WO2018225668A1 - 化学蒸着用原料、ならびに、化学蒸着用原料入り遮光容器およびその製造方法 - Google Patents

化学蒸着用原料、ならびに、化学蒸着用原料入り遮光容器およびその製造方法 Download PDF

Info

Publication number
WO2018225668A1
WO2018225668A1 PCT/JP2018/021318 JP2018021318W WO2018225668A1 WO 2018225668 A1 WO2018225668 A1 WO 2018225668A1 JP 2018021318 W JP2018021318 W JP 2018021318W WO 2018225668 A1 WO2018225668 A1 WO 2018225668A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor deposition
chemical vapor
indium
raw material
iii
Prior art date
Application number
PCT/JP2018/021318
Other languages
English (en)
French (fr)
Inventor
水谷 文一
慎太郎 東
Original Assignee
株式会社高純度化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社高純度化学研究所 filed Critical 株式会社高純度化学研究所
Priority to JP2019523516A priority Critical patent/JP7026404B2/ja
Priority to KR1020197037606A priority patent/KR102367495B1/ko
Priority to US16/617,598 priority patent/US11655538B2/en
Publication of WO2018225668A1 publication Critical patent/WO2018225668A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Definitions

  • the present invention relates to a raw material for chemical vapor deposition for forming an oxide film containing indium by chemical vapor deposition (CVD), a light shielding container filled with the raw material, and a method for manufacturing the same.
  • CVD chemical vapor deposition
  • the transparent conductive film has conductivity and excellent light transmittance with respect to visible light. Therefore, the transparent conductive film is used for electrodes of solar cells, liquid crystal display elements, and other various light receiving elements, and also has a reflection absorption characteristic in the near infrared region. Taking advantage of this, it is also used for reflective films used for window glass of automobiles and buildings, and various antistatic films.
  • the transparent conductive film zinc oxide containing aluminum, gallium, indium or tin as a dopant, indium oxide containing tin, tungsten or titanium as a dopant is generally used.
  • an indium oxide film containing tin as a dopant is called an ITO film and is widely used industrially as a low-resistance transparent conductive film.
  • Examples of such a method for producing a transparent conductive film include physical vapor deposition (PVD) and chemical vapor deposition (CVD).
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • ALD Atomic layer deposition
  • CVD chemical vapor deposition
  • Non-Patent Document 1 using cyclopentadienyl indium (I) and two types of water and oxygen as an oxygen source, exposure to cyclopentadienyl indium (I), water and oxygen in this order is performed by ALD. By performing, a uniform transparent conductive indium oxide film is formed.
  • Patent Document 1 an indium-containing oxide film is formed by ALD using an indium compound that is liquid at room temperature. Since cyclopentadienyl indium (I) is a solid, a transparent substrate having a large area is used. It is not suitable for materials.
  • Non-Patent Document 2 describes that when cyclopentadienyl indium (I) is present in THF together with triscyclopentadienyl indium (III), triscyclopentadi It has been disclosed that enyl indium (III) stabilizes cyclopentadienyl indium (I). However, in order to be stabilized by this method, it must be stored in THF together with other indium compounds, which is not easy to handle when used.
  • the precursor is preferably liquid at room temperature.
  • the present invention is a raw material for producing an oxide film containing indium by chemical vapor deposition (CVD) such as atomic layer deposition (ALD), which can be stably stored and performs chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • alkylcyclopentadienyl indium (I) (C 5 H 4 R 1 —In) is converted to alkylcyclopentadiene (C 5 H 5 R 2 ), dialkylcyclopentadiene ((C 5 H 5 R 3 ) 2 ), or trisalkylcyclopentadienyl indium (III) (In (C 5 H 4 R 4 ) 3 )
  • the present invention was completed.
  • the present invention comprises the following items.
  • the raw material for chemical vapor deposition of the present invention is composed mainly of alkylcyclopentadienyl indium (I) (C 5 H 4 R 1 —In; R 1 represents an alkyl group having 1 to 4 carbon atoms), Cyclopentadiene (C 5 H 5 R 2 ; R 2 represents an alkyl group having 1 to 4 carbon atoms), dialkylcyclopentadiene ((C 5 H 5 R 3 ) 2 ; R 3 represents 1 to 4 carbon atoms And trisalkylcyclopentadienyl indium (III) (In (C 5 H 4 R 4 ) 3 ; R 4 represents an alkyl group having 1 to 4 carbon atoms), and triscyclo Any one or more of pentadienylindium (III) is contained as a subcomponent, and substantially no solvent is contained.
  • the chemical vapor deposition raw material is 1 were determined by H-NMR, H amount of alkyl cyclopentadienyl indium (I) with respect to (integral value), the alkyl cyclopentadiene, dialkyl cyclopentadiene, and tris alkyl cyclopentadienyl
  • the total amount of H of indium (III) is preferably 0.01 or more and less than 0.5.
  • the light shielding container of the present invention is a container that can be attached to a chemical vapor deposition apparatus filled with the raw material for chemical vapor deposition.
  • the amount of In metal contained in the chemical vapor deposition material is preferably 0.1% by weight or less.
  • a method for producing a light shielding container containing a raw material for chemical vapor deposition, which can be attached to the chemical vapor deposition apparatus of the present invention is obtained by adding an auxiliary component to alkylcyclopentadienylindium (I) (C 5 H 4 R 1 -In) as a main component.
  • alkylcyclopentadiene (C 5 H 5 R 2 ), dialkylcyclopentadiene ((C 5 H 5 R 3 ) 2 ), trisalkylcyclopentadienyl indium (III) (In (C 5 H 4 R 4 ) 3 ) And triscyclopentadienylindium (III), a step 1 for preparing a raw material, and filling the light-shielded container that can be attached to a chemical vapor deposition apparatus in an inert gas with an inert gas And step 2.
  • R 1 to R 4 each represents an alkyl group having 1 to 4 carbon atoms.
  • alkylcyclopentadienyl indium (I) (C 5 H 4 R 1 -In)
  • alkylcyclopentadiene dialkylcyclopentadiene
  • trisalkylcyclopentadiene alkylcyclopentadiene
  • enyl indium (III) or triscyclopentadienyl indium (III) alkylcyclopentadienyl indium (I) is stabilized, and at room temperature (23 ° C.) if protected from light in an inert gas atmosphere. It can also be stored below. Therefore, the raw material for chemical vapor deposition of the present invention is easy to handle for forming an oxide film containing indium by chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • Example 1 The TG analysis result in Example 1 is shown.
  • the TG analysis result in Example 2 is shown.
  • the raw material for chemical vapor deposition of the present invention is mainly composed of alkylcyclopentadienyl indium (I) (C 5 H 4 R 1 —In) represented by the following formula (1), and represented by the following formula (2).
  • R 1 to R 4 each independently represents an alkyl group having 1 to 4 carbon atoms.
  • the raw material for chemical vapor deposition of the present invention is a raw material for producing an oxide film containing indium by chemical vapor deposition, and is an alkylcyclopentadienyl indium (I) (C 5 H 4 R 1 -In ) As the main component.
  • R 1 to R 4 each independently represents an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group having 1 to 4 carbon atoms is preferably an ethyl group, an n-propyl group, or an n-butyl group, and particularly preferably an ethyl group.
  • the chemical vapor deposition material is characterized by substantially not containing a solvent.
  • Non-Patent Document 2 when both cyclopentadienylindium (I) and triscyclopentadienylindium (III) are present in THF, triscyclopentadienylindium (III) is cyclopentadienyl. Enil indium (I) is stabilized and the THF solution remains yellowish white for more than 4 months at 20 ° C., whereas a THF solution of cyclopentadienylindium (I) alone is initially yellowish white, It has been reported that after raising the temperature from 196 ° C. to 20 ° C., it turns brown after another 20 minutes and eventually becomes dark brown close to black.
