WO2018228076A1 - 发光器件的老化测试方法和老化测试系统 - Google Patents

发光器件的老化测试方法和老化测试系统 Download PDF

Info

Publication number
WO2018228076A1
WO2018228076A1 PCT/CN2018/085434 CN2018085434W WO2018228076A1 WO 2018228076 A1 WO2018228076 A1 WO 2018228076A1 CN 2018085434 W CN2018085434 W CN 2018085434W WO 2018228076 A1 WO2018228076 A1 WO 2018228076A1
Authority
WO
WIPO (PCT)
Prior art keywords
time point
test
current value
emitting device
value
Prior art date
Application number
PCT/CN2018/085434
Other languages
English (en)
French (fr)
Inventor
孔超
郑克宁
陈栋
梁逸南
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/329,393 priority Critical patent/US10914781B2/en
Publication of WO2018228076A1 publication Critical patent/WO2018228076A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2642Testing semiconductor operation lifetime or reliability, e.g. by accelerated life tests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2632Circuits therefor for testing diodes
    • G01R31/2635Testing light-emitting diodes, laser diodes or photodiodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/58Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits involving end of life detection of LEDs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to an aging test method and an aging test system for a light emitting device.
  • OLEDs organic light emitting diodes
  • the role of OLEDs in the fields of illumination and display is becoming more and more important.
  • OLEDs are considered to have more application prospects because of their self-luminous, wide viewing angle, fast response, ultra-thin, high luminous efficiency, low power consumption, and wide operating temperature range.
  • the research work on organic lighting has also made great progress.
  • the present disclosure provides an aging test method and an aging test system for a light emitting device.
  • Some embodiments of the present disclosure provide an aging test method for a light emitting device, including the following steps:
  • S1 collecting a current value of the first feature parameter and a test time point corresponding to the current value, where a test time point corresponding to the current value is different from the initial test time point;
  • step S3 determining whether the slope of the characteristic line is greater than or equal to the set threshold and less than 0, in the case of determining that the slope of the characteristic line is less than the set threshold, return to step S1;
  • step S4 If it is determined that the slope of the characteristic line is greater than or equal to 0, replace the initial value with the current value, and replace the initial test time point with a test time point corresponding to the current value. And returning to step S1;
  • step S2 comprises the following steps:
  • the first characteristic parameter is a brightness of the light emitting device
  • the initial value is an initial brightness value of the light emitting device
  • the aging test method further comprises the following steps after the S5:
  • S6 Record at least one of performing a duration of the aging process and an aging amount of the light emitting device.
  • the characteristic line is a curve or a straight line.
  • the aging test method further includes the following steps:
  • the respective values of the first feature parameter, the test time point corresponding to the respective value, and the set threshold are stored in a memory.
  • the aging test method further includes the following steps:
  • the test mode of the burn-in test method is set.
  • the test mode includes one of a constant current mode, a constant voltage mode, and a constant brightness mode.
  • the current density of the light emitting device is set to 10 mA/cm 2 .
  • Some embodiments of the present disclosure provide an burn-in test system for a light emitting device.
  • the aging test system includes:
  • the collecting unit is configured to collect an initial value of the first characteristic parameter of the light emitting device and an initial test time point corresponding to the initial value during the aging process of the light emitting device, where the collecting unit is further configured to collect a current value of the first feature parameter and a test time point corresponding to the current value, wherein a test time point corresponding to the current value is different from the initial test time point;
  • a generating unit configured to generate a feature line according to the initial value, the current value, the initial test time point, and a test time point corresponding to the current value, and generate a slope of the feature line;
  • a determining unit configured to determine whether a slope of the characteristic line is greater than or equal to a set threshold and less than 0, and in a case where it is determined that a slope of the characteristic line is less than a set threshold, the determining unit triggers the collecting unit, And collecting, by the collecting unit, a current value of the first feature parameter and a test time point corresponding to the current value;
  • a setting unit configured to replace the initial value with the current value when the determining unit determines that the slope of the characteristic line is greater than or equal to 0, and replace the initial test time point with the The current time value corresponds to the test time point, and triggers the collection unit, and the collection unit continues to collect the current value of the first feature parameter and the test time point corresponding to the current value;
  • an aging controller configured to stop the aging process performed on the light emitting device if the determining unit determines that the slope of the feature line is greater than or equal to a set threshold and is less than 0.
  • the generating unit comprises:
  • a calculation subunit configured to calculate a ratio of the current value of the first feature parameter to the initial value, define the ratio as a current value of a second feature parameter, and calculate the second feature parameter
  • the initial value is set to 1;
  • And generating a subunit configured to generate a feature line according to a current value and an initial value of the second feature parameter, and the initial test time point and a test time point corresponding to the current value.
  • the first characteristic parameter is a brightness of the light emitting device
  • the initial value is an initial brightness value of the light emitting device
  • the aging controller is further configured to record at least one of a duration of the aging process and an aging amount of the illuminating device after the aging process on the illuminating device is stopped.
  • the setting unit is further configured to set a test mode of the burn-in test system before the collecting unit starts collecting the value of the first feature parameter.
  • the test mode includes one of a constant current mode, a constant voltage mode, and a constant brightness mode.
  • the current density of the light emitting device is set to 10 mA/cm 2 .
  • the burn-in test system further includes a memory for storing respective values of the first feature parameter, a test time point corresponding to the respective value, and the set threshold.
  • Some embodiments of the present disclosure provide a computer readable storage medium having stored thereon computer readable instructions that, when executed by a CPU, cause the CPU to perform an aging test method provided by the present disclosure .
  • FIG. 1 is a flowchart of a method for testing an aging of a light emitting device according to an embodiment of the present disclosure
  • FIG. 2 is a graph showing the life of the light emitting device in the case where the aging process of the light emitting device is not subjected to the aging test method of the embodiment;
  • FIG. 3 is a life curve diagram of a light emitting device in the case where the light emitting device is subjected to aging treatment by the burn-in test method of the embodiment;
  • FIG. 4 is a flowchart of a method for testing an aging of a light emitting device according to another embodiment of the present disclosure
  • 5 is a graph showing the life of the light emitting device in the case where the light emitting device is subjected to the aging treatment without using another embodiment
  • FIG. 6 is a comparison diagram of life curves of the light-emitting devices respectively obtained by aging the light-emitting device with and without the aging test method of the embodiment corresponding to FIG. 4;
  • FIG. 7 is a schematic structural diagram of an aging test system of a light emitting device according to another embodiment of the present disclosure.
  • Luminous lifetime (ie, product lifetime) is an important indicator for evaluating OLEDs.
  • product lifetime is an important indicator for evaluating OLEDs.
  • stable device performance is also an indispensable factor for OLEDs.
  • the product life difference between different batches of OLEDs is large, which makes the control of OLED aging difficult in the later stage. If the aging treatment of OLED is unreasonable, it will lead to a large difference in product life after shipment, which will affect the customer's use. Therefore, although different batches of OLEDs are devices of the same structure, the difference in lifetime is large.
  • the OLED products will be aged before leaving the factory.
  • the control of the aging amount of the OLED can generally be controlled by the duration of the aging process or the attenuation of a certain parameter value of the OLED, but neither of the above two solutions can well control the uniformity of the product life.
  • the aging amount of the OLED is controlled by the duration of the aging treatment during the aging process, the difference in lifetime of the different OLEDs is different after aging treatment is performed for different OLEDs for the same duration (for example, half an hour). Big. Therefore, the aging treatment of the OLED by the above two schemes may not ensure the uniformity of life between the OLED products.
  • FIG. 1 is a flowchart of a method for testing an aging of a light emitting device according to an embodiment of the present disclosure. As shown in FIG. 1, the aging test method may include the following steps S0, S1, S2, S3, and S5.
  • Step S0 During an aging process on the light emitting device, an initial value of the first characteristic parameter of the light emitting device and an initial test time point corresponding to the initial value are acquired.
  • the first characteristic parameter may be the brightness of the light emitting device
  • the initial value may be the first measurement of the brightness of the light emitting device.
  • Step S1 Collect a current value of the first feature parameter and a test time point corresponding to the current value, where a test time point corresponding to the current value is different from the initial test time point.
  • a plurality of values of the first characteristic parameter of the illuminating device and a test time point corresponding to the plurality of values may be separately acquired at different time points, and The plurality of values and corresponding test time points are stored in memory for subsequent processing. For example, in the subsequent processing, the adjacent two values and their corresponding test time points may be taken out from the memory each time in chronological order to continue to perform the following steps S2 to S5.
