WO2018228198A1 - 有机电致发光器件及制备方法、蒸镀设备 - Google Patents

有机电致发光器件及制备方法、蒸镀设备 Download PDF

Info

Publication number
WO2018228198A1
WO2018228198A1 PCT/CN2018/089035 CN2018089035W WO2018228198A1 WO 2018228198 A1 WO2018228198 A1 WO 2018228198A1 CN 2018089035 W CN2018089035 W CN 2018089035W WO 2018228198 A1 WO2018228198 A1 WO 2018228198A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
heat treatment
evaporated
evaporation
Prior art date
Application number
PCT/CN2018/089035
Other languages
English (en)
French (fr)
Inventor
刘欣
孔超
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/323,765 priority Critical patent/US10910562B2/en
Publication of WO2018228198A1 publication Critical patent/WO2018228198A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/361Temperature
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • Embodiments of the present disclosure relate to an organic electroluminescent device, a method of fabricating the same, and an evaporation apparatus.
  • OLED Organic electroluminescent diode
  • the organic functional layer of the OLED device is prepared by vacuum evaporation, and the process of depositing and depositing the organic functional layer has high requirements on the degree of vacuum and cleanliness in the vapor deposition chamber, and the process conditions in the evaporation process are different for the OLED device.
  • the performance is very different; moreover, the current life of OLED devices prepared by vacuum evaporation is lower, which is not in line with market demand.
  • Embodiments of the present disclosure provide an organic electroluminescent device, a preparation method, and an evaporation device for improving the lifetime of the organic electroluminescent device.
  • a method for preparing an organic electroluminescent device includes: forming a first electrode layer on a substrate; vacuum evaporation on the substrate on which the first electrode layer is formed; a plated organic functional layer material, and heat-treating the base substrate on which the first electrode layer is formed in the process of evaporating the organic functional layer material to be evaporated to form an organic functional layer; A second electrode layer is formed on the base substrate of the organic functional layer.
  • the preparation method further includes: determining a heat treatment temperature according to properties of the organic functional layer material to be evaporated; and heating the base substrate to the heat treatment using a heat source disposed in the evaporation chamber temperature.
  • the heat treatment temperature is used to perform the heat treatment on the base substrate on which the first electrode layer is formed during vapor deposition of the organic functional layer material to be evaporated; and/or In the process of heating the substrate to the heat treatment temperature, the heat treatment is performed on the base substrate on which the first electrode layer is formed in the process of vapor-depositing the organic functional layer material to be evaporated.
  • the heat treatment temperature is determined according to the thermal stability of the organic functional layer material to be evaporated.
  • the heating the substrate by using a heat source disposed in the evaporation chamber includes: utilizing a heat source pair disposed in the evaporation chamber and located on a side of the substrate opposite to the evaporation source The base substrate is heated.
  • the heat source is a heated substrate.
  • the heat treatment temperature is 40 to 150 °C.
  • the degree of vacuum in the evaporation chamber is less than 10 -4 Pa.
  • forming the organic functional layer on the base substrate on which the first electrode layer is formed includes: sequentially depositing a vacuum injection layer on the base substrate on which the first electrode layer is formed to prepare a hole injection layer a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • the method further comprises: forming an electron blocking layer by vacuum evaporation on the hole transport layer.
  • the method further comprises: preparing a hole blocking layer by vacuum evaporation on the light-emitting layer.
  • Embodiments of the present disclosure also provide an organic electroluminescent device that is an organic electroluminescent device prepared by the preparation method provided by any of the embodiments of the present disclosure.
  • An embodiment of the present disclosure also provides an evaporation apparatus including an evaporation chamber, an evaporation source disposed in the evaporation chamber, and a heat source disposed in the evaporation chamber, the heat source being used for The heat treatment is performed on the base substrate on which the first electrode layer is formed in the process of vapor-depositing the organic functional layer material to be evaporated in the preparation method provided by any embodiment of the present disclosure.
  • the heat source is a heating substrate disposed in the evaporation chamber and located on a side of the substrate opposite the evaporation source.
  • FIG. 1 is a schematic flow chart of a method for preparing an organic electroluminescent device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of an organic electroluminescent device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of an evaporation apparatus according to an embodiment of the present disclosure.
  • Embodiments of the present disclosure provide an organic electroluminescent device, a preparation method, and an evaporation device for improving the lifetime of an organic electroluminescent device (OLED device).
  • OLED device organic electroluminescent device
  • a method for fabricating an organic electroluminescent device includes the following steps S101 to S103 .
  • the material of the first electrode layer 11 may be ITO (indium tin oxide), IZO (indium zinc oxide), AZO (aluminum-doped zinc oxide), or FTO (fluorine-doped tin oxide).
  • the organic functional layer material 25 may be an organic small molecule material.
  • forming the organic functional layer 10 on the base substrate 26 on which the first electrode layer 11 is formed in step S102 may include, for example, as shown in FIG. 2, the base substrate on which the first electrode layer 11 is formed.
  • a hole injection layer (HIL) 12 a hole transport layer (HTL) 13, a light-emitting layer (EML) 15, an electron transport layer (ETL) 17, and an electron injection layer (EIL) 18 which are prepared by vacuum deposition are sequentially stacked.
  • HIL hole injection layer
  • HTL hole transport layer
  • EML electron transport layer
  • EIL electron injection layer
  • the method may further include: preparing an electron blocking layer (EBL) 14 by vacuum evaporation on the hole transport layer 13.
  • EBL electron blocking layer
  • the method may further include: preparing a hole blocking layer (HBL) 16 by vacuum evaporation on the luminescent layer 15.
  • HBL hole blocking layer
  • the organic functional layer material 25 to be evaporated in the above step S102 may be used to form the hole injection layer 12, the hole transport layer 13, the electron blocking layer 14, the light emitting layer 15, the hole blocking layer 16, and the electron transport layer 17. And a material of any one of the electron injecting layers 18.
  • a portion of the hole injection layer 12, the hole transport layer 13, the electron blocking layer 14, the light emitting layer 15, the hole blocking layer 16, the electron transport layer 17, and the electron injection layer 18 may be fabricated through step S102. Or each of these layers can be made by step S102.
  • the heat treatment refers to heating the base substrate 26, and the organic functional layer material is obtained by slowly heat-treating the vapor-deposited organic functional layer material on the base substrate 26 to a certain temperature (for example, cooling to a heat treatment temperature as described below). Thereby, the morphology of the organic functional layer 10 is improved.
  • the second electrode layer 19 may be made of a non-transparent metal material such as aluminum, nickel or gold; or the second electrode layer 19 may be made of a transparent material having a conductive dielectric layer/metal layer/conductive medium layer structure, such as ITO/Ag/ITO, ZnS/Ag/ZnS, and the like, which are not limited by the embodiments of the present disclosure.
  • the first electrode layer 11 is an anode layer and the second electrode layer 12 is a cathode layer; or, the first electrode layer 11 is a cathode layer and the second electrode layer 12 is an anode layer.
  • the base substrate 26 on which the first electrode layer 11 is formed is subjected to heat treatment to improve the shape of the organic functional layer 10.
  • the appearance, thereby affecting the performance of the organic functional layer 10, can further increase the lifetime of the organic electroluminescent device.
  • the preparation method provided by at least one embodiment of the present disclosure may further include: determining a heat treatment temperature according to properties of the organic functional layer material to be evaporated; and performing the base substrate 26 by using the heat source 23 disposed in the vapor deposition chamber 21.
  • the substrate substrate 26 is heated and heated to the heat treatment temperature (i.e., the temperature rising process of the substrate substrate 26).
  • the base substrate 26 on which the first electrode layer 11 is formed is subjected to heat treatment in the process of vapor-depositing the organic functional layer material 25 to be evaporated using the heat treatment temperature (ie, the substrate substrate is at a heat treatment temperature). a constant temperature process); and/or a substrate on which the first electrode layer 11 is formed during the evaporation of the organic functional layer material to be evaporated in the process of heating the substrate 26 to the heat treatment temperature
  • the heat treatment is performed 26 .
  • the heat treatment is performed during the heating of the base substrate 26 to the heat treatment temperature, that is, during the temperature rise of the base substrate 26, evaporation is performed on the base substrate 26.
  • the organic functional layer material 25 is evaporated.
  • the base substrate is deposited by vapor-depositing the organic functional layer material 25 to be evaporated on the base substrate 26 by using the heat treatment temperature. 26 is heat treated.
  • heating the base substrate 26 before vapor-depositing the organic functional layer material to be evaporated can effectively reduce water oxygen and other impurities adsorbed on the surface of the base substrate 26. Thereby, the life of the organic electroluminescent device can be improved.
