WO2023206620A1 - 阵列基板及全反射式液晶显示面板 - Google Patents

阵列基板及全反射式液晶显示面板 Download PDF

Info

Publication number
WO2023206620A1
WO2023206620A1 PCT/CN2022/092679 CN2022092679W WO2023206620A1 WO 2023206620 A1 WO2023206620 A1 WO 2023206620A1 CN 2022092679 W CN2022092679 W CN 2022092679W WO 2023206620 A1 WO2023206620 A1 WO 2023206620A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
layer
substrate
structures
flat
Prior art date
Application number
PCT/CN2022/092679
Other languages
English (en)
French (fr)
Inventor
柳吴广
赵迎春
刘一诺
卢颖
高健博
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to KR1020227023802A priority Critical patent/KR20230153914A/ko
Priority to US17/758,019 priority patent/US20240168343A1/en
Publication of WO2023206620A1 publication Critical patent/WO2023206620A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133357Planarisation layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/48Flattening arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/02Function characteristic reflective

Definitions

  • the present invention relates to the field of display technology, and in particular to an array substrate and a fully reflective liquid crystal display panel.
  • transmissive LCD technology has occupied the majority of liquid crystal display panels (liquid crystal display, LCD).
  • LCD liquid crystal display
  • reflective LCD panels can display clearly in ambient light scenarios and do not require a backlight. They have the advantages of thin and light body and low power consumption, and have good market application prospects in the field of outdoor display.
  • reflective LCD TV panels face a common problem, that is, the reflectivity is small.
  • the industry's largest mass production level reflectivity is within 10%. The main reason is that the light path of reflective LCD panels passes through many Reflection along the distance causes serious energy loss, and ultimately the amount of emitted light only reaches 10% of the amount of incident light. Therefore, how to improve reflectivity is an important issue facing current emissive liquid crystal display technology.
  • Embodiments of the present application provide an array substrate and a total reflection liquid crystal display panel, which can improve the reflectivity of the total reflection liquid crystal display panel.
  • An embodiment of the present application provides an array substrate, including:
  • a driving circuit layer is provided on the substrate
  • the reflective electrode layer is disposed on the side of the flat layer away from the substrate, and is disposed in an uneven shape along the uneven surface of the flat layer.
  • the flat layer has a plurality of protruding structures or recessed structures, and the plurality of protruding structures or recessed structures are distributed in an array on a side of the flat layer away from the substrate.
  • the convex structure has a convex arc surface, and the angle between a tangent line at any point on the arc surface and the flat surface of the flat layer is less than or equal to 10°.
  • the recessed structure has a recessed arc surface, and the angle between a tangent line at any point on the arc surface and the flat surface of the flat layer is less than or equal to 10°.
  • a plurality of the protruding structures or the concave structures are distributed continuously or at intervals on a side surface of the flat layer away from the substrate.
  • a plurality of the protruding structures are arranged in rows at intervals along the first direction, and a plurality of the protruding structures are arranged in columns at intervals along the second direction, and the first direction and the The second direction is different;
  • any two adjacent rows or two columns of the protruding structures are arranged side by side; or, any two adjacent rows or two columns of the protruding structures are arranged staggered.
  • a plurality of the recessed structures are arranged in rows at intervals along the first direction, and a plurality of the recessed structures are arranged in columns at intervals along the second direction.
  • the first direction and the second direction are arranged in rows. Different directions;
  • any two adjacent rows or two columns of the recessed structures are arranged side by side; or, any two adjacent rows or two columns of the recessed structures are arranged staggered.
  • the shape of the convex structure or the recessed structure is any one of triangle, quadrilateral, pentagon, hexagon, circle or ellipse.
  • the reflective electrode layer includes a first electrode layer, and the material of the first electrode layer is metal or alloy.
  • the material of the first electrode layer includes any one or more alloys of gold, silver, copper and aluminum.
  • the reflective electrode layer includes a second electrode layer and a third electrode layer, the first electrode layer is disposed between the second electrode layer and the third electrode layer, and the third electrode layer
  • the material of the two electrode layers and the third electrode layer is a transparent conductive metal oxide.
  • embodiments of the present application also provide a fully reflective liquid crystal display panel, including the array substrate, the color filter substrate, and the array substrate and the color filter substrate arranged oppositely.
  • the liquid crystal layer between the film substrates, the array substrate includes:
  • a driving circuit layer is provided on the substrate
  • the reflective electrode layer is disposed on the side of the flat layer away from the substrate, and is disposed in an uneven shape along the uneven surface of the flat layer.
  • the flat layer has a plurality of protruding structures or recessed structures, and the plurality of protruding structures or recessed structures are distributed in an array on a side of the flat layer away from the substrate.
  • the convex structure has a convex arc surface, and the angle between a tangent line at any point on the arc surface and the flat surface of the flat layer is less than or equal to 10°.
  • the recessed structure has a recessed arc surface, and the angle between a tangent line at any point on the arc surface and the flat surface of the flat layer is less than or equal to 10°.
  • a plurality of the protruding structures or the concave structures are distributed continuously or at intervals on a side surface of the flat layer away from the substrate.
  • a plurality of the protruding structures are arranged in rows at intervals along the first direction, and a plurality of the protruding structures are arranged in columns at intervals along the second direction, and the first direction and the The second direction is different;
  • any two adjacent rows or two columns of the protruding structures are arranged side by side; or, any two adjacent rows or two columns of the protruding structures are arranged staggered.
  • a plurality of the recessed structures are arranged in rows at intervals along the first direction, and a plurality of the recessed structures are arranged in columns at intervals along the second direction.
  • the first direction and the second direction are arranged in rows. Different directions;
  • any two adjacent rows or two columns of the recessed structures are arranged side by side; or, any two adjacent rows or two columns of the recessed structures are arranged staggered.
  • the shape of the convex structure or the recessed structure is any one of triangle, quadrilateral, pentagon, hexagon, circle or ellipse.
  • the reflective electrode layer includes a first electrode layer, and the material of the first electrode layer is metal or alloy.
  • the material of the first electrode layer includes any one or more alloys of gold, silver, copper and aluminum.
  • the reflective electrode layer includes a second electrode layer and a third electrode layer, the first electrode layer is disposed between the second electrode layer and the third electrode layer, and the third electrode layer
  • the material of the two electrode layers and the third electrode layer is a transparent conductive metal oxide.
  • Embodiments of the present application provide an array substrate and a fully reflective liquid crystal display panel.
  • the fully reflective liquid crystal display panel includes an array substrate, a color filter substrate and a liquid crystal layer.
  • the array substrate includes a substrate. , the driving circuit layer, the flat layer and the reflective electrode layer, by providing at least a partial uneven surface on the side of the flat layer away from the substrate, so that the reflective electrode can be uneven along the uneven surface of the flat layer.
  • the uneven arrangement changes the reflection direction of light inside the panel, so that light that cannot be reflected at the critical angle of total reflection is reflected out of the panel, thereby improving the reflectivity of the total reflection liquid crystal display panel.
  • Figure 1 is a schematic structural diagram of a fully reflective liquid crystal display panel provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of the protruding structure provided by the embodiment of the present application.
  • Figure 3 is a schematic distribution diagram of the protruding structures provided by the embodiment of the present application.
  • Figure 4 is a schematic distribution diagram of another protruding structure provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of another protruding structure provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of another fully reflective liquid crystal display panel provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of a recessed structure provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of another fully reflective liquid crystal display panel provided by an embodiment of the present application.
  • Figure 9 is a histogram of the measured diffuse reflection results of the convex structure and the concave structure produced during the verification process of the embodiment of the present application.
  • Figure 1 is a schematic structural diagram of a fully reflective liquid crystal display panel provided by an embodiment of the present application.
  • the liquid crystal display panel includes an array substrate 10, a color filter substrate 20, and an array substrate disposed oppositely. 10 and the liquid crystal layer 30 between the color filter substrate 20 .
  • the array substrate 10 includes a base 11, a driving circuit layer 12, a flat layer 13, and a reflective electrode layer 14.
  • the base 11 is a glass substrate.
  • the driving circuit layer 12 is disposed on one side of the substrate 11 . It should be noted that being disposed on one side of the substrate 11 may refer to direct contact with one side surface of the substrate 11 , or may refer to indirect contact with the substrate 11 .