  • alkylcyclopentadienyl indium (I) (C 5 H 4 R 1 -In) is stabilized substantially without using a solvent, the stabilization mechanism described in the above document is used. Is clearly different.
  • the above-mentioned raw materials for chemical vapor deposition are used to stabilize alkylcyclopentadienyl indium (I), in order to stabilize alkylcyclopentadienyl indium (I).
  • One or more of III) is contained as a subcomponent.
  • Alkylcyclopentadienyl indium (I) (C 5 H 4 R 1 -In) undergoes the following disproportionation reaction by light and heat at room temperature. 3 (C 5 H 4 R 1 -In) ⁇ 2In + In (C 5 H 4 R 1) 3
  • alkylcyclopentadiene, dialkylcyclopentadiene, trisalkylcyclopentadienylindium (III), or triscyclopentadienylindium (III) coexist here, the above disproportionation reaction is caused.
  • the effect of suppressing the progress can be exhibited and the alkylcyclopentadienyl indium (I) can be stabilized.
  • the above disproportionation reaction is an endothermic reaction having a relatively low activation energy.
  • the alkylcyclopentadienyl indium (I) is almost disproportionate even when excited to the activated state. It is considered that the original alkylcyclopentadienyl indium (I) does not proceed in the direction of conversion.
  • R 2 to R 4 are preferably the same as R 1 . More preferably, R 1 to R 4 are all ethyl groups.
  • Alkylcyclopentadiene, dialkylcyclopentadiene, trisalkylcyclopentadienylindium (III), and triscyclopentadienylindium (III) may be added alone or in combination of two or more. Good.
  • alkylcyclopentadiene or dialkylcyclopentadiene When alkylcyclopentadiene or dialkylcyclopentadiene is added to the chemical vapor deposition raw material, the content is based on the amount of H (integral value) of alkylcyclopentadienylindium (I) measured by 1 H-NMR.
  • the total amount of H of alkylcyclopentadiene and dialkylcyclopentadiene is 0.01 or more and less than 0.5.
  • trisalkylcyclopentadienyl indium (III) or triscyclopentadienyl indium (III) is added to the chemical vapor deposition material, the content of alkylcyclopenta measured by 1 H-NMR
  • the total amount of H of trisalkylcyclopentadienyl indium (III) is 0.01 or more and less than 0.5 with respect to the amount of H of dienylindium (I) (integral value).
  • the content in the case where alkylcyclopentadiene and / or dialkylcyclopentadiene and triscyclopentadienylindium (III) are added to the chemical vapor deposition raw material is determined by alkylcyclopentadiene measured by 1 H-NMR.
  • the total amount of H of alkylcyclopentadiene, dialkylcyclopentadiene, and trisalkylcyclopentadienyl indium (III) is 0.01 or more and less than 0.5 with respect to the amount of H (integral value) of enylindium (I). is there.
  • the raw material for chemical vapor deposition includes: alkylcyclopentadienyl indium (I); as accessory components, alkylcyclopentadiene, dialkylcyclopentadiene, trisalkylcyclopentadienylindium (III), and triscyclopentadienyl.
  • Step 1 in which at least one of indium (III) coexists, and a step of filling a light-shielded container that can be attached to a chemical vapor deposition apparatus in an inert gas with its subcomponent and alkylcyclopentadienylindium (I).
  • step 1 there is no particular limitation on the method of coexisting the accessory component, alkylcyclopentadiene, dialkylcyclopentadiene, trisalkylcyclopentadienylindium (III), or triscyclopentadienylindium (III). It is effective to add it immediately after the components are purified by distillation.
  • alkylcyclopentadiene or dialkylcyclopentadiene when it is in a solid state immediately after distillation purification, and add it before distillation and collect it together with alkylcyclopentadienyl indium (I). You can also.
  • alkylcyclopentadiene When the distilled and purified alkylcyclopentadienyl indium (I) reacts with water, C 5 H 4 R 1 ⁇ In + H 2 O ⁇ InOH + C 5 H 4 R 1 H As a result of the reaction, alkylcyclopentadiene is produced, but since InOH is a solid, the supernatant is used to allow the alkylcyclopentadiene and / or dialkylcyclopentadiene produced by dimerization of the alkylcyclopentadiene to coexist. be able to.
  • trisalkylcyclopentadienyl indium (III) or triscyclopentadienyl indium (III) is added, trisalkylcyclopentadienyl indium (III), etc. is generated by disproportionation, so it must be synthesized separately. Even if not added, the supernatant of the disproportionated mixture can be used.
  • alkylcyclopentadienyl indium (I) in the presence of alkylcyclopentadiene, dialkylcyclopentadiene, trisalkylcyclopentadienyl indium (III), or triscyclopentadienyl indium (III) as a secondary component Is filled in a light-shielded container that can be attached to a chemical vapor deposition apparatus in an inert gas in step 2.
  • the amount of In metal in the container is substantially 0 immediately after filling, and 0.5% by weight or less immediately before use as a raw material for evaporation. That is, the amount of In metal in the container is 0.5% by weight or less even after a long time.
  • trisalkylcyclopentadienyl indium (III) and In metal produced by disproportionation have almost no vapor pressure in the temperature region where the main component, alkylcyclopentadienyl indium (I) evaporates. So there is no problem with chemical vapor deposition.
  • the vapor pressure of the main component may slightly change depending on the by-product, so ALD (atomic layer) is not easily affected by the change in vapor pressure. It can be suitably used by the deposition method.
  • Ethylcyclopentadienyl lithium (C 5 H 4 EtLi) was synthesized by reacting butyl lithium (BuLi) with an equimolar amount of ethyl cyclopentadiene (C 5 H 4 EtH) in hexane. After the synthesis, the solvent hexane was distilled off under reduced pressure to obtain solid ethylcyclopentadienyllithium. Next, diethyl ether was added to form a suspension, and 1.2 times molar amount of finely pulverized indium monochloride (InCl) powder was added and reacted to synthesize ethylcyclopentadienyl indium.
  • InCl finely pulverized indium monochloride
  • this receiver When this receiver was stored in an inert gas at room temperature for several days, it was melted, colored reddish brown, and indium metal was deposited. Even when the liquid in which the indium metal was deposited was transferred to an ampoule filled with an inert gas and stored in the dark for several days, no indium metal was deposited.
  • 1 H-NMR (400 MHz, unity INOVA 400S manufactured by Varian) of this reddish brown liquid was measured, in addition to the signal of ethylcyclopentadienylindium, the same signal as that obtained by measuring ethylcyclopentadiene was obtained.
  • Example 2 In the same manner as in Example 1, a yellowish white ethylcyclopentadienylindium solid was obtained in a receiver cooled with dry ice. The receiver was then stored in an inert gas at room temperature for several days and melted to obtain a reddish brown liquid. At this time, precipitation of indium metal was observed. Furthermore, ethyl cyclopentadiene was added to the reddish brown liquid and distilled under reduced pressure to obtain a solid mixture of ethyl cyclopentadienyl indium and ethyl cyclopentadiene in a receiver cooled with dry ice. A 1 H-NMR of a yellow to reddish brown liquid obtained by melting this mixture was measured.
  • Example 1 In the same manner as in Example 1, a yellowish white ethylcyclopentadienylindium solid was obtained in a receiver cooled with dry ice. When this solid was melted in an inert gas, a yellow liquid was formed, but precipitation of indium metal was immediately observed. When this yellow liquid was transferred to an ampoule filled with an inert gas, metal deposition was immediately observed, and when the sample was stored until the next day, the deposit increased and the color became darker.
  • This yellow liquid is considered to be highly pure ethylcyclopentadienylindium, but since it does not coexist with ethylcyclopentadiene or tris (ethylcyclopentadienyl) indium, disproportionation occurs immediately and the metal Since it deposits, when filling the light-shielded container which can be attached to a chemical vapor deposition apparatus, the pipe

