WO2018228058A1 - 反射式液晶显示器及其制造方法 - Google Patents

反射式液晶显示器及其制造方法 Download PDF

Info

Publication number
WO2018228058A1
WO2018228058A1 PCT/CN2018/084441 CN2018084441W WO2018228058A1 WO 2018228058 A1 WO2018228058 A1 WO 2018228058A1 CN 2018084441 W CN2018084441 W CN 2018084441W WO 2018228058 A1 WO2018228058 A1 WO 2018228058A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
reflective
crystal display
convex
reflective liquid
Prior art date
Application number
PCT/CN2018/084441
Other languages
English (en)
French (fr)
Inventor
武晓娟
车春城
刘英丽
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/309,367 priority Critical patent/US11086163B2/en
Publication of WO2018228058A1 publication Critical patent/WO2018228058A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133357Planarisation layers

Definitions

  • the present disclosure relates to the field of display device technologies, and in particular, to a reflective liquid crystal display and a method of fabricating the same.
  • LCD screens have been distributed in all aspects of people's lives, such as mobile phones, computers, televisions, watches, pads, electronic labels and so on.
  • mobile phone functions With the gradual strengthening of mobile phone functions and the rapid development of smart wearable products, people are increasingly demanding outdoor readability of displays.
  • reflective liquid crystal displays have been widely used and developed.
  • the application of electronic tags is more and more common, but the traditional electronic ink type electronic tags can only display black and white or a few colors, and the total reflection liquid crystal display has low power consumption, displayable colors, high resolution, etc.
  • Advantages, applications are more and more extensive.
  • the total reflection liquid crystal display has no backlight and is displayed by reflection of ambient light. In order to increase the reflectivity and viewing angle, the incident light needs to be scattered.
  • the reflective electrode on a thin film transistor (TFT) panel is generally a flat electrode.
  • TFT thin film transistor
  • the reflectance is increased and the viewing angle is increased, but the interface through which the incident light after the scattering film is increased is increased. Strong losses increase while costs are higher.
  • a metal electrode with a reflective reflective layer may be formed on the surface of the TFT.
  • the reflective liquid crystal display with a convex reflective electrode on the TFT surface is prone to light leakage when viewed from a side view, thereby increasing the brightness of the dark state, lowering the contrast, and limiting the viewing angle.
  • an object of the present disclosure is to provide a reflective liquid crystal display and a method of fabricating the same that can reduce light leakage at a dark side, improve contrast, and expand a viewing angle.
  • An embodiment of the present disclosure provides a reflective liquid crystal display, comprising: an array substrate, wherein the array substrate is provided with a plurality of convex reflective electrodes; a color filter substrate, wherein the color filter substrate is provided with a plurality of bump electrodes; The array substrate and the color filter substrate are disposed opposite to each other such that the convex reflective electrode and the convex electrode face each other.
  • the convex reflective electrode and the convex electrode are mutually opposite or offset from each other.
  • the convex reflective electrode is a circular protrusion or an elliptical protrusion, and/or the convex electrode is a circular protrusion or an elliptical protrusion.
  • the raised reflective electrode has a height of 0.5-5 ⁇ m and a diameter of 1-20 ⁇ m.
  • the raised electrode has a height of 0.1-2.0 ⁇ m and a diameter of 1-20 ⁇ m.
  • the present disclosure also provides a method for fabricating a reflective liquid crystal display, comprising: providing an array substrate, providing a plurality of convex reflective electrodes on the array substrate; providing a color filter substrate, and providing a plurality of protrusions on the color filter substrate An electrode; the array substrate and the color filter substrate are paired such that the convex reflective electrode and the convex electrode face each other.
  • the disposing the plurality of convex reflective electrodes on the array substrate comprises: coating an organic layer on the array substrate; exposing through the mask, forming a plurality of first protrusions on a surface of the organic layer; Reflecting the reflective metal on the plurality of first protrusions to form the plurality of raised reflective electrodes.
  • the first protrusion is a convex interface of 1.0 ⁇ m-1.5 ⁇ m and a diameter of 8 ⁇ m-10 ⁇ m.
  • disposing the plurality of convex reflective electrodes on the array substrate comprises: mixing the silicon balls with the organic material; coating the mixed material on the array substrate; splashing on the mixed material The reflective metal is shot to form the plurality of raised reflective electrodes.
  • the diameter of the silicon sphere is 3.0 ⁇ m.
  • the providing a plurality of bump electrodes on the color filter substrate comprises: coating a flat layer on the color filter substrate; exposing through the mask, forming a plurality of second bumps on the surface of the flat layer; A transparent oxide conductive layer is formed on the plurality of second bumps to form the plurality of bump electrodes.
  • the second protrusion is a convex interface having a height of 0.4 ⁇ m to 0.6 ⁇ m and a diameter of 5 ⁇ m to 10 ⁇ m.
  • the providing a plurality of bump electrodes on the color filter substrate comprises: mixing a silicon ball with a flat layer material; coating the flat layer material mixed with silicon balls on the color filter substrate to form an inclusion a flat layer of the silicon ball; forming a transparent oxide conductive layer on the flat layer to form the plurality of bump electrodes.
  • the diameter of the silicon sphere is from 3.0 ⁇ m to 4.0 ⁇ m.
  • the reflective liquid crystal display and the manufacturing method thereof provide a diagonal electric field while forming a vertical electric field in a charged pixel region, reduce light leakage at a dark side, improve contrast, and expand a viewing angle.
  • FIG. 1 is a schematic view showing the structure of a reflective liquid crystal display in the prior art.
  • FIG. 2 is a schematic view showing the structure of a reflective liquid crystal display according to the prior art in an operating state.
  • FIG. 3 illustrates a schematic structural view of a reflective liquid crystal display according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic view showing the structure of a reflective liquid crystal display in an operating state according to an embodiment of the present disclosure.
  • FIG. 5 is a top plan view showing a color filter substrate of a reflective liquid crystal display according to an embodiment of the present disclosure.
  • FIG. 6 illustrates a top plan view of an array substrate of a reflective liquid crystal display according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic view showing the structure of a reflective liquid crystal display in the prior art.
  • the reflective liquid crystal display is a liquid crystal display with a convex reflective electrode which is conventional in the prior art.
  • the reflective liquid crystal display comprises: an array substrate 1; a gate layer 2 disposed on the array substrate 1; a gate insulating layer 3 disposed on the gate layer 2; and a gate insulating layer 3 disposed on the gate insulating layer 3.
  • the upper organic layer 7, the organic layer comprises a resin; the reflective electrode 8 disposed on the organic layer, the reflective electrode 8 is a convex structure; the color filter substrate 12 disposed opposite the array substrate 1; and disposed on the color filter substrate 12