  • the aging test method of the light emitting device in this embodiment can be performed in the process of aging the light emitting device.
  • the light emitting device may be an OLED, but the present disclosure is not limited thereto.
  • the steps in this embodiment can be performed manually or by an burn-in test system of a light-emitting device to be described below.
  • the steps in the embodiment are performed by the aging test system of the light emitting device, before performing this step, the aging test system of the light emitting device can be supplied with a working power source to preheat the aging test system of the light emitting device.
  • the test mode may also be set before performing step S0.
  • the test mode may include a constant current mode, a constant voltage mode, and a constant brightness mode.
  • the test mode is a constant current mode.
  • the current density of all the light-emitting devices can be set to 10 mA/cm 2 .
  • the test mode in the present embodiment, in the process of testing the light-emitting device, all the light-emitting devices emit light in the set test mode, and each of the light-emitting devices can be set in the test during the burn-in test.
  • the test mode uses the constant current mode, all of the light-emitting devices emit light in a constant current mode. That is, the current of all of the light emitting devices is constant, and the current of each of the light emitting devices can be constant during the burn-in test.
  • the plurality of values of the first characteristic parameter of the light emitting device may be collected at set time intervals and the test time point when each value of the first feature parameter is collected is recorded.
  • the interval between two adjacent test time points is the set time interval.
  • the number of values of the first feature parameter collected may be multiple, for example, the number may be 2, 10, 40, or 60, and the like.
  • the present disclosure is not limited thereto, and the number of values of the acquired first feature parameters may be set as needed.
  • the first characteristic parameter may be brightness.
  • the present disclosure is not limited thereto, and the first characteristic parameter may be any measurable parameter that the light emitting device deteriorates over time.
  • Step S2 Generate a feature line according to the initial value, the current value, the initial test time point, and a test time point corresponding to the current value, and generate a slope of the feature line.
  • the horizontal axis represents the test time and the vertical axis represents the measured value
  • the point formed by the initial value and the initial test time point and the current value and the current are connected to obtain a characteristic line, and the slope of the characteristic line can be found.
  • This step S2 may specifically include the following steps S21 and S22.
  • Step S21 Calculate a ratio of the current value of the first feature parameter to the initial value, define the ratio as a current value of the second feature parameter, and set an initial value of the second feature parameter to 1 .
  • the calculated values of the second feature parameters are also multiple.
  • a plurality of values of the second feature parameter may be calculated according to the plurality of values and the initial value of the first feature parameter, and the number of the plurality of values of the second feature parameter may be equal to the number of the plurality of values of the first feature parameter.
  • the first characteristic parameter may be the brightness L
  • the initial value of the first feature parameter may be the initial brightness value L0
  • the second characteristic parameter may be L/L0 or L/L0 ⁇ 100%, and the initial value of the second characteristic parameter is set to 1 (ie, 100%).
  • multiple values of the first feature parameter may be collected in time sequence, wherein the first value of the first feature parameter collected in step S0 may be temporarily set to an initial value, that is, the initial value is temporarily equal to The first measured value of the first characteristic parameter.
  • the first characteristic parameter is brightness
  • the initial brightness value L0 is temporarily equal to the first measurement value of the brightness L
  • the first measurement value (ie, the initial value) of the second feature parameter may be set to 100%. (ie, 1).
  • Step S22 Generate a feature line according to a current value and an initial value of the second feature parameter, and the initial test time point and a test time point corresponding to the current value.
  • each measurement value of the first feature parameter corresponds to a test time point, which is a time point at which the value of the first feature parameter is acquired. Since the second characteristic parameter is calculated according to the first characteristic parameter, the test time point corresponding to each measured value of the second characteristic parameter is a test time point corresponding to each measured value of the first characteristic parameter.
  • the vertical characteristic axis represents the second characteristic parameter
  • the horizontal axis represents the test time point corresponding to each measurement value of the second characteristic parameter
  • the feature line is drawn in such a two-dimensional coordinate system, and the feature is obtained.
  • the slope of the line In other words, the vertical axis of the feature line is the second characteristic parameter, and the horizontal axis of the feature line is the test time corresponding to the measured value of the second characteristic parameter.
  • the characteristic line may be a curve or a straight line.
  • the characteristic line may be a straight line or a curve. For example, if the number of values of the first feature parameter collected during the aging process performed on the illuminating device is two, the number of values of the calculated second feature parameter is two, and the feature line may be straight line. If the number of values of the first feature parameter collected during the aging process performed on the light emitting device is greater than two (for example, 60), the calculated number of values of the second feature parameter is greater than two (for example, 60), the characteristic line can be a straight line or a curve.
  • the characteristic line represents the life line of the light emitting device.
  • Step S3 determining whether the slope of the feature line is greater than or equal to the set threshold and less than 0. If it is determined that the slope of the feature line is less than the set threshold, the process returns to step S1 to repeat step S1.
  • the feature line may be generated according to an initial value of the second feature parameter, a current value, the initial test time point, and a test time point corresponding to the current value, where the feature line is a straight line Therefore, the slope of the characteristic line can be calculated from the abscissa value and the ordinate value of the point on the line.
  • the generated characteristic line may be a curve.
  • the adjacent two points on the curve may be sequentially taken in chronological order to form a straight line, thereby converting the curve into a straight line, and calculating according to the abscissa value and the ordinate value of the point on the line.
  • the slope of this characteristic line It should be noted that in the case where the characteristic line is a curve, the slope of the characteristic line may have a different slope at different positions.
  • the set threshold is less than 0.
  • the set threshold may be -0.05.
  • Step S5 When it is determined that the slope of the characteristic line is greater than or equal to the set threshold and less than 0, the aging process of the light emitting device is stopped.
  • the aging device can be controlled to stop aging the light emitting device.
  • step S5 may further include at least one of step S6 of recording the duration of performing the aging process and the aging amount of the light emitting device.
  • the duration of the aging process may be the time elapsed from the start of the aging process to the aging process.
  • the amount of aging may be an amount of aging of the light-emitting device caused by aging treatment of the light-emitting device from the start of the aging treatment to the stop of the aging treatment.
  • the aging amount may be an absolute value of a difference between a value of the second characteristic parameter corresponding to a time point at which the aging process starts and a value of the second characteristic parameter corresponding to a time point at which the aging process is stopped.
  • the amount of aging may be an absolute value of a difference between values of the first characteristic parameter corresponding to the time point at which the aging process starts and the value of the first characteristic parameter corresponding to the time point at which the aging process is stopped.
  • life tests of different aging light-emitting devices can be performed. For example, different batches of light emitting devices can be sampled. The effects brought about by the aging test method of the light-emitting device in the present embodiment will be described in detail below by comparing FIG. 2 with FIG. 3.
  • FIG. 2 is a graph showing the life of the light-emitting device in the case where the light-emitting device is subjected to the aging treatment without using the burn-in test method of the embodiment corresponding to FIG. 1.
  • FIG. 2 the life curve of the light-emitting device 1 and the life curve of the light-emitting device 2 are largely different, that is, there is a large difference in the life curves of two different light-emitting devices. Therefore, different light-emitting devices have poor lifetime uniformity.
  • FIG. 3 is a graph showing the life of the light emitting device in the case where the light emitting device is subjected to the aging treatment using the burn-in test method of the embodiment corresponding to FIG. 1.
  • FIG. 3 is a life curve drawn after the life test of the aging treatment device.
  • the life curve of the light-emitting device 1 and the life curve of the light-emitting device 2 are very close, so the life curves of the two different light-emitting devices are very close, and there is no large difference. Therefore, different light-emitting devices have better lifetime uniformity.
  • the aging test method of the illuminating device in the process of aging the illuminating device, according to the value of the collected first characteristic parameter and the time corresponding to each measured value of the first characteristic parameter Points generate feature lines.
  • the aging process of the light emitting device is stopped.
  • different aging treatments are performed on different illuminating devices, which reduces the difference between the lifetimes of different illuminating devices, thereby improving the uniformity of the lifetime of the illuminating device.