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

化学蒸着(CVD)により、酸化インジウム薄膜を製造するための原料であって、長期間の保存が可能で、化学蒸着を行うに際して、使用時の取り扱いが容易な化学蒸着用原料およびその保存方法を提供する。アルキルシクロペンタジエニルインジウム(I)(C5H4R1-In)を主成分とし、アルキルシクロペンタジエン(C5H5R2)、ジアルキルシクロペンタジエン((C5H5R3)2)、トリスアルキルシクロペンタジエニルインジウム(III)((C5H4R4)3-In)、およびトリスシクロペンタジエニルインジウム(III)のいずれか一種以上を副成分として含有し(R1~R4はそれぞれ炭素原子数1~4のアルキル基を表す。)、実質的に溶媒を含まないことを特徴とする化学蒸着用原料。

Description

化学蒸着用原料、ならびに、化学蒸着用原料入り遮光容器およびその製造方法
 本発明は、化学蒸着(CVD:chemical vapor deposition)により、インジウムを含有する酸化物の膜を形成するための化学蒸着用原料、該原料を充填した遮光容器およびその製造方法に関する。
 透明導電膜は、導電性、および可視光線に対する優れた光線透過性を有することから、太陽電池、液晶表示素子、その他各種受光素子の電極等に利用され、さらに、近赤外線領域での反射吸収特性を生かして、自動車や建築物の窓ガラス等に用いられる反射膜や各種の帯電防止膜等にも利用されている。
 上記透明導電膜には、一般に、アルミニウム、ガリウム、インジウムまたはスズをドーパントとして含む酸化亜鉛や、スズ、タングステンまたはチタンをドーパントとして含む酸化インジウム等が利用されている。特に、スズをドーパントとして含む酸化インジウム膜はITO膜といわれ、低抵抗の透明導電膜として工業的に広く利用されている。
 このような透明導電膜の製造方法には、物理蒸着(PVD:physical vapor deposition)や化学蒸着(CVD)が挙げられるが、化学蒸着(CVD)の一種である、原子層堆積(ALD:atomic layer deposition)によれば、原子レベルで均一な厚さの被膜を凹凸のある表面に形成することができる。
 例えば、非特許文献1では、シクロペンタジエニルインジウム(I)と、酸素源として水および酸素の二種類を用いて、ALDにより、シクロペンタジエニルインジウム(I)、水および酸素の順に暴露を行うことにより、均一な透明導電性インジウム酸化物膜を形成している。
 特許文献1では、常温で液体であるインジウム化合物を用いて、ALDにより、インジウムを含有する酸化膜を形成しており、シクロペンタジエニルインジウム(I)は固体であるため、大面積の透明基材には適さないとしている。
 特許文献2では、シクロペンタジエニルインジウム(I)またはアルキルシクロペンタジエニルインジウム(I)をインジウムの前駆体として用いて、有機金属気相成長(MOVPE:metalorganic vapor phase epitaxy)法により、基材上にエピタキシャルInP層を形成しており、常温で液体であるエチルシクロペンタジエニルインジウム(I)を例示している。しかしながら、このエチルシクロペンタジエニルインジウム(I)には、熱、光、大気に敏感という課題がある。
 シクロペンタジエニルインジウム(I)の安定性に関して、非特許文献2には、シクロペンタジエニルインジウム(I)をトリスシクロペンタジエニルインジウム(III)と共にTHF中に存在させると、トリスシクロペンタジエニルインジウム(III)がシクロペンタジエニルインジウム(I)を安定化させることが開示されている。しかしながら、この方法で安定化させるには、他のインジウム化合物と共にTHF中に保存しなければならず、使用するときに取り扱いが容易とはいえない。
 このように、シクロペンタジエニルインジウム(I)をインジウムの前駆体として用いると、良好なインジウムを含有する酸化物の膜が形成できるが、シクロペンタジエニルインジウム(I)は、熱、光、大気に極度に敏感であり、安定的な保存や取り扱いが容易ではないという課題がある。一方、大面積の基材に適用するには、前駆体は常温で液体であることが好ましい。
特表2015-506416号公報 米国特許第4965222号明細書
ECS Transactions, 41 (2) 147-155(2011) Organometallics, 21(22)4632-4640 (2002)
 本発明は、原子層堆積(ALD)等の化学蒸着(CVD)により、インジウムを含有する酸化物の膜を製造するための原料であって、安定的に保存でき、化学蒸着(CVD)を行うに際して、取り扱いが容易な原料およびその製造方法を提供することを課題とする。
 本発明者は、上記した従来技術における問題を解消しうるインジウム化合物について検討した結果、アルキルシクロペンタジエニルインジウム(I)(C541-In)が、アルキルシクロペンタジエン(C552)、ジアルキルシクロペンタジエン((C5532)、またはトリスアルキルシクロペンタジエニルインジウム(III)(In(C5443)を共存させることで、安定に存在しうることを見出し、本発明を完成させた。
 本発明は以下の事項からなる。
 本発明の化学蒸着用原料は、アルキルシクロペンタジエニルインジウム(I)(C541-In;R1は炭素原子数1~4のアルキル基を表す。)を主成分とし、アルキルシクロペンタジエン(C552;R2は炭素原子数1~4のアルキル基を表す。)、ジアルキルシクロペンタジエン((C5532;R3は炭素原子数1~4のアルキル基を表す。)、トリスアルキルシクロペンタジエニルインジウム(III)(In(C5443;R4は炭素原子数1~4のアルキル基を表す。)、およびトリスシクロペンタジエニルインジウム(III)のいずれか一種以上を副成分として含有し、実質的に溶媒を含まないことを特徴とする。
 副成分としては、アルキルシクロペンタジエンまたはジアルキルシクロペンタジエンを含むことが好ましく、このときのR2またはR3は、R1と同一であることが好ましい。
