WO2019011032A1 - 阵列基板、显示面板以及阵列基板和显示面板的制造方法 - Google Patents

阵列基板、显示面板以及阵列基板和显示面板的制造方法 Download PDF

Info

Publication number
WO2019011032A1
WO2019011032A1 PCT/CN2018/084338 CN2018084338W WO2019011032A1 WO 2019011032 A1 WO2019011032 A1 WO 2019011032A1 CN 2018084338 W CN2018084338 W CN 2018084338W WO 2019011032 A1 WO2019011032 A1 WO 2019011032A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
array substrate
dielectric layer
display panel
particulate matter
Prior art date
Application number
PCT/CN2018/084338
Other languages
English (en)
French (fr)
Inventor
武晓娟
袁洪亮
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/330,315 priority Critical patent/US20190227379A1/en
Publication of WO2019011032A1 publication Critical patent/WO2019011032A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix

Definitions

  • Embodiments of the present disclosure relate to the field of display technologies, and in particular, to an array substrate, a display panel, and an array substrate and a method of manufacturing the display panel.
  • Embodiments of the present disclosure provide an array substrate, a display panel, and an array substrate and a method of manufacturing the display panel.
  • an array substrate includes: a substrate; a dielectric layer on the substrate, wherein the dielectric layer includes a layer of a matrix material and a particulate matter embedded in the layer of the matrix material, the particulate matter in the dielectric layer and the The surface on the opposite side of the substrate forms a protrusion; and the conductive layer conformally covers the dielectric layer.
  • the particulate matter is a spherical particulate matter.
  • the protrusion has a hemispherical shape.
  • the spherical particles have a diameter ranging from about 1.5 ⁇ m to about 6 ⁇ m.
  • the particulate matter comprises a silicone resin material or a plastic.
  • the matrix material layer includes a resin material.
  • a display panel includes the array substrate described in the first aspect of the embodiment of the present disclosure.
  • a method of fabricating an array substrate includes forming a dielectric layer on a substrate, wherein the dielectric layer includes a layer of a host material and particles embedded in the layer of the matrix material, the particles being on a surface of the dielectric layer opposite the substrate Forming a bump; and forming a conductive layer on the dielectric layer, wherein the conductive layer conformally covers the dielectric layer.
  • forming the dielectric layer includes mixing the particulate matter with a precursor material for forming the matrix material layer to form a mixture; and applying the mixture to the substrate to form The dielectric layer.
  • the particulate matter is a spherical particulate matter.
  • the mass percentage of the particulate matter to the precursor material in the mixture is from about 1 wt% to about 10 wt%.
  • the protrusion has a hemispherical shape.
  • the spherical particles have a diameter ranging from about 1.5 ⁇ m to about 6 ⁇ m.
  • the particulate matter comprises a silicone resin material or a plastic.
  • the matrix material layer includes a resin material.
  • a method for manufacturing a display panel includes a method of fabricating an array substrate described in a third aspect of an embodiment of the present disclosure.
  • FIG. 1 is a schematic cross-sectional view schematically showing an array substrate according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural view schematically showing a display panel according to an embodiment of the present disclosure
  • FIG. 3 is a schematic cross-sectional view schematically showing a display panel according to an embodiment of the present disclosure
  • FIG. 4 is a view schematically showing an optical path in a display panel in a black state display state
  • FIG. 5 is a view schematically showing an optical path in a display panel according to an embodiment of the present disclosure in a black state display state;
  • FIG. 6 is a flow chart of a method of fabricating an array substrate in accordance with an embodiment of the present disclosure.
  • an element or layer when an element or layer is referred to as being “on” another element or layer, it may be directly on the other element or layer, or an element or layer may be present; likewise, when the element or layer is When the other element or layer is "under”, it may be directly under the other element or layer, or there may be at least one intermediate element or layer; when the element or layer is referred to as being between the two or two layers It may be a single element or layer between two or two layers, or more than one intermediate element or layer may be present.
  • Reflective liquid crystal display panels have been widely used and developed, but there is still a need to further improve the reflectivity of reflective liquid crystal display panels and to expand the viewing angle of display panels.
  • an array substrate and a display panel including the array substrate are provided.
  • the array substrate includes a dielectric layer having a protrusion, wherein the protrusion is caused by particles embedded in the dielectric layer, such that the reflective electrode conforming to the dielectric layer has a convex portion having a large curvature and a high height.
  • the reflectance of the reflective electrode to the incident light can be increased, thereby expanding the viewing angle of the display panel.
  • FIG. 1 is a schematic cross-sectional view schematically showing an array substrate according to an embodiment of the present disclosure.