  • the color film surface 11 of the array substrate 1 includes a transparent indium tin oxide (ITO); a liquid crystal 9 disposed between the color filter substrate 12 and the array substrate 1;
  • the spacer 10 between the color filter substrate 12 and the array substrate 1 may be a PS (Photo Spacer) made of an organic transparent material that is elastic after polymerization.
  • PS Photo Spacer
  • the reflective electrode 8 provided on the surface of the array substrate is a convex reflective electrode, and the electrode of the color filter film 11 of the color filter substrate 12 is a flat electrode.
  • FIG. 2 is a schematic view showing the structure of a reflective liquid crystal display according to the prior art in an operating state.
  • a 1/4 ⁇ wave plate 14 a 1/2 ⁇ wave plate 15 disposed on the 1/4 ⁇ wave plate 14 , and a 1/2 ⁇ wave plate 15 are further disposed on the color filter substrate of the reflective liquid crystal display.
  • Upper polarizer 16 on.
  • A denotes an A pixel region
  • B denotes a B pixel region
  • C denotes a C pixel region
  • D denotes a region where there is no reflective metal electrode between the A pixel region and the B pixel region
  • E denotes a B pixel region and a C pixel region.
  • the powering and unpowering conditions of different pixel regions are different for the purpose of display.
  • the A pixel area and the C pixel area are not powered, and the white state is displayed; the B pixel area is powered up to display a black state.
  • the liquid crystal molecules are slightly inclined in the two regions, close to the A pixel.
  • the liquid crystal molecules of the region and the C pixel region are not charged.
  • the reflected light of the incident light of the A pixel region and the C pixel region enters the human eye of the B pixel region, causing light leakage, resulting in the B pixel region.
  • the reflectivity of the black-state pixels is increased, that is, the brightness of the dark state is increased, thereby reducing the contrast, reducing the viewing angle, and affecting the display effect.
  • the present embodiment provides a reflective liquid crystal display in which a convex reflective electrode is disposed on a surface of a thin film transistor (TFT) substrate while a side opposite to the TFT substrate on the color filter substrate A raised electrode is also provided on the upper side.
  • TFT thin film transistor
  • FIG. 3 illustrates a schematic structural view of a reflective liquid crystal display according to an embodiment of the present disclosure.
  • the reflective liquid crystal display comprises: an array substrate 301; a gate layer 302 disposed on the array substrate 301; a gate insulating layer 303 disposed on the gate layer 302; and a gate insulating layer 303 disposed on the gate insulating layer 303
  • the planar layer 311 of the array substrate 301 is generally an organic transparent material; the bump electrode 313 is disposed on the planar
  • a plurality of convex reflective electrodes 308 are disposed on the array substrate 301; a plurality of convex electrodes 313 are disposed on the color filter substrate 312; the convex reflective electrodes 308 and the protrusions are provided.
  • the electrodes 313 face each other.
  • the raised reflective electrode 308 and the raised electrode 313 may face each other, that is, one raised reflective electrode 308 and one raised electrode 313 face each other.
  • the raised reflective electrode 308 and the raised electrode 313 may also be offset from each other, that is, a raised reflective electrode 308 is directly opposite the spaced position between the adjacent two raised electrodes 313.
  • FIG. 4 is a schematic view showing the structure of a reflective liquid crystal display in an operating state according to an embodiment of the present disclosure.
  • a 1/4 ⁇ wave plate 414 is disposed on the color filter substrate of the reflective liquid crystal display, a 1/2 ⁇ wave plate 415 disposed on the 1/4 ⁇ wave plate 414, and a 1/2 ⁇ wave plate 415 are disposed.
  • Upper polarizer 416 on.
  • A denotes an A pixel area
  • B denotes a B pixel area
  • C denotes a C pixel area
  • D denotes an area between the A pixel area and the B pixel area
  • E denotes an area between the B pixel area and the C pixel area.
  • the color filter substrate has the bump electrode 313, and the TFT substrate has the convex reflective electrode 308. Since the upper and lower electrodes are both convex structures, they are formed in the D region and the E region. A strong oblique electric field, the liquid crystal molecules of the two regions are arranged obliquely with the solid line direction, that is, the direction of light reflection reflected from the TFT substrate does not change, and thus cannot pass through the upper polarizer 416, when viewed from the side view The reflected light of the incident light of the A pixel region and the C pixel region cannot enter the human eye of the B region, thereby reducing the reflectance of the black pixel in the B region, improving the contrast, and expanding the viewing angle.
  • FIG. 5 is a top plan view showing a color filter substrate of a reflective liquid crystal display according to an embodiment of the present disclosure.
  • the bump electrode 313 on the flat layer 311 of the color filter substrate 312 may be a transparent oxide capable of conducting electricity, such as indium tin oxide (ITO), aluminum zinc oxide (AZO), zinc oxide (ZnO), etc., and the shape is a circle.
  • the shape or the elliptical shape, specifically, the cross-sectional shape is an arc shape, and the shape of the plan view is circular or elliptical.
  • the bump electrode 311 has a diameter of 1 to 20 ⁇ m and a height of 0.1 to 2.0 ⁇ m.
  • FIG. 6 illustrates a top plan view of an array substrate of a reflective liquid crystal display according to an embodiment of the present disclosure.
  • the material of the reflective reflective electrode 308 in the reflective metal pixel electrode 315 on the array substrate 301 may be a metal having a high reflectivity and a circular or elliptical shape. Specifically, the cross-sectional shape is curved, and the shape is a circle. Shape or oval.
  • the convex reflective electrode 308 has a diameter of 1 to 20 ⁇ m and a height of 0.5 to 5 ⁇ m.
  • the reflective liquid crystal display structure in which the color filter substrate has the bump electrode 313 and the TFT substrate has the convex reflective electrode 308, a vertical electric field is formed in the charged pixel region, and an oblique electric field is formed. Decreasing the light leakage in the dark side view, increasing the contrast between the powered pixel area and the unpowered pixel area, and expanding the viewing angle.
  • This embodiment provides a manufacturing method for manufacturing a reflective liquid crystal display in an embodiment of the present disclosure.
  • the method includes the following steps.
  • Step a sequentially forming a gate layer 302, a gate insulating layer 303, an active layer 304, a source/drain electrode layer 305, a passivation layer (PVX) 306 on the array substrate 301, and then coating the organic layer 307, the organic layer 307
  • the material may be a resin having a thickness of 2.0 ⁇ m;
  • Step b exposing through the mask, forming a surface of the organic layer 307 formed in the step a into a convex interface having a height of 1.0 ⁇ m and a diameter of 10 ⁇ m;
  • Step c a reflective metal, such as Al, Ag, etc., is sputtered on the organic layer 307 formed in step b to form a convex reflective electrode 308;
  • Step d sequentially coating a black matrix, blue, green, red resist and flat layer (OC) 311 on the color filter substrate 312;
  • Step e exposing through a mask, forming a convex interface having a height of 0.4 ⁇ m and a diameter of 10 ⁇ m on the surface of the flat layer 311 formed in the step d;
  • Step f the ITO layer is formed on the color filter substrate formed in step e, covering the convex interface formed in step e, forming ITO bump electrode 313;