 また、副成分として、トリスアルキルシクロペンタジエニルインジウム(III)を含むことも好ましく、このときのR4はR1と同一であることが好ましい。
 さらに、R1~R4の炭素原子数が同一であり、該炭素原子数は2であることが好ましい。
 前記化学蒸着用原料は23℃において液体であることが好ましい。
 前記化学蒸着用原料は、1H-NMRで測定した、アルキルシクロペンタジエニルインジウム(I)のH量(積分値)に対して、アルキルシクロペンタジエン、ジアルキルシクロペンタジエン、およびトリスアルキルシクロペンタジエニルインジウム(III)のH量の合計が0.01以上0.5未満であることが好ましい。
 本発明の遮光容器は、前記化学蒸着用原料を充填した、化学蒸着装置に取り付け可能な容器である。この化学蒸着用原料に含まれるInメタルの量は0.1重量%以下であることが好ましい。
 本発明の化学蒸着装置に取り付け可能な、化学蒸着用原料入り遮光容器の製造方法は、主成分であるアルキルシクロペンタジエニルインジウム(I)(C541-In)に、副成分として、アルキルシクロペンタジエン(C552)、ジアルキルシクロペンタジエン((C5532)、トリスアルキルシクロペンタジエニルインジウム(III)(In(C5443)、およびトリスシクロペンタジエニルインジウム(III)のいずれか一種以上を共存させた原料を調製する工程1と、その原料を不活性ガス中、化学蒸着装置に取り付け可能な遮光した容器に充填する工程2とを有することを特徴とする。なお、R1~R4はそれぞれ炭素原子数1~4のアルキル基を表す。
 本発明によれば、主成分である、アルキルシクロペンタジエニルインジウム(I)(C541-In)中に、副成分として、アルキルシクロペンタジエン、ジアルキルシクロペンタジエン、トリスアルキルシクロペンタジエニルインジウム(III)、またはトリスシクロペンタジエニルインジウム(III)を共存させることで、アルキルシクロペンタジエニルインジウム(I)が安定化し、不活性ガス雰囲気下、遮光すれば、室温(23℃)下においても保存可能となる。したがって、本発明の化学蒸着用原料は、化学蒸着(CVD)により、インジウムを含有する酸化物の膜を形成するのに、取り扱いが容易である。
実施例1におけるTG分析結果を示す。 実施例2におけるTG分析結果を示す。
 本発明の化学蒸着用原料は、下記式(1)で表される、アルキルシクロペンタジエニルインジウム(I)(C541-In)を主成分とし、下記式(2)で表される、アルキルシクロペンタジエン(C552)およびジアルキルシクロペンタジエン((C5532)、下記式(3)で表されるトリスアルキルシクロペンタジエニルインジウム(III)(In(C5443)、ならびにトリスシクロペンタジエニルインジウム(III)のいずれか一種以上を副成分として含有する。ただし、R1~R4はそれぞれ独立に炭素原子数1~4のアルキル基を表す。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 以下、この化学蒸着用原料について詳細に説明する。
 本発明の化学蒸着用原料は、化学蒸着法により、インジウムを含有する酸化物の膜を製造するための原料であって、アルキルシクロペンタジエニルインジウム(I)(C541-In)を主成分とする。
 R1~R4はそれぞれ独立に炭素原子数1~4のアルキル基を表す。炭素原子数1~4のアルキル基は、エチル基、n-プロピル基、n-ブチル基であることが好ましく、エチル基であることが特に好ましい。
 なお、η5-シクロペンタジエニルインジウム(I)(In(C55))、すなわち、上記式(1)において、R1がアルキル基でなく、水素原子に該当するとき、融点は約170℃であり、蒸留は困難である。
 上記化学蒸着用原料は、実質的に溶媒を含まないことを特徴としている。
 ここで、非特許文献2に、シクロペンタジエニルインジウム(I)およびトリスシクロペンタジエニルインジウム(III)の両方をTHF中に存在させると、トリスシクロペンタジエニルインジウム(III)がシクロペンタジエニルインジウム(I)を安定化し、該THF溶液は20℃で4ヶ月以上も黄白色を維持するが、シクロペンタジエニルインジウム(I)のみのTHF溶液は、最初は黄白色であるが、-196℃から20℃まで温度を上げた後、さらに20分後には茶色となり、やがて黒色に近い濃茶色となることが報告されている。
 非特許文献2では、In(C553およびIn(C55)を含有するTHF溶液では、In(C553とIn(C55)のC55部位が、インジウム(II)種であるTHF・(C552In-In(C552・THFを経由して交換されるために、In(C55)が分解しにくいと、考察している。
 本発明では、実質的に溶媒を使用することなく、アルキルシクロペンタジエニルインジウム(I)(C541-In)を安定化させていることから、上記文献に記載の安定化メカニズムとは明らかに異なるといえる。
 上記化学蒸着用原料は、アルキルシクロペンタジエニルインジウム(I)を安定化させるのに、アルキルシクロペンタジエン、ジアルキルシクロペンタジエン、トリスアルキルシクロペンタジエニルインジウム(III)、およびトリスシクロペンタジエニルインジウム(III)のいずれか一種以上を副成分として含有する。
 ここで、上記化学蒸着用原料の安定化のメカニズムを説明する。アルキルシクロペンタジエニルインジウム(I)(C541-In)は、室温下では、光や熱によって、以下のような不均化反応を起こす。
     3(C541-In)→2In+In(C5413
 しかしながら、上記副成分である、アルキルシクロペンタジエン、ジアルキルシクロペンタジエン、トリスアルキルシクロペンタジエニルインジウム(III)、またはトリスシクロペンタジエニルインジウム(III)をここに共存させると、上記不均化反応の進行を抑制する効果を発揮し、アルキルシクロペンタジエニルインジウム(I)を安定化することができる。
