WO2018223759A1 - 空调风冷机组的控制方法及空调 - Google Patents

空调风冷机组的控制方法及空调 Download PDF

Info

Publication number
WO2018223759A1
WO2018223759A1 PCT/CN2018/081634 CN2018081634W WO2018223759A1 WO 2018223759 A1 WO2018223759 A1 WO 2018223759A1 CN 2018081634 W CN2018081634 W CN 2018081634W WO 2018223759 A1 WO2018223759 A1 WO 2018223759A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
compression ratio
speed
preset
pressure
Prior art date
Application number
PCT/CN2018/081634
Other languages
English (en)
French (fr)
Inventor
谢吉培
赵雷
张捷
Original Assignee
青岛海尔空调电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2018223759A1 publication Critical patent/WO2018223759A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/13Vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures

Definitions

  • the invention belongs to the technical field of air conditioners, and particularly provides a control method and an air conditioner for an air-conditioning air-cooling unit.
  • air conditioners include single-cooled air conditioners and hot and cold air conditioners.
  • the working principle of the single-cooling air conditioner is: firstly, the indoor hot air is sucked into the evaporator, and the hot air entering the evaporator is cooled by the vaporization of the refrigerant, and the cooled air after the cooling is re-introduced by the fan. Going indoors, through such a cycle, the purpose of reducing the indoor ambient temperature is achieved.
  • the discharge pressure of the compressor will also change.
  • the compressor pressure is too large, the load of the compressor will increase, and the compressor will be under high load for a long time. Will reduce the stability of the unit. Therefore, when adjusting the speed of the fan, it is necessary to take into account changes in the compressor discharge pressure.
  • the rotational speed of the fan is generally adjusted in accordance with the exhaust pressure of the compressor.
  • the invention patent of the publication No. CN104697106A discloses an air conditioning system pressure control method. Specifically, the control method of the patent is to determine whether the exhaust pressure of the compressor is greater than or equal to a preset pressure when the air conditioner is running, and if so, reduce the rotational speed of the fan. By judging the exhaust pressure of the compressor to adjust the fan speed, it is possible to avoid the problem that the compressor load is increased due to the excessive exhaust pressure of the compressor to reduce the reliability and service life of the unit.
  • the change of the compression ratio of the compressor is not considered when adjusting the fan speed, but the compression ratio of the compressor is too large or too small, which will cause the "surge phenomenon" of the compressor, which will cause the suction of the compressor.
  • Both gas and exhaust gas are affected to a certain extent, and it will cause strong vibration of the compressor and may be accompanied by "squeaking", which reduces the operational stability of the air-cooled unit, and thus affects the overall reliability of the unit. That is to say, at present, when the fan is adjusted in speed, the air-cooled unit and the air-conditioning system cannot be matched to an optimal state, and the compressor cannot be guaranteed to be in an optimal operating state.
  • the present invention provides a control method for an air-conditioning air-cooling unit, the air-cooling unit includes a fan and a compressor connected to the fan, and the control method comprises the following steps: in a state in which the air-cooling unit is running The intake pressure and the exhaust pressure of the compressor are detected; the compression ratio of the compressor is calculated; and the rotational speed of the fan is adjusted according to the exhaust pressure and the compression ratio.
  • the step of “adjusting the rotational speed of the fan according to the exhaust pressure and the compression ratio” further includes: determining whether the exhaust pressure is less than or equal to the first preset pressure; if the exhaust pressure is less than or equal to the first At a preset pressure, the fan is operated at a first preset speed; if the exhaust pressure is greater than the first preset pressure, the speed of the fan is adjusted according to the compression ratio.
  • the step of “adjusting the rotational speed of the fan according to the compression ratio if the exhaust pressure is greater than the first preset pressure” further comprises: determining whether the exhaust pressure is less than or equal to the second preset pressure; If the exhaust pressure is less than or equal to the second preset pressure, the rotational speed of the fan is reduced/maintained according to the compression ratio; if the exhaust pressure is greater than the second preset pressure, the rotational speed of the fan is increased/maintained according to the compression ratio.
  • the step of “reducing/maintaining the rotational speed of the fan according to the compression ratio if the exhaust pressure is less than or equal to the second preset pressure” further includes: determining whether the compression ratio is greater than a preset compression ratio; If the compression ratio is greater than the preset compression ratio, the current speed of the fan is maintained unchanged; if the compression ratio is less than or equal to the preset compression ratio, the speed of the fan is reduced.
  • the step of "increasing/maintaining the rotational speed of the fan according to the compression ratio if the exhaust pressure is greater than the second preset pressure" further comprises: determining whether the compression ratio is greater than a preset compression ratio; if compressing If the ratio is greater than the preset compression ratio, the fan speed is increased/maintained according to the current speed of the fan; if the compression ratio is less than or equal to the preset compression ratio, the current speed of the fan is maintained.
  • the step of “increasing/maintaining the rotational speed of the fan according to the current rotational speed of the wind turbine” if the compression ratio is greater than the preset compression ratio further comprises: determining whether the current rotational speed of the wind turbine is equal to the second preset rotational speed. If the current speed of the fan is equal to the second preset speed, the current speed of the fan is maintained unchanged; if the current speed of the fan is not equal to the second preset speed, the speed of the fan is increased to the second preset speed.