  • the heat treatment temperature is determined according to the properties of the organic functional layer material to be evaporated, and the base substrate on which the first electrode layer is formed is used in the process of vapor-depositing the organic functional layer material to be evaporated.
  • the heat treatment is performed, so that the morphology of the organic functional layer can be better improved, so that the life of the organic electroluminescent device can be further improved.
  • the heat treatment temperature can be determined according to the thermal stability of the organic functional layer material 25 to be evaporated, at which the heat treatment temperature can be obtained.
  • the above heat treatment temperature is 40 to 150 °C.
  • the heat treatment temperature can be measured in a limited number of times, and a correspondence table between the properties of the organic functional layer material to be vapor-deposited and the heat treatment temperature can be established.
  • the degree of vacuum in the vapor deposition chamber 21 is lower than 10 -4 Pa.
  • Step S1022 may include, for example, heating the base substrate 26 with a heating substrate (an example of the heat source 23) disposed in the vapor deposition chamber 21 and located on the side of the base substrate 23 facing away from the evaporation source 22.
  • the heating substrate can be a flat metal plate (such as a steel plate). As shown in FIG. 3, in the case where the heat source 23 is a heating substrate, the heating substrate is parallel to the substrate substrate 26, and the entire surface of the heating substrate facing the substrate substrate 26 is a flat surface.
  • the vacuum evaporation of the light-emitting layer 15 may include, for example, the following steps S151 to S153.
  • Step S151 vacuum-depositing the red light-emitting layer material to be evaporated on the red light region R (shown in FIG. 3) on the base substrate 26, and in vaporizing the red light-emitting layer material to be evaporated
  • the base substrate 26 is heat treated to form a red light emitting layer.
  • Step S152 vacuum-depositing the green light-emitting layer material to be evaporated on the green light region G (shown in FIG. 3) on the base substrate 26, and in the process of vapor-depositing the green light-emitting layer material to be evaporated
  • the base substrate is heat treated to form a green light emitting layer.
  • Step S153 vacuum-depositing the blue light-emitting layer material to be evaporated on the blue light region B (shown in FIG. 3) on the base substrate 26, and in the process of vapor-depositing the blue light-emitting layer material to be evaporated
  • the substrate is heat treated to form a blue light emitting layer as shown in FIG.
  • the vapor deposition of the red light emitting layer, the green light emitting layer, and the blue light emitting layer may be performed in any order.
  • the organic electroluminescent device includes a first electrode layer 11, a hole injection layer 12, a hole transport layer 13, an electron blocking layer 14, a light-emitting layer 15, a hole blocking layer 16, an electron transport layer 17, and electrons stacked in this order.
  • the injection layer 18 and the second electrode layer 19 are taken as an example to specifically describe the preparation process of the organic electroluminescent device provided by the embodiment of the present disclosure.
  • Step 1 Preparation of First Electrode Layer 11: A first electrode layer (for example, an anode layer) 11 is formed on a base substrate 26 (for example, a glass substrate, a quartz substrate, or a plastic substrate).
  • a base substrate 26 for example, a glass substrate, a quartz substrate, or a plastic substrate.
  • Step 2 Preparation of the hole injection layer 12, which includes, for example, the following steps S21 to S23.
  • the first heat treatment temperature is determined according to the properties (for example, thermal stability) of the material of the hole injection layer to be evaporated.
  • the first heat treatment temperature is 40 to 150 °C.
  • step S22 the base substrate 26 on which the first electrode layer is formed is heated by a flat heating source 23 (for example, a steel plate) disposed in the vapor deposition chamber 21 and located on the side of the base substrate 26 facing away from the evaporation source 26. Up to the first heat treatment temperature.
  • a flat heating source 23 for example, a steel plate
  • heating the base substrate 26 on which the first electrode layer is formed can effectively reduce water oxygen and other impurities adsorbed on the surface of the first electrode layer, and play a role of cleaning to a certain extent, thereby Improve the life of organic electroluminescent devices.
  • Step S23 vacuum-depositing the hole injection layer material to be evaporated on the base substrate 26 on which the first electrode layer is formed, and vapor-depositing the holes to be evaporated by using the first heat treatment temperature obtained in the above step S22.
  • the substrate substrate on which the first electrode layer is formed is subjected to a first heat treatment during the implantation of the layer material to form a hole injection layer 12 having a first thickness (for example, a first thickness of 5 to 15 nm).
  • the degree of vacuum of the vapor deposition chamber 21 is lower than 10 -4 Pa.
  • Step 3 preparation of the hole transport layer 13, which includes, for example, the following steps S31 to S33.
  • the second heat treatment temperature is determined according to the properties (for example, thermal stability) of the hole transport layer material to be evaporated.
  • the second heat treatment temperature is 40 to 150 °C.
  • a hole injection layer 12 (shown in FIG. 2) is formed by using a flat heat source 23 (for example, a steel plate) disposed in the vapor deposition chamber 21 and located on the side of the base substrate 26 facing away from the evaporation source 22.
  • the base substrate 26 is heated until the second heat treatment temperature.
  • Step S33 vacuum-evaporating the hole transport layer material to be evaporated on the base substrate 26 on which the hole injection layer 12 is formed, and using the second heat treatment temperature in vapor deposition of the hole transport layer material to be evaporated.
  • the base substrate 26 on which the hole injection layer 12 is formed is subjected to a second heat treatment to form a hole transport layer 13 having a second thickness (for example, a second thickness of 40 to 100 nm).
  • the degree of vacuum of the evaporation chamber 21 in the preparation process i.e., step S33
  • the degree of vacuum of the evaporation chamber 21 in the preparation process is less than 10 -4 Pa.
  • Step 4 Preparation of the electron blocking layer 14 includes, for example, the following steps S41 to S43.
  • the third heat treatment temperature is determined according to the properties (for example, thermal stability) of the electron blocking layer material to be evaporated.
  • the third heat treatment temperature is 40 to 150 °C.
  • step S42 the substrate substrate 26 on which the hole transport layer 13 is formed is heated by a flat heat source 23 (for example, a steel plate) disposed in the vapor deposition chamber 21 and located on the side of the base substrate 26 facing away from the evaporation source 22. Up to the third heat treatment temperature.
  • a flat heat source 23 for example, a steel plate
  • Step S43 vacuum evaporating the electron blocking layer material to be evaporated on the base substrate 26 on which the hole transport layer 13 is formed, and using the third heat treatment temperature to vaporize the electron blocking layer material to be evaporated.
  • the base substrate 26 on which the hole transport layer 13 is formed is subjected to a third heat treatment to form an electron blocking layer 14 having a third thickness (for example, a third thickness of 5 to 20 nm).
  • the degree of vacuum of the vapor deposition chamber 21 is lower than 10 -4 Pa.
  • Step 5 Preparation of the light-emitting layer 15, which includes, for example, the following steps S51 to S53.
  • step S51 a red light emitting layer is prepared, which includes, for example, the following steps S511 to S513.
  • the fourth heat treatment temperature is determined according to the properties (for example, thermal stability) of the red light emitting layer material to be evaporated.
  • the fourth heat treatment temperature is 40 to 150 °C.
  • step S512 the base substrate 26 on which the electron blocking layer 14 is formed is heated by a flat heat source 23 (for example, a steel plate) disposed in the vapor deposition chamber 21 and located on the side of the base substrate 26 facing away from the evaporation source 22 until Fourth heat treatment temperature.
  • a flat heat source 23 for example, a steel plate
  • Step S513 vacuum-depositing the red light-emitting layer material to be evaporated on the red light region on the base substrate 26 on which the electron blocking layer 14 is formed, and using the fourth heat treatment temperature to vaporize the red light to be evaporated.
  • the base substrate 26 on which the electron blocking layer 14 is formed is subjected to a fourth heat treatment in the layer material process to form a red light-emitting layer R having a fourth thickness (for example, a fourth thickness of 30 to 80 nm).
  • the degree of vacuum of the vapor deposition chamber 21 is lower than 10 -4 Pa.
  • step S52 a green light emitting layer is prepared, which includes, for example, the following steps S521 to S523.
  • Step S521 determining a fifth heat treatment temperature according to properties (for example, thermal stability) of the green light-emitting layer material to be evaporated.
  • the fifth heat treatment temperature is 40 to 150 °C.
  • Step S522 heating the base substrate 26 on which the electron blocking layer 14 is formed by using a flat heat source 23 (for example, a steel plate) disposed in the vapor deposition chamber 21 and located on the side of the base substrate 26 facing away from the evaporation source 22 to The fifth heat treatment temperature.
  • a flat heat source 23 for example, a steel plate
  • Step S523 vacuum-depositing the green light-emitting layer material to be evaporated on the green light region on the base substrate 26 on which the electron blocking layer 14 is formed, and vapor-depositing the green light-emitting layer to be evaporated by using the fifth heat treatment temperature.