 上記の不均化反応は、比較的活性化エネルギーの低い吸熱反応であり、上記の副成分が存在すると、アルキルシクロペンタジエニルインジウム(I)は活性化状態まで励起されても、ほとんど不均化の方向に進行せず、もとのアルキルシクロペンタジエニルインジウム(I)に戻るものと考えられる。このため、R2~R4はR1と同一であることが好ましい。さらに、R1~R4はすべてエチル基であることがより好ましい。
 アルキルシクロペンタジエン、ジアルキルシクロペンタジエン、トリスアルキルシクロペンタジエニルインジウム(III)、およびトリスシクロペンタジエニルインジウム(III)は、いずれか一種を添加してもよいし、二種以上を添加してもよい。
 上記化学蒸着用原料中に、アルキルシクロペンタジエンまたはジアルキルシクロペンタジエンを添加する場合の含有量は、1H-NMRで測定した、アルキルシクロペンタジエニルインジウム(I)のH量(積分値)に対して、アルキルシクロペンタジエン、およびジアルキルシクロペンタジエンのH量の合計が0.01以上0.5未満である。
 また、上記化学蒸着用原料中に、トリスアルキルシクロペンタジエニルインジウム(III)またはトリスシクロペンタジエニルインジウム(III)を添加する場合の含有量は、1H-NMRで測定した、アルキルシクロペンタジエニルインジウム(I)のH量(積分値)に対して、トリスアルキルシクロペンタジエニルインジウム(III)のH量の合計が0.01以上0.5未満である。
 上記化学蒸着用原料中に、アルキルシクロペンタジエンおよび/またはジアルキルシクロペンタジエンと、トリスシクロペンタジエニルインジウム(III)とを添加する場合の含有量は、1H-NMRで測定した、アルキルシクロペンタジエニルインジウム(I)のH量(積分値)に対して、アルキルシクロペンタジエン、ジアルキルシクロペンタジエン、およびトリスアルキルシクロペンタジエニルインジウム(III)のH量の合計が0.01以上0.5未満である。
 上記化学蒸着用原料の主成分であるアルキルシクロペンタジエニルインジウム(I)は、公知の方法により合成することができる。例えば、R1がエチル基である場合には、不活性ガス雰囲気下に、ブチルリチウムと等モル量のエチルシクロペンタジエンとを反応させて、エチルシクロペンタジエニルリチウムを合成した後、ジエチルエーテル中で等モル量の一塩化インジウム粉末を添加して反応させることにより、エチルシクロペンタジエニルインジウム(I)を合成する。なお、エチルシクロペンタジエニルインジウム(I)は光に極めて敏感であるため、一塩化インジウム添加後は反応系を遮光する。その後、得られた粗生成物を減圧下に蒸留精製して、ドライアイス冷却した受器に黄白色のエチルシクロペンタジエニルインジウムを得る。
 上記化学蒸着用原料の製造方法は、アルキルシクロペンタジエニルインジウム(I)に、副成分として、アルキルシクロペンタジエン、ジアルキルシクロペンタジエン、トリスアルキルシクロペンタジエニルインジウム(III)、およびトリスシクロペンタジエニルインジウム(III)のいずれか一種以上を共存させる工程1と、その副成分とアルキルシクロペンタジエニルインジウム(I)とを不活性ガス中、化学蒸着装置に取り付け可能な遮光した容器に充填する工程2とを有することを特徴とする。
 工程1において、副成分である、アルキルシクロペンタジエン、ジアルキルシクロペンタジエン、トリスアルキルシクロペンタジエニルインジウム(III)、またはトリスシクロペンタジエニルインジウム(III)を共存させる方法に特に制限はないが、主成分を蒸留精製した直後に添加することが効果的である。
 一般に化学蒸着用原料は、室温においても蒸気圧を持つので、蒸留精製物は、冷却して捕集することになるが、アルキルシクロペンタジエニルインジウム(I)の場合、ドライアイスを使用するなどして-79℃以下の低温で捕集すると、低温で固体の間は比較的不均化反応が起こりにくいが、温度が上がり液体になると一気に不均化反応が進む。
 したがって、アルキルシクロペンタジエン、またはジアルキルシクロペンタジエンは、蒸留精製直後の固体状態の時に添加するのが好ましく、あらかじめ蒸留前に添加して、アルキルシクロペンタジエニルインジウム(I)と一緒に捕集することもできる。
 また、蒸留精製したアルキルシクロペンタジエニルインジウム(I)と水が反応すると、
     C541-In+HO→InOH+C541
の反応により、アルキルシクロペンタジエンが生成するが、InOHは固体なので、その上澄み液を用いることで、このときに生成したアルキルシクロペンタジエンおよび/またはそのアルキルシクロペンタジエンが二量化したジアルキルシクロペンタジエンを共存させることができる。
 トリスアルキルシクロペンタジエニルインジウム(III)またはトリスシクロペンタジエニルインジウム(III)を添加する場合は、トリスアルキルシクロペンタジエニルインジウム(III)等は不均化によって生成するので、わざわざ別途合成して添加しなくても、不均化させた混合物の上澄みを用いることができる。
 工程1で、副成分として、アルキルシクロペンタジエン、ジアルキルシクロペンタジエン、トリスアルキルシクロペンタジエニルインジウム(III)、またはトリスシクロペンタジエニルインジウム(III)を共存させたアルキルシクロペンタジエニルインジウム(I)は、工程2で、不活性ガス中、化学蒸着装置に取り付け可能な遮光した容器に充填される。
 このとき、工程1を経ず、安定化させていないアルキルシクロペンタジエニルインジウム(I)を工程2で直接、化学蒸着用原料の容器に充填しても、充填後に不均化させて安定化させることはできるが、充填時に不均化で析出するInメタルによる閉塞が起こりやすく、取り扱いが容易ではない上に、容器内に多量のInメタルが析出するという問題もある。
 本発明の方法によって充填した場合、容器内のInメタルの量は、充填直後には実質的に0であり、蒸発用原料として使用する直前には0.5重量%以下である。すなわち、容器内のInメタルの量は、長時間経過しても0.5重量%以下である。
 このような工程1を経て得られる本発明の化学蒸着用原料は、溶媒を含まず、実質的に主成分および副成分のみからなり、工程2において、容易に、不活性ガス中、化学蒸着装置に取り付け可能な遮光した容器に充填される。また、前記化学蒸着用原料は23℃、常圧下において液体である。