  • the first preset pressure is a minimum exhaust pressure of the compressor; and/or the second preset pressure is a maximum exhaust pressure of the compressor; And/or the first preset rotational speed is a minimum rotational speed of the wind turbine; and/or the second predetermined rotational speed is a maximum rotational speed of the wind turbine.
  • control method in a case where it is required to adjust the rotational speed of the fan, the control method first adjusts the rotational speed of the fan after the fan maintains the current rotational speed and runs for a preset time.
  • the above control method before the step of "detecting the intake pressure and the exhaust pressure of the compressor", the above control method further comprises: obtaining an ambient temperature; and determining an initial rotational speed of the start of the wind turbine according to the ambient temperature.
  • the present invention also provides an air conditioner comprising an air cooling unit, the air conditioner further comprising a controller for performing the control method of any of the above.
  • the initial rotation speed when the fan is turned on is determined by determining the ambient temperature, and then the suction pressure and the exhaust pressure of the compressor are detected when the unit is running, and Calculating the compression ratio of the compressor, adjusting the rotational speed of the fan according to the exhaust pressure and compression ratio of the compressor, compared with the existing technical solution for adjusting the rotational speed of the fan according to the exhaust pressure of the compressor alone, the present invention can not only By detecting the exhaust pressure of the compressor to prevent the increase of the compressor load, it is also possible to adjust the speed of the fan by judging the change of the compression ratio of the compressor, so as to avoid the compressor from being too large or too small to cause the compressor to occur.
  • the determination of the exhaust gas pressure of the compressor by the minimum exhaust pressure and the maximum exhaust pressure of the compressor is more advantageous for adjusting the fan speed and improving the unit.
  • the stability that is, the speed adjustment of the fan can be initially divided according to the range of the compressor discharge pressure.
  • the fan is controlled to operate at the current speed for a period of time before controlling the fan to increase/decrease the speed.
  • This control mode can further improve the stability of the unit operation and reduce the unit's operation.
  • the shock allows the unit to operate in an optimal state.
  • FIG. 1 is a schematic flow chart of a control method of an air-conditioning air-cooling unit of the present invention
  • FIG. 2 is a schematic flow chart of a control method of an air-conditioning air-cooling unit according to an embodiment of the present invention
  • FIG. 4 is a fragmentation table of exhaust pressure of a compressor according to an embodiment of the present invention.
  • the present invention provides a control method for an air-conditioning air-cooling unit, which is judged by adding a compression ratio to the compressor when adjusting the speed of the fan, thereby avoiding If the compression ratio of the compressor is too large or too small, the "surge phenomenon" of the compressor will occur, and the compressor will always be in an optimal operating state, which improves the stability of the unit operation and the overall reliability of the unit.
  • FIG. 1 is a flow chart showing the control method of the air-conditioning air-cooling unit of the present invention.
  • the present invention provides a control method for an air-conditioning air-cooling unit, wherein the air-cooling unit includes a fan and a compressor connected to the fan, and the control method comprises the following steps: S1: operating in the air-cooling unit In the state, the intake pressure and the exhaust pressure of the compressor are detected; S2: calculating the compression ratio of the compressor; and S3: adjusting the rotational speed of the fan according to the exhaust pressure and the compression ratio.
  • the present invention also provides an air conditioner comprising the air-cooling unit described above, and further comprising a controller, an intake pressure signal and an exhaust pressure of the compressor detected in the air-cooling unit The signal is first fed back to the controller, and then the controller controls the fan for speed adjustment.
  • the exhaust pressure and the compression ratio of the compressor change each time the speed of the fan is increased/decreased, and the intake pressure and the exhaust pressure of the compressor can be detected in real time, and the compression of the compressor can be calculated. In order to achieve real-time adjustment of the fan speed as the compressor discharge pressure and compression ratio change.
  • the step of “adjusting the rotational speed of the fan according to the exhaust pressure and the compression ratio” in the above step S3 further includes: S31: determining whether the exhaust pressure is less than or equal to the first preset pressure; S32: if the exhaust pressure is less than or Equal to the first preset pressure, the fan is operated at the first preset speed; S33: if the exhaust pressure is greater than the first preset pressure, the speed of the fan is adjusted according to the compression ratio. That is to say, according to the setting of the first preset pressure, it can be preliminarily given the conclusion that the fan is operated at the first preset rotational speed or needs further judgment.
  • the first preset speed may be the minimum speed of the fan (the minimum speed of the fan may be determined according to the characteristics of the unit), that is, when the compressor is under a low load condition (when the compressor discharge pressure is low), the fan The minimum speed is used for operation.
  • the first preset speed is not limited to the minimum speed of the fan, and may be other speeds.