  • the substrate substrate 26 on which the electron blocking layer 14 is formed is subjected to a fifth heat treatment in the course of material to form a green light-emitting layer G having a fifth thickness (for example, a fifth thickness of 20 to 80 nm).
  • the degree of vacuum of the vapor deposition chamber 21 is lower than 10 -4 Pa.
  • step S53 a blue light emitting layer is prepared, which includes, for example, the following steps S531 to S533.
  • Step S531 determining a sixth heat treatment temperature according to properties (for example, thermal stability) of the blue light emitting layer material to be evaporated.
  • the sixth heat treatment temperature is 40 to 150 °C.
  • Step S532 heating the base substrate 26 on which the electron blocking layer 14 is formed by using a flat heat source 23 (for example, a steel plate) disposed in the vapor deposition chamber 21 and located on the side of the base substrate 26 facing away from the evaporation source 22 to The sixth heat treatment temperature.
  • a flat heat source 23 for example, a steel plate
  • Step S533 vacuum evaporating the blue light emitting layer material to be evaporated on the blue light region on the base substrate 26 on which the electron blocking layer 14 is formed, and using the sixth heat treatment temperature to vaporize the blue light emitting layer material to be evaporated.
  • a sixth heat treatment is performed on the base substrate 26 on which the electron blocking layer 14 is formed to form a blue light-emitting layer B having a sixth thickness (for example, a sixth thickness of 20 to 60 nm).
  • the degree of vacuum of the evaporation chamber 21 is lower than 10 -4 Pa.
  • Step 6 Preparation of the hole blocking layer 16, which includes, for example, the following steps S61 to S63.
  • the seventh heat treatment temperature is determined according to the properties (for example, thermal stability) of the hole blocking layer material to be vapor-deposited.
  • the seventh heat treatment temperature is 40 to 150 °C.
  • step S62 the base substrate 26 on which the light-emitting layer 15 is formed is heated to the second surface by using a flat heat source 23 (for example, a steel plate) disposed in the vapor deposition chamber 21 and located on the side of the base substrate 26 facing away from the evaporation source 22. Seven heat treatment temperatures.
  • a flat heat source 23 for example, a steel plate
  • Step S63 vacuum-evaporating the hole blocking layer material to be evaporated on the base substrate 26 on which the light-emitting layer 15 is formed, and forming the hole blocking layer material in the process of vapor-depositing the hole blocking layer material by using the seventh heat treatment temperature.
  • the base substrate 26 having the light-emitting layer 15 is subjected to a seventh heat treatment to form a hole blocking layer 16 having a seventh thickness (for example, a seventh thickness of 5 to 20 nm).
  • the degree of vacuum of the vapor deposition chamber 21 is lower than 10 -4 Pa.
  • Step 7 Preparation of the electron transport layer 17, which includes, for example, the following steps S71 to S73.
  • Step S71 determining an eighth heat treatment temperature according to properties (for example, thermal stability) of the electron transport layer material to be evaporated.
  • the eighth heat treatment temperature is 40 to 150 °C.
  • step S72 the base substrate 26 on which the hole blocking layer 16 is formed is heated by a flat heat source 23 (for example, a steel plate) disposed in the vapor deposition chamber 21 and located on the side of the base substrate 26 facing away from the evaporation source 22. To the eighth heat treatment temperature.
  • a flat heat source 23 for example, a steel plate
  • Step S73 vacuum evaporating the electron transport layer material to be evaporated on the base substrate 26 on which the hole blocking layer 16 is formed, and forming an electron transport layer material in the process of vapor-depositing the electron transport layer material to be evaporated by using the eighth heat treatment temperature.
  • the base substrate 26 having the hole blocking layer 16 is subjected to an eighth heat treatment to form an electron transport layer 17 of an eighth thickness (for example, an eighth thickness of 40 to 100 nm).
  • the degree of vacuum of the evaporation chamber 21 is lower than 10 -4 Pa.
  • Step 8 Preparation of the electron injection layer 18, which includes, for example, the following steps S81 to S83.
  • the ninth heat treatment temperature is determined according to the properties (e.g., thermal stability) of the electron injecting layer material to be vapor-deposited.
  • the ninth heat treatment temperature is 40 to 150 °C.
  • step S82 the base substrate 26 on which the electron transport layer 17 is formed is heated by a flat heat source 23 (for example, a steel plate) disposed in the vapor deposition chamber 21 and located on the side of the base substrate 26 facing away from the evaporation source 22 to Ninth heat treatment temperature.
  • a flat heat source 23 for example, a steel plate
  • Step S83 vacuum evaporating the electron injection layer material to be evaporated on the base substrate 26 on which the electron transport layer 17 is formed, and forming an electron transport in the process of vapor deposition of the electron injection layer material to be evaporated by using the ninth heat treatment temperature.
  • the base substrate 26 of the layer 17 is subjected to a ninth heat treatment to form an electron injection layer 18 having a ninth thickness (for example, a ninth thickness of 5 to 15 nm).
  • the degree of vacuum of the vapor deposition chamber 21 is lower than 10 -4 Pa.
  • Step 9 Preparation of the second electrode layer 19: a tenth thickness is vacuum-deposited on the electron injection layer 18 by using a second electrode layer (eg, a cathode layer) material to be evaporated (for example, the tenth thickness is 10-20 nm) The second electrode layer.
  • a second electrode layer eg, a cathode layer
  • the degree of vacuum of the evaporation chamber 21 during the preparation is less than 10 -4 Pa.
  • the thicknesses of the hole injection layer 12, the hole transport layer 13, the electron blocking layer 14, the light emitting layer 15, the hole blocking layer 16, the electron transport layer 17, and the electron injecting layer 18 are generally based on actual organic electricity.
  • the above steps are merely illustrative.
  • an embodiment of the present disclosure further provides an organic electroluminescent device which is an organic electroluminescent device prepared by the preparation method provided by any of the embodiments of the present disclosure.
  • the first electrode layer 11 is an anode layer and the second electrode layer 12 is a cathode layer; or, the first electrode layer 11 is a cathode layer and the second electrode layer 12 is an anode layer.
  • the organic electroluminescent device provided by the embodiment of the present disclosure is prepared by the above preparation method, and the above preparation method forms a lining formed with the first electrode layer (for example, the anode layer) during the evaporation of the organic functional layer material to be evaporated.
  • the base substrate is subjected to heat treatment to improve the morphology of the organic functional layer, thereby affecting the performance of the organic functional layer, thereby improving the life of the organic electroluminescent device.
  • the organic electroluminescent device includes a first electrode layer 11, a hole injection layer 12, a hole transport layer 13, an electron blocking layer 14, a light emitting layer 15, and a hole which are sequentially stacked.
  • an embodiment of the present disclosure further provides an evaporation apparatus including an evaporation chamber 21 and an evaporation source 22 disposed in the evaporation chamber 21, the evaporation apparatus further including setting In the heat source 23 in the evaporation chamber 21, the heat source 23 is used in the process of preparing the organic electroluminescent device 24 (shown by the dashed box in FIG. 3) provided by any of the methods of the present disclosure by any of the methods described above.
  • the base substrate 26 on which the first electrode layer is formed is subjected to heat treatment.
  • the first electrode layer 11 is an anode layer and the second electrode layer 12 is a cathode layer; or, the first electrode layer 11 is a cathode layer and the second electrode layer 12 is an anode layer.
  • the substrate substrate on which the first electrode layer (for example, the anode layer) is formed is subjected to heat treatment during evaporation of the organic functional layer material to be evaporated to improve the organic functional layer.
  • the morphology which affects the performance of the organic functional layer, thereby increasing the lifetime of the organic electroluminescent device.
  • the organic electroluminescent device 24 further includes a circuit (eg, a switching element array circuit) 27 between the substrate substrate 26 and the first electrode layer (eg, the anode layer) 11 and
  • the pixel defining layer 28 is formed in a pixel forming a plurality of pixel regions, such as the red light region R, the green light region G, and the blue light region B described above.
  • the heat source 23 is disposed in the vapor deposition chamber 21 and is located on the side of the substrate substrate 26 facing away from the evaporation source 22 for heating the organic functional layer material to be evaporated. Heating the substrate.
  • the heating substrate can be a flat metal plate (such as a steel plate). As shown in FIG. 3, in the case where the heat source 23 is a heating substrate, the heating substrate is parallel to the substrate substrate 26, and the entire surface of the heating substrate facing the substrate substrate 26 is a flat surface.
  • the substrate substrate on which the first electrode layer is formed is subjected to heat treatment in the process of vapor-depositing the organic functional layer material to be evaporated to improve
  • the morphology of the organic functional layer affects the performance of the organic functional layer, which in turn increases the lifetime of the organic electroluminescent device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种有机电致发光器件及制备方法、蒸镀设备,该有机电致发光器件的制备方法包括:在衬底基板(26)上形成第一电极层(11);在形成有第一电极层(11)的衬底基板(26)上真空蒸镀待蒸镀的有机功能层材料(25),并在蒸镀待蒸镀的有机功能层材料(25)过程中对形成有第一电极层(11)的衬底基板(26)进行热处理,以形成有机功能层(10);在形成有有机功能层(10)的衬底基板上形成第二电极层(19)。该制备方法可以提高有机电致发光器件的寿命。