  • FIG. 4 is a flowchart of a method for testing an aging of a light emitting device according to another embodiment of the present disclosure. As shown in FIG. 4, the method may include the following steps S0 to S5.
  • step S0, step S1, step S2, step S3, and step S5 of the aging test method provided by the embodiment corresponding to FIG. 4 may be the step S0 and step S1 of the aging test method provided by the embodiment corresponding to FIG. Step S2, step S3 and step S5 are the same, and the detailed description thereof can be referred to above and FIG. Therefore, step S4 will be mainly described below.
  • FIG. 5 is a graph showing the life of the light-emitting device in the case where the light-emitting device is subjected to the aging treatment without using the burn-in test method of the embodiment corresponding to FIG. 4.
  • the curve rises in the initial stage and the highest point of the rising curve is greater than 100%, and the curve begins to fall.
  • the curve rise may correspond to the case where the slope of the feature line is greater than 0, which is a feature line anomaly.
  • Step S4 in a case where it is determined that the slope of the characteristic line is greater than or equal to 0, the initial value in step S0 is replaced with the current value in step S1, and the process returns to step S1 to continue to perform step S1. .
  • Step S4 may be performed in the case where the characteristic line abnormality (that is, the slope of the characteristic line is greater than or equal to 0).
  • the initial value obtained in step S0 can be replaced with the current value of the first feature parameter acquired in step S1 when the illuminating device is abnormal (i.e., the curve as shown in FIG. 5 is raised).
  • the current value of the first feature parameter is continuously collected, and the initial value of the set is the corresponding first feature parameter when the slope of the feature line is greater than or equal to 0 (ie, the curve is as shown in FIG. 5).
  • step S3 the slope of the characteristic line is greater than or equal to the set threshold and less than 0, the aging process performed on the light emitting device can be stopped. If the subsequent feature line continues to rise from the initial value, it indicates that the feature line continues to be abnormal, and step S4 is performed again.
  • FIG. 6 is a graph showing the life curve of the light-emitting device obtained in the case where the light-emitting device is subjected to the aging treatment using the aging test method of the embodiment corresponding to FIG. 4, respectively.
  • Two curves are shown in Fig. 6, one curve is an abnormal curve, and a detailed description of the abnormal curve can be seen in Fig. 5 and its corresponding description.
  • the other curve is the post-aging curve, that is, the life curve obtained by performing the burn-in test on the light-emitting device using the burn-in test method of the embodiment corresponding to FIG. 4 and performing the life test after the aging process is stopped.
  • the other curve in FIG. 6 is a life curve drawn after the life test of the aging-treated light-emitting device. It can be seen from Fig. 6 that compared with the abnormal curve, there is no curve rise in the initial stage after the aging curve, thereby solving the problem that the characteristic line is abnormal, and the normal life curve is obtained.
  • the time point at which the aging process starts is referred to It is a time point at which the characteristic line starts to fall after the method of the present embodiment is executed, that is, a time point at which the characteristic line returns to normal, as shown by the start time point of the "post-aging curve" shown in FIG. 6.
  • the aging test method of the illuminating device in the process of aging the illuminating device, according to the value of the collected first characteristic parameter and the time corresponding to each measured value of the first characteristic parameter Points generate feature lines.
  • the aging process of the light emitting device is stopped.
  • different aging treatments are performed on different illuminating devices, which reduces the difference between the lifetimes of different illuminating devices, thereby improving the uniformity of the lifetime of the illuminating device.
  • FIG. 7 is a schematic structural diagram of an aging test system of a light emitting device according to still another embodiment of the present disclosure. As shown in FIG. 7, the system may include: an acquisition unit 11, a generation unit 12, a determination unit 13, and an aging controller 14.
  • the collecting unit 11 is configured to collect an initial value of the first characteristic parameter of the light emitting device and an initial test time point corresponding to the initial value during the aging process on the light emitting device.
  • the collecting unit 11 is further configured to collect a current value of the first feature parameter and a test time point corresponding to the current value. A test time point corresponding to the current value is different from the initial test time point.
  • the acquisition unit 11 may be a luminance meter.
  • the present disclosure is not limited thereto, and the acquisition unit 11 may vary according to the specific type of the first feature parameter.
  • the generating unit 12 is configured to generate a feature line according to the initial value, the current value, the initial test time point, and a test time point corresponding to the current value, and generate a slope of the feature line.
  • the generating unit 12 can be a calculator, a microprocessor, a central processing unit (CPU), a computer, or the like.
  • the determining unit 13 is configured to determine whether the slope of the characteristic line is greater than or equal to a set threshold and less than 0. The determining unit 13 triggers the collecting unit 11 to determine that the current value of the first feature parameter is consistent with the The test time point corresponding to the current value.
  • the determining unit 13 can be a comparator, a calculator, a CPU, a computer, or the like.
  • the aging controller 14 is configured to stop the aging process on the illuminating device if the determining unit 13 determines that the slope of the characteristic line is greater than or equal to the set threshold and is less than 0.
  • the aging controller 14 can control the aging device to stop the aging process performed on the light emitting device.
  • the aging controller 14 is further configured to record at least one of a duration of the aging process and an aging amount of the light emitting device after the aging process of the light emitting device is stopped.
  • the aging controller 14 can be a controller, CPU, computer, or the like.
  • the system may further include: a setting unit 15.
  • the setting unit 15 is configured to replace the initial value with the current value, and replace the initial test time point with the current value, when the determining unit 13 determines that the slope of the feature line is greater than or equal to 0.
  • the acquisition unit 11 is triggered, and the current value of the first feature parameter and the test time point corresponding to the current value are continuously collected by the acquisition unit 11.
  • the setting unit 15 may be a controller, a CPU, a computer, or the like.
  • the setting unit 15 may also set the test mode of the burn-in test system before the acquisition unit 11 starts collecting the value of the first feature parameter.
  • the test mode may include one of a constant current mode, a constant voltage mode, and a constant brightness mode.
  • the constant current mode the current density of the light emitting device can be set to 10 mA/cm 2 .
  • the generating unit 12 may include a computing subunit 121 and a generating subunit 122.
  • the calculating sub-unit 121 is configured to calculate a ratio of the current value of the first feature parameter to the initial value, define the ratio as a current value of the second feature parameter, and calculate the second feature parameter The initial value is set to 1.
  • the generating sub-unit 122 is configured to generate a feature line according to the current value and the initial value of the second feature parameter and the initial test time point and a test time point corresponding to the current value.
  • the generating sub-unit 122 may be a CPU or the like
  • the computing sub-unit 121 may be an arithmetic logic unit (ALU) of the CPU or the like.
  • ALU arithmetic logic unit
  • the burn-in test system can also include a memory that can be coupled to one or more of the various components shown in FIG.
  • the memory may be configured to store respective values of the first feature parameter, a test time point corresponding to the respective value, and the set threshold.
  • the memory can also be used to store various values of the second characteristic parameter, various software or programs of the burn-in test system, and other data.
  • the various components shown in Figure 7 may be integrated circuits (ICs) having corresponding functions provided by the present disclosure.
  • the various components shown in FIG. 7 can be implemented by a combination of software and hardware.
  • software implementing the functions of the present disclosure may be installed in a general purpose computer, and when the CPU of the general purpose computer executes the software, the burn-in test system and the burn-in test method of the present disclosure are implemented.
  • the initial value of the first feature parameter may first be equal to the first measurement value of the first feature parameter. As shown in FIG. 5, in the case where the characteristic line rises, the initial value is replaced with the current measurement value of the first characteristic parameter, and then the new measurement value of the first characteristic parameter is continuously acquired.
  • the first feature parameter may be brightness
  • the initial value of the first feature parameter may be an initial brightness value
  • the characteristic line may be a curve or a straight line.
  • the aging test system of the illuminating device provided in this embodiment can be used to implement the aging test method of the illuminating device provided by the embodiment corresponding to FIG. 1 or the embodiment corresponding to FIG. 4 .
  • the aging test system of the illuminating device in the process of aging the illuminating device, according to the value of the collected first characteristic parameter and the time corresponding to each measured value of the first characteristic parameter Points generate feature lines.
  • the aging process of the light emitting device is stopped.
  • different aging treatments are performed on different illuminating devices, which reduces the difference between the lifetimes of different illuminating devices, thereby improving the uniformity of the lifetime of the illuminating device.
  • Some embodiments of the present disclosure provide a computer readable storage medium having stored thereon computer readable instructions that, when executed by a CPU, cause the CPU to perform an aging test method provided by the present disclosure .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Led Devices (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