  • the array substrate 10 includes: a substrate 1; a thin film transistor on the substrate 1, the thin film transistor including a gate electrode 2, a gate insulating layer 3, an active layer 4, and a source/drain electrode layer 5; 1 and a passivation layer 6 of the thin film transistor; a dielectric layer on the passivation layer 6, the dielectric layer comprising a layer 7 of a matrix material; and a conductive layer 8 conformally covering the layer 7 of the matrix material.
  • the dielectric layer in the array substrate 10 includes, in addition to the matrix material layer 7, particulate matter 13 embedded in the matrix material layer 7.
  • the particles 13 are convex on the surface of the dielectric layer on the side opposite to the substrate 1, thereby increasing the reflectance of the conductive layer 8 (hereinafter also referred to as "reflecting electrode 8") to incident light, thereby enlarging the viewing angle of the display panel. .
  • the surface of the dielectric layer has a regular convex shape.
  • the particulate matter 13 may be, for example, spherical.
  • the protrusions have a hemispherical shape, so that the reflectance of the reflective electrode 8 to the incident light can be maximized.
  • the diameter of the spherical particles may be set in a range of about 1.5 ⁇ m to about 6 ⁇ m according to the requirements of the curvature and height of the convex portion of the reflective electrode 8, the formation process of the matrix material layer 7, and the thickness. Inside, thereby forming a size-controlled convex shape on the surface of the dielectric layer.
  • the particulate matter 13 includes a silicone resin material or a plastic.
  • the matrix material layer 7 may include a resin material. It should be noted that the material of the particulate matter and the matrix material layer is not particularly limited as long as a protrusion can be formed on the surface of the dielectric layer.
  • the reflective electrode 8 includes a metal layer.
  • the metal layer includes metal Al or Ag.
  • Embodiments of the present disclosure also provide a display panel including the above array substrate.
  • FIG. 2 is a schematic structural view schematically showing a display panel according to an embodiment of the present disclosure.
  • the display panel 200 includes an array substrate 10.
  • FIG. 3 is a schematic cross-sectional view schematically showing a display panel according to an embodiment of the present disclosure.
  • the display panel 200 includes, in addition to the array substrate 10 shown in FIG. 1 , a color filter substrate 12 disposed opposite to the array substrate 10 and a transparent surface of the color filter substrate 12 facing the array substrate 10 .
  • the color filter substrate 12 includes a black matrix (not shown) and RGB color resists (not shown).
  • the transparent electrode layer 11 may be a transparent electrode such as ITO (Indium Tin Oxide).
  • the display panel 200 in addition to having an enlarged viewing angle, can avoid light leakage when displayed in a black state, thereby improving the contrast of the reflective liquid crystal display panel.
  • FIG. 4 is a view schematically showing an optical path in a display panel in a black state display state.
  • FIG. 5 is a view schematically showing an optical path in a display panel according to an embodiment of the present disclosure in a black state display state.
  • both of the display panels 400 and 500 include a substrate 1, a thin film transistor (not shown), a matrix material layer 7, a reflective electrode 8, a liquid crystal 9, a spacer (not shown), and a transparent electrode layer 11.
  • the display panel 500 in FIG. 5 also includes particulate matter 13 (eg, spherical particulate matter).
  • the area A in FIGS. 4 and 5 is the pixel area A, the area B is the pixel area B, and the area C is the non-reflective electrode area C. 4 and 5 are both: the pixel area A is not powered to display a white state, and the pixel area B is powered to display a black state. The reason why the display panel of the embodiment of the present disclosure can avoid light leakage when the black state is displayed by power-on is explained below.
  • the transparent electrode layer 11 is located at a non-reflective electrode.
  • the vertical electric field component between the portion of the region C and the reflective electrode of the pixel region B is small, so that the effect on the liquid crystal in the non-reflective electrode region C is small, so that the liquid crystal in the non-reflective electrode region C cannot be deflected.
  • the light reflected by the reflective electrode in the pixel area A enters the pixel area B, causing the pixel area B to generate light leakage, which lowers the contrast of the display panel.
  • the dielectric layer further includes the particulate matter 13 embedded in the matrix material layer 7, the particulate matter 13 forms a hemispherical projection on the surface of the dielectric layer on the side opposite to the substrate 1.
  • the vertical electric field component of the transparent electrode layer 11 between the portion of the non-reflective electrode region C and the reflective electrode of the pixel region B More, the effect on the liquid crystal in the non-reflective electrode region C is large, so that the liquid crystal in the non-reflective electrode region C is deflected, and the degree of deflection of the liquid crystal is close to the pixel region B.
  • the light reflected by the reflective electrode in the pixel area A does not enter the pixel area B, and the light leakage of the pixel area B can be effectively prevented, thereby improving the contrast of the display panel.