Description

有机电致发光器件及制备方法、蒸镀设备
对相关申请的交叉参考
本申请要求于2017年6月14日递交的中国专利申请第201710446359.5号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开实施例涉及一种有机电致发光器件及制备方法、蒸镀设备。
背景技术
有机电致发光二极管(OLED)器件(即有机电致发光器件)具有自发光、发光效率高、功耗低、反应快、视角广、亮度高、色彩艳、轻薄等优点,被认为在照明和显示器件市场上具有广阔的应用前景,受到了国际光电学术界和产业界的高度重视。
目前使用真空蒸镀的方法制备OLED器件的有机功能层,蒸镀沉积有机功能层的过程对蒸镀腔室内的真空度和洁净度的要求高,蒸镀过程中工艺条件的不同会对OLED器件的性能造成很大的不同;而且,目前采用真空蒸镀的方法制备的OLED器件的寿命较低,这与市场的需求不相符。
基于此,如何提高有机电致发光器件的寿命,是本领域技术人员的研究热点。
发明内容
本公开实施例提供了一种有机电致发光器件及制备方法、蒸镀设备,用以提高有机电致发光器件的寿命。
本公开实施例提供的一种有机电致发光器件的制备方法包括:在衬底基板上形成第一电极层;在形成有所述第一电极层的所述衬底基板上真空蒸镀待蒸镀的有机功能层材料,并在蒸镀所述待蒸镀的有机功能层材料过程中对形成有所述第一电极层的所述衬底基板进行热处理,以形成有机功能层;在 形成有所述有机功能层的所述衬底基板上形成第二电极层。
例如,所述的制备方法还包括:根据所述待蒸镀的有机功能层材料的性质确定热处理温度;以及利用设置在蒸镀腔室中的热源对所述衬底基板进行加热至所述热处理温度。在该方法中,采用所述热处理温度在蒸镀所述待蒸镀的有机功能层材料过程中对形成有所述第一电极层的所述衬底基板进行所述热处理;和/或在所述衬底基板被加热至所述热处理温度的过程中,在蒸镀所述待蒸镀的有机功能层材料过程中对形成有所述第一电极层的所述衬底基板进行所述热处理。
例如,所述热处理温度根据所述待蒸镀的有机功能层材料的热稳定性确定。
例如,所述利用设置在蒸镀腔室中的热源对所述衬底基板进行加热包括:利用设置在所述蒸镀腔室中并且位于所述衬底基板背向蒸发源一侧的热源对所述衬底基板进行加热。
例如,所述热源为加热基板。
例如,所述热处理温度为40-150℃。
例如,在蒸镀所述待蒸镀的有机功能层材料过程中,所述蒸镀腔室内的真空度低于10 -4Pa。
例如,在形成有所述第一电极层的所述衬底基板上形成有机功能层包括:在形成有所述第一电极层的所述衬底基板上依次层叠真空蒸镀制备空穴注入层、空穴传输层、发光层、电子传输层、电子注入层。
例如,在制备所述空穴传输层之后且在制备所述发光层之前,该方法还包括:在所述空穴传输层上真空蒸镀制备电子阻挡层。
例如,在制备所述发光层之后且在制备所述电子传输层之前,该方法还包括:在所述发光层上真空蒸镀制备空穴阻挡层。
本公开实施例还提供了一种有机电致发光器件,该有机电致发光器件为采用本公开任意实施例提供的制备方法制备得到的有机电致发光器件。
本公开实施例还提供了一种蒸镀设备,其包括蒸镀腔室、设置在所述蒸镀腔室中的蒸发源以及设置在所述蒸镀腔室中的热源,所述热源用于在本公开任意实施例提供的制备方法中的蒸镀所述待蒸镀的有机功能层材料过程中对形成有所述第一电极层的所述衬底基板进行所述热处理。
例如,所述热源为设置在所述蒸镀腔室中并且位于衬底基板背向蒸发源一侧的加热基板。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开实施例提供的有机电致发光器件的制备方法的流程示意图;
图2为本公开实施例提供的有机电致发光器件的结构示意图;
图3为本公开实施例提供的一种蒸镀设备的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供了一种有机电致发光器件及制备方法、蒸镀设备,用以提高有机电致发光器件(OLED器件)的寿命。
需要说明的是,本公开附图中各层的厚度和形状不反映真实比例,目的只是示意说明本公开内容。
参见图1至图3,本公开实施例提供的一种有机电致发光器件的制备方法,其包括如下步骤S101至S103。
S101、在衬底基板26上形成第一电极层11。
例如,第一电极层11的材质可以为ITO(氧化铟锡)、IZO(氧化铟锌)、AZO(掺铝氧化锌)、或者FTO(氟掺杂锡氧化物)等。
S102、在形成有第一电极层11的衬底基板26上真空蒸镀待蒸镀的有机功能层材料25,并在蒸镀待蒸镀的有机功能层材料25过程中对形成有第一电极层11的衬底基板26进行热处理,以形成有机功能层10。
例如,有机功能层材料25可以为有机小分子材料。
在一实施方式中,步骤S102中在形成有第一电极层11的衬底基板26上形成有机功能层10例如可以包括:如图2所示,在形成有第一电极层11的衬底基板26上依次层叠真空蒸镀制备的空穴注入层(HIL)12、空穴传输层(HTL)13、发光层(EML)15、电子传输层(ETL)17、电子注入层(EIL)18。
在一实施方式中,在制备空穴传输层13之后且在制备发光层15之前,该方法还可以包括:在空穴传输层13上真空蒸镀制备电子阻挡层(EBL)14。
在一实施方式中,在制备发光层15之后且在制备电子传输层17之前,该方法还可以包括:在发光层15上真空蒸镀制备空穴阻挡层(HBL)16。
上述步骤S102中的待蒸镀的有机功能层材料25可以为用于形成空穴注入层12、空穴传输层13、电子阻挡层14、发光层15、空穴阻挡层16、电子传输层17和电子注入层18中的任意一个的材料。在一些实施例中,空穴注入层12、空穴传输层13、电子阻挡层14、发光层15、空穴阻挡层16、电子传输层17和电子注入层18中的一部分可以通过步骤S102制作,或者这些层中的每个都可以通过步骤S102制作。
热处理是指对衬底基板26进行加热,通过热处理使得蒸镀的有机功能层材料在衬底基板26上缓慢冷却到一定温度(例如冷却到如下所述的热处理温度)后得到有机功能层10,从而改善有机功能层10的形貌。
S103、在形成有有机功能层10的衬底基板26上形成第二电极层19。
例如,第二电极层19可以采用非透明金属材料制备,如铝、镍或金等;或者,第二电极层19可以采用具有导电介质层/金属层/导电介质层结构的透明材料制备,如ITO/Ag/ITO、ZnS/Ag/ZnS等,本公开实施例对此并不进行限定。
例如,第一电极层11为阳极层且第二电极层12为阴极层;或者,第一电极层11为阴极层且第二电极层12为阳极层。
在本公开实施例提供的方法中,在蒸镀待蒸镀的有机功能层材料25的过程中,对形成有第一电极层11的衬底基板26进行热处理,以改善有机功能层10的形貌,从而影响有机功能层10的性能,进而可以提高有机电致发光器件的寿命。
例如,本公开至少一实施方式提供的制备方法还可以包括:根据待蒸镀的有机功能层材料的性质确定热处理温度;以及利用设置在蒸镀腔室21中的热源23对衬底基板26进行加热并且将衬底基板26加热至热处理温度(即衬底基板26的升温过程)。在这种情况下,采用所述热处理温度在蒸镀待蒸镀的有机功能层材料25过程中对形成有第一电极层11的衬底基板26进行热处理(即衬底基板在热处理温度下的恒温过程);和/或在衬底基板26被加热至所述热处理温度的过程中,在蒸镀所述待蒸镀的有机功能层材料过程中对形成有第一电极层11的衬底基板26进行所述热处理。
