WO2018225625A1 - 調光装置 - Google Patents
調光装置 Download PDFInfo
- Publication number
- WO2018225625A1 WO2018225625A1 PCT/JP2018/021054 JP2018021054W WO2018225625A1 WO 2018225625 A1 WO2018225625 A1 WO 2018225625A1 JP 2018021054 W JP2018021054 W JP 2018021054W WO 2018225625 A1 WO2018225625 A1 WO 2018225625A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- terminal
- period
- signal
- light control
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/13306—Circuit arrangements or driving methods for the control of single liquid crystal cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1334—Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/13439—Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1345—Conductors connecting electrodes to cell terminals
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
- G02F1/139—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1339—Gaskets; Spacers; Sealing of cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
- G02F1/13706—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having positive dielectric anisotropy
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
- G02F1/13756—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal selectively assuming a light-scattering state
Definitions
- the present invention relates to a light control device using liquid crystal.
- a light control element using a polymer-dispersed liquid crystal or a polymer network type liquid crystal that does not necessarily require an alignment treatment and does not require a polarizing plate and is capable of bright display is known.
- the liquid crystal layer includes a liquid crystal material and a polymer material, and the ordinary light refractive index of the liquid crystal material and the refractive index of the polymer material are set to be approximately the same.
- the light control element is in a scattering state when no voltage is applied to the liquid crystal layer, and is in a transmissive state when a voltage is applied to the liquid crystal layer.
- the driving of the light control element uses pulse driving in order to increase the driving efficiency with respect to the applied voltage.
- a DC power source is generated from a commercial power source using an AC / DC converter or the like, and pulse driving is performed using the DC power source and a switching element.
- pulse driving is performed after a required voltage is obtained by a DC / DC converter or the like from a DC power source fed from a secondary battery power source such as a battery.
- the present invention provides a light control device capable of reducing color unevenness and flicker.
- a light control device includes a first and second base material, first and second electrodes provided on the first and second base materials, and the first and second electrodes, respectively.
- a light control element including a liquid crystal layer filled in the first electrode and a second terminal electrically connected to the first and second electrodes, a first driving voltage applied to the first terminal, And a driving circuit that applies a second driving voltage having a polarity different from that of the first driving voltage to the second terminal.
- the first driving voltage is set to a first voltage in a first period, is set to a second voltage lower than the first voltage in a second period following the first period, and is a third period following the second period. Is set to a third voltage lower than the second voltage, and is set to a fourth voltage lower than the second voltage and higher than the third voltage in a fourth period following the third period.
- FIG. 3 is a cross-sectional view of the light control element along the line AA ′ in FIG. 2. Sectional drawing explaining the orientation of a liquid-crystal layer.
- the circuit diagram which mainly showed the drive circuit.
- FIG. 6 is a timing chart for explaining the operation of the control circuit.
- FIG. 3 is a timing chart for explaining the operation of the drive circuit according to the first embodiment.
- the graph which shows an example of the VT characteristic in a light control element.
- the circuit diagram of the drive circuit concerning a comparative example.
- FIG. 9 is a timing chart for explaining the operation of the drive circuit according to the third embodiment.
- FIG. 1 is a block diagram of a light control device 10 according to the first embodiment of the present invention.
- the light control device 10 includes a light control element 11, a drive circuit 12, a power supply circuit 13, and a control circuit 14.
- the light control element 11 is an element capable of controlling the light transmittance.
- the light control element 11 is comprised from the light control film, for example.
- the light control film is a functional film capable of switching between transparent and opaque (white turbidity). For example, by applying a voltage (maximum voltage) to the light control film, the light control film can be set in a transparent state. On the other hand, by applying 0 V (minimum voltage) to the light control film, the light control film is in a cloudy state. Can be set. Further, by applying an intermediate voltage between the maximum voltage and the minimum voltage to the light control film, gradation display can be performed in steps between the transparency and the cloudiness. A specific configuration of the light control element 11 will be described later.
- the drive circuit 12 applies a voltage (drive voltage) to the light control element 11 to drive the light control element 11.
- the circuit configuration of the drive circuit 12 will be described later.
- the power supply circuit 13 receives an external power supply (external power supply).
- the external power source is a commercial power source, an AC voltage (AC power source), or a DC voltage (DC power source).
- the power supply circuit 13 generates a plurality of levels of voltages necessary for the operation of the dimming element 11 using an external power supply. The voltage generated by the power supply circuit 13 is supplied to the drive circuit 12.
- the control circuit 14 controls the drive circuit 12 and the power supply circuit 13.
- the control circuit 14 supplies a control signal to the drive circuit 12 and the power supply circuit 13 so that the drive circuit 12 and the power supply circuit 13 can perform a desired operation.
- FIG. 2 is a plan view of the light control element 11.
- FIG. 3 is a cross-sectional view of the light control element 11 taken along the line AA ′ of FIG.
- the planar shape of the light control element 11 can be an arbitrary shape, for example, a quadrangle.
- the light control element 11 is a light control film
- the light control film is processed according to the external shape of the area
- the light control element 11 includes base materials 20 and 21 disposed to face each other and a liquid crystal layer (light control layer) 24 disposed between the base materials 20 and 21.
- the base materials 20 and 21 are comprised from a transparent member, for example, are comprised from a transparent film.
- a polyethylene terephthalate (PET) film, a polyethylene (PE) film, or a polycarbonate (PC) film can be used.
- the liquid crystal layer 24 includes a liquid crystal material 24A and a polymer material 24B.
- the liquid crystal layer 24 is composed of polymer dispersed liquid crystal (PDLC: Polymer Dispersed Liquid Crystal) or polymer network liquid crystal (PNLC: Polymer Network Liquid Crystal).
- the polymer-dispersed liquid crystal is composed of a composite in which a liquid crystal material is dispersed in a matrix made of a polymer material, that is, has a structure in which liquid crystals are phase-separated in the matrix.
- the polymer network type liquid crystal is composed of a composite filled with a liquid crystal material having a continuous phase in a three-dimensional network structure (polymer network) made of a polymer material.
- a photocuring resin can be used as the polymer material.
- PDLC irradiates a solution in which a liquid crystal material is mixed with a photopolymerizable polymer precursor (monomer) by irradiating ultraviolet rays, polymerizes the monomer to form a polymer, and the liquid crystal is dispersed in a matrix made of the polymer. Is done.
- the transparent electrode 22 is provided on the base material 20 so as to be in contact with the liquid crystal layer 24.
- the transparent electrode 23 is provided on the base material 21 so as to be in contact with the liquid crystal layer 24.
- the transparent electrodes 22 and 23 are made of a material having optical transparency and conductivity, and are made of, for example, ITO (indium tin oxide).
- the light control element 11 includes a terminal T1 electrically connected to the transparent electrode 23 and a terminal T2 electrically connected to the transparent electrode 22.
- the terminals T1 and T2 are, for example, arranged together on one side of the light control element 11.
- the terminals T1 and T2 are electrically connected to the drive circuit 12.
- the terminals T1 and T2 are made of metal (for example, gold, silver, copper, or aluminum).
- the liquid crystal layer 24 is sealed between the transparent electrodes 22 and 23 by a sealing material 25.
- the sealing material 25 is formed so as to surround the liquid crystal layer 24.
- the sealing material 25 is made of, for example, a photocurable resin.
- the sealing material 25 is not necessarily required.
- the sealing material 25 is not always necessary.
- the ordinary light refractive index of the liquid crystal material and the refractive index of the polymer material are set to be approximately the same.
- the liquid crystal material for example, a positive (P-type) nematic liquid crystal having positive dielectric anisotropy is used.
- the off state is a state in which the same voltage (for example, 0 V) is applied to the transparent electrode 22 and the transparent electrode 23 and an electric field is not applied to the liquid crystal layer 24.
- FIG. 3 shows a state of the liquid crystal layer 24 in the off state.
- the liquid crystal molecules When no voltage (electric field) is applied to the liquid crystal layer 24, the liquid crystal molecules are in a random state with respect to the interface of the polymer matrix (or polymer network). In this case, the refractive index of the liquid crystal material is different from the refractive index of the polymer matrix, and incident light is scattered at the interface of the polymer matrix. That is, in a state where the liquid crystal molecules are not aligned, the liquid crystal layer 24 is in a high haze state. At this time, the liquid crystal layer 24 becomes clouded, and the light control element 11 becomes opaque. Therefore, the light control element 11 can shield an object from an observer.
- a haze value is a parameter
- the on state is a state in which different voltages (for example, 0 V and positive voltage) are applied to the transparent electrode 22 and the transparent electrode 23, and an electric field is applied to the liquid crystal layer 24. Note that an alternating voltage is applied to the transparent electrode 22 and the transparent electrode 23.
- FIG. 4 shows a state of the liquid crystal layer 24 in the ON state.
- the major axis (director) of the liquid crystal molecules is aligned in a direction substantially perpendicular to the electrode surface.
- the refractive index of the liquid crystal material and the refractive index of the polymer matrix are substantially the same, and incident light is hardly scattered in the liquid crystal layer 24 and passes through the liquid crystal layer 24. That is, in a state where the liquid crystal molecules are aligned, the liquid crystal layer 24 is in a low haze state. At this time, the light control element 11 will be in a transparent state. Therefore, the observer can observe the object through the light control element 11.
- the dimming element that becomes opaque when not energized and becomes transparent when energized is described.
- the present invention is not limited to this.
- a reverse type that becomes transparent when not energized and becomes opaque when energized can also be applied to the light control element 11.
- FIG. 5 is an equivalent circuit diagram of the light control element 11.
- the transparent electrode 22 is formed in a planar shape. Therefore, the transparent electrode 22 forms a plurality of resistance components R1 to R11 so as to spread from the terminal side (side on which the terminals T1 and T2 are disposed) to the terminal side (side opposite to the terminals T1 and T2).
- the transparent electrode 23 is formed in a planar shape. Therefore, the transparent electrode 23 constitutes a plurality of resistance components R12 to R22 so as to spread from the terminal side to the terminal side.
- the liquid crystal layer 24 constitutes a plurality of capacitive components C1 to C4 connected between the transparent electrode 22 and the transparent electrode 23.
- the voltage of the dimming element 11 decreases from the terminal side to the terminal side due to the voltage drop of the resistance component. That is, in the light control element 11, the voltage on the terminal side is high and the voltage on the terminal side is low.
- the nodes on the end side are denoted as N1 and N2.