  • the embodiment of the present disclosure can effectively avoid light leakage even when the applied voltages of two adjacent pixels are different, that is, light leakage of a pixel region having a large applied voltage (that is, performing dark state display) can be avoided.
  • Embodiments of the present disclosure also provide a method of fabricating an array substrate.
  • the array substrate manufactured by the method comprises a dielectric layer having a protrusion, so that the reflective electrode covered by the conformal layer on the dielectric layer has a convex portion with a large curvature and a high height, and can enhance the reflection of the incident light by the reflective electrode. Rate, thereby expanding the viewing angle of the display panel.
  • FIG. 6 is a flow chart of a method of fabricating an array substrate in accordance with an embodiment of the present disclosure.
  • the cross-sectional structure of the array substrate manufactured by this method is as shown in FIG.
  • the method includes steps S601 and S602.
  • step S601 a dielectric layer is formed on the substrate 1.
  • the dielectric layer includes a matrix material layer 7 and particulate matter 13 (for example, spherical particulate matter) embedded in the matrix material layer 7, and the particulate matter 13 forms a projection on a surface of the dielectric layer opposite to the substrate 1.
  • particulate matter 13 for example, spherical particulate matter
  • the surface of the dielectric layer has a regular convex shape.
  • the protrusions are in the shape of a hemisphere.
  • the material of the particulate matter and the matrix material layer is not particularly limited as long as the protrusion can be formed on the surface of the dielectric layer and the particulate matter does not affect the film formation property of the matrix material layer.
  • forming the dielectric layer includes mixing the particulate matter 13 with a precursor material for forming the matrix material layer 7 to form a mixture; and applying the mixture onto the substrate 1 to form a dielectric layer.
  • the mass percentage of the particulate matter 13 to the precursor material is from about 1 wt% to about 10 wt%.
  • a silicon ball having a diameter of 4.0 ⁇ m is uniformly mixed with a resin material in accordance with a mass percentage of the particulate matter (for example, a silicon ball) and a resin material of 4.0 wt% to form a mixture. Then, the mixture was coated on a substrate to form a dielectric layer having a thickness of 2.0 ⁇ m. It should be noted that the thickness of the dielectric layer herein refers to the thickness of the layer of the matrix material.
  • a silicon ball having a diameter of 3.0 ⁇ m is uniformly mixed with a resin material in accordance with a mass percentage of the silicon ball and the resin material of 5.0 wt% to form a mixture. Then, the mixture was coated on a substrate to form a dielectric layer having a thickness of 1.5 ⁇ m.
  • a reflective electrode 8 is formed on the dielectric layer, and the reflective electrode 8 conformally covers the dielectric layer.
  • Forming the reflective electrode 8 on the dielectric layer includes sputtering a metal such as Al or Ag on the dielectric layer.
  • step S601 further comprising: forming a thin film transistor on the substrate 1, the thin film transistor including a gate 2, a gate insulating layer 3, an active layer 4, and a source/drain electrode layer 5; A passivation layer 6 is formed on the substrate 1 and the thin film transistor.
  • Embodiments of the present disclosure also provide a method for manufacturing a display panel.
  • the method includes the above method of fabricating an array substrate.
  • the manufactured display panel has an enlarged viewing angle.
  • the display panel manufactured by the method of manufacturing a display panel is as shown in the display panel 200 of FIG.
  • the method includes, in addition to the above method of manufacturing the array substrate, forming a transparent electrode layer 11 on the color filter substrate 12, wherein the color filter substrate 12 includes a black matrix (not shown) and RGB color resistance (not shown).
  • the sealant is uniformly applied onto the color filter substrate 12 on which the transparent electrode layer 11 is formed; the liquid crystal 9 is dropped on the array substrate 10; and the color filter substrate 12 is aligned with the array substrate 10, and then UV polymerization and thermal polymerization are carried out. Thereby, a reflective liquid crystal display panel having high reflectance and a wide viewing angle is formed.
  • the frame sealant may be, for example, a frame sealant of SWB-73 or SWB-66 commercially available from the standing water.
  • a liquid crystal of ZBE-5311 commercially available from JNC or a liquid crystal of MAT-10-875 commercially available from Merck can be used.
  • the surface of the dielectric layer in the reflective liquid crystal display panel has a protrusion such that the reflective electrode has a convex portion having a large curvature and a high height, thereby increasing the reflection of the reflective electrode on the ambient light. Rate, thereby expanding the viewing angle of the display panel.
  • protrusions due to the above-mentioned protrusions, it is possible to effectively prevent light leakage when the display panel performs dark state display, thereby improving the contrast of the display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种阵列基板(10)、显示面板(200)以及阵列基板(10)和显示面板(200)的制造方法。阵列基板(10)包括:基板(1);位于基板(1)上的介质层,其中,介质层包括基质材料层(7)和嵌入基质材料层(7)中的颗粒物(13),颗粒物(13)在介质层(7)的与基板(1)相对侧的表面形成凸起;以及保形覆盖介质层(7)的导电层。