在本公开实施例中,在衬底基板26被加热至所述热处理温度的过程中进行所述热处理,也就是说,在衬底基板26的升温过程中,在衬底基板26上蒸镀待蒸镀的有机功能层材料25。在此基础上,例如,还可以在衬底基板26升温至所述热处理温度后,采用所述热处理温度在衬底基板26上蒸镀待蒸镀的有机功能层材料25过程中对衬底基板26进行热处理。
在本公开实施例提供的制备方法中,在蒸镀待蒸镀的有机功能层材料之前,对衬底基板26进行加热,可以有效减少吸附在衬底基板26表面上的水氧和其他杂质,从而可以提高有机电致发光器件的寿命。
在本公开实施例中,根据待蒸镀的有机功能层材料的性质确定热处理温度,采用该热处理温度在蒸镀待蒸镀的有机功能层材料过程中对形成有第一电极层的衬底基板进行热处理,这样可以更好地改善有机功能层的形貌,从而可以进一步提高有机电致发光器件的寿命。
关于上述步骤S1021中的根据待蒸镀的有机功能层材料25的性质确定热处理温度,例如可以根据待蒸镀的有机功能层材料25的热稳定性确定热处理温度,在此热处理温度下可以获得较好的有机功能层10的形貌。
例如,上述热处理温度为40-150℃。
例如,热处理温度可以经过有限次地测量得到,还可以建立待蒸镀的有机功能层材料的性质与热处理温度的对应关系表。
例如,在蒸镀所述待蒸镀的有机功能层材料过程中,蒸镀腔室21内的真空度低于10 -4Pa。
在一实施方式中,为了使得衬底基板26的加热更加均匀,以更好地改善有机功能层10的形貌,上述利用设置在蒸镀腔室21中的热源23对衬底基板 进行加热的步骤S1022例如可以包括:利用设置在蒸镀腔室21中并且位于衬底基板23背向蒸发源22一侧的加热基板(热源23的一个示例)对衬底基板26进行加热。
例如,加热基板可以为平整的金属板(例如钢板)。如图3所示,在热源23为加热基板的情况下,加热基板与衬底基板26平行,并且加热基板的面向衬底基板26的整个表面为平坦表面。
在一实施方式中,真空蒸镀制备发光层15例如可以包括以下步骤S151至步骤S153。
步骤S151:在衬底基板26上的红光区域R(如图3所示)真空蒸镀待蒸镀的红光发光层材料,并在蒸镀该待蒸镀的红光发光层材料过程中对衬底基板26进行热处理,以形成红光发光层。
步骤S152:在衬底基板26上的绿光区域G(如图3所示)真空蒸镀待蒸镀的绿光发光层材料,并在蒸镀该待蒸镀的绿光发光层材料过程中对衬底基板进行热处理,以形成绿光发光层。
步骤S153:在衬底基板26上的蓝光区域B(如图3所示)真空蒸镀待蒸镀的蓝光发光层材料,并在蒸镀该待蒸镀的蓝光发光层材料过程中对衬底基板进行热处理,以形成蓝光发光层,如图3所示。
需要说明的是,上述红光发光层、绿光发光层、蓝光发光层的蒸镀可以不分先后顺序。
下面以有机电致发光器件包括依次层叠的第一电极层11、空穴注入层12、空穴传输层13、电子阻挡层14、发光层15、空穴阻挡层16、电子传输层17、电子注入层18、第二电极层19(如图2所示)为例,对本公开实施例提供的有机电致发光器件的制备过程进行具体说明。
步骤一、第一电极层11的制备:在衬底基板26(例如玻璃基板、石英基板或者塑料基板)上形成第一电极层(例如阳极层)11。
步骤二、空穴注入层12的制备,其例如包括以下步骤S21至步骤S23。
步骤S21,根据待蒸镀的空穴注入层材料的性质(例如热稳定性)确定第一热处理温度。例如,第一热处理温度为40-150℃。
步骤S22,利用设置在蒸镀腔室21中并且位于衬底基板26背向蒸发源26一侧的平整的加热源23(例如钢板),对形成有第一电极层的衬底基板 26进行加热直至第一热处理温度。在该步骤S22中,对形成有第一电极层的衬底基板26进行加热可以有效减少吸附在第一电极层表面上的水氧和其他杂质,在一定程度上起到清洁的作用,从而可以提高有机电致发光器件的寿命。
步骤S23,在形成有第一电极层的衬底基板26上真空蒸镀待蒸镀的空穴注入层材料,并采用上述步骤S22中得到的第一热处理温度在蒸镀待蒸镀的空穴注入层材料过程中对形成有第一电极层的衬底基板进行第一热处理,以形成第一厚度(例如第一厚度为5-15nm)的空穴注入层12。例如,在该制备过程(即步骤S23)中,蒸镀腔室21的真空度低于10 -4Pa。
步骤三、空穴传输层13的制备,其例如包括以下步骤S31至步骤S33。
步骤S31,根据待蒸镀的空穴传输层材料的性质(例如热稳定性)确定第二热处理温度。例如,第二热处理温度为40-150℃。
步骤S32,利用设置在蒸镀腔室21中并且位于衬底基板26背向蒸发源22一侧的平整的热源23(例如钢板),对形成有空穴注入层12(如图2所示)的衬底基板26进行加热直至第二热处理温度。
步骤S33,在形成有空穴注入层12的衬底基板26上真空蒸镀待蒸镀的空穴传输层材料,并采用第二热处理温度在蒸镀待蒸镀的空穴传输层材料过程中对形成有空穴注入层12的衬底基板26进行第二热处理,以形成第二厚度(例如第二厚度为40-100nm)的空穴传输层13。例如,该制备过程(即步骤S33)中蒸镀腔室21的真空度低于10 -4Pa。
步骤四、电子阻挡层14的制备,其例如包括以下步骤S41至步骤S43。
步骤S41,根据待蒸镀的电子阻挡层材料的性质(例如热稳定性)确定第三热处理温度。例如,第三热处理温度为40-150℃。
步骤S42,利用设置在蒸镀腔室21中并且位于衬底基板26背向蒸发源22一侧的平整的热源23(例如钢板),对形成有空穴传输层13的衬底基板26进行加热直至第三热处理温度。
步骤S43,在形成有空穴传输层13的衬底基板26上真空蒸镀待蒸镀的电子阻挡层材料,并采用上述第三热处理温度在蒸镀待蒸镀的电子阻挡层材料过程中对形成有空穴传输层13的衬底基板26进行第三热处理,以形成第三厚度(例如第三厚度为5-20nm)的电子阻挡层14。例如,该制备过程(步 骤S43)中蒸镀腔室21的真空度低于10 -4Pa。
步骤五、发光层15的制备,其例如包括以下步骤S51至步骤S53。
步骤S51,制备红光发光层,其例如包括以下步骤S511至步骤S513。
步骤S511,根据待蒸镀的红光发光层材料的性质(例如热稳定性)确定第四热处理温度。例如,第四热处理温度为40-150℃。
步骤S512,利用设置在蒸镀腔室21中并且位于衬底基板26背向蒸发源22一侧的平整的热源23(例如钢板),对形成有电子阻挡层14的衬底基板26进行加热直至第四热处理温度。
步骤S513,在形成有电子阻挡层14的衬底基板26上的红光区域真空蒸镀待蒸镀的红光发光层材料,并采用上述第四热处理温度在蒸镀待蒸镀的红光发光层材料过程中对形成有电子阻挡层14的衬底基板26进行第四热处理,以形成第四厚度(例如第四厚度为30-80nm)的红光发光层R。例如,该制备过程(步骤S513)中蒸镀腔室21的真空度低于10 -4Pa。
步骤S52,制备绿光发光层,其例如包括以下步骤S521至步骤S523。