  • the driving circuit layer 12 includes a first metal layer 121 , a gate insulation layer 122 , a semiconductor layer 123 , an ohmic contact layer 124 and a second metal layer 125 that are sequentially stacked on the substrate 11 .
  • the first metal layer 121 may include a plurality of patterned gates and a plurality of scan lines extending along the first direction x and spaced apart in the second direction y.
  • the scan lines are used to transmit and control the thin film transistor. Scan control signal to turn on and off.
  • the material of the first metal layer 121 may be any one or an alloy of multiple metal materials such as copper, aluminum, silver, molybdenum, titanium, and magnesium.
  • the first metal layer 121 may also be a single-layer metal film structure formed by any of the above-mentioned metal materials or alloy materials, or may be a multi-layer metal structure formed by sequentially superimposing at least two of the above-mentioned metal materials or alloy materials. Thin film structure.
  • the gate insulating layer 122 is made of a transparent inorganic material, and the transparent inorganic material may be any one or a combination of silicon nitride, silicon oxide, or silicon oxynitride.
  • the semiconductor layer 123 includes a plurality of semiconductor patterns disposed opposite to the gate electrode, and the material of the semiconductor layer 123 is amorphous silicon (A-Si).
  • the second metal layer 125 includes a plurality of patterned source electrodes and drain electrodes, and a plurality of data lines extending along the second direction y and spaced apart in the first direction x. The data lines are used to charge the pixels. data signal.
  • the material of the second metal layer 125 may be any one or an alloy of multiple metal materials such as copper, aluminum, silver, molybdenum, titanium, and magnesium.
  • the first metal layer 121 may also be a single-layer metal film structure formed by any of the above-mentioned metal materials or alloy materials, or may be a multi-layer metal structure formed by sequentially superimposing at least two of the above-mentioned metal materials or alloy materials. Thin film structure.
  • the flat layer 13 is disposed on the side of the driving circuit layer 12 away from the substrate 11 , and the flat layer 13 has at least a partial uneven surface on the side away from the substrate 11 .
  • the reflective electrode layer 14 is disposed on the side of the flat layer 13 away from the substrate 11 , and is disposed in an uneven shape along the uneven surface of the flat layer 13 , taking advantage of the uneven shape of the reflective electrode layer 14 , can change the reflection direction of light inside the panel, so that light that cannot be reflected at the critical angle of total reflection is reflected out of the panel, thereby improving the reflectivity of the total reflection liquid crystal display panel.
  • the reflective electrode layer 14 since the light is reflected at the color filter substrate 20 The incident angle is less than the critical angle, and the light can be emitted from the color filter substrate 20.
  • the surface of the flat layer 13 corresponding to this partial area away from the substrate 11 can be set as a flat surface, and the reflective electrode layer 14 can be arranged along the The flat surface of the flat layer 13 may also be in a flat state.
  • the incident angle of the light at the color filter substrate 20 is greater than or equal to the critical angle, the light undergoes total reflection at the color filter substrate 20 and is reflected to the reflective electrode layer 14, and cannot be emitted from the color filter substrate 20. In this way, it passes through many times between the array substrate 10 and the color filter substrate 20. After secondary reflection, the light loss is serious, ultimately resulting in a low amount of emitted light.
  • the surface of the side of the flat layer 13 corresponding to this partial area away from the substrate 11 may be provided with an uneven surface, so that the reflective electrode layer 14 provided along the uneven surface of the flat layer 13 appears uneven.
  • the uneven reflective electrode layer 14 can be used to change the reflection direction of this part of the light, destroying the total reflection of the light between the array substrate 10 and the color filter substrate 20, so that the light that cannot be reflected at the critical angle of total reflection can be reflected. panel, thereby improving the reflectivity of the total reflective liquid crystal display panel.
  • the flat layer 13 has a plurality of protruding structures 131 or recessed structures 132, and the plurality of protruding structures 131 or recessed structures 132 are distributed in an array on the side of the flat layer away from the substrate. Define the uneven surface.
  • a plurality of protruding structures 131 are provided on a side surface of the flat layer 13 away from the base 11 , and the plurality of protruding structures 131 face away from the base 11
  • One side protrudes from the flat surface of the flat layer 13 to define an uneven surface on the side of the flat layer 13 away from the substrate 11 .
  • the reflective electrode layer 14 is laid on the side surface of the flat layer 13 away from the substrate 11 , and has an uneven shape at locations corresponding to the plurality of protruding structures 131 .
  • the color filter substrate 20 includes a counter substrate 21, a color filter layer 22, a protective layer 23, a common electrode 24 and a spacer 25 disposed on a side of the counter substrate 21 close to the array substrate 10.
  • the color filter layer 22 includes a red filter layer 221, a green filter layer 222, a blue filter layer 223 and a black matrix 224 distributed in an array.
  • the black matrix 224 combines the red filter layer 221, the green filter layer 221 and the green filter layer 224.
  • Layer 222 and blue filter layer 223 are spaced apart from each other to avoid color mixing.
  • the red filter layer 221, the green filter layer 222, and the blue filter layer 223 can transmit light of corresponding colors.
  • the protruding structure 131 can be provided corresponding to the red filter layer 221, the green filter layer 222, and the blue filter layer 223, so as to filter the external environment through the red filter layer 221.
  • the side of the flat layer 13 away from the substrate 11 may also have an uneven surface. This may also cause the reflective electrode layer 14 disposed on the flat layer 13 to have an uneven shape.
  • the convex structure has a convex arc surface, and the angle between the tangent line at any point on the arc surface and the flat surface of the flat layer is less than or equal to 10°.
  • Figure 2 is a schematic diagram of a protruding structure provided by an embodiment of the present application.
  • the protruding structure 131 has an arc surface 130 protruding toward the side away from the base 11. Any part of the arc surface 130 can The angle ⁇ between a tangent line at a point and the flat surface of the flat layer 13 may be 10°, 8°, 6°, 4°, etc.
  • the angle ⁇ between the tangent line at any point on the arc surface 130 and the flat surface of the flat layer 13 should be between 4° and 10°.
  • the lengths of the plurality of protruding structures 131 in the first direction x or the second direction y, and the height of the protrusions in the third direction z are all equal. In some other embodiments, the lengths of the plurality of protruding structures 131 in the first direction x or the second direction y, and the height of the protrusions in the third direction z may also be different, which are not specified here. Make restrictions.
  • the first direction x may be a horizontal direction
  • the second direction y may be a vertical direction
  • the third direction z is perpendicular to the first direction x and the second direction direction y
  • the third direction z may be the thickness direction of the total reflection liquid crystal display panel.
  • a plurality of the protruding structures 131 are continuously distributed on the surface of the flat layer 13 away from the substrate 11 , and between adjacent protruding structures 131 The minimum distance is 0.
  • FIG. 3 is a schematic diagram of the distribution of protruding structures provided by an embodiment of the present application
  • a plurality of protruding structures 131 are located on a side of the flat layer 13 away from the substrate 11 .
  • the side surfaces are distributed at intervals, and the distance between adjacent protruding structures 131 may be equal or unequal.
  • the minimum distance d between adjacent protruding structures 131 may be greater than 0 and less than or equal to 30 ⁇ m.
  • the smaller the distance between adjacent protruding structures 131 the greater the resistance of the reflective electrode layer 14 to light. The better the diffuse reflection effect.
  • the minimum distance between adjacent protruding structures 131 may be, for example, 2 ⁇ m, 6 ⁇ m, 8 ⁇ m, 10 ⁇ m, 15 ⁇ m, 18 ⁇ m, 20 ⁇ m, 25 ⁇ m, or 30 ⁇ m.
  • a plurality of the protruding structures 131 are arranged in rows at intervals along the first direction x, and the plurality of protruding structures 131 are arranged in rows along different directions from the first direction x.
  • the second direction y is spaced and arranged in columns.
  • FIG. 3 only illustrates 4 rows and 5 columns of protruding structures 131, which does not represent the size and quantity of the protruding structures 131 in actual applications.
  • any two adjacent rows of the protruding structures 131 are arranged side by side, and any two adjacent columns of the protruding structures 131 are also arranged side by side.
  • Figure 4 is a schematic distribution diagram of another protruding structure provided by an embodiment of the present application. Any two adjacent rows of the protruding structures 131 are staggered, and any adjacent rows of the protruding structures 131 are staggered. The two rows of the protruding structures 131 are staggered.
  • the shape of the protruding structure 131 is any one of triangle, quadrilateral, pentagon, hexagon, circle or ellipse.
  • the planar shape of the protruding structure 131 is circular, and the plane may be parallel to the first direction x and the second direction y.
  • the protruding structure 131 may also be hexagonal.
  • the protruding structure 131 may also be any one of a triangle, a quadrilateral, a pentagon, a hexagon, other polygons, or an ellipse.