  • step g the sealant SWB-73 is applied to the color filter substrate 312 formed in the step f, and the mixture is uniformly coated;
  • Step h the MAT-05-575 liquid crystal is dropped on the array substrate 301 having the convex reflective electrode 308 formed in the step c;
  • step i the array substrate 301 on which the liquid crystal is dropped and the color filter substrate 312 coated with the sealant mixture are paired, and then subjected to ultraviolet polymerization and thermal polymerization to produce a reflective liquid crystal display having high reflectance and wide viewing angle.
  • This embodiment provides another manufacturing method for manufacturing the reflective liquid crystal display in the embodiment of the present disclosure.
  • the method includes the following steps.
  • step a the silicon spheres having a diameter of 3.0 ⁇ m are uniformly mixed with an organic material (for example, a resin) at a mass ratio of 5.0 wt%;
  • an organic material for example, a resin
  • Step b sequentially forming a gate layer 302, a gate insulating layer 303, an active layer 304, a source/drain electrode layer 305, a passivation layer (PVX) 306 on the array substrate 301, and then forming a mixed material formed in the step a.
  • Organic layer 307 coated to a thickness of 1.5 ⁇ m;
  • Step c sputtering metal silver or aluminum on the organic layer 307, the portion of the reflective metal covering the silicon ball to form a convex reflective electrode 308, the diameter of the convex reflective electrode 308 is 3.5 ⁇ m;
  • Step d sequentially coating a black matrix, blue, green, red resist and flat layer (OC) 311 on the color filter substrate 312;
  • Step e exposing through the mask, forming a convex interface having a height of 0.6 ⁇ m and a diameter of 5 ⁇ m on the surface of the flat layer 311 formed in the step d;
  • Step f the ITO layer is formed on the color filter substrate formed in step e, covering the convex interface formed in step e, forming ITO bump electrode 313;
  • step g the sealant SWB-66 is applied to the color filter substrate 312 formed in the step f, and the mixture is uniformly coated;
  • Step h the ZBE-5047 liquid crystal is dropped on the array substrate 301 having the convex reflective electrode 308 formed in the step c;
  • step i the array substrate 301 on which the liquid crystal is dropped and the color filter substrate 312 coated with the sealant mixture are paired, and then subjected to ultraviolet polymerization and thermal polymerization to produce a reflective liquid crystal display having high reflectance and wide viewing angle.
  • This embodiment provides yet another manufacturing method for manufacturing the reflective liquid crystal display in the embodiment of the present disclosure.
  • the method includes the following steps.
  • Step a sequentially forming a gate layer 302, a gate insulating layer 303, an active layer 304, a source/drain electrode layer 305, a passivation layer (PVX) 306 on the array substrate 301, and then coating the organic layer 307, the organic layer 307
  • the material may be a resin having a thickness of 2.0 ⁇ m;
  • Step b exposing through a mask, forming a surface of the organic layer 307 formed in the step a into a convex interface having a height of 1.5 ⁇ m and a diameter of 8 ⁇ m;
  • Step c a reflective metal, such as Al, Ag, etc., is sputtered on the organic layer 307 formed in step b to form a convex reflective electrode 308;
  • step d a silicon sphere having a diameter of 2.5 ⁇ m is uniformly mixed with a material forming a flat layer (OC) by a mass ratio of 3.0 Wt% to obtain a flat layer containing silicon balls;
  • Step e sequentially coating a black matrix, blue, green, and red resistance on the color filter substrate 312 and forming a flat layer in the step d;
  • Step f the ITO layer is formed on the color film substrate 312 formed in the step e, the ITO layer is covered on the silicon ball in the flat layer formed in the step e, forming an ITO bump electrode 313, the diameter is 3 ⁇ m;
  • step g the sealant SWB-73 is applied to the color filter substrate 312 formed in the step f, and the mixture is uniformly coated;
  • Step h the SLC10T12L01 liquid crystal is dropped on the array substrate 301 having the convex reflective electrode 308 formed in the step c;
  • step i the array substrate 301 on which the liquid crystal is dropped and the color filter substrate 312 coated with the sealant mixture are paired, and then subjected to ultraviolet polymerization and thermal polymerization to produce a reflective liquid crystal display having high reflectance and wide viewing angle.
  • This embodiment provides yet another manufacturing method for manufacturing the reflective liquid crystal display in the embodiment of the present disclosure.
  • the method includes the following steps.
  • step a the silicon spheres having a diameter of 3.0 ⁇ m are uniformly mixed with an organic material (for example, a resin) at a mass ratio of 5.0 wt%;
  • an organic material for example, a resin
  • Step b sequentially forming a gate layer 302, a gate insulating layer 303, an active layer 304, a source/drain electrode layer 305, a passivation layer (PVX) 306 on the array substrate 301, and then forming a mixed material formed in the step a.
  • Organic layer 307 coated with a thickness of 2.0 ⁇ m;
  • Step c sputtering metal silver or aluminum on the organic layer 307, the portion of the reflective metal covering the silicon ball to form a convex reflective electrode 308, the diameter of the convex reflective electrode 308 is 5.5 ⁇ m;
  • step d a silicon sphere having a diameter of 4.0 ⁇ m is uniformly mixed with a material forming a flat layer (OC) at a mass ratio of 3.0 Wt% to obtain a flat layer containing silicon balls;
  • Step e sequentially coating a black matrix, blue, green, and red resistance on the color filter substrate 312 and forming a flat layer in the step d;
  • Step f the ITO layer is formed on the color filter substrate 312 formed in the step e, the ITO layer is covered on the silicon ball in the flat layer formed in the step e, forming the ITO bump electrode 313, the diameter is 4.5 ⁇ m;
  • step g the sealant SWB-66 is applied to the color filter substrate 312 formed in the step f, and the mixture is uniformly coated;
  • Step h the BOE-81201 liquid crystal is dropped on the array substrate 301 having the convex reflective electrode 308 formed in the step c;
  • step i the array substrate 301 on which the liquid crystal is dropped and the color filter substrate 312 coated with the sealant mixture are paired, and then subjected to ultraviolet polymerization and thermal polymerization to produce a reflective liquid crystal display having high reflectance and wide viewing angle.
  • the bump electrode of the color filter substrate may be mask exposed by forming a raised flat layer (OC) interface on the color filter substrate, and then coating the ITO.
  • OC raised flat layer
  • Forming an ITO bump electrode it is also possible to dope the silicon ball in the flat layer, form a flattened layer convex interface with a large curvature and a high height on the surface of the flat layer, and further apply ITO to form a curvature at the convex interface.
  • highly controllable ITO bump electrodes are highly controllable ITO bump electrodes.
  • the convex reflective electrode of the array substrate may be formed by exposing a convex organic layer interface on the TFT substrate through a mask, and then sputtering a reflective metal at the bump to form a convex reflective electrode; or doping the silicon ball in the organic layer
  • a controllable organic convex interface having a large curvature and a high height is formed on the surface of the organic layer, and the reflective metal is sputtered at the interface of the organic convex to form a convex reflective electrode having a curvature and a height controllable.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