Description

阵列基板、显示面板以及阵列基板和显示面板的制造方法
相关申请的交叉引用
本申请要求于2017年7月13日递交的中国专利申请第201710569209.3号优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及显示技术领域,尤其涉及一种阵列基板、显示面板以及阵列基板和显示面板的制造方法。
背景技术
随着手机功能逐渐强大以及智能穿戴产品的迅速发展,人们对显示器户外可读性的要求越来越强。近年来,反射式液晶显示器得到广泛的应用和发展。另外,电子标签的应用越来越普遍,但传统电子墨水式的电子标签只能显示黑白或很少的几个颜色,而全反射液晶显示由于其低功耗、可显示色彩众多、分辨率高等优点,应用越来越广泛。
发明内容
本公开的实施例提供了一种阵列基板、显示面板以及阵列基板和显示面板的制造方法。
根据本公开的实施例的第一方面,提供了一种阵列基板。所述阵列基板包括:基板;位于所述基板上的介质层,其中,所述介质层包括基质材料层和嵌入所述基质材料层中的颗粒物,所述颗粒物在所述介质层的与所述基板相对侧的表面形成凸起;以及保形覆盖所述介质层的导电层。
在本公开的实施例中,所述颗粒物为球状颗粒物。
在本公开的实施例中,所述凸起呈半球形状。
在本公开的实施例中,所述球状颗粒物具有范围为约1.5μm至约6μm 的直径。
在本公开的实施例中,所述颗粒物包括有机硅树脂材料或塑料。
在本公开的实施例中,所述基质材料层包括树脂材料。
根据本公开的实施例的第二方面,提供了一种显示面板。所述显示面板包括在本公开的实施例的第一方面中描述的阵列基板。
根据本公开的实施例的第三方面,提供了一种制造阵列基板的方法。所述方法包括:在基板上形成介质层,其中,所述介质层包括基质材料层和嵌入所述基质材料层中的颗粒物,所述颗粒物在所述介质层的与所述基板相对侧的表面形成凸起;以及在所述介质层上形成导电层,其中,所述导电层保形覆盖所述介质层。
在本公开的实施例中,形成所述介质层包括:将所述颗粒物与用于形成所述基质材料层的前体材料混合以形成混合物;以及将所述混合物施加至所述基板上以形成所述介质层。
在本公开的实施例中,所述颗粒物为球状颗粒物。
在本公开的实施例中,在所述混合物中,所述颗粒物与所述前体材料的质量百分比为约1wt%至约10wt%。
在本公开的实施例中,所述凸起呈半球形状。
在本公开的实施例中,所述球状颗粒物具有范围为约1.5μm至约6μm的直径。
在本公开的实施例中,所述颗粒物包括有机硅树脂材料或塑料。
在本公开的实施例中,所述基质材料层包括树脂材料。
根据本公开的实施例的第四方面,提供了一种用于制造显示面板的方法。所述方法包括在本公开的实施例的第三方面中描述的制造阵列基板的方法。
适应性的进一步的方面和范围从本文中提供的描述变得明显。应当理解,本申请的各个方面可以单独或者与一个或多个其他方面组合实施。还应当理解,本文中的描述和特定实施例旨在仅说明的目的并不旨在限制本 申请的范围。
附图说明
本文中描述的附图用于仅对所选择的实施例的说明的目的,并不是所有可能的实施方式,并且不旨在限制本申请的范围,其中:
图1是示意性示出根据本公开的实施例的阵列基板的截面示意图;
图2是示意性示出根据本公开的实施例的显示面板的结构示意图;
图3是示意性示出根据本公开的实施例的显示面板的截面示意图;
图4是示意性示出在黑态显示状态下的一种显示面板中的光路图;
图5是示意性示出在黑态显示状态下的根据本公开的实施例的显示面板中的光路图;以及
图6是根据本公开的实施例的制造阵列基板的方法的流程图。
贯穿这些附图的各个视图,相应的参考编号指示相应的部件或特征。
具体实施方式
首先,需要说明的是,除非上下文中另外明确地指出,否则在本文和所附权利要求中所使用的词语的单数形式包括复数,反之亦然。因而,当提及单数时,通常包括相应术语的复数。相似地,措辞“包含”和“包括”将解释为包含在内而不是独占性地。同样地,术语“包括”和“或”应当解释为包括在内的,除非本文中另有说明。在本文中使用术语“实例”之处,特别是当其位于一组术语之后时,所述“实例”仅仅是示例性的和阐述性的,且不应当被认为是独占性的或广泛性的。
另外,还需要说明的是,在本公开的描述中,术语“上”、“之上”、“下”、“之下”、“顶”、“底”、“之间”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,当元件或层被称为在另一元件或层“上”时,它可以直接在该另一元件或层上,或者可以存在中间的元件或层;同样,当元件或层被称为在 另一元件或层“下”时,它可以直接在该另一元件或层下,或者可以存在至少一个中间的元件或层;当元件或层被称为在两元件或两层“之间”时,其可以为该两元件或两层之间的唯一的元件或层,或者可以存在一个以上的中间元件或层。