  • Figure 6 is a schematic structural diagram of another fully reflective liquid crystal display panel provided by an embodiment of the present application. Its structure is roughly the same as that shown in Figure 1, with the difference being:
  • a plurality of recessed structures 132 are provided on a side surface of the flat layer 13 away from the substrate 11 .
  • the plurality of recessed structures 132 are recessed away from the substrate 11 to define a distance between the flat layer 13 and the substrate 11 .
  • the reflective electrode layer 14 is laid on the side surface of the flat layer 13 away from the substrate 11 , and has an uneven shape at locations corresponding to the plurality of recessed structures 132 .
  • the recessed structure 132 can be provided corresponding to the red filter layer 221, the green filter layer 222, and the blue filter layer 223 respectively, so as to filter the external environment through the red filter layer 221, 222, and the blue filter layer 223.
  • the light from the green filter layer 222 and the blue filter layer 223 that enters the interior of the panel is reflected by the reflective electrode layer 14 and then passes through the red filter layer 221, the green filter layer 222, and the blue filter layer.
  • the light layer 223 is reflected from the inside of the panel, so that the reflective electrode layer 14 is used to reflect ambient light to achieve color display of the total reflection liquid crystal display panel.
  • the side of the flat layer 13 away from the substrate 11 may also have an uneven surface. This may also cause the reflective electrode layer 14 disposed on the flat layer 13 to have an uneven shape.
  • the recessed structure has a recessed arc surface, and the angle between the tangent line at any point on the arc surface and the flat surface of the flat layer is less than or equal to 10°.
  • Figure 7 is a schematic diagram of a recessed structure provided by an embodiment of the present application.
  • the recessed structure 132 has an arc surface 130 that is recessed toward the base 11.
  • the tangent line at any point on the arc surface 130 is directly connected to the arc surface 130.
  • the angle ⁇ between the flat surfaces of the flat layer 13 may be 10°, 8°, 6°, 4°, etc.
  • the angle ⁇ between the tangent line at any point on the arc surface 130 and the flat surface of the flat layer 13 should be between 4° and 10°.
  • the lengths of the plurality of recessed structures 132 in the first direction x or the second direction y, and the depth of the recesses in the third direction z are all equal. In some other embodiments, the lengths of the plurality of recessed structures 132 in the first direction x or the second direction y, and the depth of the recesses in the third direction z may also be different, and are not limited here. .
  • a plurality of the recessed structures 132 are continuously distributed on the surface of the flat layer 13 away from the substrate 11 , and the minimum distance between adjacent recessed structures 132 is The distance is 0.
  • a plurality of the recessed structures 132 are distributed at intervals on the side surface of the flat layer 13 away from the substrate 11 , and the distance between adjacent recessed structures 132 may be equal or different. wait.
  • the minimum distance between adjacent recessed structures 132 may be greater than 0 and less than or equal to 30 ⁇ m.
  • the smaller the distance between adjacent recessed structures 132 the greater the diffuse reflection effect of the reflective electrode layer 14 on light. The better.
  • the minimum distance between adjacent recessed structures 132 may be, for example, 2 ⁇ m, 6 ⁇ m, 8 ⁇ m, 10 ⁇ m, 15 ⁇ m, 18 ⁇ m, 20 ⁇ m, 25 ⁇ m, or 30 ⁇ m.
  • a plurality of the recessed structures 132 are arranged in rows at intervals along a first direction x, and a plurality of the recessed structures 132 are arranged at intervals along a second direction y that is different from the first direction x. Set into columns.
  • any two adjacent rows of the recessed structures 132 are arranged side by side, and any two adjacent columns of the recessed structures 132 are also arranged side by side.
  • any two adjacent rows of the recessed structures 132 are staggered, and any two adjacent columns of the recessed structures 132 are staggered.
  • the shape of the recessed structure 132 is any one of a triangle, a quadrilateral, a pentagon, a hexagon, a circle or an ellipse.
  • the plane shape of the recessed structure 132 is circular, and the plane may be parallel to the first direction x and the second direction y.
  • the recessed structure 132 may also be hexagonal.
  • the recessed structure 132 may also be any one of a triangle, a quadrilateral, a pentagon, a hexagon, other polygons, or an ellipse.
  • the material of the flat layer 13 may be a copolymer of a small amount of perfluoropropyl perfluorovinyl ether and polytetrafluoroethylene (perfluoroalkoxy, PFA) or a planarization layer in an existing display panel. , PLN) commonly used organic materials.
  • the flat layer 13 may be first coated or deposited, and then the side of the flat layer 13 away from the substrate 11 may be etched to form at least part of the protruding structure 131 or the depression.
  • the uneven surface of the structure 132 is then prepared to form the reflective electrode layer 14 on the side surface of the flat layer 13 away from the substrate 11.
  • the reflective electrode layer 14 may be uneven corresponding to the uneven surface. status settings.
  • the reflective electrode layer 14 includes a first electrode layer 141, and the material of the first electrode layer 141 is metal or alloy.
  • the reflective electrode layer 14 only includes a first electrode layer 141 made of a metal or alloy material.
  • the material of the first electrode layer 141 can be a metal that is not easily oxidized such as gold or other alloy materials such as stainless steel. This eliminates the need to provide protective electrodes on the upper and lower sides of the first electrode layer 141 and can simplify the structure of the reflective electrode layer 14 , reducing the manufacturing difficulty and thickness of the fully reflective liquid crystal display panel.
  • the reflective electrode layer 14 includes a first electrode layer 141, a second electrode layer 142 and a third electrode layer 143.
  • the first electrode layer 141 is disposed between the second electrode layer 142 and the third electrode layer 143. between the third electrode layer 143.
  • Figure 8 is a schematic structural diagram of another fully reflective liquid crystal display panel provided by an embodiment of the present application. Its structure is roughly the same as that shown in Figure 1, but the difference is:
  • the reflective electrode layer 14 includes a first electrode layer 141, a second electrode layer 142 and a third electrode layer 143.
  • the second electrode layer 142 is disposed on a side surface of the flat layer 13 away from the substrate 11,
  • the first electrode layer 141 is disposed on a side surface of the second electrode layer 142 away from the substrate 11
  • the third electrode layer 143 is disposed on a side surface of the first electrode layer 141 away from the second electrode layer.
  • the first electrode layer 141, the second electrode layer 142 and the third electrode layer 143 are all arranged in an uneven shape corresponding to the protruding structure 131.
  • the material of the first electrode layer 141 may be metal or alloy material.
  • the material of the first electrode layer 141 may be any metal selected from the group consisting of copper, aluminum, and silver or an alloy containing the metal.
  • the materials of the second electrode layer 142 and the third electrode layer 143 are both transparent conductive metal oxides.
  • the third electrode layer 143 is formed to protect the first electrode layer 141 and prevent the first electrode layer 141 from being oxidized and corroded.
  • the transparent conductive metal oxide may be indium tin oxide (indium tin oxide). tin oxide, ITO).
  • Figure 9 is a histogram of the measured diffuse reflection results of the convex structure and the concave structure produced during the verification process of the embodiment of the present application. It is provided on the surface of the side of the flat layer 13 away from the substrate 11
  • the reflectivity (specular component exclude, SCE) is 30.75%; in the case where a recessed structure 132 is provided on the surface of the flat layer 13 away from the substrate 11, The reflectivity excluding regular reflection is 32.69%; when the surface of the flat layer 13 away from the substrate 11 is a flat surface, the reflectivity excluding regular reflection is 0.31%.
  • a convex structure 131 or a concave structure 132 is provided on the surface of the flat layer 13 away from the substrate 11 so that the reflective electrode layer 14 can be arranged in an uneven shape, which can change the reflection direction of light inside the panel, so that the original total reflection Light that cannot be reflected at the critical angle is reflected out of the panel, thereby improving the reflectivity of the total reflective liquid crystal display panel.
  • embodiments of the present application further provide an electronic device.
  • the electronic device includes the display panel provided in the above embodiments.
  • the electronic device may be a mobile terminal, such as color electronic paper, color electronic paper, etc. E-books, smart phones, etc.
  • Electronic devices can also be wearable terminals, such as smart watches, smart bracelets, etc.
  • Electronic devices can also be fixed terminals, such as color electronic billboards, color electronic posters, etc.
  • the embodiments of the present application provide a total reflection liquid crystal display panel.
  • the total reflection liquid crystal display panel includes an array substrate, a color filter substrate and a liquid crystal layer.
  • the array substrate includes a substrate, a driving circuit layer, a flat layer and a reflective electrode layer, by providing at least a partial uneven surface on the side of the flat layer away from the substrate, so that the reflective electrode can be arranged in an uneven shape along the uneven surface of the flat layer , thereby changing the reflection direction of light inside the panel, so that light that cannot be reflected at the critical angle of total reflection is reflected out of the panel, thereby improving the reflectivity of the total reflection liquid crystal display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种阵列基板(10)及全反射式液晶显示面板,通过在全反射式液晶显示面板的平坦层(13)远离基底(11)的一侧设置至少部分不平整表面,以使反射电极(14)能够沿平坦层(13)的不平整表面呈凹凸不平状设置,以此改变光线在面板内部的反射方向,使得原本在全反射临界角度无法反射出的光线被反射出面板,从而提高全反射式液晶显示面板的反射率。