- FIG. 6 is a circuit diagram mainly showing the drive circuit 12.
- the control circuit 14 generates a signal OVPOSIN, a signal CONPOSIN, a signal OVNEGIN, and a signal CONNEGIN, and sends these control signals to the drive circuit 12.
- the voltage waveforms of the signal OVPOSIN, the signal CONPOSIN, the signal OVNEGIN, and the signal CONNEGIN will be described later.
- the power supply circuit 13 includes a positive side voltage source 30 for overdrive, a negative side voltage source 31 for overdrive, a voltage source 32 that generates a positive side control voltage for controlling the alignment of liquid crystal, and a negative side control voltage.
- a voltage source 33 is provided.
- the voltage source 30 generates an overdrive voltage Vov +.
- the voltage source 31 generates an overdrive voltage Vov ⁇ .
- the voltage source 32 generates a control voltage Vc +.
- the voltage source 33 generates a control voltage Vc ⁇ .
- the relationship is “Vov +> Vc +> Vc ⁇ > Vov ⁇ ”.
- the positive side control voltage Vc + and the negative side control voltage Vc ⁇ are voltages for controlling the final liquid crystal alignment, and are determined according to the liquid crystal material used. That is, the voltage at which the liquid crystal molecules are vertically aligned (the threshold voltage of the liquid crystal) is determined according to the liquid crystal material, and the voltage “(Vc +) ⁇ (Vc ⁇ )” is set equal to or slightly higher than the threshold voltage of the liquid crystal. .
- the drive circuit 12 includes switching elements 40 to 47.
- a first terminal of the switching element 40 is connected to the voltage source 30, a second terminal thereof is connected to the terminal T1, and a signal OVPOSIN is input to the control terminal.
- the first terminal of the switching element 41 is connected to the voltage source 31, the second terminal is connected to the terminal T1, and the signal OVNEGIN is input to the control terminal.
- the switching element 41 is turned on when the signal OVNEGIN is at a high level, and turned off when the signal OVNEGIN is at a low level.
- the first terminal of the switching element 42 is connected to the voltage source 30, the second terminal is connected to the terminal T2, and the signal OVNEGIN is input to the control terminal.
- the switching element 42 is turned on when the signal OVNEGIN is at a high level, and turned off when the signal OVNEGIN is at a low level.
- the first terminal of the switching element 43 is connected to the voltage source 31, the second terminal is connected to the terminal T2, and the signal OVPOSIN is input to the control terminal.
- the switching element 43 is turned on when the signal OVPOSIN is at a high level and turned off when the signal OVPOSIN is at a low level.
- the first terminal of the switching element 44 is connected to the voltage source 33, the second terminal is connected to the terminal T1, and the signal CONNEGIN is input to the control terminal.
- the switching element 44 is turned on when the signal CONEGIN is at a high level and turned off when the signal CONEGIN is at a low level.
- the first terminal of the switching element 45 is connected to the voltage source 32, the second terminal is connected to the terminal T1, and the signal CONPOSIN is input to the control terminal.
- the switching element 45 is turned on when the signal CONPOSIN is at a high level and turned off when the signal CONPOSIN is at a low level.
- the first terminal of the switching element 46 is connected to the voltage source 33, the second terminal is connected to the terminal T2, and the signal CONPOSIN is input to the control terminal.
- the switching element 46 is turned on when the signal CONPOSIN is at a high level, and turned off when the signal CONPOSIN is at a low level.
- the first terminal of the switching element 47 is connected to the voltage source 32, the second terminal is connected to the terminal T2, and the signal CONEGIN is input to the control terminal.
- the switching element 47 is turned on when the signal CONNEGIN is at a high level, and turned off when the signal CONNEGIN is at a low level.
- FIG. 7 is a timing chart for explaining the operation of the control circuit 14. As described above, the control circuit 14 generates the signal OVPOSIN, the signal CONPOSIN, the signal OVNEGIN, and the signal CONEGIN.
- control circuit 14 sets the signal CONPOSIN to the low level and sets the signal OVNEGIN to the high level.
- the control circuit 14 sets the signal OVNEGIN to the low level and sets the signal CONNEGIN to the high level.
- Time t0 to t4 is one cycle, and the same cycle is repeated thereafter.
- FIG. 8 is a timing chart for explaining the operation of the drive circuit 12. Times t0 to t9 in FIG. 8 correspond to times t0 to t9 in FIG. In FIG. 8, (1) the drive voltage OUT1 applied to the terminal T1 of the light control element 11 by the drive circuit 12, (2) drive voltage OUT2 applied to the terminal T2 of the light control element 11, (3) The voltage V1out of the node N1 of the dimmer 11 and (4) the voltage V2out of the node N2 of the dimmer 11 are shown. In FIG.
- the drive voltage OUT1 is indicated by a solid line
- the drive voltage OUT2 is indicated by a broken line
- the voltage V1out is indicated by a one-dot chain line
- the voltage V2out is indicated by a two-dot chain line.
- the terminal-side voltage V1out rises faster than when the control voltage Vc + is applied to the terminal T1. Further, the terminal-side voltage V2out falls faster than when the control voltage Vc ⁇ is applied to the terminal T2.
- the terminal-side voltage V1out is set to the control voltage Vc +, and the terminal-side voltage V2out is set to the control voltage Vc ⁇ .
- the terminal-side voltage V1out falls faster than when the control voltage Vc ⁇ is applied to the terminal T1.
- the terminal-side voltage V2out rises faster than when the control voltage Vc + is applied to the terminal T2.
- the same operation as in cycles t0 to t4 is repeated.
- the driving frequency is 20 Hz.
- the overdrive period that is, each of the periods t0 to t1 and the periods t2 to t3 is set according to the load (resistance and capacitance) of the dimming element 11. That is, the overdrive period is set shorter than the period during which the terminal side voltage V1out rises from the control voltage Vc ⁇ to the control voltage Vc +. The overdrive period is set shorter than the period during which the terminal-side voltage V2out falls from the control voltage Vc + to the control voltage Vc ⁇ .
- FIG. 9 is a graph showing an example of voltage-transmittance (VT) characteristics in the light control element 11.
- the horizontal axis in FIG. 9 is voltage (V), the vertical axis is transmittance (%), and both the horizontal axis and vertical axis in FIG. 9 are arbitrary units.
- the voltage in FIG. 9 is a voltage applied to the liquid crystal layer, that is, a voltage between the electrodes 22 and 23.
- the transmittance of the light control element 11 can be changed by changing the voltage (drive voltage) applied to the light control element 11. Further, even when a drive voltage equal to or higher than the saturation voltage is applied to the light control element 11, the transmittance does not change.
- the saturation voltage is the minimum voltage among the voltages that achieve the maximum transmittance. For example, the voltage “(Vc +) ⁇ (Vc ⁇ )” is set below the saturation voltage. Therefore, even when the overdrive voltage is set to a voltage equal to or higher than the saturation voltage within a range not exceeding the breakdown voltage of the liquid crystal, the dimmer 11 is driven using the overdrive voltage without affecting the transmittance of the liquid crystal. it can.
- the effective voltage on the terminal side is almost the control voltage Vc +, Vc-. Further, since the terminal side voltage reaches the control voltages Vc + and Vc ⁇ at a faster timing, the terminal side effective voltage is also close to the control voltages Vc + and Vc ⁇ . Thereby, the difference in transmittance between the terminal side and the terminal side is reduced, and color unevenness can be reduced.
- the period of polarity inversion including the zero cross point (the point where the voltage V1out and the voltage V2out intersect)
- the transmission of the liquid crystal The rate is not the desired transmittance.
- the voltage applied to the liquid crystal is 0V.
- the voltage on the terminal side rises at a faster timing by using overdrive driving. Accordingly, the period for performing the polarity inversion can be shortened, and flicker can be reduced.
- FIG. 10 is a circuit diagram of a drive circuit according to a comparative example.
- the voltage source 32 generates a control voltage Vc +.
- the voltage source 33 generates a control voltage Vc ⁇ .
- the first terminal of the switching element 44 is connected to the voltage source 33, the second terminal is connected to the terminal T1, and the signal NEGIN is input to the control terminal.
- the switching element 44 is turned on when the signal NEGIN is at a high level and turned off when the signal NEGIN is at a low level.
- the first terminal of the switching element 45 is connected to the voltage source 32, the second terminal is connected to the terminal T1, and the signal POSIN is input to the control terminal.
- the switching element 45 is turned on when the signal POSIN is at a high level and turned off when the signal POSIN is at a low level.
- the first terminal of the switching element 46 is connected to the voltage source 33, the second terminal is connected to the terminal T2, and the signal POSIN is input to the control terminal.
- the switching element 46 is turned on when the signal POSIN is at a high level and turned off when the signal POSIN is at a low level.
- the first terminal of the switching element 47 is connected to the voltage source 32, the second terminal is connected to the terminal T2, and the signal NEGIN is input to the control terminal.
- the switching element 47 is turned on when the signal NEGIN is at a high level and turned off when the signal NEGIN is at a low level.
- FIG. 11 is a diagram for explaining the operation of the light control device according to the comparative example.
- the signal POSIN is set to high level, and the signal NEGIN is set to low level.
- the signal POSIN is set to low level and the signal NEGIN is set to high level.
- the signal POSIN is set to high level and the signal NEGIN is set to low level.
- the light control device 10 includes the base materials 20 and 21 disposed opposite to each other, and the transparent electrodes provided on the base materials 20 and 21, respectively. 22, 23, a liquid crystal layer 24 filled between the transparent electrodes 22, 23, a dimming element 11 including terminals T 1, T 2 electrically connected to the transparent electrodes 22, 23, and a drive voltage across the terminal T 1
- a drive circuit 12 that applies OUT1 and applies a drive voltage OUT2 having a polarity different from that of the drive voltage OUT1 to the terminal T2 is provided.
- the drive voltage OUT1 is set to the positive side overdrive voltage Vov + in the first period, is set to the positive side control voltage Vc + in the second period following the first period, and is negatively exceeded in the third period following the second period.
- the drive voltage Vov ⁇ is set, and the negative control voltage Vc ⁇ is set in the fourth period following the third period.
- the voltage on the side opposite to the terminal side can be set to the control voltages Vc + and Vc ⁇ faster. Therefore, the difference in transmittance between the terminal side and the terminal side is reduced, and color unevenness can be reduced.
- flicker occurs during the period of polarity reversal including the zero cross point (the point where the voltage V1out and the voltage V2out intersect).