步骤S521,根据待蒸镀的绿光发光层材料的性质(例如热稳定性)确定第五热处理温度。例如,第五热处理温度为40-150℃。
步骤S522,利用设置在蒸镀腔室21中并且位于衬底基板26背向蒸发源22一侧的平整的热源23(例如钢板),对形成有电子阻挡层14的衬底基板26进行加热至第五热处理温度。
步骤S523,在形成有电子阻挡层14的衬底基板26上的绿光区域真空蒸镀待蒸镀的绿光发光层材料,并采用第五热处理温度在蒸镀待蒸镀的绿光发光层材料过程中对形成有电子阻挡层14的衬底基板26进行第五热处理,以形成第五厚度(例如第五厚度为20-80nm)的绿光发光层G。例如,该制备过程(步骤S523)中蒸镀腔室21的真空度低于10 -4Pa。
步骤S53,制备蓝光发光层,其例如包括以下步骤S531至步骤S533。
步骤S531,根据待蒸镀的蓝光发光层材料的性质(例如热稳定性)确定第六热处理温度。例如,第六热处理温度为40-150℃。
步骤S532,利用设置在蒸镀腔室21中并且位于衬底基板26背向蒸发源22一侧的平整的热源23(例如钢板),对形成有电子阻挡层14的衬底基板26进行加热至第六热处理温度。
步骤S533,在形成有电子阻挡层14的衬底基板26上的蓝光区域真空蒸镀待蒸镀的蓝光发光层材料,并采用第六热处理温度在蒸镀待蒸镀的蓝光发光层材料过程中对形成有电子阻挡层14的衬底基板26进行第六热处理,以形成第六厚度(例如第六厚度为20-60nm)的蓝光发光层B。例如,该制备过程(步骤S533)中蒸镀腔室21的真空度低于10 -4Pa。
上述步骤S51、S52和S53的制作顺序可以任意调换。
步骤六、空穴阻挡层16的制备,其例如包括以下步骤S61至步骤S63。
步骤S61,根据待蒸镀的空穴阻挡层材料的性质(例如热稳定性)确定第七热处理温度。例如,第七热处理温度为40-150℃。
步骤S62,利用设置在蒸镀腔室21中并且位于衬底基板26背向蒸发源22一侧的平整的热源23(例如钢板),对形成有发光层15的衬底基板26进行加热至第七热处理温度。
步骤S63,在形成有发光层15的衬底基板26上真空蒸镀待蒸镀的空穴阻挡层材料,并采用第七热处理温度在蒸镀待蒸镀的空穴阻挡层材料过程中对形成有发光层15的衬底基板26进行第七热处理,以形成第七厚度(例如第七厚度为5-20nm)的空穴阻挡层16。例如,该制备过程(步骤S63)中蒸镀腔室21的真空度低于10 -4Pa。
步骤七、电子传输层17的制备,其例如包括以下步骤S71至步骤S73。
步骤S71,根据待蒸镀的电子传输层材料的性质(例如热稳定性)确定第八热处理温度。例如,第八热处理温度为40-150℃。
步骤S72,利用设置在蒸镀腔室21中并且位于衬底基板26背向蒸发源22一侧的平整的热源23(例如钢板),对形成有空穴阻挡层16的衬底基板26进行加热至第八热处理温度。
步骤S73,在形成有空穴阻挡层16的衬底基板26上真空蒸镀待蒸镀的电子传输层材料,并采用第八热处理温度在蒸镀待蒸镀的电子传输层材料过程中对形成有空穴阻挡层16的衬底基板26进行第八热处理,以形成第八厚度(例如第八厚度为40-100nm)的电子传输层17。例如,该制备过程(步骤S 73)中蒸镀腔室21的真空度低于10 -4Pa。
步骤八、电子注入层18的制备,其例如包括以下步骤S81至步骤S83。
步骤S81,根据待蒸镀的电子注入层材料的性质(例如热稳定性)确定 第九热处理温度。例如,第九热处理温度为40-150℃。
步骤S82,利用设置在蒸镀腔室21中并且位于衬底基板26背向蒸发源22一侧的平整的热源23(例如钢板),对形成有电子传输层17的衬底基板26进行加热至第九热处理温度。
步骤S83,在形成有电子传输层17的衬底基板26上真空蒸镀待蒸镀电子注入层材料,并采用第九热处理温度在蒸镀待蒸镀电子注入层材料过程中对形成有电子传输层17的衬底基板26进行第九热处理,以形成第九厚度(例如第九厚度为5-15nm)的电子注入层18。例如,该制备过程(步骤S83)中蒸镀腔室21的真空度低于10 -4Pa。
步骤九、第二电极层19的制备:采用待蒸镀的第二电极层(例如阴极层)材料在电子注入层18上真空蒸镀一层第十厚度(例如第十厚度为10-20nm)的第二电极层。例如,该制备过程中蒸镀腔室21的真空度低于10 -4Pa。
在以上步骤中,空穴注入层12、空穴传输层13、电子阻挡层14、发光层15、空穴阻挡层16、电子传输层17、电子注入层18的厚度一般都是根据实际有机电致发光器件而定,以上步骤仅为举例说明。
基于同一发明构思,本公开实施例还提供了一种有机电致发光器件,该有机电致发光器件为采用本公开任意实施例提供的制备方法制备得到的有机电致发光器件。
例如,第一电极层11为阳极层且第二电极层12为阴极层;或者,第一电极层11为阴极层且第二电极层12为阳极层。
由于本公开实施例提供的有机电致发光器件采用上述制备方法制备得到,而上述制备方法在蒸镀待蒸镀的有机功能层材料过程中对形成有第一电极层(例如阳极层)的衬底基板进行热处理,以改善有机功能层的形貌,从而影响有机功能层的性能,进而可以提高有机电致发光器件的寿命。
在一实施方式中,如图2所示,有机电致发光器件包括依次层叠的第一电极层11、空穴注入层12、空穴传输层13、电子阻挡层14、发光层15、空穴阻挡层16、电子传输层17、电子注入层18、第二电极层19。
基于同一发明构思,参见图3,本公开实施例还提供了一种蒸镀设备,其包括蒸镀腔室21和设置在蒸镀腔室21中的蒸发源22,该蒸镀设备还包括设置在蒸镀腔室21中的热源23,热源23用于在采用以上任一项所述方法制 备本公开任意实施例提供的有机电致发光器件24(如图3中虚线框所示)的过程中,在蒸镀待蒸镀的有机功能层材料25过程中对形成有第一电极层的衬底基板26进行热处理。
例如,第一电极层11为阳极层且第二电极层12为阴极层;或者,第一电极层11为阴极层且第二电极层12为阳极层。
采用该蒸镀设备制备有机电致发光器件时,在蒸镀待蒸镀的有机功能层材料过程中对形成有第一电极层(例如阳极层)的衬底基板进行热处理,以改善有机功能层的形貌,从而影响有机功能层的性能,进而可以提高有机电致发光器件的寿命。
在一实施方式中,如图3所示,有机电致发光器件24还包括位于衬底基板26和第一电极层(例如阳极层)11之间的电路(例如开关元件阵列电路)27以及用于形成多个像素区域(例如以上所述的红光区域R、绿光区域G和蓝光区域B)的像素界定层28。
在一实施方式中,如图3所示,热源23为设置在蒸镀腔室21中并且位于衬底基板26背向蒸发源22(其用于加热待蒸镀的有机功能层材料)一侧的加热基板。
例如,加热基板可以为平整的金属板(例如钢板)。如图3所示,在热源23为加热基板的情况下,加热基板与衬底基板26平行,并且加热基板的面向衬底基板26的整个表面为平坦表面。
综上,在本公开实施例中,在有机电致发光器件的制备过程中,在蒸镀待蒸镀的有机功能层材料过程中对形成有第一电极层的衬底基板进行热处理,以改善有机功能层的形貌,从而影响有机功能层的性能,进而可以提高有机电致发光器件的寿命。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (13)