Description

阵列基板及全反射式液晶显示面板 技术领域
本发明涉及显示技术领域,尤其涉及一种阵列基板及全反射式液晶显示面板。
背景技术
一直以来,透射式液晶显示技术占据液晶显示面板(liquid crystal display, LCD)的主打地位。随着低功耗户外显示的市场需求不断增加,反射式液晶显示的市场前景也逐步展现出来。
反射式液晶显示面板与透射式液晶显示面板相比,在环境光源场景下可清晰显示,不需要背光源,具有机身轻薄、低功耗的优势,在户外显示领域具有良好的市场应用前景。
技术问题
目前反射式液晶电视面板面临一个普遍存在的问题,就是反射率较小,目前业界能做到最大的量产水准的反射率在10%以内,其主要原因在于反射式液晶显示面板的光路经过多路程的反射,能量损耗严重,最终导致出射的光量仅达到入射光量的10%。因此,如何提升反射率是当下发射式液晶显示技术面临的一个重要问题。
综上所述,现有反射式液晶显示面板存在反射率较低的问题。故,有必要提供一种阵列基板及全反射式液晶显示面板来改善这一缺陷。
技术解决方案
本申请实施例提供一种阵列基板及全反射式液晶显示面板,可以提高全反射式液晶显示面板的反射率。
本申请实施例提供一种阵列基板,包括:
基底;
驱动电路层,设置于所述基底之上;
平坦层,设置于所述驱动电路层远离所述基底的一侧,所述平坦层远离所述基底的一侧具有至少部分不平整表面;以及
反射电极层,设置于所述平坦层远离所述基底的一侧,并沿所述平坦层的所述不平整表面呈凹凸不平状设置。
根据本申请一实施例,所述平坦层具有多个凸起结构或凹陷结构,多个所述凸起结构或所述凹陷结构在所述平坦层远离所述基底的一侧呈阵列分布。
根据本申请一实施例,所述凸起结构具有凸出的弧面,所述弧面上任意一点的切线与所述平坦层的平整表面之间的夹角小于或等于10°。
根据本申请一实施例,所述凹陷结构具有凹陷的弧面,所述弧面上任意一点的切线与所述平坦层的平整表面之间的夹角小于或等于10°。
根据本申请一实施例,多个所述凸起结构或所述凹陷结构在所述平坦层远离所述基底的一侧表面呈连续分布或间隔分布。
根据本申请一实施例,多个所述凸起结构沿第一方向间隔排布设置成行,多个所述凸起结构沿第二方向间隔排布设置成列,所述第一方向与所述第二方向相异;
其中,任意相邻两行或两列所述凸起结构并排设置;或者,任意相邻两行或两列所述凸起结构错开设置。
根据本申请一实施例,多个所述凹陷结构沿第一方向间隔排布设置成行,多个所述凹陷结构沿第二方向间隔排布设置成列,所述第一方向与所述第二方向相异;
其中,任意相邻两行或两列所述凹陷结构并排设置;或者,任意相邻两行或两列所述凹陷结构错开设置。
根据本申请一实施例,所述凸起结构或所述凹陷结构的形状为三角形、四边形、五边形、六边形、圆形或者椭圆形中的任意一种。
根据本申请一实施例,所述反射电极层包括第一电极层,所述第一电极层的材料为金属或者合金。
根据本申请一实施例,所述第一电极层的材料包括金、银、铜和铝中的任意一种或者多种的合金。
根据本申请一实施例,所述反射电极层包括第二电极层和第三电极层,所述第一电极层设置于所述第二电极层与所述第三电极层之间,所述第二电极层和所述第三电极层的材料为透明导电的金属氧化物。
依据本申请上述实施例提供的阵列基板,本申请实施例还提供一种全反射式液晶显示面板,包括相对设置的所述阵列基板、彩膜基板、以及设置于所述阵列基板与所述彩膜基板之间的液晶层,所述阵列基板包括:
基底;
驱动电路层,设置于所述基底之上;
平坦层,设置于所述驱动电路层远离所述基底的一侧,所述平坦层远离所述基底的一侧具有至少部分不平整表面;以及
反射电极层,设置于所述平坦层远离所述基底的一侧,并沿所述平坦层的所述不平整表面呈凹凸不平状设置。
根据本申请一实施例,所述平坦层具有多个凸起结构或凹陷结构,多个所述凸起结构或所述凹陷结构在所述平坦层远离所述基底的一侧呈阵列分布。
根据本申请一实施例,所述凸起结构具有凸出的弧面,所述弧面上任意一点的切线与所述平坦层的平整表面之间的夹角小于或等于10°。
根据本申请一实施例,所述凹陷结构具有凹陷的弧面,所述弧面上任意一点的切线与所述平坦层的平整表面之间的夹角小于或等于10°。
根据本申请一实施例,多个所述凸起结构或所述凹陷结构在所述平坦层远离所述基底的一侧表面呈连续分布或间隔分布。
根据本申请一实施例,多个所述凸起结构沿第一方向间隔排布设置成行,多个所述凸起结构沿第二方向间隔排布设置成列,所述第一方向与所述第二方向相异;
其中,任意相邻两行或两列所述凸起结构并排设置;或者,任意相邻两行或两列所述凸起结构错开设置。
根据本申请一实施例,多个所述凹陷结构沿第一方向间隔排布设置成行,多个所述凹陷结构沿第二方向间隔排布设置成列,所述第一方向与所述第二方向相异;
其中,任意相邻两行或两列所述凹陷结构并排设置;或者,任意相邻两行或两列所述凹陷结构错开设置。
根据本申请一实施例,所述凸起结构或所述凹陷结构的形状为三角形、四边形、五边形、六边形、圆形或者椭圆形中的任意一种。
根据本申请一实施例,所述反射电极层包括第一电极层,所述第一电极层的材料为金属或者合金。
根据本申请一实施例,所述第一电极层的材料包括金、银、铜和铝中的任意一种或者多种的合金。
根据本申请一实施例,所述反射电极层包括第二电极层和第三电极层,所述第一电极层设置于所述第二电极层与所述第三电极层之间,所述第二电极层和所述第三电极层的材料为透明导电的金属氧化物。
有益效果
本揭示实施例的有益效果:本申请实施例提供一种阵列基板及全反射式液晶显示面板,所述全反射式液晶显示面板包括阵列基板、彩膜基板和液晶层,所述阵列基板包括基底、驱动电路层、平坦层和反射电极层,通过在所述平坦层远离所述基底的一侧设置至少部分不平整表面,以使反射电极能够沿所述平坦层的所述不平整表面呈凹凸不平状设置,以此改变光线在面板内部的反射方向,使得原本在全反射临界角度无法反射出的光线被反射出面板,从而提高所述全反射式液晶显示面板的反射率。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是揭示的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的全反射式液晶显示面板的结构示意图;
图2为本申请实施例提供的凸起结构的示意图;
图3为本申请实施例提供的凸起结构的分布示意图;
图4为本申请实施例提供的另一种凸起结构的分布示意图;
图5为本申请实施例提供的另一种凸起结构的示意图;
图6为本申请实施例提供的另一种全反射式液晶显示面板的结构示意图;
图7为本申请实施例提供的凹陷结构的示意图;
图8为本申请实施例提供的另一种全反射式液晶显示面板的结构示意图;
图9为本申请实施例验证过程中产出的凸起结构和凹陷结构的实测漫反射结果的柱状图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本揭示可用以实施的特定实施例。本揭示所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本揭示,而非用以限制本揭示。在图中,结构相似的单元是用以相同标号表示。
下面结合附图和具体实施例对本揭示做进一步的说明:
如图1所示,图1为本申请实施例提供的全反射式液晶显示面板的结构示意图,所述液晶显示面板包括相对设置的阵列基板10、彩膜基板20、以及设置于所述阵列基板10与所述彩膜基板20之间的液晶层30。
所述阵列基板10包括基底11、驱动电路层12、平坦层13、以及反射电极层14,所述基底11为玻璃基板。
所述驱动电路层12设置于所述基底11的一侧上。需要说明的是,设置于所述基底11的一侧上,可以指的是与所述基底11的一侧表面直接接触,也可以指的是与所述基底11间接接触。
所述驱动电路层12包括依次层叠设置于所述基底11之上的第一金属层121、栅极绝缘层122、半导体层123、欧姆接触层124以及第二金属层125。