 本発明の化学蒸着用原料は、副成分として、アルキルシクロペンタジエン、ジアルキルシクロペンタジエン、トリスアルキルシクロペンタジエニルインジウム(III)、およびトリスシクロペンタジエニルインジウム(III)のいずれか一種以上を含有するが、アルキルシクロペンタジエンおよびジアルキルシクロペンタジエンは低温で蒸発してしまうため、化学蒸着で使用する前に全て蒸発させれば、成膜には支障を及ぼさない。また、トリスアルキルシクロペンタジエニルインジウム(III)、および、不均化で生成するInメタルについては、主成分であるアルキルシクロペンタジエニルインジウム(I)が蒸発する温度領域の蒸気圧がほとんどないので、化学蒸着には問題ない。ただし、化学蒸着用原料の容器に充填後の保存状態によっては、副生成物によって、主成分の蒸気圧がわずかながら変化する可能性があるので、蒸気圧変化の影響を受けにくいALD(原子層堆積)法により好適に使用できる。
 以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明は下記実施例により制限されるものではない。
 [実施例1]
 ヘキサン中で、ブチルリチウム(BuLi)と等モル量のエチルシクロペンタジエン(C54EtH)とを反応させて、エチルシクロペンタジエニルリチウム(C54EtLi)を合成した。合成後、溶媒のヘキサンを減圧留去し、固体のエチルシクロペンタジエニルリチウムを得た。次に、ジエチルエーテルを添加して懸濁液とし、そこに1.2倍モル量の細かく粉砕した一塩化インジウム(InCl)粉末を添加して反応させ、エチルシクロペンタジエニルインジウムを合成した。一塩化インジウム添加後は、工程チェック時以外は遮光して反応を行った。得られた懸濁液から、ジエチルエーテルを減圧留去した後、減圧蒸留することによって、ドライアイス冷却した受器に黄白色固体のエチルシクロペンタジエニルインジウムを得た。
 なお、エチルシクロペンタジエニルインジウムは光と熱および大気に極めて敏感と予想されたため、上記の合成は不活性ガス中で行った。
 この受器を不活性ガス中、室温で数日間遮光保存したところ融解し、赤褐色に着色して、インジウムメタルの析出が見られた。このインジウムメタルが析出した液体を不活性ガスを充填したアンプルに移して数日間遮光保存してもインジウムメタルの析出は見られなかった。この赤褐色の液体の1H-NMR(400MHz、Varian社製 UNITY INOVA 400S型)を測定したところ、エチルシクロペンタジエニルインジウムの信号に加えて、エチルシクロペンタジエンを測定して得られる信号と同様の信号が得られ、エチルシクロペンタジエニルインジウム(I)のH量(積分値)に対する、エチルシクロペンタジエンおよびジエチルシクロペンタジエンのH量(積分値)は0.2であった(図1)。また、このインジウムメタルが析出して赤褐色になった液体を100℃で真空蒸留したところ、黄白色固体のエチルシクロペンタジエニルインジウムが得られ、釜残には褐色のトリス(エチルシクロペンタジエニル)インジウムと見られる液体があった。これらのことから、不均化によって生成したトリス(エチルシクロペンタジエニル)インジウムとの共存によって、エチルシクロペンタジエニルインジウムが安定化されたことがわかる。
 次にこの赤褐色液体のTG分析(BRUKER AXS社製、TG-DTA 2000S型)を行ったところ、図2のようになり、エチルシクロペンタジエニルインジウムの蒸発以外に起因すると考えられる重量減少は観測されなかった。ここで、100%重量減少していない原因は、全ての副成分が測定した温度範囲で蒸気圧を持たないことによる。
 [実施例2]
 実施例1と同様にして、ドライアイス冷却した受器に黄白色のエチルシクロペンタジエニルインジウムの固体を得た。
 次に、この受器を不活性ガス中、室温で数日間保存して、融解させ、赤褐色の液体を得た。このとき、インジウムメタルの析出が見られた。さらに、この赤褐色の液体にエチルシクロペンタジエンを添加して減圧蒸留することによって、ドライアイス冷却した受器にエチルシクロペンタジエニルインジウムとエチルシクロペンタジエンの混合物の固体を得た。この混合物を融解させた黄色~赤褐色の液体の1H-NMRを測定したところ、エチルシクロペンタジエニルインジウムの信号に加えて、常温で保存したエチルシクロペンタジエンを測定して得られる信号と同様の信号が得られ、減圧蒸留によってエチルシクロペンタジエニルインジウムとエチルシクロペンタジエンの混合物の液体が得られたことが確認された。この混合物を数日間遮光保存しても、インジウムメタルの析出は見られなかった。
 次にこの液体のTG分析を行ったところ、図3のようになり、エチルシクロペンタジエニルインジウムの蒸発以外に起因すると考えられる重量減少は観測されなかった。ここで、エチルシクロペンタジエンあるいは二量化したジエチルシクロペンタジエンは測定開始前に全て蒸発してしまっていると考えられる。また、重量減少が100%に到達していないのは、サンプル調整時のわずかな水のリークや、不均化の影響と思われるが、実施例1と比較すると、100%に近くなっている。
 [比較例1]
 実施例1と同様にして、ドライアイス冷却した受器に黄白色のエチルシクロペンタジエニルインジウムの固体を得た。この固体を不活性ガス中で融解させたところ黄色液体となったが、すぐにインジウムメタルの析出が見られた。この黄色液体を不活性ガス充填したアンプルに移したところ、すぐにメタルの析出が見られ、さらに翌日まで保存したところ、析出物が増え、色が濃くなった。
 この黄色液体は、純度の高いエチルシクロペンタジエニルインジウムと考えられるが、エチルシクロペンタジエン、あるいはトリス(エチルシクロペンタジエニル)インジウムと共存していないため、すぐに不均化が起こり、メタルが析出するため、化学蒸着装置に取り付け可能な遮光した容器に充填する際に、管やバルブの閉塞が起こりやすく、化学蒸着用原料としての使用は難しい。