- flicker can be reduced.
- FIG. 12 is a schematic diagram of the amount of electric charge consumed according to the first example.
- the horizontal axis in FIG. 12 represents the position between the terminal and the terminal, and the vertical axis represents the voltage applied to the liquid crystal (applied voltage).
- the region of 0V to 40V is a gradation region in which the transmittance can be changed
- the region of 40V to 70V is a saturated region in which the transmittance does not substantially change.
- the charge amount A is a charge amount in normal pulse driving.
- the normal pulse driving in the first example is an example in which the applied voltage is 40V and the frequency is lowered until the terminal voltage reaches 40V. In normal pulse driving, the terminal side finally becomes 40V, so that color unevenness between the terminal side and the terminal side can be reduced. However, since the time required for polarity reversal becomes longer, the flicker becomes larger.
- the charge amount B is a charge amount that increases by overdrive driving relative to normal pulse driving.
- the overdrive driving is an example in which driving is performed using an overdrive voltage of 70V. Since the voltage decreases from the terminal side to the terminal side, the charge amount B is represented by a triangle that gradually decreases from the terminal side toward the terminal side.
- flicker can be reduced and color unevenness can be reduced only by increasing the charge amount B compared to normal pulse driving.
- the amount of charge C is the amount of charge that decreases with overdrive driving relative to full driving.
- Full driving is an example of driving using 70V. That is, “charge amount A + charge amount B + charge amount C” is a full drive charge amount.
- flicker is reduced, but the amount of electric charge consumed is increased.
- flicker can be reduced to the same extent as in full driving, and the amount of charge consumed can be reduced compared to full driving.
- FIG. 13 is a schematic diagram of the amount of charge consumed according to the second example.
- the second example is an example in which halftone is performed.
- the charge amount D is a charge amount in normal pulse driving.
- the normal pulse driving of the second example is an example in which the applied voltage is 20V and the frequency is lowered until the terminal voltage becomes 20V.
- the flicker since the terminal side finally becomes 20 V, color unevenness between the terminal side and the terminal side can be reduced.
- the time required for polarity reversal becomes longer, the flicker becomes larger.
- the frequency is increased in order to reduce flicker, the potential difference between the terminal side and the terminal side increases, and color unevenness occurs.
- the amount of charge when the frequency is increased is a lower region indicated by a broken line in FIG. That is, color unevenness and flicker are in a trade-off relationship.
- the charge amount E is a charge amount that is increased by overdrive driving with respect to normal pulse driving. Even when halftone is performed using overdrive driving, flicker can be reduced and color unevenness can be reduced only by increasing the charge amount E compared to normal pulse driving. Also in the second example, overdrive driving can reduce flicker to the same extent as full driving of 70V.
- the second embodiment is a specific configuration example of the drive circuit 12 and the power supply circuit 13.
- the second embodiment is an example in which the drive circuit 12 is configured digitally using transistors.
- FIG. 14 is a circuit diagram mainly showing the drive circuit 12 according to the second embodiment of the present invention.
- each of the plurality of switching elements constituting the drive circuit 12 is configured by a MOS transistor or a bipolar transistor.
- MOS transistor or a bipolar transistor.
- the dimming element 11 includes a resistive load RL and a capacitive load CL as can be understood from FIG. 5 when expressed as an equivalent circuit.
- the control circuit 14 includes a timing generation circuit 14A.
- the timing generation circuit 14A controls the timing of the signal OVPOSIN, the signal CONPOSIN, the signal OVNEGIN, and the signal CONEGIN.
- the drive circuit 12 includes a gate driver 12A.
- the gate driver 12A receives the signal OVPOSIN, the signal CONPOSIN, the signal OVNEGIN, and the signal CONNEGIN from the timing generation circuit 14A.
- the gate driver 12A uses the signal OVPOSIN, the signal CONPOSIN, the signal OVNEGIN, and the signal CONNEGIN to set these signal levels to an optimum gate voltage level for the transistor. Then, the gate driver 12A generates a signal OVPOSIN-G, a signal CONPOSIN-G, a signal OVNEGIN-G, and a signal CONEGIN-G as signals having the optimum gate voltage level for the transistor.
- the drive circuit 12 includes N-channel MOS transistors 40 to 43, 44A, 44B, 45A, 45B, 46A, 46B, 47A, and 47B. Further, signal lines 40S, 42S, 44S, 45S, 46S, and 47S are connected to the gate driver 12A. The signal lines 40S, 42S, 44S, 45S, 46S, and 47S provide the gate driver 12A with the source voltage level of the transistor in order to set the optimum gate voltage level.
- the drain of the transistor 40 is connected to the voltage source 30 that generates the overdrive voltage Vov +, the source is connected to the terminal T1, and the signal OVPOSIN-G is input to the gate.
- the source of the transistor 40 is connected to the gate driver 12A through the signal line 40S.
- the drain of the transistor 41 is connected to the terminal T1, the source is connected to the voltage source 31 that generates the overdrive voltage Vov ⁇ , and the signal OVNEGIN-G is input to the gate.
- the drain of the transistor 42 is connected to the voltage source 30, the source is connected to the terminal T2, and the signal OVNEGIN-G is input to the gate.
- the source of the transistor 42 is connected to the gate driver 12A through the signal line 42S.
- the drain of the transistor 43 is connected to the terminal T2, the source is connected to the voltage source 31, and the signal OVPOSIN-G is input to the gate.
- Transistors 44A and 44B constitute the switching element 44 of FIG.
- the drain of the transistor 44A is connected to the terminal T1
- its source is connected to the source of the transistor 44B
- the signal CONEGIN-G is input to its gate.
- the drain of the transistor 44B is connected to the voltage source 33 that generates the control voltage Vc ⁇ , and the signal CONEGIN-G is input to the gate thereof.
- the source of the transistor 44A is connected to the gate driver 12A through the signal line 44S.
- Transistors 45A and 45B constitute the switching element 45 of FIG.
- the drain of the transistor 45A is connected to the terminal T1, its source is connected to the source of the transistor 45B, and the signal CONPOSIN-G is input to its gate.
- the drain of the transistor 45B is connected to the voltage source 32 that generates the control voltage Vc +, and the signal CONPOSIN-G is input to the gate thereof.
- the source of the transistor 45A is connected to the gate driver 12A through the signal line 45S.
- the transistors 46A and 46B constitute the switching element 46 of FIG.
- the drain of the transistor 46A is connected to the terminal T2
- the source is connected to the source of the transistor 46B
- the signal CONPOSIN-G is input to the gate.
- the drain of the transistor 46B is connected to the voltage source 33, and the signal CONPOSIN-G is input to the gate thereof.
- the source of the transistor 46A is connected to the gate driver 12A through the signal line 46S.
- the transistors 47A and 47B constitute the switching element 47 of FIG.
- the drain of the transistor 47A is connected to the terminal T2
- the source is connected to the source of the transistor 47B
- the signal CONEGIN-G is input to the gate.
- the drain of the transistor 47B is connected to the voltage source 32, and the signal CONEGIN-G is input to the gate thereof.
- the source of the transistor 47A is connected to the gate driver 12A through the signal line 47S.
- the power supply circuit 13 includes a voltage source 13A and voltage sources 30 to 33.
- the voltage source 13A generates a voltage Vin from the power supply voltage VCC.
- the voltage source 30 includes a Zener diode (constant voltage diode) 30A as a constant voltage element and a resistor (resistance element) 30B.
- the cathode of the Zener diode 30A is connected to the voltage source 13A, and its anode is connected to one end of the resistor 30B.
- the other end of the resistor 30B is connected to the ground terminal GND.
- the voltage source 30 may use other configurations. For example, when a voltage to be handled is large, two or more Zener diodes may be connected in series. Further, an NPN transistor for current amplification may be added to a connection node between the Zener diode 30A and the resistor 30B. Further, the voltage source 30 may be configured by a series regulator having a voltage control terminal. Further, the voltage source 30 may be constituted by a DC / DC converter.
- the voltage source 32 includes a Zener diode 32A and a resistor 32B. One end of the resistor 32B is connected to the voltage source 13A, and the other end is connected to the cathode of the Zener diode 32A. The anode of the Zener diode 32A is connected to the ground terminal GND. Another configuration example similar to that of the voltage source 30 may be used for the voltage source 32.
- the voltage source 33 includes a Zener diode 33A and a resistor 33B.
- the cathode of the Zener diode 33A is connected to the voltage source 13A, and the anode thereof is connected to one end of the resistor 33B.
- the other end of the resistor 33B is connected to the ground terminal GND.
- Another configuration example similar to that of the voltage source 30 may be used for the voltage source 33.
- the drive circuit 12 can be configured using transistors.
- the voltage control of the second embodiment is the same as the voltage control of the first embodiment.
- Other effects are the same as those of the first embodiment.
- the third embodiment is a specific configuration example of the drive circuit 12 and the power supply circuit 13.
- the third embodiment is an example in which the drive circuit 12 is configured in an analog manner using a power amplifier.
- FIG. 15 is a circuit diagram mainly showing the drive circuit 12 according to the third embodiment of the present invention.
- the drive circuit 12 includes an overdrive waveform generation circuit 12B and power amplifiers 12C and 12D.
- the overdrive waveform generation circuit 12B generates the positive voltage waveform VP and the negative voltage waveform VN using the control signal from the timing generation circuit 14A.
- the power amplifiers 12C and 12D can output four quadrants that can operate from the first quadrant to the fourth quadrant. That is, the power amplifiers 12C and 12D can supply (source) and absorb (sink) current regardless of the direction of voltage.
- the power amplifier 12C receives the positive voltage waveform VP from the overdrive waveform generation circuit 12B and amplifies the positive voltage waveform VP.
- the power amplifier 12C outputs the drive voltage OUT1.
- the drive voltage OUT1 is applied to the terminal T1 of the light control element 11.
- the power amplifier 12D receives the negative voltage waveform VN from the overdrive waveform generation circuit 12B and amplifies the negative voltage waveform VN.
- the power amplifier 12D outputs a drive voltage OUT2.
- the drive voltage OUT2 is applied to the terminal T2 of the light control element 11.
- FIG. 16 is a timing chart for explaining the operation of the drive circuit 12.
- the drive voltages OUT1 and OUT2 have the same waveforms as those in FIG. 8 of the first embodiment.
- the drive voltage OUT1 has the same waveform as the positive voltage waveform VP in the previous stage, and is an amplified output current.