所述第一金属层121可以包括多个图案化的栅极、以及多条沿第一方向x延伸,并在第二方向y上间隔分布的扫描线,所述扫描线用以传递控制薄膜晶体管开启和关闭的扫描控制信号。
所述第一金属层121的材料可以为铜、铝、银、钼、钛、镁等金属材料中的任意一种或者多种的合金。所述第一金属层121也可以是由上述任意一种金属材料或合金材料所形成的单层金属薄膜结构,也可以是由上述至少两种金属材料或合金材料依次叠加所形成的多层金属薄膜结构。
所述栅极绝缘层122是由透明的无机材料制备形成,所述透明的无机材料可以是氮化硅、氧化硅或者氮氧化硅中的任意一种或者多种的组合。
所述半导体层123包括多个与所述栅极正对设置的半导体图案,所述半导体层123的材料为非晶硅(A-Si)。
所述第二金属层125包括多个图案化的源极和漏极、以及多条沿第二方向y延伸,并在第一方向x上间隔分布的数据线,所述数据线用以为像素充电的数据信号。
所述第二金属层125的材料可以为铜、铝、银、钼、钛、镁等金属材料中的任意一种或者多种的合金。所述第一金属层121也可以是由上述任意一种金属材料或合金材料所形成的单层金属薄膜结构,也可以是由上述至少两种金属材料或合金材料依次叠加所形成的多层金属薄膜结构。
所述平坦层13设置于所述驱动电路层12远离所述基底11的一侧,所述平坦层13远离所述基底11的一侧具有至少部分不平整表面。所述反射电极层14设置于所述平坦层13远离所述基底11的一侧,并沿所述平坦层13的所述不平整表面呈凹凸不平状设置,利用反射电极层14凹凸不平的形状,可以改变光线在面板内部的反射方向,使得原本在全反射临界角度无法反射出的光线被反射出面板,从而提高所述全反射式液晶显示面板的反射率。
需要说明的是,在所述显示面板的部分区域,外界环境光源射入至显示面板内部的光线经所述反射电极层14反射至彩膜基板20时,由于光线在所述彩膜基板20处的入射角小于临界角,光线可以从彩膜基板20射出,与此部分区域对应的所述平坦层13远离所述基底11的一侧表面可以设置为平整表面,所述反射电极层14沿所述平坦层13的平整表面设置,也可以呈现平整的状态。
在所述显示面板的另一部分区域,外界环境光源射入至显示面板内部的光线经所述反射电极层14反射至彩膜基板20时,由于光线在所述彩膜基板20处的入射角大于或等于临界角,光线在所述彩膜基板20处发生全反射,并被反射至反射电极层14,无法从彩膜基板20处射出,如此在阵列基板10与彩膜基板20之间经过多次反射后,光线损耗严重,最终导致出射的光量较低。与此部分区域对应的所述平坦层13远离所述基底11的一侧表面可以设置为不平整表面,以使沿所述平坦层13的不平整表面设置的反射电极层14呈现凹凸不平状,如此可以利用凹凸不平的反射电极层14改变此部分光线的反射方向,破坏光线在阵列基板10与彩膜基板20之间的全反射,使得原本在全反射临界角度无法反射出的光线被反射出面板,从而提高所述全反射式液晶显示面板的反射率。
进一步的,所述平坦层13具有多个凸起结构131或凹陷结构132,多个所述凸起结构131或所述凹陷结构132在所述平坦层远离所述基底的一侧呈阵列分布以限定所述不平整表面。
在其中一个实施例中,如图1所示,所述平坦层13远离所述基底11的一侧表面设置有多个凸起结构131,多个所述凸起结构131朝向远离所述基底11的一侧凸出于所述平坦层13的平坦表面,以限定出所述平坦层13远离所述基底11一侧的不平整表面。所述反射电极层14铺设于所述平坦层13远离所述基底11的一侧表面之上,并在对应多个所述凸起结构131处呈现凹凸不平状。
所述彩膜基板20包括对置基板21、以及设置于所述对置基板21靠近所述阵列基板10一侧的彩色滤光层22、保护层23、公共电极24以及间隔柱25,所述彩色滤光层22包括呈阵列分布的红色滤光层221、绿色滤光层222、蓝色滤光层223以及黑色矩阵224,所述黑色矩阵224将所述红色滤光层221、绿色滤光层222以及蓝色滤光层223相互间隔开,以避免发生混色的情况。所述红色滤光层221、绿色滤光层222、蓝色滤光层223可以透射各自对应颜色的光线。
在其中一个实施例中,所述凸起结构131可以分别与所述红色滤光层221、绿色滤光层222、蓝色滤光层223对应设置,以将外界环境中通过红色滤光层221、绿色滤光层222、蓝色滤光层223射入至面板内部的光线,经过所述反射电极层14的反射后,再通过所述红色滤光层221、绿色滤光层222、蓝色滤光层223从面板内部反射出去,以此利用所述反射电极层14反射环境光来实现全反射式液晶显示面板的彩色显示。
在其中一个实施例中,所述平坦层13远离所述基底11的一侧也可以全部呈现不平整的表面,如此也可以使得设置于平坦层13上的反射电极层14呈现凹凸不平状。
进一步的,所述凸起结构具有凸出的弧面,所述弧面上任意一点的切线与所述平坦层的平整表面之间的夹角小于或等于10°。
如图2所示,图2为本申请实施例提供的凸起结构的示意图,所述凸起结构131具有朝向远离所述基底11一侧凸出的弧面130,所述弧面130上任意一点的切线与所述平坦层13的平整表面之间的夹角α可以为10°、8°、6°、4°等。
优选的,所述弧面130上任意一点的切线与所述平坦层13的平整表面之间的夹角α应介于4°至10°之间。
在其中一个实施例中,多个所述凸起结构131在第一方向x或第二方向y上的长度、以及在第三方向z上凸起的高度均相等。在其他一些实施例中,多个所述凸起结构131在第一方向x或第二方向y上的长度、以及在所述第三方向z上凸起的高度也可以不等,此处不做限制。
在本申请实施例中,在所述第一方向x可以为水平方向,所述第二方向y可以为竖直方向,所述第三方向z垂直于所述第一方向x以及所述第二方向y,所述第三方向z可以为所述全反射式液晶显示面板的厚度方向。
在其中一个实施例中,如图1所示,多个所述凸起结构131在所述平坦层13远离所述基底11的一侧表面呈连续分布,相邻所述凸起结构131之间的最小距离为0。
在其中一个实施例中,如图3所示,图3为本申请实施例提供的凸起结构的分布示意图,多个所述凸起结构131在所述平坦层13远离所述基底11的一侧表面呈间隔分布,相邻所述凸起结构131之间的距离可以相等,也可以不等。
进一步的,相邻所述凸起结构131之间的最小距离d可以大于0且小于或等于30μm,相邻所述凸起结构131之间的距离越小,所述反射电极层14对于光线的漫反射效果越好。相邻所述凸起结构131之间的最小距离例如可以为2μm、6μm、8μm、10μm、15μm、18μm、20μm、25μm、或者30μm等。
在其中一个实施例中,如图3所示,多个所述凸起结构131沿第一方向x间隔排布设置成行,多个所述凸起结构131沿与所述第一方向x相异的第二方向y间隔排布设置成列。
需要说明的是,图3仅示意了4行*5列凸起结构131,其并不代表实际应用中所述凸起结构131的大小以及数量。
在其中一个实施例中,如图3所示,任意相邻的两行所述凸起结构131并排设置,任意相邻的两列所述凸起结构131也并排设置。
在其中一个实施例中,如图4所示,图4为本申请实施例提供的另一种凸起结构的分布示意图,任意相邻的两行所述凸起结构131错开设置,任意相邻的两列所述凸起结构131错开设置。
进一步的,所述凸起结构131的形状为三角形、四边形、五边形、六边形、圆形或者椭圆形中的任意一种。
在其中一个实施例中,如图3所示,所述凸起结构131的平面形状为圆形,所述平面可以平行于所述第一方向x和所述第二方向y。
在其中一个实施例中,如图5所示,图5为本申请实施例提供的另一种凸起结构的示意图,所述凸起结构131也可以为六边形。
在其他一些实施例中,所述凸起结构131还可以为三角形、四边形、五边形、六边形或者其他多边形、或者椭圆形等中的任意一个。