本公开中描绘的流程图仅仅是一个例子。在不脱离本公开精神的情况下,可以存在该流程图或其中描述的步骤的很多变型。例如,所述步骤可以以不同的顺序进行,或者可以添加、删除或者修改步骤。这些变型都被认为是所要求保护的方面的一部分。
现将参照附图更全面地描述示例性的实施例。
反射式液晶显示面板得到广泛的应用和发展,但是仍然需要进一步提高反射式液晶显示面板的反射率以及扩大显示面板的视角
在本公开的实施例中,提供了一种阵列基板以及包括该阵列基板的显示面板。该阵列基板包括具有凸起的介质层,其中该凸起由嵌入介质层中的颗粒物导致,从而使保形覆盖在该介质层上的反射电极具有弧度较大、高度较高的凸起部分,能够提升反射电极对入射光的反射率,从而扩大显示面板的视角。
图1是示意性示出根据本公开的实施例的阵列基板的截面示意图。如图1所示,阵列基板10包括:基板1;位于基板1上的薄膜晶体管,该薄膜晶体管包括栅极2、栅极绝缘层3、有源层4以及源/漏电极层5;覆盖基板1和薄膜晶体管的钝化层6;位于钝化层6上的介质层,该介质层包括基质材料层7;以及保形覆盖基质材料层7的导电层8。此外,阵列基板10中的介质层除了包括基质材料层7之外,还包括嵌入基质材料层7中的颗粒物13。该颗粒物13在介质层的与基板1相对侧的表面形成凸起,由此,提升导电层8(下文也称之为“反射电极8”)对入射光的反射率,从而扩大显示面板的视角。
在本公开的实施例中,介质层的表面具有规则的凸起形状。在本公开的实施例中,颗粒物13可以例如为球状的。作为一个示例,凸起呈半球形状,从而能够最大限度增大反射电极8对入射光的反射率。在本公开的实 施例中,根据反射电极8的凸起部分的弧度和高度的要求、基质材料层7的形成工艺以及厚度,可以将球状颗粒物的直径设定在约1.5μm至约6μm的范围内,从而在介质层的表面上形成大小可控的凸起形状。
在本公开的实施例中,颗粒物13包括有机硅树脂材料或塑料。作为一个示例,基质材料层7可以包括树脂材料。需要说明的是,对颗粒物和基质材料层的材料没有具体限制,只要在介质层的表面能够形成凸起即可。
在本公开的实施例中,反射电极8包括金属层。作为一个示例,金属层包括金属Al或Ag。
本公开的实施例还提供了一种显示面板,该显示面板包括上述阵列基板。
图2是示意性示出根据本公开的实施例的显示面板的结构示意图。如图2所示,显示面板200包括阵列基板10。图3是示意性示出根据本公开的实施例的显示面板的截面示意图。如图3所示,显示面板200除了包括图1所示的阵列基板10之外,还包括:与阵列基板10相对设置的彩膜基板12、位于彩膜基板12的面向阵列基板10侧的透明电极层11、位于透明电极层11与反射电极8之间的液晶9和间隔物17。在本公开的实施例中,彩膜基板12包括黑矩阵(未示出)和RGB色阻(未示出)。作为一个示例,透明电极层11可以为诸如ITO(铟锡氧化物)等的透明电极。
此外,在本公开的实施例中,显示面板200除了具有扩大的视角之外,还能够避免在黑态显示时出现漏光,从而提升反射式液晶显示面板的对比度。
图4是示意性示出在黑态显示状态下的一种显示面板中的光路图。图5是示意性示出在黑态显示状态下的根据本公开的实施例的显示面板中的光路图。
如图4和5所示,显示面板400和500都包括基板1、薄膜晶体管(未示出)、基质材料层7、反射电极8、液晶9、间隔物(未示出)、透明电极层11、彩膜基板12、四分之一波片14、二分之一波片15以及偏光片16。 图5中的显示面板500还包括颗粒物13(例如,球状颗粒物)。图4和5中的区域A为像素区A,区域B为像素区B,区域C为无反射电极区C。图4和5所示的均为:未对像素区A加电以显示白态,对像素区B加电以显示黑态。下面说明本公开实施例的显示面板能够避免加电显示黑态时出现漏光的原因。
在图4中,由于基质材料层7表面平坦,没有凸起,当未对像素区A加电以显示白态,而对像素区B加电显示黑态时,透明电极层11位于无反射电极区C的部分与像素区B的反射电极之间的垂直电场分量较少,使得对无反射电极区C中的液晶的作用较小,从而不能使无反射电极区C中的液晶偏转。由此,像素区A中的反射电极反射的光就会进入像素区B,致使像素区B产生漏光,降低显示面板的对比度。