一种发光器件的老化测试方法和老化测试系统。该方法包括:在对发光器件进行老化处理的过程中,采集发光器件的第一特征参数的初始值和与初始值对应的初始测试时间点;步骤S1:采集第一特征参数的当前值和与当前值对应的测试时间点,其中,与当前值对应的测试时间点不同于初始测试时间点;根据初始值、当前值、初始测试时间点和与当前值对应的测试时间点来生成特征线,并生成特征线的斜率;判断特征线的斜率是否大于或等于设定阈值且小于0,在判断出特征线的斜率小于设定阈值的情况下,返回至步骤S1;在判断出特征线的斜率大于或等于0的情况下,将初始值替换为当前值,将初始测试时间点替换为与当前值对应的测试时间点,并返回至步骤S1;以及在判断出特征线的斜率大于或等于设定阈值且小于0的情况下,停止对发光器件进行老化处理。

Description

发光器件的老化测试方法和老化测试系统
相关申请的交叉引用
本申请要求于2017年6月16日提交的中国专利申请No.201710457024.3的优先权,该专利申请的全部内容通过引用方式合并于此。
技术领域
本公开涉及显示技术领域,特别涉及一种发光器件的老化测试方法和老化测试系统。
背景技术
随着有机半导体技术的进步,有机发光二极管(Organic light emitting diodes,简称OLED)日益成熟,OLED在照明和显示等领域发挥的作用越来越重要。与传统的液晶显示器不同,因为OLED具有自发光、宽视角、响应速度快、超薄、发光效率高、功耗低、工作温度范围宽等特点,被认为更有应用前景。同时,有机照明的研究工作也取得了较大的进展。
发明内容
本公开提供一种发光器件的老化测试方法和老化测试系统。
本公开的一些实施例提供了一种发光器件的老化测试方法,包括以下步骤:
S0、在对发光器件进行老化处理的过程中,采集所述发光器件的第一特征参数的初始值和与所述初始值对应的初始测试时间点;
S1、采集所述第一特征参数的当前值和与所述当前值对应的测试时间点,其中,与所述当前值对应的测试时间点不同于所述初始测试时间点;
S2、根据所述初始值、所述当前值、所述初始测试时间点和与所述 当前值对应的测试时间点来生成特征线,并生成所述特征线的斜率;
S3、判断所述特征线的斜率是否大于或等于设定阈值且小于0,在判断出所述特征线的斜率小于设定阈值的情况下,返回至步骤S1;
S4、在判断出所述特征线的斜率大于或等于0的情况下,将所述初始值替换为所述当前值,将所述初始测试时间点替换为与所述当前值对应的测试时间点,并返回至步骤S1;以及
S5、在判断出所述特征线的斜率大于或等于设定阈值且小于0的情况下,停止对所述发光器件进行老化处理。
在一个实施例中,所述步骤S2包括以下步骤:
S21、计算出所述第一特征参数的所述当前值和所述初始值的比率,将所述比例定义为第二特征参数的当前值,并且将所述第二特征参数的初始值设置为1;以及
S22、根据所述第二特征参数的当前值和初始值以及所述初始测试时间点和与所述当前值对应的测试时间点来生成特征线。
在一个实施例中,所述第一特征参数为所述发光器件的亮度,所述初始值为所述发光器件的初始亮度值。
在一个实施例中,所述老化测试方法在所述S5之后还包括以下步骤:
S6、记录执行所述老化处理的持续时间和所述发光器件的老化量中的至少一个。
在一个实施例中,所述特征线为曲线或者直线。
在一个实施例中,所述老化测试方法还包括以下步骤:
将所述第一特征参数的各个值、与所述各个值对应的测试时间点和所述设定阈值存储在存储器中。
在一个实施例中,所述老化测试方法还包括以下步骤:
在所述步骤S0之前,设置所述老化测试方法的测试模式。
在一个实施例中,所述测试模式包括恒流模式、恒电压模式和恒亮度模式之一。
在一个实施例中,在所述恒流模式中,将所述发光器件的电流密度设置为10mA/cm 2
本公开的一些实施例提供了一种发光器件的老化测试系统。所述老 化测试系统包括:
采集单元,用于在对发光器件进行老化处理的过程中,采集所述发光器件的第一特征参数的初始值和与所述初始值对应的初始测试时间点,所述采集单元还用于采集所述第一特征参数的当前值和与所述当前值对应的测试时间点,其中,与所述当前值对应的测试时间点不同于所述初始测试时间点;
生成单元,用于根据所述初始值、所述当前值、所述初始测试时间点和与所述当前值对应的测试时间点来生成特征线,并生成所述特征线的斜率;
判断单元,用于判断所述特征线的斜率是否大于或等于设定阈值且小于0,在判断出所述特征线的斜率小于设定阈值的情况下,所述判断单元触发所述采集单元,由所述采集单元继续采集所述第一特征参数的当前值和与所述当前值对应的测试时间点;
设置单元,用于在所述判断单元判断出所述特征线的斜率大于或等于0的情况下,将所述初始值替换为所述当前值,将所述初始测试时间点替换为与所述当前值对应的测试时间点,并触发所述采集单元,由所述采集单元继续采集所述第一特征参数的当前值和与所述当前值对应的测试时间点;以及
老化控制器,用于在所述判断单元判断出所述特征线的斜率大于或等于设定阈值且小于0的情况下,停止对所述发光器件进行的所述老化处理。
在一个实施例中,所述生成单元包括:
计算子单元,用于计算出所述第一特征参数的所述当前值和所述初始值的比率,将所述比例定义为第二特征参数的当前值,并且将所述第二特征参数的初始值设置为1;以及
生成子单元,用于根据所述第二特征参数的当前值和初始值以及所述初始测试时间点和与所述当前值对应的测试时间点来生成特征线。
在一个实施例中,所述第一特征参数为所述发光器件的亮度,所述初始值为所述发光器件的初始亮度值。
在一个实施例中,所述老化控制器还用于在停止对所述发光器件进 行的所述老化处理之后,记录所述老化处理的持续时间和所述发光器件的老化量中的至少一个。
在一个实施例中,所述设置单元还用于在所述采集单元开始采集所述第一特征参数的值之前,设置所述老化测试系统的测试模式。
在一个实施例中,所述测试模式包括恒流模式、恒电压模式和恒亮度模式之一。
在一个实施例中,在所述恒流模式中,将所述发光器件的电流密度设置为10mA/cm 2
在一个实施例中,所述老化测试系统还包括存储器,所述存储器用于存储所述第一特征参数的各个值、与所述各个值对应的测试时间点和所述设定阈值。
本公开的一些实施例提供了一种计算机可读存储介质,其上存储有计算机可读指令,所述计算机可读指令在被CPU执行时,使所述CPU执行本公开所提供的老化测试方法。
附图说明
图1为本公开实施例提供的一种发光器件的老化测试方法的流程图;
图2为未采用实施例的老化测试方法对发光器件进行老化处理的情况下发光器件的寿命曲线图;
图3为采用实施例的老化测试方法对发光器件进行老化处理的情况下发光器件的寿命曲线图;
图4为本公开另一实施例提供的一种发光器件的老化测试方法的流程图;
图5为未采用另一实施例对发光器件进行老化处理的情况下发光器件的寿命曲线图;
图6为采用和未采用图4所对应的实施例的老化测试方法对发光器件进行老化处理的情况下分别得到的发光器件的寿命曲线的对比图;以及
图7为本公开又一实施例提供的一种发光器件的老化测试系统的结构示意图。
具体实施方式
为使本领域的技术人员更好地理解本公开的技术方案,下面结合附图对本公开的实施例提供的发光器件的老化测试方法和老化测试系统进行详细描述。
发光寿命(即,产品寿命)是评价OLED的重要指标。目前OLED除了要在材料和制备工艺方面继续提高之外,稳定的器件性能也是OLED不可缺少的因素。OLED量产过程中影响OLED的产品寿命的因素众多,不同批次OLED间的产品寿命差异较大,导致后期对OLED老化的控制较困难。如果对OLED老化处理不合理,就会导致出厂后的产品寿命差异较大,影响客户的使用。因此,不同批次的OLED虽然为相同结构的器件,但是寿命的差异却很大。为保证出厂后OLED产品寿命的均一性和稳定性,出厂前会对OLED产品进行老化处理。
老化处理中,对OLED老化量的控制,一般可以采取老化处理的持续时间控制或者OLED的某个参数值的衰减量控制,但是上述两种方案都不能很好的控制产品寿命的均一性。例如,若在老化处理过程中以老化处理的持续时间控制OLED的老化量,则在对不同的OLED采用相同的持续时间(例如,半个小时)进行老化处理之后,不同的OLED的寿命差异较大。因此,采用上述两种方案对OLED进行老化处理,可能无法保证OLED产品之间寿命的均一性。