在其中一个实施例中,如图6所示,图6为本申请实施例提供的另一种全反射式液晶显示面板的结构示意图,其结构与图1所示的结构大致相同,区别在于:
所述平坦层13远离所述基底11的一侧表面设置有多个凹陷结构132,多个所述凹陷结构132朝向远离所述基底11凹陷,以限定出所述平坦层13远离所述基底11一侧的不平整表面。所述反射电极层14铺设于所述平坦层13远离所述基底11的一侧表面之上,并在对应多个所述凹陷结构132处呈现凹凸不平状。
在其中一个实施例中,所述凹陷结构132可以分别与所述红色滤光层221、绿色滤光层222、蓝色滤光层223对应设置,以将外界环境中通过红色滤光层221、绿色滤光层222、蓝色滤光层223射入至面板内部的光线,经过所述反射电极层14的反射后,再通过所述红色滤光层221、绿色滤光层222、蓝色滤光层223从面板内部反射出去,以此利用所述反射电极层14反射环境光来实现全反射式液晶显示面板的彩色显示。
在其中一个实施例中,所述平坦层13远离所述基底11的一侧也可以全部呈现不平整的表面,如此也可以使得设置于平坦层13上的反射电极层14呈现凹凸不平状。
进一步的,所述凹陷结构具有凹陷的弧面,所述弧面上任意一点的切线与所述平坦层的平整表面之间的夹角小于或等于10°。
如图7所示,图7为本申请实施例提供的凹陷结构的示意图,所述凹陷结构132具有朝向所述基底11凹陷的弧面130,所述弧面130上任意一点的切线与所述平坦层13的平整表面之间的夹角α可以为10°、8°、6°、4°等。
优选的,所述弧面130上任意一点的切线与所述平坦层13的平整表面之间的夹角α应介于4°至10°之间。
在其中一个实施例中,多个所述凹陷结构132在第一方向x或第二方向y上的长度、以及在第三方向z上凹陷的深度均相等。在其他一些实施例中,多个所述凹陷结构132在第一方向x或第二方向y上的长度、以及在所述第三方向z上凹陷的深度也可以不等,此处不做限制。
在其中一个实施例中,如图6所示,多个所述凹陷结构132在所述平坦层13远离所述基底11的一侧表面呈连续分布,相邻所述凹陷结构132之间的最小距离为0。
在其中一个实施例中,多个所述凹陷结构132在所述平坦层13远离所述基底11的一侧表面呈间隔分布,相邻所述凹陷结构132之间的距离可以相等,也可以不等。
进一步的,相邻所述凹陷结构132之间的最小距离可以大于0且小于或等于30μm,相邻所述凹陷结构132之间的距离越小,所述反射电极层14对于光线的漫反射效果越好。相邻所述凹陷结构132之间的最小距离例如可以为2μm、6μm、8μm、10μm、15μm、18μm、20μm、25μm、或者30μm等。
在其中一个实施例中,多个所述凹陷结构132沿第一方向x间隔排布设置成行,多个所述凹陷结构132沿与所述第一方向x相异的第二方向y间隔排布设置成列。
在其中一个实施例中,任意相邻的两行所述凹陷结构132并排设置,任意相邻的两列所述凹陷结构132也并排设置。
在其中一个实施例中,任意相邻的两行所述凹陷结构132错开设置,任意相邻的两列所述凹陷结构132错开设置。
进一步的,所述凹陷结构132的形状为三角形、四边形、五边形、六边形、圆形或者椭圆形中的任意一种。
在其中一个实施例中,所述凹陷结构132的平面形状为圆形,所述平面可以平行于所述第一方向x和所述第二方向y。
在其中一个实施例中,所述凹陷结构132也可以为六边形。
在其他一些实施例中,所述凹陷结构132还可以为三角形、四边形、五边形、六边形或者其他多边形、或者椭圆形等中的任意一个。
在本申请实施例中,所述平坦层13的材料可以是少量全氟丙基全氟乙烯基醚与聚四氟乙烯的共聚物(perfluoroalkoxy, PFA)或者现有显示面板中平坦层(Planarization layer, PLN)常用的有机材料。
在实际制备过程中,可以先涂布或沉积形成平坦层13,然后对所述平坦层13远离所述基底11的一侧进行蚀刻,以形成至少部分具有所述凸起结构131或所述凹陷结构132的不平整表面,然后在所述平坦层13远离所述基底11的一侧表面上制备形成所述反射电极层14,所述反射电极层14对应所述不平整表面处可以呈凹凸不平状设置。
进一步的,所述反射电极层14包括第一电极层141,所述第一电极层141的材料为金属或者合金。
在其中一个实施例中,如图1所示,所述反射电极层14仅包括一层由金属或者合金材料制备形成的第一电极层141。所述第一电极层141的材料可以是金等不易氧化的金属或者不锈钢等其他合金材料,如此无需在第一电极层141的上下两侧设置保护电极,可以简化所述反射电极层14的结构,降低所述全反射式液晶显示面板的制程难度以及厚度。
在其中一个实施例中,所述反射电极层14包括第一电极层141、第二电极层142以及第三电极层143,所述第一电极层141设置于所述第二电极层142和所述第三电极层143之间。
如图8所示,图8为本申请实施例提供的另一种全反射式液晶显示面板的结构示意图,其结构与图1所示的结构大致相同,区别在于:
所述反射电极层14包括第一电极层141、第二电极层142以及第三电极层143,所述第二电极层142设置于所述平坦层13远离所述基底11的一侧表面上,所述第一电极层141设置于所述第二电极层142远离所述基底11的一侧表面上,所述第三电极层143设置于所述第一电极层141远离所述第二电极层142的一侧表面上,第一电极层141、第二电极层142以及第三电极层143均对应所述凸起结构131呈凹凸不平状设置。
所述第一电极层141的材料可以是金属或者合金材料。所述第一电极层141的材料具体可以为铜、铝、银中的任意一种金属或者包含该金属的合金。
所述第二电极层142和所述第三电极层143的材料均为透明导电的金属氧化物,通过在所述第一电极层141的上下两侧分别设置所述第二电极层142和所述第三电极层143,以对第一电极层141形成保护,避免第一电极层141被氧化腐蚀。
具体的,所述透明导电的金属氧化物可以是氧化铟锡(indium tin oxide, ITO)。
如图9所示,图9为本申请实施例验证过程中产出的凸起结构和凹陷结构的实测漫反射结果的柱状图,在所述平坦层13远离所述基底11的一侧表面设置有凸起结构131的情况下,除去正反射的反射率(specular component exclude, SCE)为30.75%;在所述平坦层13远离所述基底11的一侧表面设置有凹陷结构132的情况下,除去正反射的反射率为32.69%;在所述平坦层13远离所述基底11的一侧表面为平整表面的情况下,除去正反射的反射率为0.31%,由此可知,通过在所述平坦层13远离所述基底11的一侧表面设置凸起结构131或凹陷结构132,以使反射电极层14可以呈凹凸不平状设置,可以改变光线在面板内部的反射方向,使得原本在全反射临界角度无法反射出的光线被反射出面板,从而提高所述全反射式液晶显示面板的反射率。
依据本申请上述实施例提供的显示面板,本申请实施例还提供一种电子设备,所述电子设备包括上述实施例提供的显示面板,所述电子设备可以是移动终端,例如彩色电子纸、彩色电子书、智能手机等,电子设备也可以是可穿戴式终端,例如智能手表、智能手环等,电子设备也可以是固定终端,例如彩色电子广告牌、彩色电子海报等。
本申请实施例的有益效果:本申请实施例提供一种全反射式液晶显示面板,所述全反射式液晶显示面板包括阵列基板、彩膜基板和液晶层,所述阵列基板包括基底、驱动电路层、平坦层和反射电极层,通过在所述平坦层远离所述基底的一侧设置至少部分不平整表面,以使反射电极能够沿所述平坦层的所述不平整表面呈凹凸不平状设置,以此改变光线在面板内部的反射方向,使得原本在全反射临界角度无法反射出的光线被反射出面板,从而提高所述全反射式液晶显示面板的反射率。
综上所述,虽然本申请以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为基准。