在图5中,由于介质层还包括嵌入在基质材料层7中的颗粒物13,使得颗粒物13在介质层的与基板1相对侧的表面形成半球形凸起。当未对像素区A加电以显示白态,而对像素区B加电显示黑态时,透明电极层11位于无反射电极区C的部分与像素区B的反射电极之间的垂直电场分量较多,使得对无反射电极区C中的液晶的作用较大,从而使无反射电极区C中的液晶偏转,液晶的偏转程度接近于像素区B。由此,像素区A中的反射电极反射的光不会进入像素区B,能够有效防止像素区B产生漏光,从而提高显示面板的对比度。
需要说明的是,为便于说明本公开实施例的显示面板能够防止漏光的原因,这里举了一个特殊的例子:在相邻两个像素中,一个不加电以显示白态,另一个加电以显示黑态。然而,本公开的实施例在相邻两个像素的施加电压不同的情况下也能有效避免漏光,即,能够避免加电电压较大(也就是,进行暗态显示)的像素区的漏光。
本公开的实施例还提供一种制造阵列基板的方法。该方法制造出的阵列基板包括具有凸起的介质层,从而使保形覆盖在该介质层上的反射电极具有弧度较大、高度较高的凸起部分,能够提升反射电极对入射光的反射 率,从而扩大显示面板的视角。
图6是根据本公开的实施例的制造阵列基板的方法的流程图。该方法制造出的阵列基板的截面结构如图1所示。如图6所示,该方法包括步骤S601和S602。在步骤S601中,在基板1上形成介质层。该介质层包括基质材料层7和嵌入基质材料层7中的颗粒物13(例如,球状颗粒物),该颗粒物13在介质层的与基板1相对侧的表面形成凸起。
在本公开的实施例中,介质层的表面具有规则的凸起形状。作为一个示例,凸起呈半球形状。在本公开的实施例中,对颗粒物和基质材料层的材料没有具体限制,只要在介质层的表面能够形成凸起以及颗粒物不影响基质材料层的成膜性即可。
在本公开的实施例中,形成介质层包括:将颗粒物13与用于形成基质材料层7的前体材料混合以形成混合物;以及将该混合物施加至基板1上以形成介质层。
在本公开的实施例中,颗粒物13与前体材料(即,树脂材料)的质量百分比为约1wt%至约10wt%。
作为一个示例,按照颗粒物(例如,硅球)与树脂材料的质量百分比为4.0wt%,将直径为4.0μm的硅球与树脂材料均匀混合以形成混合物。然后,将该混合物涂覆在基板上以形成厚度为2.0μm的介质层。需要指出的是,这里的介质层的厚度指的是基质材料层的厚度。作为另一示例,按照硅球与树脂材料的质量百分比为5.0wt%,将直径为3.0μm的硅球与树脂材料均匀混合以形成混合物。然后,将该混合物涂覆在基板上以形成厚度为1.5μm的介质层。
如图6所示,在步骤S602中,在介质层上形成反射电极8,该反射电极8保形覆盖介质层。在介质层上形成反射电极8包括在介质层上溅射诸如Al或Ag等的金属。
在本公开的实施例中,在步骤S601之前还包括:在基板1上形成薄膜晶体管,该薄膜晶体管包括栅极2、栅极绝缘层3、有源层4以及源/漏电 极层5;以及在基板1和薄膜晶体管上形成钝化层6。
本公开的实施例还提供一种用于制造显示面板的方法。该方法包括上述制造阵列基板的方法。制造出的显示面板具有扩大了的视角。
在本公开的实施例中,该制造显示面板的方法制造出的显示面板如图3的显示面板200所示。该方法除了包括上述制造阵列基板的方法之外,还包括:在彩膜基板12上形成透明电极层11,其中,彩膜基板12包括黑矩阵(未示出)和RGB色阻(未示出);将封框胶均匀涂覆到其上形成有透明电极层11的彩膜基板12上;将液晶9滴在阵列基板10上;以及将彩膜基板12与阵列基板10进行对盒,然后进行紫外聚合和热聚合。由此,形成具有高反射率和宽视角的反射式液晶显示面板。
在本公开的实施例中,封框胶例如可以使用可商业购买于积水的型号为SWB-73或SWB-66的封框胶。液晶例如可以使用可商业购买于JNC的型号为ZBE-5311的液晶,或者可商业购买于Merck的型号为MAT-10-875的液晶。
在本公开的实施例中,反射式液晶显示面板中的介质层的表面具有凸起,以使反射电极具有弧度较大、高度较高的凸起部分,从而增加反射电极对外界环境光的反射率,由此扩大显示面板的视角。此外,由于上述凸起,能够有效防止显示面板进行暗态显示时出现漏光,从而提升显示面板的对比度。
以上为了说明和描述的目的提供了实施例的前述描述。其并不旨在是穷举的或者限制本申请。特定实施例的各个元件或特征通常不限于特定的实施例,但是,在合适的情况下,这些元件和特征是可互换的并且可用在所选择的实施例中,即使没有具体示出或描述。同样也可以以许多方式来改变。这种改变不能被认为脱离了本申请,并且所有这些修改都包含在本申请的范围内。