图1为本公开实施例提供的一种发光器件的老化测试方法的流程图。如图1所示,该老化测试方法可以包括以下步骤S0、步骤S1、步骤S2、步骤S3和步骤S5。
步骤S0、在对发光器件进行老化处理的过程中,采集所述发光器件的第一特征参数的初始值和与所述初始值对应的初始测试时间点。例如,所述第一特征参数可以是所述发光器件的亮度,所述初始值可以是所述发光器件的亮度的第一次测量值。
步骤S1、采集所述第一特征参数的当前值和与所述当前值对应的测试时间点,其中,与所述当前值对应的测试时间点不同于所述初始测试时间点。可替换地,在对发光器件进行老化处理的过程中,可以在不同的时间点分别采集发光器件的第一特征参数的多个值和与所述多个值对应的 测试时间点,并将所述多个值和对应的测试时间点存储在存储器中,以用于后续处理。例如,在后续处理中,可按照时间先后顺序,每次从存储器中取出相邻的两个值及其对应的测试时间点,以继续执行以下步骤S2至S5。
本实施例中的发光器件的老化测试方法可以在对发光器件进行老化处理的过程中进行。例如,发光器件可以为OLED,但是本公开不限于此。
本实施例中各步骤可以手动执行或者由将在下文描述的发光器件的老化测试系统执行。在本实施例中各步骤由发光器件的老化测试系统执行的情况下,在执行本步骤之前,可以向发光器件的老化测试系统提供工作电源,以对发光器件的老化测试系统进行预热。
本实施例中,在执行步骤S0之前还可以设置测试模式。例如,测试模式可包括恒流模式,恒电压模式和恒亮度模式。本实施例中,测试模式为恒流模式。例如,可将所有发光器件的电流密度设置为10mA/cm 2。在设置了测试模式的情况下,本实施中,在对发光器件进行测试的过程中,所有发光器件均以设置的测试模式发光,并且每个发光器件在老化测试的过程中可以以设置的测试模式发光。例如,当测试模式采用恒流模式时,所有发光器件均以恒流模式发光。即,所有发光器件的电流是恒定的,并且每个发光器件的电流在老化测试的过程中可以是恒定的。
本实施例中,可按设定时间间隔采集发光器件的第一特征参数多个值并记录采集第一特征参数的每个值时的测试时间点。换言之,两个相邻的测试时间点之间的间隔为所述设定时间间隔。在老化处理的过程中,采集的第一特征参数的值的数量可以为多个,例如,数量可以为2个、10个、40个或者60个等。然而,本公开不限于此,采集的第一特征参数的值的数量可根据需要进行设置。
本实施例中,如上所述,第一特征参数可以为亮度。然而,本公开不限于此,第一特征参数可以为所述发光器件的随着时间的流逝而劣化的任何可测量的参数。
步骤S2、根据所述初始值、所述当前值、所述初始测试时间点和与所述当前值对应的测试时间点来生成特征线,并生成特征线的斜率。例如,可以在横轴表示测试时间、纵轴表示测量到的值的二维坐标系中,将所述 初始值和所述初始测试时间点所形成的点与所述当前值和与所述当前值对应的测试时间点形成的点连接起来,从而得到特征线,并且可以求出所述特征线的斜率。
本步骤S2具体可包括以下步骤S21和S22。
步骤S21、计算出第一特征参数的所述当前值和所述初始值的比率,将所述比例定义为第二特征参数的当前值,并且将所述第二特征参数的初始值设置为1。
本实施例中,由于先后采集的第一特征参数的值为多个,则计算出的第二特征参数的值也为多个。换言之,根据第一特征参数的多个值和初始值可计算出第二特征参数的多个值,并且第二特征参数的多个值的数量可以等于第一特征参数的多个值的数量。
本实施例中,第一特征参数可以为亮度L,第一特征参数的初始值可以为初始亮度值L0。在此情况下,第二特征参数可以为L/L0或L/L0×100%,并且将所述第二特征参数的初始值设置为1(即,100%)。
本实施例中,可按时间顺序采集第一特征参数的多个值,其中,步骤S0中采集的第一特征参数的第一个值可暂时设置为初始值,也就是说,初始值暂时等于第一特征参数的第一个测量值。在第一特征参数为亮度的情况下,初始亮度值L0暂时等于亮度L的第一个测量值,相应地,第二特征参数的第一个测量值(即,初始值)可以设为100%(即,1)。
步骤S22、根据第二特征参数的当前值和初始值以及所述初始测试时间点和与所述当前值对应的测试时间点来生成特征线。
需要说明的是:第一特征参数的每个测量值均对应于一个测试时间点,该测试时间点为采集第一特征参数的值的时间点。由于第二特征参数是根据第一特征参数计算出的,因此与第二特征参数的每个测量值对应的测试时间点即为与第一特征参数的每个测量值对应的测试时间点。
本步骤中,可以用纵轴表示第二特征参数、用横轴表示第二特征参数的各个测量值对应的测试时间点,在这样的二维坐标系中绘制出特征线,并求出该特征线的斜率。换言之,特征线的纵轴为第二特征参数,特征线的横轴为与第二特征参数的测量值对应的测试时间。
本实施例中,特征线可以为曲线或者直线。例如,若在对发光器件 进行的老化处理的过程中采集的第一特征参数的值的数量为2个,则计算出的第二特征参数的值的数量为2个,此时特征线可以为直线。若在对发光器件进行的老化处理的过程中采集的第一特征参数的值的数量大于2个(例如,60个),则计算出的第二特征参数的值的数量大于2个(例如,60个),此时特征线可以为直线或曲线。
本实施例中,特征线表示发光器件的寿命线。
步骤S3、判断特征线的斜率是否大于或等于设定阈值且小于0,在判断出特征线的斜率小于设定阈值的情况下,返回至步骤S1以重复执行步骤S1。
如上所述,本步骤中,可以根据所述第二特征参数的初始值、当前值、所述初始测试时间点和与所述当前值对应的测试时间点来生成特征线,该特征线为直线,因此可根据该直线上点的横坐标值和纵坐标值计算出该特征线的斜率。
可替换地,本步骤中,若先后采集的测量值的数量大于2,则生成的特征线可以为曲线。在此情况下,可以按照时间先后顺序,依次取该曲线上的相邻两点,以形成直线,从而将该曲线转换为直线,并根据该直线上点的横坐标值和纵坐标值计算出该特征线的斜率。应当说明的是,在特征线为曲线的情况下,所述特征线的斜率在不同的位置的斜率可以不同。
本实施例中,所述设定阈值小于0,例如,所述设定阈值可以为-0.05。
步骤S5、在判断出特征线的斜率大于或等于设定阈值且小于0的情况下,停止对发光器件进行老化处理。
本步骤中,可控制老化设备停止对发光器件进行老化处理。
在一个实施例中,步骤S5之后还可以包括步骤S6、记录执行老化处理的持续时间和所述发光器件的老化量中的至少一个。
在一个实施例中,老化处理的持续时间可以为从老化处理开始至老化处理停止所经历的时间。老化量可以为从老化处理开始至老化处理停止期间对进行发光器件进行老化处理导致的发光器件的老化量。例如,老化量可以为老化处理开始的时间点对应的第二特征参数的值与老化处理停止的时间点对应的第二特征参数的值之间的差值的绝对值。可替换地,老化量可以为老化处理开始的时间点对应的第一特征参数的值与老化处理 停止的时间点对应的第一特征参数的值之间的差值的绝对值。
在实际生产中,按照本实施例提供的方法对所有需要老化的发光器件进行老化之后,可对不同的老化后的发光器件进行寿命测试。例如,可对不同批次的发光器件进行抽测。下面通过将图2和图3进行对比,对本实施例中发光器件的老化测试方法所带来的效果进行详细描述。
图2为未采用图1所对应的实施例的老化测试方法对发光器件进行老化处理的情况下发光器件的寿命曲线图。如图2所示,发光器件1的寿命曲线和发光器件2的寿命曲线差别较大,即,两个不同的发光器件的寿命曲线存在较大的差异。因此,不同的发光器件的寿命均一性较差。
图3为采用图1所对应的实施例的老化测试方法对发光器件进行老化处理的情况下发光器件的寿命曲线图。换言之,图3是对老化处理后的发光器件再进行寿命测试后绘制出的寿命曲线。从图3可以看出,发光器件1的寿命曲线和发光器件2的寿命曲线非常接近,因此两个不同的发光器件的寿命曲线非常接近,不存在较大的差异。因此不同的发光器件的寿命均一性较好。
本实施例提供的发光器件的老化测试方法的技术方案中,在对发光器件进行老化处理的过程中,根据采集的第一特征参数的值和与第一特征参数的每个测量值对应的时间点生成特征线。在判断出特征线的斜率大于或等于设定阈值且小于0的情况下,停止对发光器件进行老化处理。本实施例对不同的发光器件进行相应的老化处理,降低了不同的发光器件的寿命之间的差异,从而提高了发光器件的寿命的均一性。
图4为本公开另一实施例提供的一种发光器件的老化测试方法的流程图。如图4所示,该方法可以包括以下步骤S0至步骤S5。