一种反射式液晶显示器及其制造方法,反射式液晶显示器包括:阵列基板(301),阵列基板(3011)上设置有多个凸起反射电极(308);彩膜基板(312),彩膜基板(312)上设置有多个凸起电极(313);阵列基板(301)和彩膜基板(312)相对设置,使得凸起反射电极(308)和凸起电极(313)互相面对。在加电的像素区域形成垂直电场的同时形成斜向电场,降低暗态侧视角漏光,提升对比度,扩大了视角。

Description

反射式液晶显示器及其制造方法
交叉引用
本申请要求于2017年6月12日提交的申请号为201710439512.1、名称为“反射式液晶显示器及其制造方法”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及显示装置技术领域,尤其涉及一种反射式液晶显示器及其制造方法。
背景技术
随着显示行业的迅速发展,液晶显示屏已经遍布人们生活的方方面面,如手机、电脑、电视、手表、Pad、电子标签等。随着手机功能逐渐强大及智能穿戴产品的迅速发展,人们对显示器户外可读性的要求越来越强,近年来反射式液晶显示器得到广泛的应用和发展。另外,电子标签的应用越来越普遍,但传统电子墨水式的电子标签只能显示黑白或很少的几个颜色,而全反射液晶显示由于其低功耗、可显示色彩众多、分辨率高等优点,应用越来越广泛。全反射液晶显示器没有背光,利用对环境光的反射实现显示。为提高反射率和视角,对入射光需要进行散射。目前的产品中,薄膜晶体管(TFT)面板上的反射电极一般为平坦电极,通过在面板上面增加散射膜,来提升反射率和扩大视角,但增加散射膜后的入射光经过的界面增加,光强损失增加,同时成本较高。为减少界面及降低成本,同时提升反射率,可以在TFT面形成带有凸起的反射层金属电极。但只有TFT面带有凸起反射电极的反射式液晶显示器,侧视角观看时,暗态容易产生漏光,从而使暗态亮度提升,对比度下降,视角扩大效果有限。
发明内容
鉴于现有技术中的上述问题,本公开的目的在于提供一种反射式液晶显示器及其制造方法,能够降低暗态侧视角漏光,提升对比度,扩大视角。
本公开的实施例提供一种反射式液晶显示器,包括:阵列基板,所述阵列基板上设置有多个凸起反射电极;彩膜基板,所述彩膜基板上设置有多个凸起电极;所述阵列基板和 所述彩膜基板相对设置,使得所述凸起反射电极和所述凸起电极互相面对。
其中,所述凸起反射电极与所述凸起电极相互正对或相互错开。
其中,所述凸起反射电极为圆形凸起或椭圆形凸起,和/或所述凸起电极为圆形凸起或椭圆形凸起。
其中,所述凸起反射电极的高度为0.5-5μm,直径为1-20μm。
其中,所述凸起电极的高度为0.1-2.0μm,直径为1-20μm。
本公开还一种反射式液晶显示器的制造方法,包括:提供阵列基板,在所述阵列基板上设置多个凸起反射电极;提供彩膜基板,在所述彩膜基板上设置多个凸起电极;将所述阵列基板和所述彩膜基板对盒,使得所述凸起反射电极和所述凸起电极互相面对。
其中,所述在所述阵列基板上设置多个凸起反射电极包括:在所述阵列基板上涂覆有机层;通过掩模曝光,在所述有机层表面形成多个第一凸起;在所述多个第一凸起上溅射反射金属,以形成所述多个凸起反射电极。
其中,所述第一凸起为1.0μm-1.5μm,直径为8μm-10μm的凸起界面。
其中,所述在所述阵列基板上设置多个凸起反射电极包括:将硅球与有机材料混合;将混合后的材料涂覆在所述阵列基板上;在所述混合后的材料上溅射反射金属,以形成所述多个凸起反射电极。
其中,所述硅球的直径为3.0μm。其中,所述在所述彩膜基板上设置多个凸起电极包括:在所述彩膜基板上涂覆平坦层;通过掩模曝光,在所述平坦层表面形成多个第二凸起;在所述多个第二凸起上制作透明氧化物导电层,形成所述多个凸起电极。
其中,所述第二凸起为高度为0.4μm-0.6μm,直径为5μm-10μm的凸起界面。
其中,所述在所述彩膜基板上设置多个凸起电极包括:将硅球与平坦层材料混合;在所述彩膜基板上涂覆混合了硅球的所述平坦层材料,形成包含所述硅球的平坦层;在所述平坦层上形成透明氧化物导电层,形成所述多个凸起电极。
其中,所述硅球的直径为3.0μm-4.0μm。
本公开提供的反射式液晶显示器及其制造方法,在加电的像素区域形成垂直电场的同时形成斜向电场,降低暗态侧视角漏光,提升对比度,扩大了视角。
附图说明
图1示出现有技术中的反射式液晶显示器的结构示意图。
图2示出根据现有技术中的反射式液晶显示器在工作状态下的结构示意图。
图3示出根据本公开实施例的反射式液晶显示器的结构示意图。
图4示出根据本公开实施例的反射式液晶显示器在工作状态下的结构示意图。
图5示出根据本公开实施例的反射式液晶显示器的彩膜基板的俯视结构示意图。
图6示出根据本公开实施例的反射式液晶显示器的阵列基板的俯视结构示意图。
具体实施方式
下面结合附图和实施例对本公开作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅用于解释本公开,而非对本公开的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本公开相关的部分而非全部结构。
图1示出现有技术中的反射式液晶显示器的结构示意图。该反射式液晶显示器为现有技术中普通的带有凸起反射电极的液晶显示器。如图1所示,该反射式液晶显示器包括:阵列基板1;设置在阵列基板1上的栅极层2;设置在栅极层2上的栅绝缘层3;设置在栅绝缘层3上的有源层4;设置在有源层上的源漏电极层5;设置在所述有源层4、源漏电极层5、栅绝缘层之上的钝化层6;设置在钝化层6上的有机层7,所述有机层包括树脂;设置在有机层上的反射电极8,该反射电极8为凸起结构;与阵列基板1相对设置的彩膜基板12;设置在彩膜基板12上面对阵列基板1的彩膜面11,所述彩膜面11包括透明氧化铟锡(ITO);设置在所述彩膜基板12与所述阵列基板1之间液晶9;以及设置在所述彩膜基板12与所述阵列基板1之间的隔离柱10,该隔离柱可以为PS(Photo Spacer),材质为聚合后具有弹性的有机透明材料。