- the drive voltage OUT2 has the same waveform as the negative voltage waveform VN in the previous stage, and is an amplified output current.
- the overdrive drive can be realized in an analog manner.
- Other effects are the same as those of the first embodiment.
- the liquid crystal element (light control element) using PDLC or PNLC is illustrated, it is not limited to this.
- the liquid crystal element as the light control element may have a configuration in which a polarizing plate and an alignment film are arranged on both sides of the liquid crystal layer, such as a TN (Twisted Nematic) method, a VA (Vertical Alignment) method, or an IPS (In-Plane Switching) method. Can be used.
- various types of electro-optic elements whose refractive index changes with voltage can be used as the light control element.
- the switching element shown in the above embodiment includes an SiC-MOSFET using silicon carbide (SiC) as a semiconductor layer, or a GaN-MOSFET using gallium nitride (GaN) as a semiconductor layer. You may comprise.
- the light control device described in the above embodiment can be applied to windows and indoor partitions in houses, offices, or public facilities, video projection screens and signage in commercial facilities or event venues, windows and sunroofs in automobiles or aircraft, and the like.
- the dimmer element is described as an example of the liquid crystal element.
- the present invention is not limited to this, and the driving method in this embodiment includes various devices using liquid crystals (including liquid crystal display devices). It is applicable to.
- this invention is not limited to the said embodiment, In the implementation stage, it can change variously in the range which does not deviate from the summary. Further, the embodiments may be implemented in combination as appropriate, and in that case, the combined effect can be obtained. Furthermore, the present invention includes various inventions, and various inventions can be extracted by combinations selected from a plurality of disclosed constituent elements. For example, even if several constituent requirements are deleted from all the constituent requirements shown in the embodiment, if the problem can be solved and an effect can be obtained, the configuration from which the constituent requirements are deleted can be extracted as an invention.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Dispersion Chemistry (AREA)
- Liquid Crystal (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
調光装置は、基材20、21と、基材20、21にそれぞれ設けられた電極22、23と、電極22、23間に充填された液晶層24と、電極22、23に電気的に接続された端子T1、T2とを含む調光素子11と、T1端子に第1駆動電圧を印加し、端子T2に1駆動電圧と極性が異なる第2駆動電圧を印加する駆動回路12とを含む。第1駆動電圧は、第1期間において第1電圧に設定され、第1期間に続く第2期間において第1電圧より低い第2電圧に設定され、第2期間に続く第3期間において第2電圧より低い第3電圧に設定され、第3期間に続く第4期間において第2電圧より低くかつ第3電圧より高い第4電圧に設定される。
Description
本発明は、液晶を用いた調光装置に関する。
配向処理を必ずしも必要とせず、偏光板も不要で明るい表示が可能な高分子分散型液晶やポリマーネットワーク型液晶を用いた調光素子が知られている。液晶層(調光層)は、液晶材料と高分子材料とを含み、液晶材料の常光屈折率と高分子材料の屈折率とは概略同じに設定される。
調光素子は、例えば、液晶層に電圧を印加しない場合に、散乱状態となり、液晶層に電圧を印加した場合に、透過状態となる。例えば、調光素子の駆動は、印加電圧に対する駆動効率を高くするために、パルス駆動が用いられる。
家庭や会社内で調光素子を使用する場合、商用電源からAC/DCコンバータ等を使用してDC電源を生成し、このDC電源とスイッチング素子とを用いてパルス駆動を行う。また、自動車等で調光素子を使用する場合、バッテリー等の二次電池電源等から給電されるDC電源からDC/DCコンバータ等で所要の電圧を得た後、パルス駆動を行う。
建物等に調光素子を固定する場合、及び自動車の窓等に調光素子を設置する場合、建物や窓の実装上、電源を印加する端子部を調光素子の一方にまとめることが要求される。しかし、平面形状を有する調光素子のうち端子部から離れた部分では、調光素子の持つ抵抗成分及び容量成分によって電圧降下が生じる。このため、端子部に耐圧以下の最大電圧を印加しても、端子部と逆の末端部に印加される電圧は、液晶を駆動する閾値電圧に達することができず、十分な透過モードへの移行ができない。
また、容量成分により調光素子の末端部で生じる電圧降下の影響を低減するために、駆動周波数を下げ、末端部に印加される電圧が上昇するまで同極性の電圧を印加し続ける手法が考えられる。しかし、末端部に印加される電圧が上昇するまでの時間が長くなるため、末端部付近においてフリッカーが目立ってしまう。
本発明は、色ムラ及びフリッカーを低減することが可能な調光装置を提供する。
本発明の一態様に係る調光装置は、第1及び第2基材と、前記第1及び第2基材にそれぞれ設けられた第1及び第2電極と、前記第1及び第2電極間に充填された液晶層と、前記第1及び第2電極に電気的に接続された第1及び第2端子とを含む調光素子と、前記第1端子に第1駆動電圧を印加し、前記第2端子に前記第1駆動電圧と極性が異なる第2駆動電圧を印加する駆動回路とを具備する。前記第1駆動電圧は、第1期間において第1電圧に設定され、前記第1期間に続く第2期間において前記第1電圧より低い第2電圧に設定され、前記第2期間に続く第3期間において前記第2電圧より低い第3電圧に設定され、前記第3期間に続く第4期間において前記第2電圧より低くかつ前記第3電圧より高い第4電圧に設定される。
本発明によれば、色ムラ及びフリッカーを低減することが可能な調光装置を提供することができる。
以下、実施形態について図面を参照して説明する。ただし、図面は模式的または概念的なものであり、各図面の寸法および比率等は必ずしも現実のものと同一とは限らない。また、図面の相互間で同じ部分を表す場合においても、互いの寸法の関係や比率が異なって表される場合もある。特に、以下に示す幾つかの実施形態は、本発明の技術思想を具体化するための装置および方法を例示したものであって、構成部品の形状、構造、配置等によって、本発明の技術思想が特定されるものではない。なお、以下の説明において、同一の機能及び構成を有する要素については同一符号を付し、重複説明は必要な場合にのみ行う。
[第1実施形態]
[1] 調光装置10の構成
図1は、本発明の第1実施形態に係る調光装置10のブロック図である。調光装置10は、調光素子11、駆動回路12、電源回路13、及び制御回路14を備える。
[1] 調光装置10の構成
図1は、本発明の第1実施形態に係る調光装置10のブロック図である。調光装置10は、調光素子11、駆動回路12、電源回路13、及び制御回路14を備える。
調光素子11は、光の透過率を制御可能な素子である。調光素子11は、例えば調光フィルムから構成される。調光フィルムは、透明と不透明(白濁)とを切り替え可能な機能性フィルムである。例えば、調光フィルムに電圧(最大電圧)を印加することで、調光フィルムを透明状態に設定でき、一方、調光フィルムに0V(最小電圧)を印加することで、調光フィルムを白濁状態に設定できる。また、最大電圧と最小電圧との間の中間電圧を調光フィルムに印加することで、透明と白濁との間で段階的な階調表示が可能である。調光素子11の具体的な構成については後述する。
駆動回路12は、調光素子11に電圧(駆動電圧)を印加し、調光素子11を駆動する。駆動回路12の回路構成については後述する。
電源回路13は、外部から電源(外部電源)を受ける。外部電源は、商用電源、交流電圧(交流電源)、又は直流電圧(直流電源)である。電源回路13は、外部電源を用いて、調光素子11の動作に必要な複数レベルの電圧を生成する。電源回路13によって生成された電圧は、駆動回路12に供給される。
制御回路14は、駆動回路12及び電源回路13を制御する。制御回路14は、駆動回路12及び電源回路13が所望の動作を行うことが可能なように、駆動回路12及び電源回路13に制御信号を供給する。
[1-1] 調光素子11の構成
次に、調光素子11の構成について説明する。図2は、調光素子11の平面図である。図3は、図2のA-A´線に沿った調光素子11の断面図である。
次に、調光素子11の構成について説明する。図2は、調光素子11の平面図である。図3は、図2のA-A´線に沿った調光素子11の断面図である。
調光素子11の平面形状は、任意の形状とすることが可能であり、例えば四角形である。調光素子11が調光フィルムである場合、調光フィルムは、貼り付けられる領域の外形に合わせて加工される。
調光素子11は、対向配置された基材20、21と、基材20、21間に配置された液晶層(調光層)24とを備える。基材20、21は、透明部材から構成され、例えば透明フィルムから構成される。基材20、21には、例えば、ポリエチレンテレフタレート(PET)フィルム、ポリエチレン(PE)フィルム、又はポリカーボネート(PC)フィルムなどを用いることができる。