应当说明的是,图4所对应的实施例提供的老化测试方法与图1所对应的实施例提供的老化测试方法的区别在于步骤S4。换言之,图4所对应的实施例提供的老化测试方法的步骤S0、步骤S1、步骤S2、步骤S3和步骤S5可以与图1所对应的实施例提供的老化测试方法的步骤S0、步骤S1、步骤S2、步骤S3和步骤S5相同,其详细表述可参见上文和图1。因此,下文中主要对步骤S4进行描述。
如图4所示,在上述步骤S3的判断中,若判断出所述特征线的斜率 大于或等于0,则表明特征线异常,该特征线异常是由发光器件本身异常导致的。图5为未采用图4所对应的实施例的老化测试方法对发光器件进行老化处理的情况下发光器件的寿命曲线图。如图5所示,在初始阶段出现了曲线上升的情况且上升曲线的最高点大于100%,而后曲线开始下降。例如,曲线上升可以对应于特征线的斜率大于0的情况,这种情况为特征线异常。也就是说,如果未对发光器件进行老化处理而对发光器件进行寿命测试,会出现图5中曲线上升的情况。此种情况出现表示发光器件本身出现异常。
步骤S4、在判断出所述特征线的斜率大于或等于0的情况下,将步骤S0中的所述初始值替换为步骤S1中的所述当前值,并返回至步骤S1以继续执行步骤S1。
在特征线异常(即所述特征线的斜率大于或等于0)的情况下可执行步骤S4。本步骤中,可利用发光器件异常(即,如图5中所示的曲线上升)时在步骤S1中采集到的第一特征参数的当前值来替换在步骤S0中获得的初始值。然后继续对发光器件进行测试,即继续执行步骤S1。设置完初始值后继续采集第一特征参数的当前值,由于设置的初始值为特征线的斜率大于或等于0(即,如图5中所示的曲线上升)时对应的第一特征参数中的最大值,因此从初始值开始若后续特征线下降且在步骤S3中判断出特征线的斜率大于或等于设定阈值且小于0,则可停止对发光器件进行的老化处理。若从初始值开始,后续特征线继续上升则表明特征线继续出现异常,则会再执行步骤S4。
图6为采用和未采用图4所对应的实施例的老化测试方法对发光器件进行老化处理的情况下分别得到的发光器件的寿命曲线对比图。图6中示出了两条曲线,一条曲线为异常曲线,对该异常曲线的具体描述可参见图5及其对应的描述。另一条曲线为老化后曲线,即,采用图4所对应的实施例的老化测试方法对发光器件进行老化测试并在老化处理停止后进行寿命测试得出的寿命曲线。换言之,图6中另一条曲线是对老化处理后的发光器件再进行寿命测试后绘制出的寿命曲线。从图6可以看出与异常曲线相比,老化后曲线不存在初始阶段的曲线上升的情况,从而解决了特征线出现异常的问题,得出了正常的寿命曲线。
此处需要说明的是:针对特征线出现异常的情况,在记录执行老化处理的持续时间和所述发光器件的老化量中的至少一个(上述步骤S6)时,老化处理开始的时间点指的是执行本实施例的方法后特征线开始下降的时间点,即,特征线恢复正常的时间点,如图6中所示的“老化后曲线”的起始时间点所示。
本实施例提供的发光器件的老化测试方法的技术方案中,在对发光器件进行老化处理的过程中,根据采集的第一特征参数的值和与第一特征参数的每个测量值对应的时间点生成特征线。在判断出特征线的斜率大于或等于设定阈值且小于0的情况下,停止对发光器件进行老化处理。本实施例对不同的发光器件进行相应的老化处理,降低了不同的发光器件的寿命之间的差异,从而提高了发光器件的寿命的均一性。
图7为本公开的又一实施例提供的一种发光器件的老化测试系统的结构示意图。如图7所示,该系统可以包括:采集单元11、生成单元12、判断单元13和老化控制器14。
采集单元11用于在对发光器件进行老化处理的过程中,采集所述发光器件的第一特征参数的初始值和与所述初始值对应的初始测试时间点。所述采集单元11还用于采集所述第一特征参数的当前值和与所述当前值对应的测试时间点。与所述当前值对应的测试时间点不同于所述初始测试时间点。在所述第一特征参数为亮度的情况下,采集单元11可以为亮度计。然而,本公开不限于此,采集单元11可以根据所述第一特征参数的具体类型而变化。
生成单元12用于根据所述初始值、所述当前值、所述初始测试时间点和与所述当前值对应的测试时间点来生成特征线,并生成所述特征线的斜率。在一个实施例中,生成单元12可以为计算器、微处理器、中央处理单元(CPU)、计算机或类似部件。
判断单元13用于判断所述特征线的斜率是否大于或等于设定阈值且小于0。在判断出所述特征线的斜率小于设定阈值的情况下,所述判断单元13触发所述采集单元11,由所述采集单元11继续采集所述第一特征参数的当前值和与所述当前值对应的测试时间点。在一个实施例中,判断单元13可以为比较器、计算器、CPU、计算机或类似部件。
老化控制器14用于在判断单元13判断出所述特征线的斜率大于或等于设定阈值且小于0的情况下,停止对发光器件进行老化处理。例如,老化控制器14可控制老化设备停止对发光器件进行的老化处理。进一步地,老化控制器14还用于在停止对发光器件进行老化处理之后记录老化处理的持续时间和发光器件的老化量中的至少一个。在一个实施例中,老化控制器14可以是控制器、CPU、计算机或类似部件。
进一步地,该系统还可以包括:设置单元15。设置单元15用于在判断单元13判断出特征线的斜率大于或等于0的情况下,将所述初始值替换为所述当前值,将所述初始测试时间点替换为与所述当前值对应的测试时间点,并触发采集单元11,由采集单元11继续采集所述第一特征参数的当前值和与所述当前值对应的测试时间点。在一个实施例中,设置单元15可以是控制器、CPU、计算机或类似部件。
设置单元15还可以在采集单元11开始采集所述第一特征参数的值之前,设置所述老化测试系统的测试模式。所述测试模式可以包括恒流模式、恒电压模式和恒亮度模式之一。在所述恒流模式中,可以将所述发光器件的电流密度设置为10mA/cm 2
在一个实施例中,生成单元12可以包括:计算子单元121和生成子单元122。计算子单元121用于计算出所述第一特征参数的所述当前值和所述初始值的比率,将所述比例定义为第二特征参数的当前值,并且将所述第二特征参数的初始值设置为1。生成子单元122用于根据所述第二特征参数的当前值和初始值以及所述初始测试时间点和与所述当前值对应的测试时间点来生成特征线。在一个实施例中,生成子单元122可以为CPU或类似部件,计算子单元121可以为CPU的算数逻辑单元(ALU)或类似部件。
此外,所述老化测试系统还可以包括存储器,该存储器可以连接至图7所示的各个部件中的一个或多个。所述存储器可以用于存储所述第一特征参数的各个值、与所述各个值对应的测试时间点和所述设定阈值。所述存储器还可以用于存储所述第二特征参数的各个值、所述老化测试系统的各种软件或程序、以及其它数据。
以上举例说明了图7所示的各个部件的硬件实施方式。可替换地, 图7所示的各个部件可以是具有本公开所提供的相应功能的集成电路(IC)。可替换地,图7所示的各个部件可以通过软件和硬件结合的方式来实现。例如,在一个实施例中,可以在通用计算机中安装实现了本公开的功能的软件,在所述通用计算机的CPU执行所述软件时,实现本公开的老化测试系统和老化测试方法。
与前述实施例相似,本实施例中,所述第一特征参数的初始值可以首先等于第一特征参数的第一个测量值。如图5所示,在特征线出现上升的情况下,所述初始值会被替换为第一特征参数的当前测量值,然后继续采集第一特征参数的新的测量值。
本实施例中,所述第一特征参数可以为亮度,所述第一特征参数的初始值可以为初始亮度值。
本实施例中,所述特征线可以为曲线或者直线。
本实施例提供的发光器件的老化测试系统可用于实现图1所对应的实施例或图4所对应的实施例提供的发光器件的老化测试方法。
本实施例提供的发光器件的老化测试系统的技术方案中,在对发光器件进行老化处理的过程中,根据采集的第一特征参数的值和与第一特征参数的每个测量值对应的时间点生成特征线。在判断出特征线的斜率大于或等于设定阈值且小于0的情况下,停止对发光器件进行老化处理。本实施例对不同的发光器件进行相应的老化处理,降低了不同的发光器件的寿命之间的差异,从而提高了发光器件的寿命的均一性。
本公开的一些实施例提供了一种计算机可读存储介质,其上存储有计算机可读指令,所述计算机可读指令在被CPU执行时,使所述CPU执行本公开所提供的老化测试方法。
在没有冲突的情况下,本公开的各个实施例可以互相结合。
应当理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也属于本公开的保护范围。