Claims (20)

  1. 一种阵列基板,包括:
    基底;
    驱动电路层,设置于所述基底之上;
    平坦层,设置于所述驱动电路层远离所述基底的一侧,所述平坦层远离所述基底的一侧具有至少部分不平整表面;以及
    反射电极层,设置于所述平坦层远离所述基底的一侧,并沿所述平坦层的所述不平整表面呈凹凸不平状设置。
  2. 如权利要求1所述的阵列基板,其中,所述平坦层具有多个凸起结构或凹陷结构,多个所述凸起结构或所述凹陷结构在所述平坦层远离所述基底的一侧呈阵列分布。
  3. 如权利要求2所述的阵列基板,其中,所述凸起结构具有凸出的弧面,所述弧面上任意一点的切线与所述平坦层的平整表面之间的夹角小于或等于10°。
  4. 如权利要求2所述的阵列基板,其中,所述凹陷结构具有凹陷的弧面,所述弧面上任意一点的切线与所述平坦层的平整表面之间的夹角小于或等于10°。
  5. 如权利要求2所述的阵列基板,其中,多个所述凸起结构或所述凹陷结构在所述平坦层远离所述基底的一侧表面呈连续分布或间隔分布。
  6. 如权利要求5所述的阵列基板,其中,多个所述凸起结构沿第一方向间隔排布设置成行,多个所述凸起结构沿第二方向间隔排布设置成列,所述第一方向与所述第二方向相异;
    其中,任意相邻两行或两列所述凸起结构并排设置;或者,任意相邻两行或两列所述凸起结构错开设置。
  7. 如权利要求5所述的阵列基板,其中,多个所述凹陷结构沿第一方向间隔排布设置成行,多个所述凹陷结构沿第二方向间隔排布设置成列,所述第一方向与所述第二方向相异;
    其中,任意相邻两行或两列所述凹陷结构并排设置;或者,任意相邻两行或两列所述凹陷结构错开设置。
  8. 如权利要求2所述的阵列基板,其中,所述凸起结构或所述凹陷结构的形状为三角形、四边形、五边形、六边形、圆形或者椭圆形中的任意一种。
  9. 如权利要求1所述的阵列基板,其中,所述反射电极层包括第一电极层,所述第一电极层的材料包括金、银、铜和铝中的任意一种或者多种的合金。
  10. 如权利要求9所述的阵列基板,其中,所述反射电极层包括第二电极层和第三电极层,所述第一电极层设置于所述第二电极层与所述第三电极层之间,所述第二电极层和所述第三电极层的材料为透明导电的金属氧化物。
  11. 一种全反射式液晶显示面板,包括相对设置的阵列基板、彩膜基板、以及设置于所述阵列基板与所述彩膜基板之间的液晶层,所述阵列基板包括:
    基底;
    驱动电路层,设置于所述基底之上;
    平坦层,设置于所述驱动电路层远离所述基底的一侧,所述平坦层远离所述基底的一侧具有至少部分不平整表面;以及
    反射电极层,设置于所述平坦层远离所述基底的一侧,并沿所述平坦层的所述不平整表面呈凹凸不平状设置。
  12. 如权利要求11所述的全反射式液晶显示面板,其中,所述平坦层具有多个凸起结构或凹陷结构,多个所述凸起结构或所述凹陷结构在所述平坦层远离所述基底的一侧呈阵列分布。
  13. 如权利要求12所述的全反射式液晶显示面板,其中,所述凸起结构具有凸出的弧面,所述弧面上任意一点的切线与所述平坦层的平整表面之间的夹角小于或等于10°。
  14. 如权利要求12所述的全反射式液晶显示面板,其中,所述凹陷结构具有凹陷的弧面,所述弧面上任意一点的切线与所述平坦层的平整表面之间的夹角小于或等于10°。
  15. 如权利要求12所述的全反射式液晶显示面板,其中,多个所述凸起结构或所述凹陷结构在所述平坦层远离所述基底的一侧表面呈连续分布或间隔分布。
  16. 如权利要求15所述的全反射式液晶显示面板,其中,多个所述凸起结构沿第一方向间隔排布设置成行,多个所述凸起结构沿第二方向间隔排布设置成列,所述第一方向与所述第二方向相异;
    其中,任意相邻两行或两列所述凸起结构并排设置;或者,任意相邻两行或两列所述凸起结构错开设置。
  17. 如权利要求15所述的全反射式液晶显示面板,其中,多个所述凹陷结构沿第一方向间隔排布设置成行,多个所述凹陷结构沿第二方向间隔排布设置成列,所述第一方向与所述第二方向相异;
    其中,任意相邻两行或两列所述凹陷结构并排设置;或者,任意相邻两行或两列所述凹陷结构错开设置。
  18. 如权利要求12所述的全反射式液晶显示面板,其中,所述凸起结构或所述凹陷结构的形状为三角形、四边形、五边形、六边形、圆形或者椭圆形中的任意一种。
  19. 如权利要求11所述的全反射式液晶显示面板,其中,所述反射电极层包括第一电极层,所述第一电极层的材料包括金、银、铜和铝中的任意一种或者多种的合金。
  20. 如权利要求19所述的全反射式液晶显示面板,其中,所述反射电极层包括第二电极层和第三电极层,所述第一电极层设置于所述第二电极层与所述第三电极层之间,所述第二电极层和所述第三电极层的材料为透明导电的金属氧化物。
PCT/CN2022/092679 2022-04-26 2022-05-13 阵列基板及全反射式液晶显示面板 WO2023206620A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227023802A KR20230153914A (ko) 2022-04-26 2022-05-13 어레이 기판 및 전반사식 액정 디스플레이 패널
US17/758,019 US20240168343A1 (en) 2022-04-26 2022-05-13 Array substrate and total reflection liquid crystal display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210450791.2 2022-04-26
CN202210450791.2A CN114839805A (zh) 2022-04-26 2022-04-26 全反射式液晶显示面板