  1. 一种有机电致发光器件的制备方法,包括:
    在衬底基板上形成第一电极层;
    在形成有所述第一电极层的所述衬底基板上真空蒸镀待蒸镀的有机功能层材料,并在蒸镀所述待蒸镀的有机功能层材料过程中对形成有所述第一电极层的所述衬底基板进行热处理,以形成有机功能层;以及
    在形成有所述有机功能层的所述衬底基板上形成第二电极层。
  2. 根据权利要求1所述的有机电致发光器件的制备方法,还包括:
    根据所述待蒸镀的有机功能层材料的性质确定热处理温度,以及
    利用设置在蒸镀腔室中的热源对所述衬底基板进行加热至所述热处理温度,
    其中,
    采用所述热处理温度在蒸镀所述待蒸镀的有机功能层材料过程中对形成有所述第一电极层的所述衬底基板进行所述热处理;和/或
    在所述衬底基板被加热至所述热处理温度的过程中,在蒸镀所述待蒸镀的有机功能层材料过程中对形成有所述第一电极层的所述衬底基板进行所述热处理。
  3. 根据权利要求2所述的有机电致发光器件的制备方法,其中,所述热处理温度根据所述待蒸镀的有机功能层材料的热稳定性确定。
  4. 根据权利要求2或3所述的有机电致发光器件的制备方法,其中,利用设置在蒸镀腔室中的热源对所述衬底基板进行加热包括:
    利用设置在所述蒸镀腔室中并且位于所述衬底基板背向蒸发源一侧的热源对所述衬底基板进行加热。
  5. 根据权利要求4所述的有机电致发光器件的制备方法,其中,所述热源为加热基板。
  6. 根据权利要求2-5中任一项所述的有机电致发光器件的制备方法,其中,所述热处理温度为40-150℃。
  7. 根据权利要求2-6中任一项所述的有机电致发光器件的制备方法,其中,在蒸镀所述待蒸镀的有机功能层材料过程中,所述蒸镀腔室内的真空度 低于10 -4Pa。
  8. 根据权利要求1-7中任一项所述的有机电致发光器件的制备方法,其中,在形成有所述第一电极层的所述衬底基板上形成有机功能层包括:
    在形成有所述第一电极层的所述衬底基板上依次层叠真空蒸镀制备的空穴注入层、空穴传输层、发光层、电子传输层、电子注入层。
  9. 根据权利要求8所述的有机电致发光器件的制备方法,还包括:
    在制备所述空穴传输层之后且在制备所述发光层之前,在所述空穴传输层上真空蒸镀制备电子阻挡层。
  10. 根据权利要求8或9所述的有机电致发光器件的制备方法,还包括:
    在制备所述发光层之后且在制备所述电子传输层之前,在所述发光层上真空蒸镀制备空穴阻挡层。
  11. 一种有机电致发光器件,其中,所述有机电致发光器件为采用如权利要求1-10中任一项所述的制备方法制备得到的有机电致发光器件。
  12. 一种蒸镀设备,包括:
    蒸镀腔室,
    设置在所述蒸镀腔室中的蒸发源,
    设置在所述蒸镀腔室中的热源,其中,所述热源用于在如权利要求1-10中任一项所述制备方法中的蒸镀所述待蒸镀的有机功能层材料过程中对形成有所述第一电极层的所述衬底基板进行所述热处理。
  13. 根据权利要求12所述的蒸镀设备,其中,所述热源为设置在所述蒸镀腔室中并且位于衬底基板背向蒸发源一侧的加热基板。
PCT/CN2018/089035 2017-06-14 2018-05-30 有机电致发光器件及制备方法、蒸镀设备 WO2018228198A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/323,765 US10910562B2 (en) 2017-06-14 2018-05-30 Organic electroluminescent device and preparation method, evaporation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710446359.5A CN107123754A (zh) 2017-06-14 2017-06-14 一种有机电致发光器件及制备方法、蒸镀设备
CN201710446359.5 2017-06-14