Claims (18)

  1. 一种发光器件的老化测试方法,包括以下步骤:
    S0、在对发光器件进行老化处理的过程中,采集所述发光器件的第一特征参数的初始值和与所述初始值对应的初始测试时间点;
    S1、采集所述第一特征参数的当前值和与所述当前值对应的测试时间点,其中,与所述当前值对应的测试时间点不同于所述初始测试时间点;
    S2、根据所述初始值、所述当前值、所述初始测试时间点和与所述当前值对应的测试时间点来生成特征线,并生成所述特征线的斜率;
    S3、判断所述特征线的斜率是否大于或等于设定阈值且小于0,在判断出所述特征线的斜率小于设定阈值的情况下,返回至步骤S1;
    S4、在判断出所述特征线的斜率大于或等于0的情况下,将所述初始值替换为所述当前值,将所述初始测试时间点替换为与所述当前值对应的测试时间点,并返回至步骤S1;以及
    S5、在判断出所述特征线的斜率大于或等于设定阈值且小于0的情况下,停止对所述发光器件进行老化处理。
  2. 根据权利要求1所述的老化测试方法,其中,所述步骤S2包括以下步骤:
    S21、计算出所述第一特征参数的所述当前值和所述初始值的比率,将所述比例定义为第二特征参数的当前值,并且将所述第二特征参数的初始值设置为1;以及
    S22、根据所述第二特征参数的当前值和初始值以及所述初始测试时间点和与所述当前值对应的测试时间点来生成特征线。
  3. 根据权利要求2所述的发光器件的老化测试方法,其中,所述第一特征参数为所述发光器件的亮度,所述初始值为所述发光器件的初始亮度值。
  4. 根据权利要求1所述的老化测试方法,其中,所述S5之后还包 括以下步骤:
    S6、记录执行所述老化处理的持续时间和所述发光器件的老化量中的至少一个。
  5. 根据权利要求1所述的老化测试方法,其中,所述特征线为曲线或者直线。
  6. 根据权利要求1所述的老化测试方法,还包括以下步骤:
    将所述第一特征参数的各个值、与所述各个值对应的测试时间点和所述设定阈值存储在存储器中。
  7. 根据权利要求1至6中任一项所述的老化测试方法,还包括以下步骤:
    在所述步骤S0之前,设置所述老化测试方法的测试模式。
  8. 根据权利要求7所述的老化测试方法,其中,所述测试模式包括恒流模式、恒电压模式和恒亮度模式之一。
  9. 根据权利要求8所述的老化测试方法,其中,在所述恒流模式中,将所述发光器件的电流密度设置为10mA/cm 2
  10. 一种发光器件的老化测试系统,包括:
    采集单元,用于在对发光器件进行老化处理的过程中,采集所述发光器件的第一特征参数的初始值和与所述初始值对应的初始测试时间点,所述采集单元还用于采集所述第一特征参数的当前值和与所述当前值对应的测试时间点,其中,与所述当前值对应的测试时间点不同于所述初始测试时间点;
    生成单元,用于根据所述初始值、所述当前值、所述初始测试时间点和与所述当前值对应的测试时间点来生成特征线,并生成所述特征线的斜率;
    判断单元,用于判断所述特征线的斜率是否大于或等于设定阈值且小于0,在判断出所述特征线的斜率小于设定阈值的情况下,所述判断单元触发所述采集单元,由所述采集单元继续采集所述第一特征参数的当前值和与所述当前值对应的测试时间点;
    设置单元,用于在所述判断单元判断出所述特征线的斜率大于或等于0的情况下,将所述初始值替换为所述当前值,将所述初始测试时间点替换为与所述当前值对应的测试时间点,并触发所述采集单元,由所述采集单元继续采集所述第一特征参数的当前值和与所述当前值对应的测试时间点;以及
    老化控制器,用于在所述判断单元判断出所述特征线的斜率大于或等于设定阈值且小于0的情况下,停止对所述发光器件进行的所述老化处理。
  11. 根据权利要求10所述的老化测试系统,其中,所述生成单元包括:
    计算子单元,用于计算出所述第一特征参数的所述当前值和所述初始值的比率,将所述比例定义为第二特征参数的当前值,并且将所述第二特征参数的初始值设置为1;以及
    生成子单元,用于根据所述第二特征参数的当前值和初始值以及所述初始测试时间点和与所述当前值对应的测试时间点来生成特征线。
  12. 根据权利要求11所述的老化测试系统,其中,所述第一特征参数为所述发光器件的亮度,所述初始值为所述发光器件的初始亮度值。
  13. 根据权利要求10至12中任一项所述的老化测试系统,其中,所述老化控制器还用于在停止对所述发光器件进行的所述老化处理之后,记录所述老化处理的持续时间和所述发光器件的老化量中的至少一个。
  14. 根据权利要求10至13中任一项所述的老化测试系统,其中,所述设置单元还用于在所述采集单元开始采集所述第一特征参数的值之 前,设置所述老化测试系统的测试模式。
  15. 根据权利要求14所述的老化测试系统,其中,所述测试模式包括恒流模式、恒电压模式和恒亮度模式之一。
  16. 根据权利要求15所述的老化测试系统,其中,在所述恒流模式中,将所述发光器件的电流密度设置为10mA/cm 2
  17. 根据权利要求10至16中任一项所述的老化测试系统,还包括存储器,所述存储器用于存储所述第一特征参数的各个值、与所述各个值对应的测试时间点和所述设定阈值。
  18. 一种计算机可读存储介质,其上存储有计算机可读指令,所述计算机可读指令在被CPU执行时,使所述CPU执行根据权利要求1-9中任一项所述的老化测试方法。
PCT/CN2018/085434 2017-06-16 2018-05-03 发光器件的老化测试方法和老化测试系统 WO2018228076A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/329,393 US10914781B2 (en) 2017-06-16 2018-05-03 Aging test method and aging test system for light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710457024.3A CN107018603B (zh) 2017-06-16 2017-06-16 发光器件的老化测试方法和老化测试系统
CN201710457024.3 2017-06-16