液晶層24は、液晶材料24A及び高分子材料24Bを備える。液晶層24は、高分子分散型液晶(PDLC:Polymer Dispersed Liquid Crystal)、又はポリマーネットワーク型液晶(PNLC:Polymer Network Liquid Crystal)から構成される。高分子分散型液晶は、高分子材料からなるマトリックス中に液晶材料を分散させた複合体からなり、すなわち、マトリックス中において液晶が相分離した構造を有する。ポリマーネットワーク型液晶は、高分子材料からなる3次元網目構造(ポリマーネットワーク)中に連続相を有する液晶材料を満たした複合体からなる。高分子材料としては、光硬化樹脂を用いることができる。例えば、PDLCは、光重合型の高分子前駆体(モノマー)に液晶材料を混合させた溶液に紫外線を照射し、モノマーを重合させてポリマーを形成し、そのポリマーからなるマトリックス中に液晶が分散される。
透明電極22は、液晶層24に接するようにして、基材20上に設けられる。透明電極23は、液晶層24に接するようにして、基材21上に設けられる。透明電極22、23は、光透過性及び導電性を有する材料からなり、例えばITO(インジウム錫酸化物)から構成される。
調光素子11は、透明電極23に電気的に接続された端子T1と、透明電極22に電気的に接続された端子T2とを備える。端子T1、T2は、例えば、調光素子11の一側部にまとめて配置される。端子T1、T2は、駆動回路12に電気的に接続される。端子T1、T2は、金属(例えば、金、銀、銅、又はアルミニウムなど)から構成される。
液晶層24は、シール材25によって透明電極22、23間に封止される。シール材25は、液晶層24を囲むように形成される。シール材25は、例えば光硬化樹脂から構成される。液晶層24の材料によっては、シール材25は必ずしも必要ではない。例えば、液晶層24の高分子材料24Bによって液晶材料24Aが封止されている場合、シール材25は必ずしも必要ではない。
[1-2] 液晶層24の動作
次に、液晶層(調光層)24の大まかな動作について説明する。
次に、液晶層(調光層)24の大まかな動作について説明する。
液晶層24において、液晶材料の常光屈折率と高分子材料の屈折率とは概略同じに設定される。液晶材料としては、例えば、正の誘電率異方性を有するポジ型(P型)のネマティック液晶が用いられる。
まず、オフ状態における液晶層24の動作について説明する。オフ状態とは、透明電極22と透明電極23とに同電圧(例えば0V)が印加された状態であり、液晶層24に電界が印加されていない状態である。図3は、オフ状態における液晶層24の様子を示している。
液晶層24に電圧(電界)が印加されない場合、液晶分子は、高分子マトリックス(又はポリマーネットワーク)の界面に対してランダムな状態になる。この場合、液晶材料の屈折率と高分子マトリックスの屈折率とが異なる状態となり、入射光は高分子マトリックスの界面で散乱する。すなわち、液晶分子が配向されていない状態において、液晶層24は高ヘイズ状態となる。このとき、液晶層24は白濁した状態となり、調光素子11は、不透明な状態となる。よって、調光素子11は、対象物を観察者から遮蔽することができる。ヘイズ値は、部材の透明性に関する指標であり、曇り度を表す。ヘイズ値が小さいほど、透明度が高い。
次に、オン状態における液晶層24の動作について説明する。オン状態とは、透明電極22と透明電極23とに異なる電圧(例えば0V及び正電圧)が印加された状態であり、液晶層24に電界が印加されている状態である。なお、透明電極22と透明電極23とには、交流電圧が印加される。図4は、オン状態における液晶層24の様子を示している。
液晶層24に電圧が印加された場合、液晶分子の長軸(ダイレクタ)は、電極面に対して概略垂直方向に配向する。この場合、液晶材料の屈折率と高分子マトリックスの屈折率とが概略同じ状態になり、入射光は、液晶層24内でほとんど散乱されず、液晶層24を透過する。すなわち、液晶分子が配向されている状態において、液晶層24は低ヘイズ状態となる。このとき、調光素子11は、透明な状態となる。よって、観察者は、調光素子11越しに対象物を観察することができる。
なお、本実施形態では、非通電時に不透明状態となり、通電時に透明状態となる調光素子について説明しているが、これに限定されるものではない。非通電時に透明状態となり、通電時に不透明状態となるリバースタイプを調光素子11に適用することも可能である。
[1-3] 調光素子11の等価回路
次に、調光素子11の等価回路について説明する。図5は、調光素子11の等価回路図である。
次に、調光素子11の等価回路について説明する。図5は、調光素子11の等価回路図である。
透明電極22は、平面状に形成される。よって、透明電極22は、端子側(端子T1、T2が配置される側)から末端側(端子T1、T2と反対側)まで広がるように、複数の抵抗成分R1~11を構成する。
同様に、透明電極23は、平面状に形成される。よって、透明電極23は、端子側から末端側まで広がるように、複数の抵抗成分R12~22を構成する。
液晶層24は、透明電極22と透明電極23との間に接続された複数の容量成分C1~C4を構成する。
図4から理解できるように、調光素子11は、抵抗成分の電圧降下に起因して、端子側から末端側にいくにつれて、電圧が低くなる。すなわち、調光素子11において、端子側の電圧が高く、末端側の電圧が低くなる。末端側のノードをN1、N2と表記する。
[1-4] 駆動回路12の構成
次に、駆動回路12の構成について説明する。図6は、駆動回路12を主として示した回路図である。
次に、駆動回路12の構成について説明する。図6は、駆動回路12を主として示した回路図である。
制御回路14は、信号OVPOSIN、信号CONPOSIN、信号OVNEGIN、及び信号CONNEGINを生成し、これらの制御信号を駆動回路12に送る。信号OVPOSIN、信号CONPOSIN、信号OVNEGIN、及び信号CONNEGINの電圧波形については、後述する。
電源回路13は、オーバードライブ用の正側電圧源30、オーバードライブ用の負側電圧源31、液晶の配向を制御するための正側制御電圧を生成する電圧源32、及び負側制御電圧を生成する電圧源33を備える。電圧源30は、オーバードライブ電圧Vov+を生成する。電圧源31は、オーバードライブ電圧Vov-を生成する。電圧源32は、制御電圧Vc+を生成する。電圧源33は、制御電圧Vc-を生成する。“Vov+>Vc+>Vc->Vov-”の関係を有する。
正側制御電圧Vc+、負側制御電圧Vc-は、最終的な液晶の配向を制御する電圧であり、使用される液晶材料に応じて決定される。すなわち、液晶材料に応じて液晶分子が垂直に配向する電圧(液晶の閾値電圧)が決定され、電圧“(Vc+)-(Vc-)”は、液晶の閾値電圧と同じか若干高く設定される。電圧“(Vov+)-(Vov-)”は、液晶の耐圧より小さく設定される。例えば、Vov+=70V、Vov-=0V、Vc+=55V、Vc-=15Vである。
駆動回路12は、スイッチング素子40~47を備える。スイッチング素子40の第1端子は、電圧源30に接続され、その第2端子は、端子T1に接続され、その制御端子には、信号OVPOSINが入力される。スイッチング素子40は、信号OVPOSINがハイレベル(例えば電圧Vdd=5V)の場合にオンし、信号OVPOSINがローレベル(例えば接地電圧=0V)の場合にオフする。
スイッチング素子41の第1端子は、電圧源31に接続され、その第2端子は、端子T1に接続され、その制御端子には、信号OVNEGINが入力される。スイッチング素子41は、信号OVNEGINがハイレベルの場合にオンし、信号OVNEGINがローレベルの場合にオフする。
スイッチング素子42の第1端子は、電圧源30に接続され、その第2端子は、端子T2に接続され、その制御端子には、信号OVNEGINが入力される。スイッチング素子42は、信号OVNEGINがハイレベルの場合にオンし、信号OVNEGINがローレベルの場合にオフする。
スイッチング素子43の第1端子は、電圧源31に接続され、その第2端子は、端子T2に接続され、その制御端子には、信号OVPOSINが入力される。スイッチング素子43は、信号OVPOSINがハイレベルの場合にオンし、信号OVPOSINがローレベルの場合にオフする。
スイッチング素子44の第1端子は、電圧源33に接続され、その第2端子は、端子T1に接続され、その制御端子には、信号CONNEGINが入力される。スイッチング素子44は、信号CONNEGINがハイレベルの場合にオンし、信号CONNEGINがローレベルの場合にオフする。
スイッチング素子45の第1端子は、電圧源32に接続され、その第2端子は、端子T1に接続され、その制御端子には、信号CONPOSINが入力される。スイッチング素子45は、信号CONPOSINがハイレベルの場合にオンし、信号CONPOSINがローレベルの場合にオフする。
スイッチング素子46の第1端子は、電圧源33に接続され、その第2端子は、端子T2に接続され、その制御端子には、信号CONPOSINが入力される。スイッチング素子46は、信号CONPOSINがハイレベルの場合にオンし、信号CONPOSINがローレベルの場合にオフする。
スイッチング素子47の第1端子は、電圧源32に接続され、その第2端子は、端子T2に接続され、その制御端子には、信号CONNEGINが入力される。スイッチング素子47は、信号CONNEGINがハイレベルの場合にオンし、信号CONNEGINがローレベルの場合にオフする。
[2] 調光装置10の動作
上記のように構成された調光装置10の動作について説明する。図7は、制御回路14の動作を説明するタイミング図である。前述したように、制御回路14は、信号OVPOSIN、信号CONPOSIN、信号OVNEGIN、及び信号CONNEGINを生成する。
上記のように構成された調光装置10の動作について説明する。図7は、制御回路14の動作を説明するタイミング図である。前述したように、制御回路14は、信号OVPOSIN、信号CONPOSIN、信号OVNEGIN、及び信号CONNEGINを生成する。
時刻t0において、制御回路14は、信号OVPOSINをハイレベル(例えば電圧Vdd=5V)にする。時刻t1において、制御回路14は、信号OVPOSINをローレベル(例えば0V)にし、信号CONPOSINをハイレベルにする。
時刻t2において、制御回路14は、信号CONPOSINをローレベルにし、信号OVNEGINをハイレベルにする。時刻t3において、制御回路14は、信号OVNEGINをローレベルにし、信号CONNEGINをハイレベルにする。
時刻t4において、制御回路14は、信号CONNEGINをローレベルにし、信号OVPOSINをハイレベルにする。時刻t0~t4が1つのサイクルであり、以後、同様のサイクルが繰り返される。
図8は、駆動回路12の動作を説明するタイミング図である。図8の時刻t0~t9は、図7の時刻t0~t9に対応する。図8には、(1)駆動回路12が調光素子11の端子T1に印加する駆動電圧OUT1、(2)駆動回路12が調光素子11の端子T2に印加する駆動電圧OUT2、(3)調光素子11のノードN1の電圧V1out、及び(4)調光素子11のノードN2の電圧V2outを示している。図8において、駆動電圧OUT1が実線、駆動電圧OUT2が破線、電圧V1outが一点鎖線、電圧V2outが二点鎖線で示される。
期間t0~t1において、スイッチング素子40がオンし、電圧OUT1=Vov+に設定される。また、期間t0~t1において、スイッチング素子43がオンし、電圧OUT2=Vov-に設定される。これにより、末端側の電圧V1outは、端子T1に制御電圧Vc+を印加する場合に比べて、速く立ち上がる。また、末端側の電圧V2outは、端子T2に制御電圧Vc-を印加する場合に比べて、速く立ち下がる。
期間t1~t2において、スイッチング素子45がオンし、電圧OUT1=Vc+に設定される。また、期間t1~t2において、スイッチング素子46がオンし、電圧OUT2=Vc-に設定される。これにより、末端側の電圧V1outは、制御電圧Vc+に設定され、末端側の電圧V2outは、制御電圧Vc-に設定される。
