述第二节点的第二功能实体的参考信号资源指示信息包括下面一种或者多种组合:
    所述第二节点的第二功能实体的参考信号资源标识、所述第二节点的第二功能实体的用于所述干扰测量的参考信号发送功率,所述第二节点的第二功能实体的用于所述干扰测量的RS映射的时频资源位置,或者所述第二节点的第二功能实体的用于所述干扰测量的RS发送周期。
  15. 根据权利要求14所述的装置,其特征在于,所述处理器还用于,根据所述干扰测量配置消息中的所述参考信号资源指示信息,确定所述干扰测量配置消息中中指示的时频资源,指示所述收发器在所述确定的时频资源接收用于干扰测量的参考信号。
  16. 一种干扰测量装置,其特征在于,用于执行权利要求1-5或者用于执行权利要求6-9任意一项所述的方法。
  17. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-5或者当其在计算机上运行时,使得计算机执行如权利要求6-9中任一所述的方法。
  18. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求1-5中或者使得计算机执行如权利要求6-9任一所述的方法。
  19. 一种芯片,其特征在于,包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得所述处理器执行如权利要求1-5或者使得所述处理器执行如权利要求6-9中任一所述的方法。
PCT/CN2019/108123 2018-09-28 2019-09-26 一种干扰测量方法和装置 WO2020063736A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021517472A JP2022501953A (ja) 2018-09-28 2019-09-26 干渉測定方法及び機器
KR1020217012134A KR20210063394A (ko) 2018-09-28 2019-09-26 간섭 측정 방법 및 장치
EP19865018.6A EP3849230B1 (en) 2018-09-28 2019-09-26 Interference measurement method and apparatus
US17/213,999 US20210219155A1 (en) 2018-09-28 2021-03-26 Interference Measurement Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811143470.8 2018-09-28
CN201811143470.8A CN110972156B (zh) 2018-09-28 2018-09-28 一种干扰测量方法、装置、芯片及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/213,999 Continuation US20210219155A1 (en) 2018-09-28 2021-03-26 Interference Measurement Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2020063736A1 true WO2020063736A1 (zh) 2020-04-02

Family

ID=69950004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108123 WO2020063736A1 (zh) 2018-09-28 2019-09-26 一种干扰测量方法和装置

Country Status (6)

Country Link
US (1) US20210219155A1 (zh)
EP (1) EP3849230B1 (zh)
JP (1) JP2022501953A (zh)
KR (1) KR20210063394A (zh)
CN (1) CN110972156B (zh)
WO (1) WO2020063736A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022061343A3 (en) * 2020-09-15 2022-04-21 Qualcomm Incorporated Inter-distributed unit (inter-du) crosslink interference (cli) measurement and reporting
WO2022084890A1 (en) * 2020-10-20 2022-04-28 Lenovo (Singapore) Pte. Ltd. Transmissions to not cause interference

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11411665B2 (en) * 2019-01-11 2022-08-09 Centre Of Excellence In Wireless Technology Method and system for enabling of cross-link interference measurement using CLI-RS resource in wireless network
US12022423B2 (en) * 2019-10-18 2024-06-25 Qualcomm Incorporated Integrated access backhaul (IAB) node positioning
WO2021203282A1 (en) * 2020-04-08 2021-10-14 Qualcomm Incorporated Slot format for intra-frequency cross link interference measurement
CN113645018B (zh) * 2020-05-11 2022-09-13 维沃移动通信有限公司 信道质量指示上报方法和自回传节点
US11824817B2 (en) * 2020-05-13 2023-11-21 Qualcomm Incorporated Cross-link interference signaling for integrated access and backhaul
WO2021248397A1 (en) * 2020-06-11 2021-12-16 Qualcomm Incorporated Cross-link interference measurement over multiple beams
CN113973361B (zh) * 2020-07-24 2024-04-26 维沃移动通信有限公司 功率分配、获取方法、装置及节点设备
WO2022036493A1 (en) * 2020-08-17 2022-02-24 Qualcomm Incorporated Techniques for cross-link interference measurement across radio access technologies
CN114124167A (zh) * 2020-08-31 2022-03-01 华为技术有限公司 建立回传网络和通信的方法及通信装置
US11800388B2 (en) * 2020-09-15 2023-10-24 Qualcomm Incorporated Inter distributed unit (inter-DU) crosslink interference (CLI) measurement and reporting
KR20220132300A (ko) * 2021-03-23 2022-09-30 삼성전자주식회사 무선 통신 시스템에서 간섭 측정 방법 및 장치
US11689953B2 (en) * 2021-05-18 2023-06-27 Qualcomm Incorporated Self interference and cross link interference management of bidirectional smart repeaters
CN113473494B (zh) * 2021-05-24 2024-01-02 北京邮电大学 管理交叉链路干扰的方法
CN115701731A (zh) * 2021-08-02 2023-02-10 维沃移动通信有限公司 干扰处理方法、相关设备及可读存储介质
US20230216648A1 (en) * 2022-01-05 2023-07-06 Qualcomm Incorporated Sub-band based cross-link interference report