Claims (8)

  1.  アルキルシクロペンタジエニルインジウム(I)(C541-In;R1は炭素原子数1~4のアルキル基を表す。)を主成分として、
     アルキルシクロペンタジエン(C552;R2は炭素原子数1~4のアルキル基を表す。)、ジアルキルシクロペンタジエン((C5532;R3は炭素原子数1~4のアルキル基を表す。)、トリスアルキルシクロペンタジエニルインジウム(III)((C5443-In;R4は炭素原子数1~4のアルキル基を表す。)、およびトリスシクロペンタジエニルインジウム(III)のいずれか一種以上を副成分として含有し、
     実質的に溶媒を含まないことを特徴とする化学蒸着用原料。
  2.  前記R1~R4の炭素原子数が等しい、請求項1に記載の化学蒸着用原料。
  3.  23℃において液体である、請求項2に記載の化学蒸着用原料。
  4.  R1~R4の炭素原子数が全て2である、請求項1に記載の化学蒸着用原料。
  5.  1H-NMRで測定した、アルキルシクロペンタジエニルインジウム(I)のH量(積分値)に対して、アルキルシクロペンタジエン、ジアルキルシクロペンタジエン、およびトリスアルキルシクロペンタジエニルインジウム(III)のH量の合計が0.01以上0.5未満である、請求項1~4のいずれか一項に記載の化学蒸着用原料。
  6.  請求項1~5のいずれか一項に記載の化学蒸着用原料を充填した、化学蒸着装置に取り付け可能な化学蒸着用原料入り遮光容器。
  7.  前記化学蒸着用原料に含まれるInメタルの量が0.5重量%以下である、請求項6に記載の化学蒸着用原料入り遮光容器。
  8.  主成分であるアルキルシクロペンタジエニルインジウム(I)(C541-In;R1は炭素原子数1~4のアルキル基を表す。)に、副成分として、アルキルシクロペンタジエン(C552;R2は炭素原子数1~4のアルキル基を表す。)、ジアルキルシクロペンタジエン((C5532;R3は炭素原子数1~4のアルキル基を表す。)、トリスアルキルシクロペンタジエニルインジウム(III)((C5443-In;R4は炭素原子数1~4のアルキル基を表す。)、およびトリスシクロペンタジエニルインジウム(III)のいずれか一種以上を共存させた原料を調製する工程1と、その原料を不活性ガス中、化学蒸着装置に取り付け可能な遮光した容器に充填する工程2とを有することを特徴とする、化学蒸着装置に取り付け可能な、化学蒸着用原料入り遮光容器の製造方法。
PCT/JP2018/021318 2017-06-09 2018-06-04 化学蒸着用原料、ならびに、化学蒸着用原料入り遮光容器およびその製造方法 WO2018225668A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019523516A JP7026404B2 (ja) 2017-06-09 2018-06-04 化学蒸着用原料、ならびに、化学蒸着用原料入り遮光容器およびその製造方法
KR1020197037606A KR102367495B1 (ko) 2017-06-09 2018-06-04 화학 증착용 원료, 및, 화학 증착용 원료가 들어간 차광 용기 및 그 제조 방법
US16/617,598 US11655538B2 (en) 2017-06-09 2018-06-04 Precursor for chemical vapor deposition, and light-blocking container containing precursor for chemical vapor deposition and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-113957 2017-06-09
JP2017113957 2017-06-09

Publications (1)

Publication Number Publication Date
WO2018225668A1 true WO2018225668A1 (ja) 2018-12-13

Family

ID=64565947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021318 WO2018225668A1 (ja) 2017-06-09 2018-06-04 化学蒸着用原料、ならびに、化学蒸着用原料入り遮光容器およびその製造方法

Country Status (5)

Country Link
US (1) US11655538B2 (ja)
JP (1) JP7026404B2 (ja)
KR (1) KR102367495B1 (ja)
TW (1) TWI736776B (ja)
WO (1) WO2018225668A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020143316A (ja) * 2019-03-05 2020-09-10 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード インジウム化合物および該インジウム化合物を用いたインジウム含有膜の成膜方法
WO2022035795A1 (en) * 2020-08-13 2022-02-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Mono-substituted cyclopentadienes and metal cyclopentadienyl complexes and synthesis methods thereof
KR20230108319A (ko) 2020-12-04 2023-07-18 가부시키가이샤 고준도가가쿠 겐큐쇼 인듐 및 1종 이상의 다른 금속을 함유하는 막을 제조하기 위한 증착용 원료 및 인듐 및 1종 이상의 다른 금속을 함유하는 막의 제조 방법
US11859283B2 (en) 2020-07-28 2024-01-02 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Heteroalkylcyclopentadienyl indium-containing precursors and processes of using the same for deposition of indium-containing layers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194613A (ja) * 1987-10-06 1989-04-13 Showa Denko Kk 気相成長方法
JPH02163930A (ja) * 1988-10-07 1990-06-25 Philips Gloeilampenfab:Nv 基板上へのエピタキシャルリン化インジウム層の製造方法
JPH0388324A (ja) * 1989-08-31 1991-04-12 Nippon Telegr & Teleph Corp <Ntt> 化合物半導体薄膜の形成方法
JPH03190123A (ja) * 1989-12-19 1991-08-20 Showa Denko Kk 気相成長方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984591B1 (en) * 2000-04-20 2006-01-10 International Business Machines Corporation Precursor source mixtures
TWI275319B (en) 2002-02-05 2007-03-01 Semiconductor Energy Lab Manufacturing method and method of operating a manufacturing apparatus
WO2005035823A1 (ja) * 2003-10-14 2005-04-21 Ube Industries, Ltd. β−ジケトナト配位子を有する金属錯体および金属含有薄膜の製造方法
KR20130087354A (ko) 2012-01-27 2013-08-06 주식회사 유피케미칼 인듐을 포함한 산화막 및 이의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194613A (ja) * 1987-10-06 1989-04-13 Showa Denko Kk 気相成長方法
JPH02163930A (ja) * 1988-10-07 1990-06-25 Philips Gloeilampenfab:Nv 基板上へのエピタキシャルリン化インジウム層の製造方法
JPH0388324A (ja) * 1989-08-31 1991-04-12 Nippon Telegr & Teleph Corp <Ntt> 化合物半導体薄膜の形成方法
JPH03190123A (ja) * 1989-12-19 1991-08-20 Showa Denko Kk 気相成長方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020143316A (ja) * 2019-03-05 2020-09-10 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード インジウム化合物および該インジウム化合物を用いたインジウム含有膜の成膜方法
WO2020179748A1 (ja) * 2019-03-05 2020-09-10 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード インジウム化合物および該インジウム化合物を用いたインジウム含有膜の成膜方法
CN113544309A (zh) * 2019-03-05 2021-10-22 乔治洛德方法研究和开发液化空气有限公司 铟化合物以及使用该铟化合物的含铟膜成膜方法
KR20210134017A (ko) * 2019-03-05 2021-11-08 레르 리키드 쏘시에떼 아노님 뿌르 레뜌드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 인듐 화합물 및 이 인듐 화합물을 이용한 인듐 함유 막의 형성 방법
US20220243319A1 (en) * 2019-03-05 2022-08-04 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Indium compound and method for forming indium-containing film using said indium compounds
EP3936636A4 (en) * 2019-03-05 2023-03-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude INDIUM COMPOUND AND METHOD FOR FORMING AN INDIUM-CONTAINING FILM USING SUCH INDIUM COMPOUND
JP7240903B2 (ja) 2019-03-05 2023-03-16 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード インジウム化合物および該インジウム化合物を用いたインジウム含有膜の成膜方法
KR102631494B1 (ko) * 2019-03-05 2024-01-30 레르 리키드 쏘시에떼 아노님 뿌르 레드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 인듐 화합물 및 이 인듐 화합물을 이용한 인듐 함유 막의 형성 방법
US11859283B2 (en) 2020-07-28 2024-01-02 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Heteroalkylcyclopentadienyl indium-containing precursors and processes of using the same for deposition of indium-containing layers
WO2022035795A1 (en) * 2020-08-13 2022-02-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Mono-substituted cyclopentadienes and metal cyclopentadienyl complexes and synthesis methods thereof
US11274069B2 (en) 2020-08-13 2022-03-15 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Mono-substituted cyclopentadienes and metal cyclopentadienyl complexes and synthesis methods thereof
KR20230108319A (ko) 2020-12-04 2023-07-18 가부시키가이샤 고준도가가쿠 겐큐쇼 인듐 및 1종 이상의 다른 금속을 함유하는 막을 제조하기 위한 증착용 원료 및 인듐 및 1종 이상의 다른 금속을 함유하는 막의 제조 방법