Publications (1)

Publication Number Publication Date
WO2023206620A1 true WO2023206620A1 (zh) 2023-11-02

Family

ID=82567578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092679 WO2023206620A1 (zh) 2022-04-26 2022-05-13 阵列基板及全反射式液晶显示面板

Country Status (4)

Country Link
US (1) US20240168343A1 (zh)
KR (1) KR20230153914A (zh)
CN (1) CN114839805A (zh)
WO (1) WO2023206620A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281650A (ja) * 2000-03-29 2001-10-10 Matsushita Electric Ind Co Ltd 反射型液晶表示装置とその製造方法
CN1514276A (zh) * 2002-12-31 2004-07-21 Lg.菲利浦Lcd株式会社 具有凹形反射层的液晶显示装置的制造方法
CN102667587A (zh) * 2009-12-08 2012-09-12 夏普株式会社 液晶显示装置
CN205787482U (zh) * 2016-07-01 2016-12-07 上海天马微电子有限公司 一种半反半透型液晶显示面板及包含其的显示装置
CN109976048A (zh) * 2019-04-30 2019-07-05 深圳市华星光电技术有限公司 反射式液晶显示面板
CN111474777A (zh) * 2020-05-13 2020-07-31 昆山龙腾光电股份有限公司 反射式液晶显示面板及显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3244055B2 (ja) * 1998-07-10 2002-01-07 松下電器産業株式会社 反射型液晶表示装置
CN107102470A (zh) * 2017-06-12 2017-08-29 京东方科技集团股份有限公司 反射式液晶显示器及其制造方法
CN109524422A (zh) * 2019-01-07 2019-03-26 京东方科技集团股份有限公司 阵列基板及其制作方法、反射式显示面板和显示装置
CN111796452A (zh) * 2020-07-08 2020-10-20 Tcl华星光电技术有限公司 一种液晶显示面板
CN111929944A (zh) * 2020-09-02 2020-11-13 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示面板、显示模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281650A (ja) * 2000-03-29 2001-10-10 Matsushita Electric Ind Co Ltd 反射型液晶表示装置とその製造方法
CN1514276A (zh) * 2002-12-31 2004-07-21 Lg.菲利浦Lcd株式会社 具有凹形反射层的液晶显示装置的制造方法
CN102667587A (zh) * 2009-12-08 2012-09-12 夏普株式会社 液晶显示装置
CN205787482U (zh) * 2016-07-01 2016-12-07 上海天马微电子有限公司 一种半反半透型液晶显示面板及包含其的显示装置
CN109976048A (zh) * 2019-04-30 2019-07-05 深圳市华星光电技术有限公司 反射式液晶显示面板
CN111474777A (zh) * 2020-05-13 2020-07-31 昆山龙腾光电股份有限公司 反射式液晶显示面板及显示装置

Also Published As

Publication number Publication date
US20240168343A1 (en) 2024-05-23
KR20230153914A (ko) 2023-11-07
CN114839805A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
KR100641628B1 (ko) 블랙레진을 이용한 반사형 및 반투과형 액정표시장치
US7580092B2 (en) Liquid crystal display device and method for fabricating the same
KR101398330B1 (ko) 반투과형 액정 표시장치 및 그 제조 방법
KR20020021998A (ko) 액정표시장치 및 반투과형 반사체
US11086163B2 (en) Reflective liquid crystal display and method for manufacturing the same
WO2022048429A1 (zh) 一种显示基板及其制备方法、显示面板、显示模组
US6919943B2 (en) Substrate for a liquid crystal device, method of manufacturing a substrate for a liquid crystal device, a liquid crystal device, a method of manufacturing a liquid crystal device, and an electronic apparatus
CN214225623U (zh) 一种反射式液晶显示面板
CN101713895B (zh) 液晶显示装置及其制作方法
CN101556414B (zh) 半透明半反射式液晶显示器阵列基板及其制造方法
WO2023206620A1 (zh) 阵列基板及全反射式液晶显示面板
US11930663B2 (en) Display panel
CN113534528A (zh) 像素结构、像素结构的制作方法及阵列基板
CN203773199U (zh) 半透半反显示面板
WO2021232740A1 (zh) 阵列基板及显示面板
TW200411283A (en) Liquid crystal display device
KR20040100002A (ko) 칼라 편광판 및 이를 이용한 반사형 액정 표시 장치
WO2021203524A1 (zh) 透光基板及显示装置
WO2020124705A1 (zh) 显示面板的制备方法、显示面板及显示装置
TWI760014B (zh) 顯示面板
WO2011070866A1 (ja) 液晶表示装置
CN220271699U (zh) 反射式液晶显示面板及显示装置
CN101561610B (zh) 半穿透半反射式像素结构及显示面板
US20240162387A1 (en) Light-emitting module and display device
US7986385B2 (en) LCD panel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022530141

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 17758019

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22731975

Country of ref document: EP

Kind code of ref document: A1