在该反射式液晶显示器中,仅设置在阵列基板的面上的反射电极8为凸起反射电极,而在彩膜基板12的彩膜膜11的电极为平坦电极。
图2示出根据现有技术中的反射式液晶显示器在工作状态下的结构示意图。参考图2,该反射式液晶显示器的彩膜基板上还设置有1/4λ波片14、设置在1/4λ波片14上的1/2λ波片15以及设置在1/2λ波片15之上的上偏光片16。
在图2中,A表示A像素区域,B表示B像素区域,C表示C像素区域,D表示A像素区域和B像素区域之间无反射金属电极的区域,E表示B像素区域和C像素区域之间无反射金属电极的区域。在反射式液晶显示器的工作状态下,为了显示的需要,不同像素区域的加电和不加电情况不相同。在图2所示的示例中,A像素区域和C像素区域不加电,显示白态;B像素区域加电,显示黑态。
对于现有技术中只有TFT基板的面上带凸起反射电极的反射式液晶显示器,在D区 域和E区域只有很轻微的倾斜电场,这两个区域中液晶分子排列略微倾斜,接近于A像素区域和C像素区域不加电的液晶分子排列,当从侧视角观察时,A像素区域和C像素区域入射光的反射光就会进入B像素区域的人眼中,产生漏光,导致B像素区域中黑态像素的反射率提高,也就是暗态亮度提升,从而降低对比度,降低视角,影响显示效果。
为了解决前述现有技术中的问题,本实施例提供一种反射式液晶显示器,在薄膜晶体管(TFT)基板的表面上设置有凸起反射电极,同时在彩膜基板上与TFT基板相对的一面上也设置有凸起电极。
图3示出根据本公开实施例的反射式液晶显示器的结构示意图。如图1所示,该反射式液晶显示器包括:阵列基板301;设置在阵列基板301上的栅极层302;设置在栅极层302上的栅绝缘层303;设置在栅绝缘层303上的有源层304;设置在有源层304上的源漏电极层305;设置在所述有源层304、源漏电极层305、栅绝缘层303之上的钝化层306;设置在钝化层306上的有机层307,所述有机层307包括树脂;设置在有机层307上的反射电极308,该反射电极为凸起结构;与阵列基板301相对设置的彩膜基板312;设置在彩膜基板312上面对阵列基板301的平坦层311,平坦层一般为有机透明材料;设置在所述平坦层311面对阵列基板301的凸起电极313,所述凸起电极313的材质可以为导电的透明氧化物,例如透明氧化铟锡(ITO);设置在所述彩膜基板312与所述阵列基板301之间液晶309;以及设置在所述彩膜基板312与所述阵列基板311之间的隔离柱310,该隔离柱可以为PS(Photo Spacer),材质一般为聚合后具有弹性的有机透明材料。
在本公开实施例的反射式液晶显示器中,在阵列基板301上设置有多个凸起反射电极308;在彩膜基板312上设置有多个凸起电极313;凸起反射电极308和凸起电极313互相面对。凸起反射电极308和凸起电极313可以正对,也就是一个凸起反射电极308与一个凸起电极313相互正对。凸起反射电极308和凸起电极313也可以相互错开,也就是一个凸起反射电极308正对着相邻的两个凸起电极313之间的间隔位置。
图4示出根据本公开实施例的反射式液晶显示器在工作状态下的结构示意图。参考图4,该反射式液晶显示器的彩膜基板上还设置有1/4λ波片414,设置在1/4λ波片414上的1/2λ波片415以及设置在1/2λ波片415之上的上偏光片416。
在图4中,A表示A像素区域,B表示B像素区域,C表示C像素区域,D表示A像素区域和B像素区域之间的区域,E表示B像素区域和C像素区域之间的区域。在反射式液晶显示器的工作状态下,为了显示的需要,不同像素区域的加电和不 加电情况不相同。在图4所示的示例中,A像素区域和C像素区域不加电,显示白态;B像素区域加电,显示黑态。
在本实施例的反射式液晶显示器中,彩膜基板带有凸起电极313,同时TFT基板带有凸起反射电极308,由于上下电极都为凸起的结构,在D区域和E区域会形成较强的倾斜电场,这两个区域的液晶分子随着实线方向呈现倾斜排列,即从TFT基板反射回来的光线传播方向不会改变,从而无法从上偏光片416通过,当从侧视角观察时,A像素区域和C像素区域入射光的反射光无法进入B区域人眼中,从而降低B区域黑态像素的反射率,提升对比度,扩大视角。
图5示出根据本公开实施例的反射式液晶显示器的彩膜基板的俯视结构示意图。所述彩膜基板312的平坦层311上的凸起电极313可以为能够导电的透明氧化物,例如氧化铟锡(ITO)、氧化铝锌(AZO)、氧化锌(ZnO)等,形状为圆形或椭圆形,具体而言,截面形状为弧形,俯视形状为圆形或椭圆形。凸起电极311的直径为1~20μm,高度为0.1~2.0μm。
图6示出根据本公开实施例的反射式液晶显示器的阵列基板的俯视结构示意图。所述阵列基板301上反射金属像素电极315中的凸起反射电极308的材质可以为反射率高的金属,形状为圆形或椭圆形,具体而言,截面形状为弧形,俯视形状为圆形或椭圆形。凸起反射电极308的直径为1~20μm,高度为0.5~5μm。
在本实施例中,在彩膜基板带有凸起电极313同时TFT基板带有凸起反射电极308的反射式液晶显示结构中,在加电的像素区域形成垂直电场的同时形成斜向电场,降低暗态侧视角漏光,提升加电的像素区域与不加电的像素区域的对比度,扩大了视角。
本实施例提供一种制造方法,制造本公开实施例中的反射式液晶显示器。该方法包括以下的步骤。
步骤a,在阵列基板301上依次形成栅极层302、栅绝缘层303、有源层304、源漏电极层305、钝化层(PVX)306,然后涂覆有机层307,有机层307的材料可以是树脂,厚度为2.0μm;
步骤b,通过掩模曝光,使步骤a中形成的有机层307的表面形成高度为1.0μm,直径为10μm的凸起界面;
步骤c,在步骤b中形成的有机层307上溅射反射金属,例如Al、Ag等,形成凸起反射电极308;