期間t2~t3において、スイッチング素子41がオンし、電圧OUT1=Vov-に設定される。また、期間t2~t3において、スイッチング素子42がオンし、電圧OUT2=Vov+に設定される。これにより、末端側の電圧V1outは、端子T1に制御電圧Vc-を印加する場合に比べて、速く立ち下がる。また、末端側の電圧V2outは、端子T2に制御電圧Vc+を印加する場合に比べて、速く立ち上がる。
期間t3~t4において、スイッチング素子44がオンし、電圧OUT1=Vc-に設定される。また、期間t3~t4において、スイッチング素子47がオンし、電圧OUT2=Vc+に設定される。これにより、末端側の電圧V1outは、制御電圧Vc-に設定され、末端側の電圧V2outは、制御電圧Vc+に設定される。
以後、サイクルt0~t4と同じ動作が繰り返される。例えば、駆動周波数は、20Hzである。
なお、オーバードライブ期間、すなわち、期間t0~t1、及び期間t2~t3の各々は、調光素子11の負荷(抵抗及び容量)に応じて設定される。すなわち、オーバードライブ期間は、末端側の電圧V1outが制御電圧Vc-から制御電圧Vc+に立ち上がる期間より短く設定される。また、オーバードライブ期間は、末端側の電圧V2outが制御電圧Vc+から制御電圧Vc-に立ち下がる期間より短く設定される。
図9は、調光素子11における電圧対透過率(V-T:voltage-transmittance)特性の一例を示すグラフである。図9の横軸が電圧(V)、縦軸が透過率(%)であり、図9の横軸及び縦軸ともに任意単位である。図9の電圧は、液晶層に印加される電圧、すなわち、電極22、23間の電圧である。
図9から理解できるように、調光素子11に印加する電圧(駆動電圧)を変化させることで、調光素子11の透過率を変化させることができる。また、調光素子11に飽和電圧以上の駆動電圧を印加しても、透過率は変わらない。飽和電圧とは、最大透過率を実現する電圧のうち最小電圧である。例えば、電圧“(Vc+)-(Vc-)”は、飽和電圧以下に設定される。よって、オーバードライブ電圧を液晶の耐圧を越えない範囲で、飽和電圧以上の電圧に設定した場合でも、オーバードライブ電圧を用いて、液晶の透過率に影響を及ぼすことなく、調光素子11を駆動できる。
端子側の実効電圧は、ほぼ制御電圧Vc+、Vc-となる。また、末端側の電圧がより速いタイミングで制御電圧Vc+、Vc-に到達するため、末端側の実効電圧も制御電圧Vc+、Vc-に近くなる。これにより、端子側と末端側との透過率の差が小さくなり、色ムラを低減することができる。
また、ゼロクロス点(電圧V1outと電圧V2outとが交差する点)を含む極性反転を行う期間(例えば、図8の期間t0~t1)では、液晶に印加される実効電圧が低いため、液晶の透過率は、所望の透過率にならない。特に、ゼロクロス点では、液晶に印加される電圧は、0Vである。しかし、本実施形態では、オーバードライブ駆動を用いることで、末端側の電圧がより速いタイミングで上昇する。これにより、極性反転を行う期間を短くできるので、フリッカーを低減することができる。
[3] 比較例
次に、比較例に係る調光装置について説明する。図10は、比較例に係る駆動回路の回路図である。
次に、比較例に係る調光装置について説明する。図10は、比較例に係る駆動回路の回路図である。
電圧源32は、制御電圧Vc+を生成する。電圧源33は、制御電圧Vc-を生成する。例えば、Vc+=40V、Vc-=0Vである。
スイッチング素子44の第1端子は、電圧源33に接続され、その第2端子は、端子T1に接続され、その制御端子には、信号NEGINが入力される。スイッチング素子44は、信号NEGINがハイレベルの場合にオンし、信号NEGINがローレベルの場合にオフする。
スイッチング素子45の第1端子は、電圧源32に接続され、その第2端子は、端子T1に接続され、その制御端子には、信号POSINが入力される。スイッチング素子45は、信号POSINがハイレベルの場合にオンし、信号POSINがローレベルの場合にオフする。
スイッチング素子46の第1端子は、電圧源33に接続され、その第2端子は、端子T2に接続され、その制御端子には、信号POSINが入力される。スイッチング素子46は、信号POSINがハイレベルの場合にオンし、信号POSINがローレベルの場合にオフする。
スイッチング素子47の第1端子は、電圧源32に接続され、その第2端子は、端子T2に接続され、その制御端子には、信号NEGINが入力される。スイッチング素子47は、信号NEGINがハイレベルの場合にオンし、信号NEGINがローレベルの場合にオフする。
図11は、比較例に係る調光装置の動作を説明する図である。時刻t0において、信号POSINがハイレベルにされ、信号NEGINがローレベルにされる。時刻t1において、信号POSINがローレベルにされ、信号NEGINがハイレベルにされる。時刻t2において、信号POSINがハイレベルにされ、信号NEGINがローレベルにされる。
期間t0~t1において、スイッチング素子45がオンし、電圧OUT1=Vc+に設定される。また、期間t0~t1において、スイッチング素子46がオンし、電圧OUT2=Vc-に設定される。これにより、末端側の電圧V1outは、オーバードライブ駆動に比べて、緩やかに立ち上がる。また、末端側の電圧V2outは、オーバードライブ駆動に比べて、緩やかに立ち下がる。
期間t1~t2において、スイッチング素子44がオンし、電圧OUT1=Vc-に設定される。また、期間t1~t2において、スイッチング素子47がオンし、電圧OUT2=Vc+に設定される。これにより、末端側の電圧V1outは、オーバードライブ駆動に比べて、緩やかに立ち下がる。また、末端側の電圧V2outは、オーバードライブ駆動に比べて、緩やかに立ち上がる。
比較例では、極性反転において、末端側の電圧V1out、電圧V2outが所望の電圧(Vc+、Vc-)になるまでの時間が長い。これにより、比較例では、フリッカーが大きくなってしまう。また、比較例では、端子側と末端側とで実効電圧が異なる期間が長くなるため、色ムラが発生してしまう。
[4] 第1実施形態の効果
以上詳述したように第1実施形態では、調光装置10は、対向配置された基材20、21と、基材20、21にそれぞれ設けられた透明電極22、23と、透明電極22、23間に充填された液晶層24と、透明電極22、23に電気的に接続された端子T1、T2とを含む調光素子11と、端子T1に駆動電圧OUT1を印加し、端子T2に駆動電圧OUT1と極性が異なる駆動電圧OUT2を印加する駆動回路12とを具備する。駆動電圧OUT1は、第1期間において正側オーバードライブ電圧Vov+に設定され、前記第1期間に続く第2期間において正側制御電圧Vc+に設定され、第2期間に続く第3期間において負側オーバードライブ電圧Vov-に設定され、第3期間に続く第4期間において負側制御電圧Vc-に設定される。
以上詳述したように第1実施形態では、調光装置10は、対向配置された基材20、21と、基材20、21にそれぞれ設けられた透明電極22、23と、透明電極22、23間に充填された液晶層24と、透明電極22、23に電気的に接続された端子T1、T2とを含む調光素子11と、端子T1に駆動電圧OUT1を印加し、端子T2に駆動電圧OUT1と極性が異なる駆動電圧OUT2を印加する駆動回路12とを具備する。駆動電圧OUT1は、第1期間において正側オーバードライブ電圧Vov+に設定され、前記第1期間に続く第2期間において正側制御電圧Vc+に設定され、第2期間に続く第3期間において負側オーバードライブ電圧Vov-に設定され、第3期間に続く第4期間において負側制御電圧Vc-に設定される。
従って第1実施形態によれば、端子側と反対側の電圧を、より速く制御電圧Vc+、Vc-に設定することができる。これにより、端子側と末端側との透過率の差が小さくなり、色ムラを低減することができる。
また、ゼロクロス点(電圧V1outと電圧V2outとが交差する点)を含む極性反転を行う期間では、フリッカーが発生する原因となる。しかし、本実施形態では、極性反転を行う期間を短くできるので、フリッカーを低減することができる。
図12は、第1例に係る消費される電荷量の模式図である。図12の横軸は、端子-末端間の位置を表し、縦軸は、液晶に印加される電圧(印加電圧)を表している。例えば、0V~40Vの領域は、透過率を変化させることが可能な階調領域であり、40V~70Vの領域は、透過率がほぼ変化しない飽和領域である。
電荷量Aは、通常パルス駆動における電荷量である。第1例の通常パルス駆動は、印加電圧40Vを用い、かつ末端側の電圧が40Vになるまで周波数を低くして駆動する例である。通常パルス駆動では、末端側が最終的に40Vになるので、端子側と末端側との色ムラは低減できる。しかし、極性反転にかかる時間が長くなるので、フリッカーが大きくなる。
電荷量Bは、通常パルス駆動に対するオーバードライブ駆動で増加する電荷量である。オーバードライブ駆動は、オーバードライブ電圧70Vを用いて駆動する例である。端子側から末端側にいくにつれて電圧が低くなるので、電荷量Bは、端子側から末端側に向かって漸減する三角形で表される。オーバードライブ駆動を行う場合、電荷量Bの増加のみで、通常パルス駆動に比べて、フリッカーを低減できるとともに、色ムラが低減できる。
電荷量Cは、フル駆動に対するオーバードライブ駆動で減少する電荷量である。フル駆動は、70Vを用いて駆動する例である。すなわち、“電荷量A+電荷量B+電荷量C”がフル駆動の電荷量である。フル駆動では、フリッカーは低減されるが、消費される電荷量が大きくなる。オーバードライブ駆動では、フル駆動と同程度にフリッカーを低減できつつ、フル駆動に比べて消費される電荷量を低減できる。
図13は、第2例に係る消費される電荷量の模式図である。第2例は、中間調を実施した場合の例である。
電荷量Dは、通常パルス駆動における電荷量である。第2例の通常パルス駆動は、印加電圧20Vを用い、かつ末端側の電圧が20Vになるまで周波数を低くして駆動する例である。通常パルス駆動では、末端側が最終的に20Vになるので、端子側と末端側との色ムラは低減できる。しかし、極性反転にかかる時間が長くなるので、フリッカーが大きくなる。また、フリッカーを低減させるために、周波数を大きくすると、端子側と末端側との電位差が大きくなり、色ムラが発生する。周波数を大きくした場合の電荷量は、図13の破線で示した下の領域である。すなわち、色ムラとフリッカーとはトレードオフの関係にある。
電荷量Eは、通常パルス駆動に対するオーバードライブ駆動で増加する電荷量である。オーバードライブ駆動を用いて中間調を実施した場合でも、電荷量Eの増加のみで、通常パルス駆動に比べて、フリッカーを低減できるとともに、色ムラが低減できる。また、第2例の場合も、オーバードライブ駆動では、70Vのフル駆動と同程度にフリッカーを低減できる。
[第2実施形態]
第2実施形態は、駆動回路12、及び電源回路13の具体的な構成例である。第2実施形態は、トランジスタを用いてデジタル式に駆動回路12を構成した例である。
第2実施形態は、駆動回路12、及び電源回路13の具体的な構成例である。第2実施形態は、トランジスタを用いてデジタル式に駆動回路12を構成した例である。
図14は、本発明の第2実施形態に係る駆動回路12を主として示した回路図である。本実施形態では、駆動回路12を構成する複数のスイッチング素子の各々は、MOSトランジスタ、又はバイポーラトランジスタから構成される。本実施形態では、NチャネルMOSトランジスタ(又はパワーMOSトランジスタ)を用いる例について説明する。調光素子11は、等価回路として表現すると、図5から理解されるように、抵抗性負荷RLと、容量性負荷CLとを含む。
制御回路14は、タイミング発生回路14Aを備える。タイミング発生回路14Aは、信号OVPOSIN、信号CONPOSIN、信号OVNEGIN、及び信号CONNEGINのタイミングを制御する。