Also Published As

Publication number Publication date
KR20200009073A (ko) 2020-01-29
JP7026404B2 (ja) 2022-02-28
TW201907039A (zh) 2019-02-16
US11655538B2 (en) 2023-05-23
TWI736776B (zh) 2021-08-21
US20200181775A1 (en) 2020-06-11
JPWO2018225668A1 (ja) 2020-04-09
KR102367495B1 (ko) 2022-02-23

Similar Documents

Publication Publication Date Title
WO2018225668A1 (ja) 化学蒸着用原料、ならびに、化学蒸着用原料入り遮光容器およびその製造方法
JP5857970B2 (ja) (アミドアミノアルカン)金属化合物、及び当該金属化合物を用いた金属含有薄膜の製造方法
JP2012246531A (ja) 酸化モリブデンを含有する薄膜の製造方法、酸化モリブデンを含有する薄膜の形成用原料及びモリブデンアミド化合物
JP6777933B2 (ja) 化学蒸着用原料及びその製造方法、並びに該化学蒸着用原料を用いて形成されるインジウムを含有する酸化物の膜の製造方法
KR101120065B1 (ko) 신규의 아미딘 유도체를 가지는 게르마늄 화합물 및 이의 제조 방법
CN114206890A (zh) 双(乙基环戊二烯基)锡、化学蒸镀用原料、含有锡的薄膜的制备方法及锡氧化物薄膜的制备方法
KR101485522B1 (ko) 아미노싸이올레이트를 이용한 몰리브데넘 전구체, 이의 제조방법, 및 이를 이용하여 박막을 형성하는 방법
JP2023100705A (ja) 化学気相蒸着用原料、原子層堆積用原料、およびスズを含有する薄膜の製造方法
Bhide et al. Synthesis, solution dynamics and chemical vapour deposition of heteroleptic zinc complexes via ethyl and amide zinc thioureides
KR101485520B1 (ko) 아미노싸이올레이트를 이용한 텅스텐 전구체, 이의 제조방법, 및 이를 이용하여 박막을 형성하는 방법
Su et al. Synthesis of β-ketoiminate and β-iminoesterate tungsten (VI) oxo-alkoxide complexes as AACVD precursors for growth of WOx thin films
Han et al. Synthesis and characterization of novel zinc precursors for ZnO thin film deposition by atomic layer deposition
O’Donoghue et al. Molecular engineering of Ga-ketoiminates: synthesis, structure and evaluation as precursors for the additive-free spin-coated deposition of gallium oxide thin films
KR102355133B1 (ko) 박막 형성용 전구체, 이의 제조방법, 이를 이용한 박막의 제조 방법 및 박막
US10428089B2 (en) Method for producing trialkylgallium compounds and the use thereof
KR101485521B1 (ko) 아미노싸이올레이트를 이용한 몰리브데넘 전구체, 이의 제조방법, 및 이를 이용하여 박막을 형성하는 방법
KR100965270B1 (ko) 새로운 전자 주개 리간드를 가지는 갈륨 착화합물 및 이의제조방법
WO2022118744A1 (ja) インジウムおよび一種以上の他の金属を含有する膜を製造するための蒸着用原料およびインジウムおよび一種以上の他の金属を含有する膜の製造方法
JP2022089772A (ja) インジウムおよび一種以上の他の金属を含有する膜を製造するための蒸着用原料およびインジウムおよび一種以上の他の金属を含有する膜の製造方法
KR101190161B1 (ko) 신규의 아연 아미노알콕사이드 화합물 및 그 제조방법
KR101485519B1 (ko) 아미노싸이올레이트를 이용한 텅스텐 전구체, 이의 제조방법, 및 이를 이용하여 박막을 형성하는 방법
JP5913663B2 (ja) モリブデンアミド化合物
KR101505125B1 (ko) 몰리브데넘 화합물, 이의 제조 방법 및 이를 이용하여 박막을 형성하는 방법
KR20140127685A (ko) 아미노싸이올레이트를 이용한 갈륨 전구체, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법
KR20110094677A (ko) 신규의 인듐 디알킬글리신 화합물 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18814263

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523516

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197037606

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18814263

Country of ref document: EP

Kind code of ref document: A1