步骤d,在彩膜基板312上依次涂覆黑矩阵、蓝、绿、红色阻和平坦层(OC)311;
步骤e,通过掩模曝光,使步骤d中形成的平坦层311的表面上形成高度为0.4μm,直径为10μm的凸起界面;
步骤f,在步骤e中形成的彩膜基板上制作ITO层,覆盖步骤e中形成的凸起界面,形成ITO凸起电极313;
步骤g,将封框胶SWB-73涂覆到步骤f中形成的彩膜基板312上,避光操作,混合物涂覆均匀;
步骤h,将MAT-05-575液晶滴在步骤c形成的具有凸起反射电极308的阵列基板301上;
步骤i,将滴有液晶的阵列基板301和涂覆有封框胶混合物的彩膜基板312对盒后,进行紫外聚合和热聚合,制作高反射率和宽视角的反射式液晶显示器。
本实施例提供另一种制造方法,制造本公开实施例中的反射式液晶显示器。该方法包括以下的步骤。
步骤a,将直径大小为3.0μm的硅球按质量比为5.0Wt%和有机材料(例如树脂)混合均匀;
步骤b,在阵列基板301上依次形成栅极层302、栅绝缘层303、有源层304、源漏电极层305、钝化层(PVX)306,然后涂覆步骤a中形成的混合材料形成有机层307,涂覆的厚度为1.5μm;
步骤c,在有机层307上溅射反射金属银或铝,反射金属覆盖上述硅球的部分形成凸起反射电极308,凸起反射电极308的直径为3.5μm;
步骤d,在彩膜基板312上依次涂覆黑矩阵、蓝、绿、红色阻和平坦层(OC)311;
步骤e,通过掩模曝光,使步骤d中形成的平坦层311的表面上形成高度为0.6μm,直径为5μm的凸起界面;
步骤f,在步骤e中形成的彩膜基板上制作ITO层,覆盖步骤e中形成的凸起界面,形成ITO凸起电极313;
步骤g,将封框胶SWB-66涂覆到步骤f中形成的彩膜基板312上,避光操作,混合物涂覆均匀;
步骤h,将ZBE-5047液晶滴在步骤c形成的具有凸起反射电极308的阵列基板301上;
步骤i,将滴有液晶的阵列基板301和涂覆有封框胶混合物的彩膜基板312对盒后,进行紫外聚合和热聚合,制作高反射率和宽视角的反射式液晶显示器。
本实施例提供又一种制造方法,制造本公开实施例中的反射式液晶显示器。该方法包括以下的步骤。
步骤a,在阵列基板301上依次形成栅极层302、栅绝缘层303、有源层304、源漏电极层305、钝化层(PVX)306,然后涂覆有机层307,有机层307的材料可以是树脂,厚度为2.0μm;
步骤b,通过掩模曝光,使步骤a中形成的有机层307的表面形成高度为1.5μm,直径为8μm的凸起界面;
步骤c,在步骤b中形成的有机层307上溅射反射金属,例如Al、Ag等,形成凸起反射电极308;
步骤d,将直径大小为2.5μm的硅球按质量比为3.0Wt%和形成平坦层(OC)的材料混合均匀,得到包含硅球的平坦层;
步骤e,在彩膜基板312上依次涂覆黑矩阵、蓝、绿、红色阻和步骤d中形成平坦层;
步骤f,在步骤e中形成的彩膜基板312上制作ITO层,所述ITO层覆盖在步骤e中形成的平坦层中的硅球上,形成ITO凸起电极313,直径为3μm;
步骤g,将封框胶SWB-73涂覆到步骤f中形成的彩膜基板312上,避光操作,混合物涂覆均匀;
步骤h,将SLC10T12L01液晶滴在步骤c形成的具有凸起反射电极308的阵列基板301上;
步骤i,将滴有液晶的阵列基板301和涂覆有封框胶混合物的彩膜基板312对盒后,进行紫外聚合和热聚合,制作高反射率和宽视角的反射式液晶显示器。
本实施例提供又一种制造方法,制造本公开实施例中的反射式液晶显示器。该方法包括以下的步骤。
步骤a,将直径大小为3.0μm的硅球按质量比为5.0Wt%和有机材料(例如树脂)混合均匀;
步骤b,在阵列基板301上依次形成栅极层302、栅绝缘层303、有源层304、源漏电极层305、钝化层(PVX)306,然后涂覆步骤a中形成的混合材料形成有机层307,涂覆的厚度为2.0μm;
步骤c,在有机层307上溅射反射金属银或铝,反射金属覆盖硅球的部分形成凸起反射电极308,凸反射电极308的直径为5.5μm;
步骤d,将直径大小为4.0μm的硅球按质量比为3.0Wt%和形成平坦层(OC)的材料混合均匀,得到包含硅球的平坦层;
步骤e,在彩膜基板312上依次涂覆黑矩阵、蓝、绿、红色阻和步骤d中形成平坦层;
步骤f,在步骤e中形成的彩膜基板312上制作ITO层,所述ITO层覆盖在步骤e中形成的平坦层中的硅球上,形成ITO凸起电极313,直径为4.5μm;
步骤g,将封框胶SWB-66涂覆到步骤f中形成的彩膜基板312上,避光操作,混合物涂覆均匀;
步骤h,将BOE-81201液晶滴在步骤c形成的具有凸起反射电极308的阵列基板301上;
步骤i,将滴有液晶的阵列基板301和涂覆有封框胶混合物的彩膜基板312对盒后,进行紫外聚合和热聚合,制作高反射率和宽视角的反射式液晶显示器。
在上述实施例提供的制造本公开反射式液晶显示器的方法中,彩膜基板的凸起电极可以通过在彩膜基板上形成凸起平坦层(OC)界面,然后涂覆ITO,进行掩模曝光形成ITO凸起电极;也可以在平坦层中掺杂硅球,在平坦层表面形成可控的弧度较大、高度较高的平坦层凸起界面,进一步在凸起界面处涂覆ITO形成弧度和高度可控的ITO凸起电极。
阵列基板的凸起反射电极,可以通过在TFT基板上通过掩模曝光形成凸起有机层界面,然后在凸起处溅射反射金属形成凸起反射电极;也可以在有机层中掺杂硅球,在有机层表面形成可控的弧度较大、高度较高的有机凸起界面,进一步在有机凸起界面处溅射反射金属形成弧度和高度可控的凸起反射电极。
注意,上述仅为本公开的较佳实施例及所运用技术的原理。本领域技术人员应当理解,本公开不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本公开的保护范围。因此,虽然通过以上实施例对本公开进行了较为详细的说明,但是本公开不仅仅限于以上实施例,在不脱离本公开构思的情况下,还可以包括更多其他等效实施例,而本公开的范围由所附的权利要求决定。