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181154A1 (en) * 2013-05-09 2014-11-13 Nokia Siemens Networks Oy Measurements in a wireless system
CN108023701A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 一种信息传输方法、装置和系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10979132B2 (en) * 2018-08-10 2021-04-13 Qualcomm Incorporated Organization of inter-relay discovery reference signals
US11019627B2 (en) * 2018-09-28 2021-05-25 At&T Intellectual Property I, L.P. Facilitation of signal alignment for 5G or other next generation network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181154A1 (en) * 2013-05-09 2014-11-13 Nokia Siemens Networks Oy Measurements in a wireless system
CN108023701A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 一种信息传输方法、装置和系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Consideration on cross-link interference in IAB", 3GPP TSG RAN WGI MEETING #94 R1-1808088, vol. RAN WG1, 10 August 2018 (2018-08-10), XP051515490 *
HUAWEI ET AL.: "On CLI measurement and power control for cross-link interference mitigation", 3GPP TSG RAN WGI MEETING #88BIS R1-1704255, vol. RAN WG1, 27 March 2017 (2017-03-27), XP051251064 *
INTEL CORPORATION: "On CLI PHY layer enhancements for NR IAB", 3GPP TSG RAN WGI #94 R1-1808691, vol. RAN WG1, 11 August 2018 (2018-08-11), XP051516066 *
See also references of EP3849230A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022061343A3 (en) * 2020-09-15 2022-04-21 Qualcomm Incorporated Inter-distributed unit (inter-du) crosslink interference (cli) measurement and reporting
WO2022084890A1 (en) * 2020-10-20 2022-04-28 Lenovo (Singapore) Pte. Ltd. Transmissions to not cause interference

Also Published As

Publication number Publication date
EP3849230B1 (en) 2024-04-10
JP2022501953A (ja) 2022-01-06
EP3849230A1 (en) 2021-07-14
EP3849230A4 (en) 2021-11-24
US20210219155A1 (en) 2021-07-15
KR20210063394A (ko) 2021-06-01
CN110972156A (zh) 2020-04-07
CN110972156B (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
WO2020063736A1 (zh) 一种干扰测量方法和装置
US20200336194A1 (en) Joint beam reporting for wireless networks
WO2020143692A1 (zh) 通信方法和通信装置
US11949553B2 (en) Transmission parameter configuration method and apparatus
US11463194B2 (en) Information determination method, terminal apparatus, and network apparatus
WO2021163938A1 (zh) 天线切换方法、终端设备和通信设备
WO2020211096A1 (zh) 无线通信方法、终端设备和网络设备
US11350455B2 (en) Method and device for performing channel detection on unlicensed carrier
WO2019238007A1 (zh) 检测波束的方法和装置
WO2020020376A1 (zh) 一种参考信号发送、接收方法、装置及设备
WO2021051364A1 (zh) 一种通信方法、装置及设备
US20220173847A1 (en) Downlink transmission method and terminal device
WO2021160013A1 (zh) 无线通信的方法和装置以及通信设备
WO2021174558A1 (zh) 资源指示方法、终端设备和网络设备
WO2021120009A1 (zh) 信号检测方法、信号传输方法、终端设备和网络设备
WO2021062869A1 (zh) 无线通信方法和终端设备
EP4044708A1 (en) Link failure detection method and apparatus
WO2019157734A1 (zh) 确定最大发送功率的方法、装置、系统及存储介质
US20230129834A1 (en) Method for determining antenna panel for transmission, and terminal device
WO2021163942A1 (zh) 一种干扰测量方法及装置
CN115707021A (zh) 一种通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021517472

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019865018

Country of ref document: EP

Effective date: 20210407

Ref document number: 20217012134

Country of ref document: KR

Kind code of ref document: A