駆動回路12は、ゲートドライバ12Aを備える。ゲートドライバ12Aは、タイミング発生回路14Aから、信号OVPOSIN、信号CONPOSIN、信号OVNEGIN、及び信号CONNEGINを受ける。ゲートドライバ12Aは、信号OVPOSIN、信号CONPOSIN、信号OVNEGIN、及び信号CONNEGINを用いて、これらの信号レベルを、トランジスタに最適なゲート電圧レベルに設定する。そして、ゲートドライバ12Aは、トランジスタに最適なゲート電圧レベルの信号として、信号OVPOSIN-G、信号CONPOSIN-G、信号OVNEGIN-G、及び信号CONNEGIN-Gを生成する。
駆動回路12は、NチャネルMOSトランジスタ40~43、44A、44B、45A、45B、46A、46B、47A、47Bを備える。また、ゲートドライバ12Aには、信号線40S、42S、44S、45S、46S、47Sが接続される。信号線40S、42S、44S、45S、46S、47Sは、上記の最適なゲート電圧レベルを設定するために、トランジスタのソース電圧レベルをゲートドライバ12Aに与えるものである。
トランジスタ40のドレインは、オーバードライブ電圧Vov+を生成する電圧源30に接続され、そのソースは、端子T1に接続され、そのゲートには、信号OVPOSIN-Gが入力される。また、トランジスタ40のソースは、信号線40Sを介して、ゲートドライバ12Aに接続される。
トランジスタ41のドレインは、端子T1に接続され、そのソースは、オーバードライブ電圧Vov-を生成する電圧源31に接続され、そのゲートには、信号OVNEGIN-Gが入力される。
トランジスタ42のドレインは、電圧源30に接続され、そのソースは、端子T2に接続され、そのゲートには、信号OVNEGIN-Gが入力される。また、トランジスタ42のソースは、信号線42Sを介して、ゲートドライバ12Aに接続される。
トランジスタ43のドレインは、端子T2に接続され、そのソースは、電圧源31に接続され、そのゲートには、信号OVPOSIN-Gが入力される。
トランジスタ44A、44Bは、図6のスイッチング素子44を構成する。トランジスタ44Aのドレインは、端子T1に接続され、そのソースは、トランジスタ44Bのソースに接続され、そのゲートには、信号CONNEGIN-Gが入力される。トランジスタ44Bのドレインは、制御電圧Vc-を生成する電圧源33に接続され、そのゲートには、信号CONNEGIN-Gが入力される。また、トランジスタ44Aのソースは、信号線44Sを介して、ゲートドライバ12Aに接続される。
トランジスタ45A、45Bは、図6のスイッチング素子45を構成する。トランジスタ45Aのドレインは、端子T1に接続され、そのソースは、トランジスタ45Bのソースに接続され、そのゲートには、信号CONPOSIN-Gが入力される。トランジスタ45Bのドレインは、制御電圧Vc+を生成する電圧源32に接続され、そのゲートには、信号CONPOSIN-Gが入力される。また、トランジスタ45Aのソースは、信号線45Sを介して、ゲートドライバ12Aに接続される。
トランジスタ46A、46Bは、図6のスイッチング素子46を構成する。トランジスタ46Aのドレインは、端子T2に接続され、そのソースは、トランジスタ46Bのソースに接続され、そのゲートには、信号CONPOSIN-Gが入力される。トランジスタ46Bのドレインは、電圧源33に接続され、そのゲートには、信号CONPOSIN-Gが入力される。また、トランジスタ46Aのソースは、信号線46Sを介して、ゲートドライバ12Aに接続される。
トランジスタ47A、47Bは、図6のスイッチング素子47を構成する。トランジスタ47Aのドレインは、端子T2に接続され、そのソースは、トランジスタ47Bのソースに接続され、そのゲートには、信号CONNEGIN-Gが入力される。トランジスタ47Bのドレインは、電圧源32に接続され、そのゲートには、信号CONNEGIN-Gが入力される。また、トランジスタ47Aのソースは、信号線47Sを介して、ゲートドライバ12Aに接続される。
電源回路13は、電圧源13A、及び電圧源30~33を備える。電圧源13Aは、電源電圧VCCから電圧Vinを生成する。
電圧源30は、定電圧素子としてのツェナーダイオード(定電圧ダイオード)30A、及び抵抗(抵抗素子)30Bを備える。ツェナーダイオード30Aのカソードは、電圧源13Aに接続され、そのアノードは、抵抗30Bの一端に接続される。抵抗30Bの他端は、接地端子GNDに接続される。電圧源30は、他の構成を用いてもよい。例えば、扱う電圧が大きい場合には、2個又はそれ以上のツェナーダイオードを直列接続してもよい。また、ツェナーダイオード30Aと抵抗30Bとの接続ノードに、電流増幅用のNPNトランジスタを追加してもよい。また、電圧源30は、電圧制御端子を備えたシリーズレギュレータで構成してもよい。また、電圧源30は、DC/DCコンバータで構成してもよい。
電圧源32は、ツェナーダイオード32A、及び抵抗32Bを備える。抵抗32Bの一端は、電圧源13Aに接続され、その他端は、ツェナーダイオード32Aのカソードに接続される。ツェナーダイオード32Aのアノードは、接地端子GNDに接続される。電圧源32には、電圧源30と同様の他の構成例を用いてもよい。
電圧源33は、ツェナーダイオード33A、及び抵抗33Bを備える。ツェナーダイオード33Aのカソードは、電圧源13Aに接続され、そのアノードは、抵抗33Bの一端に接続される。抵抗33Bの他端は、接地端子GNDに接続される。電圧源33には、電圧源30と同様の他の構成例を用いてもよい。
以上詳述したように第2実施形態では、トランジスタを用いて駆動回路12を構成することができる。第2実施形態の電圧制御は、第1実施形態の電圧制御と同じである。その他の効果は、第1実施形態と同じである。
[第3実施形態]
第3実施形態は、駆動回路12、及び電源回路13の具体的な構成例である。第3実施形態は、電力増幅器を用いてアナログ式に駆動回路12を構成した例である。
第3実施形態は、駆動回路12、及び電源回路13の具体的な構成例である。第3実施形態は、電力増幅器を用いてアナログ式に駆動回路12を構成した例である。
図15は、本発明の第3実施形態に係る駆動回路12を主として示した回路図である。駆動回路12は、オーバードライブ波形発生回路12B、及び電力増幅器12C、12Dを備える。オーバードライブ波形発生回路12Bは、タイミング発生回路14Aからの制御信号を用いて、正側電圧波形VP、及び負側電圧波形VNを生成する。
電力増幅器12C、12Dは、第1象限から第4象限までの動作が可能な4象限出力が可能である。すなわち、電力増幅器12C、12Dは、電圧の向きによらず、電流の供給(ソース)と吸収(シンク)とが可能である。
電力増幅器12Cは、オーバードライブ波形発生回路12Bから正極電圧波形VPを受け、この正極電圧波形VPを増幅する。電力増幅器12Cは、駆動電圧OUT1を出力する。駆動電圧OUT1は、調光素子11の端子T1に印加される。
電力増幅器12Dは、オーバードライブ波形発生回路12Bから負極電圧波形VNを受け、この負極電圧波形VNを増幅する。電力増幅器12Dは、駆動電圧OUT2を出力する。駆動電圧OUT2は、調光素子11の端子T2に印加される。
図16は、駆動回路12の動作を説明するタイミング図である。駆動電圧OUT1、OUT2は、第1実施形態の図8と同じ波形である。駆動電圧OUT1は、前段の正極電圧波形VPと波形は同じで、出力電流を増幅したものである。駆動電圧OUT2は、前段の負極電圧波形VNと波形は同じで、出力電流を増幅したものである。
第2実施形態によれば、アナログ式にオーバードライブ駆動を実現できる。その他の効果は、第1実施形態と同じである。
[実施例]
上記実施形態では、PDLC又はPNLCを用いた液晶素子(調光素子)を例示しているが、これに限定されるものではない。調光素子としての液晶素子は、偏光板及び配向膜を液晶層の両側に配置した構成でもよく、TN(Twisted Nematic)方式、VA(Vertical Alignment)方式、又はIPS(In-Plane Switching)方式などを用いることができる。また、調光素子として、液晶素子以外で、電圧により屈折率が変化する様々な種類の電気光学素子を用いることができる。
上記実施形態では、PDLC又はPNLCを用いた液晶素子(調光素子)を例示しているが、これに限定されるものではない。調光素子としての液晶素子は、偏光板及び配向膜を液晶層の両側に配置した構成でもよく、TN(Twisted Nematic)方式、VA(Vertical Alignment)方式、又はIPS(In-Plane Switching)方式などを用いることができる。また、調光素子として、液晶素子以外で、電圧により屈折率が変化する様々な種類の電気光学素子を用いることができる。
上記実施形態で示したスイッチング素子は、MOSトランジスタ、又はバイポーラトランジスタ以外に、炭化シリコン(SiC)を半導体層に用いたSiC-MOSFET、又は窒化ガリウム(GaN)を半導体層に用いたGaN-MOSFETなどで構成してもよい。
上記実施形態で説明した調光装置は、住宅、オフィス、又は公共施設における窓や室内パーテーション、商業施設又はイベント会場における映像投影スクリーンやサイネージ、自動車又は航空機における窓やサンルーフなどに適用可能である。
上記実施形態では、液晶素子として調光素子を例に挙げて説明しているが、これに限定されず、本実施形態における駆動方法は、液晶を用いた様々な装置(液晶表示装置を含む)に適用可能である。
なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。
Claims (8)
- 第1及び第2基材と、前記第1及び第2基材にそれぞれ設けられた第1及び第2電極と、前記第1及び第2電極間に充填された液晶層と、前記第1及び第2電極に電気的に接続された第1及び第2端子とを含む調光素子と、
前記第1端子に第1駆動電圧を印加し、前記第2端子に前記第1駆動電圧と極性が異なる第2駆動電圧を印加する駆動回路と
を具備し、
前記第1駆動電圧は、第1期間において第1電圧に設定され、前記第1期間に続く第2期間において前記第1電圧より低い第2電圧に設定され、前記第2期間に続く第3期間において前記第2電圧より低い第3電圧に設定され、前記第3期間に続く第4期間において前記第2電圧より低くかつ前記第3電圧より高い第4電圧に設定される
調光装置。 - 前記第1電圧と前記第3電圧との電圧差は、前記調光素子の耐圧より小さい
請求項1に記載の調光装置。 - 前記第2電圧と前記第4電圧との電圧差は、前記調光素子の飽和電圧以下である
請求項1に記載の調光装置。 - 前記駆動回路は、第1乃至第8スイッチング素子を含み、
前記第1スイッチング素子は、前記第1電圧を発生する第1電圧源と前記第1端子との間に接続され、
前記第2スイッチング素子は、前記第3電圧を発生する第3電圧源と前記第1端子との間に接続され、
前記第3スイッチング素子は、前記第1電圧源と前記第2端子との間に接続され、
前記第4スイッチング素子は、前記第3電圧源と前記第2端子との間に接続され、
前記第5スイッチング素子は、前記第2電圧を発生する第2電圧源と前記第1端子との間に接続され、
前記第6スイッチング素子は、前記第4電圧を発生する第4電圧源と前記第1端子との間に接続され、
前記第7スイッチング素子は、前記第2電圧源と前記第2端子との間に接続され、
前記第8スイッチング素子は、前記第4電圧源と前記第2端子との間に接続される
請求項1に記載の調光装置。 - 第1乃至第4制御信号を生成する制御回路をさらに具備し、
前記第1制御信号は、前記第1及び第4スイッチング素子に入力され、
前記第2制御信号は、前記第2及び第3スイッチング素子に入力され、
前記第3制御信号は、前記第5及び第8スイッチング素子に入力され、
前記第4制御信号は、前記第6及び第7スイッチング素子に入力される
請求項4に記載の調光装置。 - 前記第1期間において、前記第1制御信号が活性化され、
前記第2期間において、前記第3制御信号が活性化され、
前記第3期間において、前記第2制御信号が活性化され、
前記第4期間において、前記第4制御信号が活性化される
請求項5に記載の調光装置。 - 前記第1乃至第4電圧源の各々は、定電圧素子を含む
請求項4に記載の調光装置。 - 前記第1乃至第8スイッチング素子の各々は、トランジスタで構成される
請求項4に記載の調光装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18812822.7A EP3637176B1 (en) | 2017-06-08 | 2018-05-31 | Light control device |