Publications (1)

Publication Number Publication Date
WO2018228076A1 true WO2018228076A1 (zh) 2018-12-20

Family

ID=59452748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085434 WO2018228076A1 (zh) 2017-06-16 2018-05-03 发光器件的老化测试方法和老化测试系统

Country Status (3)

Country Link
US (1) US10914781B2 (zh)
CN (1) CN107018603B (zh)
WO (1) WO2018228076A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107018603B (zh) * 2017-06-16 2019-05-17 京东方科技集团股份有限公司 发光器件的老化测试方法和老化测试系统
JP2019191425A (ja) * 2018-04-26 2019-10-31 シャープ株式会社 制御装置、プログラム、電子機器および制御方法
CN110244212B (zh) * 2019-07-15 2021-11-19 云谷(固安)科技有限公司 有机发光二极管器件寿命测试系统和方法、光线测量装置
CN112285594B (zh) * 2019-07-25 2024-03-29 漳州立达信灯具有限公司 一种灯具老化检测方法、装置及老化线系统
CN111351637B (zh) * 2020-03-20 2021-02-05 广东省计量科学研究院(华南国家计量测试中心) 一种有机电致发光器件寿命测试与评价方法
CN112505519B (zh) * 2020-11-23 2022-05-31 赖俊生 一种监测及确认半导体器件老化状态的方法、装置及计算机可读存储介质
CN116008790B (zh) * 2023-03-23 2023-06-13 深圳市宇芯数码技术有限公司 一种芯片老化测试系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW527850B (en) * 2000-12-27 2003-04-11 Denso Corp Manufacturing method of organic EL element
CN101278327A (zh) * 2005-09-29 2008-10-01 皇家飞利浦电子股份有限公司 一种补偿照明设备老化过程的方法
CN101355834A (zh) * 2007-07-25 2009-01-28 佳能株式会社 制造有机电致发光显示设备的方法
US20140138658A1 (en) * 2011-05-27 2014-05-22 Panasonic Corporation Method for producing organic light-emitting element, method for aging organic light-emitting element, organic light-emitting element, organic light-emitting device, organic display panel, and organic display device
CN107018603A (zh) * 2017-06-16 2017-08-04 京东方科技集团股份有限公司 发光器件的老化测试方法和老化测试系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7847764B2 (en) * 2007-03-15 2010-12-07 Global Oled Technology Llc LED device compensation method
FR3027401B1 (fr) * 2014-10-15 2018-03-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de prevision d’une defaillance d’une diode electroluminescente

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW527850B (en) * 2000-12-27 2003-04-11 Denso Corp Manufacturing method of organic EL element
CN101278327A (zh) * 2005-09-29 2008-10-01 皇家飞利浦电子股份有限公司 一种补偿照明设备老化过程的方法
CN101355834A (zh) * 2007-07-25 2009-01-28 佳能株式会社 制造有机电致发光显示设备的方法
US20140138658A1 (en) * 2011-05-27 2014-05-22 Panasonic Corporation Method for producing organic light-emitting element, method for aging organic light-emitting element, organic light-emitting element, organic light-emitting device, organic display panel, and organic display device
CN107018603A (zh) * 2017-06-16 2017-08-04 京东方科技集团股份有限公司 发光器件的老化测试方法和老化测试系统

Also Published As

Publication number Publication date
CN107018603A (zh) 2017-08-04
CN107018603B (zh) 2019-05-17
US20190195938A1 (en) 2019-06-27
US10914781B2 (en) 2021-02-09

Similar Documents

Publication Publication Date Title
WO2018228076A1 (zh) 发光器件的老化测试方法和老化测试系统
CN103489405B (zh) 一种显示补偿方法、装置及显示补偿系统
CN104218890A (zh) 太阳能电池的i-v特性测量装置和I-V特性测量方法
TW202403658A (zh) 用於感測器計量資料整合的方法、系統與電腦可讀取媒體
CN111612142B (zh) 一种基于bp神经网络的大功率led寿命预测方法
US20090306912A1 (en) Method of measuring led junction temperature
WO2023045024A1 (zh) 基于威布尔分布的步退应力加速可靠性试验方法
CN106199365B (zh) Oled掺杂浓度的选择方法
Yung et al. Prognostics-based qualification of high-power white LEDs using Lévy process approach
JP2007085782A (ja) 画素駆動電流測定方法および装置
CN102520329A (zh) 半导体激光器的可靠性测试方法
CN103137051A (zh) 快速检验像素驱动电路驱动管阈值补偿效果的测试电路
CN111198334B (zh) 照明设备发光光效评估方法、系统及其设备、存储介质
CN109830207A (zh) 电致发光显示面板的调整方法及装置
CN111402797B (zh) 亮度均匀性补偿方法、装置和显示设备
JP2008227463A (ja) 発光素子の検査方法および検査装置、ならびにバーンイン方法およびバーンイン装置
TWI803916B (zh) 一種晶片測試機測量晶片內阻的方法
CN110632534A (zh) 一种uv-led光源系统寿命实时预测系统及方法
CN111351637B (zh) 一种有机电致发光器件寿命测试与评价方法
Jianping et al. Accelerated life test of white OLED based on lognormal distribution
CN110288933B (zh) 一种电致发光阵列基板的检测方法及装置
KR102037069B1 (ko) 표시 패널의 검사 장치 및 그 방법
CN111965512A (zh) 紫外发光器件的可靠性测试系统、方法、存储介质
Wang et al. Light fades and life prediction of led light source
CN102680872B (zh) 灯管检测装置及灯管检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03-06-2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18818394

Country of ref document: EP

Kind code of ref document: A1