Claims (15)

  1. 一种阵列基板,包括:
    基板;
    位于所述基板上的介质层,其中,所述介质层包括基质材料层和嵌入所述基质材料层中的颗粒物,所述颗粒物在所述介质层的与所述基板相对侧的表面形成凸起;以及
    保形覆盖所述介质层的导电层。
  2. 根据权利要求1所述的阵列基板,其中,所述颗粒物为球状颗粒物。
  3. 根据权利要求2所述的阵列基板,其中,所述凸起呈半球形状。
  4. 根据权利要求2所述的阵列基板,其中,所述球状颗粒物具有范围为约1.5μm至约6μm的直径。
  5. 根据权利要求1所述的阵列基板,其中,所述颗粒物包括有机硅树脂材料或塑料。
  6. 根据权利要求1所述的阵列基板,其中,所述基质材料层包括树脂材料。
  7. 一种包括权利要求1至6中任一项所述的阵列基板的显示面板。
  8. 一种制造阵列基板的方法,包括:
    在基板上形成介质层,其中,所述介质层包括基质材料层和嵌入所述基质材料层中的颗粒物,所述颗粒物在所述介质层的与所述基板相对侧的表面形成凸起;以及
    在所述介质层上形成导电层,其中,所述导电层保形覆盖所述介质层。
  9. 根据权利要求8所述的方法,其中,形成所述介质层包括:将所述颗粒物与用于形成所述基质材料层的前体材料混合以形成混合物;以及将所述混合物施加至所述基板上以形成所述介质层。
  10. 根据权利要求8所述的方法,其中,所述颗粒物为球状颗粒物。
  11. 根据权利要求8所述的方法,其中,在所述混合物中,所述颗粒物与所述前体材料的质量百分比为约1wt%至约10wt%。
  12. 根据权利要求10所述的方法,其中,所述凸起呈半球形状。
  13. 根据权利要求10所述的方法,其中,所述球状颗粒物具有范围为约1.5μm至约6μm的直径。
  14. 根据权利要求8所述的方法,其中,所述颗粒物包括有机硅树脂材料或塑料。
  15. 一种用于制造显示面板的方法,其中,所述方法包括根据权利要求8至14中任一项所述的制造阵列基板的方法。
PCT/CN2018/084338 2017-07-13 2018-04-25 阵列基板、显示面板以及阵列基板和显示面板的制造方法 WO2019011032A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/330,315 US20190227379A1 (en) 2017-07-13 2018-04-25 Array substrate and method for manufacturing the same, display panel and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710569209.3A CN107153295A (zh) 2017-07-13 2017-07-13 阵列基板、显示面板以及阵列基板和显示面板的制造方法
CN201710569209.3 2017-07-13

Publications (1)

Publication Number Publication Date
WO2019011032A1 true WO2019011032A1 (zh) 2019-01-17

Family

ID=59797196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084338 WO2019011032A1 (zh) 2017-07-13 2018-04-25 阵列基板、显示面板以及阵列基板和显示面板的制造方法

Country Status (3)