Publications (1)

Publication Number Publication Date
WO2018228198A1 true WO2018228198A1 (zh) 2018-12-20

Family

ID=59718318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089035 WO2018228198A1 (zh) 2017-06-14 2018-05-30 有机电致发光器件及制备方法、蒸镀设备

Country Status (3)

Country Link
US (1) US10910562B2 (zh)
CN (1) CN107123754A (zh)
WO (1) WO2018228198A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107123754A (zh) * 2017-06-14 2017-09-01 京东方科技集团股份有限公司 一种有机电致发光器件及制备方法、蒸镀设备
CN111188012A (zh) * 2018-11-14 2020-05-22 广东聚华印刷显示技术有限公司 蒸镀装置及蒸镀膜的制备方法、电致发光器件及制备方法
CN113078271B (zh) * 2020-01-03 2024-03-22 上海和辉光电股份有限公司 有机电致发光器件及显示装置
CN113025964B (zh) * 2021-03-08 2023-04-28 昆山工研院新型平板显示技术中心有限公司 蒸镀方法及蒸镀装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1428817A (zh) * 2001-12-12 2003-07-09 株式会社半导体能源研究所 膜形成装置和膜形成方法以及清洁方法
CN107123754A (zh) * 2017-06-14 2017-09-01 京东方科技集团股份有限公司 一种有机电致发光器件及制备方法、蒸镀设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7432116B2 (en) * 2001-02-21 2008-10-07 Semiconductor Energy Laboratory Co., Ltd. Method and apparatus for film deposition
JP5072184B2 (ja) * 2002-12-12 2012-11-14 株式会社半導体エネルギー研究所 成膜方法
US20040132228A1 (en) * 2002-12-17 2004-07-08 Honeywell International Inc. Method and system for fabricating an OLED
US20080131587A1 (en) * 2006-11-30 2008-06-05 Boroson Michael L Depositing organic material onto an oled substrate
US8476822B2 (en) * 2007-11-09 2013-07-02 Universal Display Corporation Saturated color organic light emitting devices
WO2013073301A1 (ja) * 2011-11-14 2013-05-23 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、及び、面状発光体
US20140166989A1 (en) * 2012-12-17 2014-06-19 Universal Display Corporation Manufacturing flexible organic electronic devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1428817A (zh) * 2001-12-12 2003-07-09 株式会社半导体能源研究所 膜形成装置和膜形成方法以及清洁方法
CN107123754A (zh) * 2017-06-14 2017-09-01 京东方科技集团股份有限公司 一种有机电致发光器件及制备方法、蒸镀设备

Also Published As

Publication number Publication date
US20190173009A1 (en) 2019-06-06
US10910562B2 (en) 2021-02-02
CN107123754A (zh) 2017-09-01

Similar Documents

Publication Publication Date Title
WO2018228198A1 (zh) 有机电致发光器件及制备方法、蒸镀设备
CN106531772B (zh) Oled显示装置及其制作方法
KR101805144B1 (ko) 유기 발광 장치
WO2011074633A1 (ja) 有機エレクトロルミネッセンス素子
CN105552185A (zh) 一种基于无机钙钛矿材料的全无机量子点发光二极管及其制备方法
WO2017219424A1 (zh) 有机发光器件及其显示器
TWI580686B (zh) 一種有機電致發光元件及其製備方法
TW201409794A (zh) 倒置型有機發光二極體顯示裝置及其製備方法
CN103137881A (zh) 有机电致发光装置及其制备方法
CN104124391A (zh) 白光顶发光型有机发光二极管及其制备方法
WO2009021365A1 (fr) Oled et son procédé
US20160372695A1 (en) Laminated organic electroluminescent device and method of manufacturing the same, and display device
Madhava Rao et al. White organic light emitting devices based on multiple emissive nanolayers
WO2017215077A1 (zh) 有机发光器件及显示面板
JP2013544036A5 (zh)
CN102842678A (zh) 有机电致发光器件及其制作方法
CN107293645B (zh) 一种白光顶发光型有机发光二极管及其制备方法
Liu et al. Effect of Al: Ag alloy cathode on the performance of transparent organic light-emitting devices
CN104103768A (zh) 有机电致发光器件及其制作方法
CN104103764A (zh) 有机电致发光器件及其制作方法
CN114015919B (zh) 一种可见和近红外高透射率电极及其制备方法和一种有机发光器件
TWI472057B (zh) 有機發光二極體製造方法及其構造
CN112820833B (zh) 一种双热活化延迟荧光作为发光层的有机白光器件及制备方法
TWI406441B (zh) 白光有機發光二極體構造
CN104282836B (zh) 掺杂Ag2O的Cs2CO3薄层结构的有机电致发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/04/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18818568

Country of ref document: EP

Kind code of ref document: A1