CN201880035752.8A CN110678805B (zh) | 2017-06-08 | 2018-05-31 | 调光装置 |
US16/704,526 US10871668B2 (en) | 2017-06-08 | 2019-12-05 | Light control device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017113443A JP6981052B2 (ja) | 2017-06-08 | 2017-06-08 | 調光装置 |
JP2017-113443 | 2017-06-08 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/704,526 Continuation US10871668B2 (en) | 2017-06-08 | 2019-12-05 | Light control device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018225625A1 true WO2018225625A1 (ja) | 2018-12-13 |
Family
ID=64565864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/021054 WO2018225625A1 (ja) | 2017-06-08 | 2018-05-31 | 調光装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10871668B2 (ja) |
EP (1) | EP3637176B1 (ja) |
JP (1) | JP6981052B2 (ja) |
CN (1) | CN110678805B (ja) |
WO (1) | WO2018225625A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021001929A (ja) * | 2019-06-20 | 2021-01-07 | 凸版印刷株式会社 | 調光シート駆動装置、調光装置、調光シートの駆動方法、および、調光シートの駆動プログラム |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102018352B1 (ko) * | 2019-02-25 | 2019-10-21 | 주식회사 제이앤에스 | Haze 특성이 개선된 스마트 필름 장치 |
CA3222617A1 (en) * | 2021-06-23 | 2022-12-29 | Japan Display Inc. | Optical device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6449924U (ja) * | 1987-09-24 | 1989-03-28 | ||
JP2013072895A (ja) * | 2011-09-26 | 2013-04-22 | Seiko Electric Co Ltd | 液晶調光装置及び液晶調光素子の駆動装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6449924A (en) | 1987-08-20 | 1989-02-27 | Teraoka Seiko Kk | Strain gage type load cell |
JPH10197849A (ja) * | 1997-01-06 | 1998-07-31 | Matsushita Electric Ind Co Ltd | 反強誘電性液晶素子の駆動方法および駆動装置 |
TWI259992B (en) * | 2003-05-22 | 2006-08-11 | Au Optronics Corp | Liquid crystal display device driver and method thereof |
JP2005010202A (ja) * | 2003-06-16 | 2005-01-13 | Nec Corp | 液晶パネル、該液晶パネルを用いた液晶表示装置および該液晶表示装置を搭載した電子機器 |
KR100687681B1 (ko) * | 2003-12-18 | 2007-03-02 | 샤프 가부시키가이샤 | 표시 소자 및 표시 장치, 표시 소자의 구동 방법, 및프로그램 |
WO2006030388A2 (en) * | 2004-09-15 | 2006-03-23 | Koninklijke Philips Electronics N.V. | Display devices and methods of driving such |
TWI282544B (en) * | 2005-01-21 | 2007-06-11 | Himax Tech Inc | Operation apparatus, operation method, operation apparatus for overdrive and operation method for overdrive |
JP4661406B2 (ja) * | 2005-07-05 | 2011-03-30 | 富士ゼロックス株式会社 | 液晶デバイスの駆動方法、および液晶デバイス駆動装置 |
JP2007304561A (ja) * | 2006-03-23 | 2007-11-22 | Toshiba Matsushita Display Technology Co Ltd | 液晶表示装置の駆動装置 |
JP4645632B2 (ja) * | 2007-09-21 | 2011-03-09 | ソニー株式会社 | 液晶表示装置、液晶表示装置の駆動方法および電子機器 |
CN101821929A (zh) * | 2007-11-13 | 2010-09-01 | 夏普株式会社 | 电源电路及具备电源电路的显示装置 |
TWM494455U (zh) * | 2014-09-23 | 2015-01-21 | Unity Opto Technology Co Ltd | 改善led頻閃之驅動電路 |
EP3602190B1 (en) * | 2017-03-29 | 2022-03-30 | Merck Patent GmbH | Method for electrically driving a switchable optical element |
-
2017
- 2017-06-08 JP JP2017113443A patent/JP6981052B2/ja active Active
-
2018
- 2018-05-31 CN CN201880035752.8A patent/CN110678805B/zh active Active
- 2018-05-31 WO PCT/JP2018/021054 patent/WO2018225625A1/ja unknown
- 2018-05-31 EP EP18812822.7A patent/EP3637176B1/en active Active
-
2019
- 2019-12-05 US US16/704,526 patent/US10871668B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6449924U (ja) * | 1987-09-24 | 1989-03-28 | ||
JP2013072895A (ja) * | 2011-09-26 | 2013-04-22 | Seiko Electric Co Ltd | 液晶調光装置及び液晶調光素子の駆動装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3637176A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021001929A (ja) * | 2019-06-20 | 2021-01-07 | 凸版印刷株式会社 | 調光シート駆動装置、調光装置、調光シートの駆動方法、および、調光シートの駆動プログラム |
JP7263938B2 (ja) | 2019-06-20 | 2023-04-25 | 凸版印刷株式会社 | 調光シート駆動装置、調光装置、調光シートの駆動方法、および、調光シートの駆動プログラム |
Also Published As
Publication number | Publication date |
---|---|
JP2018205631A (ja) | 2018-12-27 |
EP3637176A1 (en) | 2020-04-15 |
US20200110297A1 (en) | 2020-04-09 |
US10871668B2 (en) | 2020-12-22 |
CN110678805B (zh) | 2022-08-23 |
CN110678805A (zh) | 2020-01-10 |
JP6981052B2 (ja) | 2021-12-15 |
EP3637176A4 (en) | 2020-06-10 |
EP3637176B1 (en) | 2024-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018143401A1 (ja) | 調光装置 | |
US10871668B2 (en) | Light control device | |
JP5188362B2 (ja) | バックライトユニットの光源駆動装置及び方法 | |
CN111524491B (zh) | 调光玻璃的驱动电路及驱动方法、调光玻璃装置 | |
KR20120110387A (ko) | 화소 회로 및 화소 회로의 구동 방법 | |
CN103680416B (zh) | 电泳显示装置 | |
KR20100006320A (ko) | 백라이트 유닛의 광원 구동장치 및 방법 | |
WO2018186447A1 (ja) | 液晶調光装置及び液晶調光方法 | |
CN102930841A (zh) | 近晶态液晶多稳态电子纸显示器的像素电路 | |
US10971106B2 (en) | Liquid crystal optical modulation device and liquid crystal optical modulation method | |
JP6836010B2 (ja) | 直流電圧変換回路及び直流電圧変換方法並びに液晶表示装置 | |
US20090073156A1 (en) | Drive Circuits for Capacitive Loads | |
JP7226510B2 (ja) | 調光装置 | |
RU2653769C1 (ru) | Жидкокристаллическая 3d панель с технологией "невооруженным глазом" и способ управления такой панелью | |
GB2066605A (en) | Circuit for driving a display device | |
CN201765805U (zh) | 电流控制电路 | |
KR100265782B1 (ko) | 박막트랜지스터형액정표시장치 | |
KR102029851B1 (ko) | 라이트 구동 장치 및 이를 구비한 액정 표시 장치 | |
KR20080096028A (ko) | 액정표시장치의 백라이트 구동장치 | |
KR20070071338A (ko) | 평판표시장치용 인버터 구동방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18812822 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018812822 Country of ref document: EP Effective date: 20200108 |