Country Link
US (1) US20190227379A1 (zh)
CN (1) CN107153295A (zh)
WO (1) WO2019011032A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107102470A (zh) * 2017-06-12 2017-08-29 京东方科技集团股份有限公司 反射式液晶显示器及其制造方法
CN107153295A (zh) * 2017-07-13 2017-09-12 京东方科技集团股份有限公司 阵列基板、显示面板以及阵列基板和显示面板的制造方法
CN110262118B (zh) * 2019-07-05 2022-09-09 京东方科技集团股份有限公司 阵列基板、显示装置及其显示方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1401088A (zh) * 2000-12-14 2003-03-05 三井化学株式会社 反射器、侧光型背照光设备和反射器基片
JP2003322849A (ja) * 2002-04-30 2003-11-14 Casio Comput Co Ltd 表示装置およびその製造方法
CN101063779A (zh) * 2006-04-24 2007-10-31 Nec液晶技术株式会社 液晶显示设备及其制造方法
CN101162306A (zh) * 2006-10-13 2008-04-16 株式会社日立显示器 液晶显示装置及其制造方法
JP2017044718A (ja) * 2015-08-24 2017-03-02 東レ株式会社 反射フィルムおよびそれを用いたエッジライト型バックライト
CN107153295A (zh) * 2017-07-13 2017-09-12 京东方科技集团股份有限公司 阵列基板、显示面板以及阵列基板和显示面板的制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4088042B2 (ja) * 2001-01-16 2008-05-21 株式会社日立製作所 液晶表示装置
JP2002350840A (ja) * 2001-05-28 2002-12-04 Hitachi Ltd 反射型液晶表示装置
CN106019679A (zh) * 2016-08-12 2016-10-12 京东方科技集团股份有限公司 阵列基板及制作方法、显示面板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1401088A (zh) * 2000-12-14 2003-03-05 三井化学株式会社 反射器、侧光型背照光设备和反射器基片
JP2003322849A (ja) * 2002-04-30 2003-11-14 Casio Comput Co Ltd 表示装置およびその製造方法
CN101063779A (zh) * 2006-04-24 2007-10-31 Nec液晶技术株式会社 液晶显示设备及其制造方法
CN101162306A (zh) * 2006-10-13 2008-04-16 株式会社日立显示器 液晶显示装置及其制造方法
JP2017044718A (ja) * 2015-08-24 2017-03-02 東レ株式会社 反射フィルムおよびそれを用いたエッジライト型バックライト
CN107153295A (zh) * 2017-07-13 2017-09-12 京东方科技集团股份有限公司 阵列基板、显示面板以及阵列基板和显示面板的制造方法

Also Published As

Publication number Publication date
US20190227379A1 (en) 2019-07-25
CN107153295A (zh) 2017-09-12

Similar Documents

Publication Publication Date Title
US11086163B2 (en) Reflective liquid crystal display and method for manufacturing the same
TWI298806B (en) Substrate for liquid crystal display device, liquid crystal display apparatus, and method of manufacturing the same
WO2019184769A1 (zh) 液晶显示面板、其制作方法及显示装置
TW200532320A (en) Liquid crystal display device and method of manufacturing liquid crystal display device
TW200406627A (en) Manufacturing method of liquid crystal display
US11243441B2 (en) Display panel, display apparatus, method of fabricating display panel, and operating method of operating display panel
WO2019011032A1 (zh) 阵列基板、显示面板以及阵列基板和显示面板的制造方法
TWI522717B (zh) 畫素結構
US9335587B2 (en) Liquid crystal cell and method for manufacturing the same
WO2016086618A1 (zh) 液晶屏和液晶显示装置
JP2008241726A (ja) 液晶ディスプレイ用基板
WO2021056729A1 (zh) 阵列基板、显示面板及阵列基板的制作方法
US6870585B2 (en) Transflective liquid crystal display device having various cell gaps and method of fabricating the same
TW200424646A (en) Semi-transmissive display apparatus
TWI515500B (zh) 顯示裝置
US8531628B2 (en) Display device having improved contrast ratio
CN105629556B (zh) 光阀及显示装置
TWM591242U (zh) 顯示面板及其主動元件陣列基板
CN107102487B (zh) 阵列基板及其制作方法、反射式液晶显示装置
WO2018076913A1 (zh) 开关元件、阵列基板、显示面板及显示装置
WO2019029036A1 (zh) 半穿透半反射式液晶显示器
US20040012736A1 (en) Reflection type liquid crystal display device
TWI375839B (en) Liquid crystal panel and method of making the same
US11930663B2 (en) Display panel
TWI326785B (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.05.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18832351

Country of ref document: EP

Kind code of ref document: A1