Claims (13)

  1. 一种反射式液晶显示器,包括:
    阵列基板,所述阵列基板上设置有多个凸起反射电极;
    彩膜基板,所述彩膜基板上设置有多个凸起电极;
    所述阵列基板和所述彩膜基板相对设置,使得所述凸起反射电极和所述凸起电极互相面对。
  2. 如权利要求1所述的反射式液晶显示器,其中所述凸起反射电极与所述凸起电极相互正对或相互错开。
  3. 如权利要求1或2所述的反射式液晶显示器,其中所述凸起反射电极为圆形凸起或椭圆形凸起,和/或所述凸起电极为圆形凸起或椭圆形凸起。
  4. 如权利要求1至3中任一所述的反射式液晶显示器,其中所述凸起反射电极的高度为0.5-5μm,直径为1-20μm。
  5. 如权利要求1至3中任一所述的反射式液晶显示器,其中所述凸起电极的高度为0.1-2.0μm,直径为1-20μm。
  6. 一种反射式液晶显示器的制造方法,包括:
    提供阵列基板,在所述阵列基板上设置多个凸起反射电极;
    提供彩膜基板,在所述彩膜基板上设置多个凸起电极;
    将所述阵列基板和所述彩膜基板对盒,使得所述凸起反射电极和所述凸起电极互相面对。
  7. 如权利要求6所述的反射式液晶显示器的制造方法,其中所述在所述阵列基板上设置多个凸起反射电极包括:
    在所述阵列基板上涂覆有机层;
    通过掩模曝光,在所述有机层表面形成多个第一凸起;
    在所述多个第一凸起上溅射反射金属,以形成所述多个凸起反射电极。
  8. 如权利要求7所述的反射式液晶显示器的制造方法,其中所述第一凸起为1.0μm-1.5μm,直径为8μm-10μm的凸起界面。
  9. 如权利要求6所述的反射式液晶显示器的制造方法,其中所述在所述阵列基板上设置多个凸起反射电极包括:
    将硅球与有机材料混合;
    将混合后的材料涂覆在所述阵列基板上;
    在所述混合后的材料上溅射反射金属,以形成所述多个凸起反射电极。
  10. 如权利要求9所述的反射式液晶显示器的制造方法,其中所述硅球的直径为3.0μm。
  11. 如权利要求6至10中任一所述的反射式液晶显示器的制造方法,其中所述在所述彩膜基板上设置多个凸起电极包括:
    在所述彩膜基板上涂覆平坦层;
    通过掩模曝光,在所述平坦层表面形成多个第二凸起;
    在所述多个凸起上制作透明氧化物导电层,形成所述多个凸起电极。
  12. 如权利要求11所述的反射式液晶显示器的制造方法,其中所述第二凸起为高度为0.4μm-0.6μm,直径为5μm-10μm的凸起界面。13.如权利要求6至10中任一所述的反射式液晶显示器的制造方法,其中所述在所述彩膜基板上设置多个凸起电极包括:
    将硅球与平坦层材料混合;
    在所述彩膜基板上涂覆混合了所述硅球的所述平坦层材料,形成包含所述硅球的平坦层;
    在所述平坦层上形成透明氧化物导电层,形成所述多个凸起电极。
  13. 如权利要求13所述的反射式液晶显示器的制造方法,其中所述硅球的直径为3.0μm-4.0μm。
PCT/CN2018/084441 2017-06-12 2018-04-25 反射式液晶显示器及其制造方法 WO2018228058A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/309,367 US11086163B2 (en) 2017-06-12 2018-04-25 Reflective liquid crystal display and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710439512.1A CN107102470A (zh) 2017-06-12 2017-06-12 反射式液晶显示器及其制造方法
CN201710439512.1 2017-06-12

Publications (1)

Publication Number Publication Date
WO2018228058A1 true WO2018228058A1 (zh) 2018-12-20

Family

ID=59660272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084441 WO2018228058A1 (zh) 2017-06-12 2018-04-25 反射式液晶显示器及其制造方法

Country Status (3)

Country Link
US (1) US11086163B2 (zh)
CN (1) CN107102470A (zh)
WO (1) WO2018228058A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107102470A (zh) * 2017-06-12 2017-08-29 京东方科技集团股份有限公司 反射式液晶显示器及其制造方法
CN109884831A (zh) * 2019-03-06 2019-06-14 京东方科技集团股份有限公司 反射式显示器件、显示面板及其制造方法
CN109814303B (zh) * 2019-03-08 2023-09-01 京东方科技集团股份有限公司 一种反射式液晶显示面板及其制备方法、显示装置
CN111354871A (zh) * 2020-03-11 2020-06-30 深圳市华星光电半导体显示技术有限公司 有机发光二极体显示面板、彩膜基板及其制作方法
CN111929944A (zh) * 2020-09-02 2020-11-13 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示面板、显示模组
CN115298600B (zh) * 2020-12-25 2023-10-20 京东方科技集团股份有限公司 显示面板、显示面板的制造方法以及显示装置
CN114839805A (zh) * 2022-04-26 2022-08-02 Tcl华星光电技术有限公司 全反射式液晶显示面板
CN115167045B (zh) * 2022-07-01 2023-11-28 Tcl华星光电技术有限公司 全反射显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040039988A (ko) * 2002-11-05 2004-05-12 삼성전자주식회사 액정표시장치 및 이의 제조 방법
CN1866099A (zh) * 2005-05-16 2006-11-22 三星电子株式会社 显示屏板、其制造方法及液晶显示器
KR20070096511A (ko) * 2006-03-24 2007-10-02 비오이 하이디스 테크놀로지 주식회사 반투과형 vva 모드 액정표시장치
CN101162306A (zh) * 2006-10-13 2008-04-16 株式会社日立显示器 液晶显示装置及其制造方法
CN103558718A (zh) * 2013-10-07 2014-02-05 友达光电股份有限公司 像素结构
CN107102470A (zh) * 2017-06-12 2017-08-29 京东方科技集团股份有限公司 反射式液晶显示器及其制造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3380482B2 (ja) * 1997-12-26 2003-02-24 シャープ株式会社 液晶表示装置
TW573174B (en) * 2002-09-19 2004-01-21 Au Optronics Corp Transflective LCD structure
KR101219042B1 (ko) * 2005-12-06 2013-01-07 삼성디스플레이 주식회사 반투과형 액정 표시 장치
TWI337671B (en) * 2006-08-31 2011-02-21 Au Optronics Corp Transflective lcd panel, transmission lcd panel, and reflection lcd panel
TWI398689B (zh) * 2007-03-20 2013-06-11 Au Optronics Corp 液晶顯示面板
TWI362526B (en) * 2007-08-14 2012-04-21 Au Optronics Corp Liquid crystal display panel
CN101910927B (zh) * 2007-12-25 2012-01-25 夏普株式会社 液晶显示装置和显示装置用基板
US20110012885A1 (en) * 2008-03-04 2011-01-20 Masaaki Saitoh Liquid crystal display device
WO2010073427A1 (ja) * 2008-12-26 2010-07-01 シャープ株式会社 液晶表示装置
US8587754B2 (en) * 2009-06-30 2013-11-19 Samsung Display Co., Ltd. Liquid crystal display and method of manufacturing the same
CN205787482U (zh) * 2016-07-01 2016-12-07 上海天马微电子有限公司 一种半反半透型液晶显示面板及包含其的显示装置
JP2018112700A (ja) * 2017-01-13 2018-07-19 株式会社ジャパンディスプレイ 表示装置及び電子棚札
CN107153295A (zh) * 2017-07-13 2017-09-12 京东方科技集团股份有限公司 阵列基板、显示面板以及阵列基板和显示面板的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040039988A (ko) * 2002-11-05 2004-05-12 삼성전자주식회사 액정표시장치 및 이의 제조 방법
CN1866099A (zh) * 2005-05-16 2006-11-22 三星电子株式会社 显示屏板、其制造方法及液晶显示器
KR20070096511A (ko) * 2006-03-24 2007-10-02 비오이 하이디스 테크놀로지 주식회사 반투과형 vva 모드 액정표시장치
CN101162306A (zh) * 2006-10-13 2008-04-16 株式会社日立显示器 液晶显示装置及其制造方法
CN103558718A (zh) * 2013-10-07 2014-02-05 友达光电股份有限公司 像素结构
CN107102470A (zh) * 2017-06-12 2017-08-29 京东方科技集团股份有限公司 反射式液晶显示器及其制造方法

Also Published As

Publication number Publication date
CN107102470A (zh) 2017-08-29
US20210011338A1 (en) 2021-01-14
US11086163B2 (en) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2018228058A1 (zh) 反射式液晶显示器及其制造方法
JP4368096B2 (ja) 液晶表示装置
JP3665263B2 (ja) 液晶表示装置
US7580092B2 (en) Liquid crystal display device and method for fabricating the same
US7667800B2 (en) Liquid crystal display device and method of fabricating the same
US6683667B2 (en) TFT-LCD with scattering layer, reflector, color filters formed on TFT
KR100760938B1 (ko) 반사형 액정 표시 장치
US10908449B2 (en) Substrate and method for manufacturing the same, display panel and display device
TW200406627A (en) Manufacturing method of liquid crystal display
JP2008241726A (ja) 液晶ディスプレイ用基板
US8241935B2 (en) Method of fabricating liquid crystal display device having concave reflector
JP3012596B2 (ja) 反射型液晶表示装置およびその製造方法
WO2019011032A1 (zh) 阵列基板、显示面板以及阵列基板和显示面板的制造方法
US20190064616A1 (en) Transflective liquid crystal display
JP2000241809A (ja) 反射型液晶表示装置
JPH09101510A (ja) 反射型液晶表示装置およびその製造方法
KR20040100002A (ko) 칼라 편광판 및 이를 이용한 반사형 액정 표시 장치
JP4399887B2 (ja) 反射型液晶表示装置用電極基板の製造方法およびそれを用いた反射型液晶表示装置用電極基板
TW200411283A (en) Liquid crystal display device
EP1004923A2 (en) Liquid crystal display device with light diffusing layer
CN107894683A (zh) 阵列基板、显示设备及阵列基板的制作方法
JP2004053935A (ja) 液晶表示装置
JP3575764B2 (ja) 液晶表示装置の製造方法
JP2007041430A (ja) 液晶表示装置
WO2023206620A1 (zh) 阵列基板及全反射式液晶显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18817363

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.04.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18817363

Country of ref document: EP

Kind code of ref document: A1