  • the fan can be optimized for speed adjustment and the stability of the unit can be improved.
  • the first preset pressure therein can be flexibly adjusted and set according to the actual situation, as long as the boundary point determined by the first preset pressure is satisfied, the fan can be optimized for the speed adjustment and the stability of the unit can be improved.
  • the speed control scheme of the fan in the air-cooled unit is optimal. That is, when the exhaust pressure of the compressor is less than or equal to the minimum exhaust pressure of the compressor, the fan is operated at the first preset speed; when the exhaust pressure of the compressor is greater than the minimum exhaust pressure of the compressor, further Determine how the fan is regulated.
  • the first preset pressure is not limited to the minimum exhaust pressure of the compressor, and may be other pressure values, such as experimental pressure values obtained by a person skilled in the art according to experiments under specific working conditions, or empirically The empirical pressure value.
  • the step of adjusting the rotational speed of the fan according to the compression ratio further includes: S34: determining whether the exhaust pressure is less than or equal to the second preset pressure; S35 If the exhaust pressure is less than or equal to the second preset pressure, the speed of the fan is reduced/maintained according to the compression ratio; S36: if the exhaust pressure is greater than the second preset pressure, the speed of the fan is increased/maintained according to the compression ratio.
  • S34 determining whether the exhaust pressure is less than or equal to the second preset pressure
  • S35 If the exhaust pressure is less than or equal to the second preset pressure, the speed of the fan is reduced/maintained according to the compression ratio
  • S36 if the exhaust pressure is greater than the second preset pressure, the speed of the fan is increased/maintained according to the compression ratio.
  • the range of the exhaust pressure of the compressor can be further divided by the setting of the second preset pressure.
  • the second preset pressure can be flexibly adjusted and set according to the actual situation.
  • the fan can be optimized for the speed adjustment and the stability of the unit can be improved. After repeated trials, observations, analysis and comparison by the inventors, it is determined that when the second preset pressure is the maximum exhaust pressure of the compressor, the speed control scheme of the fan in the air-cooled unit is optimal.
  • the first preset pressure is not limited to the maximum exhaust pressure of the compressor, and may be other pressure values, such as experimental pressure values obtained by a person skilled in the art according to experiments under specific working conditions, or empirically The empirical pressure value.
  • the exhaust pressure of the compressor can be divided into different ranges, and the fan selects different speed regulation modes in each range, and the manner can It is more conducive to the adjustment of the fan speed.
  • real-time detection and real-time adjustment can avoid the excessive exhaust pressure of the compressor and the compression ratio of the compressor is too large or too small, and improve the stability of the unit while making the air conditioning system The best performance.
  • the minimum exhaust pressure and the maximum exhaust pressure of the compressor may be divided into a plurality of pressure intervals, and each pressure interval corresponds to a different fan speed control strategy, and those skilled in the art may according to different
  • the pressure interval is set to the same/different speed regulation so that the fan can be stably operated at different speeds, avoiding frequent fan speed regulation and improving the stability of the unit.
  • the step of “reducing/maintaining the rotation speed of the fan according to the compression ratio if the exhaust pressure is less than or equal to the second preset pressure” further includes: S40: determining whether the compression ratio is greater than a preset compression ratio; S41 If the compression ratio is greater than the preset compression ratio, the current speed of the fan is maintained unchanged; S42: if the compression ratio is less than or equal to the preset compression ratio, the speed of the fan is decreased.
  • the mechanism of the control mode is: when the exhaust pressure of the compressor is greater than the first preset pressure and less than or equal to the second preset pressure, when the compressor compression ratio is greater than the preset compression ratio, the fan does not need to perform speed regulation.
  • the step of increasing/maintaining the rotational speed of the fan according to the compression ratio further includes: S50: determining whether the compression ratio is greater than a preset compression ratio; S51: If the compression ratio is greater than the preset compression ratio, the fan speed is increased/maintained according to the current speed of the fan; S52: if the compression ratio of the compressor is less than or equal to the preset compression ratio, the current speed of the fan is maintained unchanged.
  • the mechanism of the control mode is: when the exhaust pressure of the compressor is greater than the second preset pressure, the compressor is in a high load operation state, and the fan does not need to be adjusted when the compression ratio of the compressor is less than or equal to the preset compression ratio.
  • Speed when the compression ratio of the compressor is greater than the preset compression ratio, in order to avoid excessive discharge pressure of the compressor and excessive compression ratio of the compressor, it is necessary to increase the rotation speed of the fan to reduce the discharge pressure of the compressor and the compression of the compressor. Therefore, the compressor can be operated stably, and the "surge phenomenon" occurs when the exhaust pressure of the compressor is too large, and the power consumption of the unit is too large and the compression ratio of the compressor is too large.
  • the preset compression ratio can be flexibly adjusted and set according to actual conditions. As long as the demarcation point determined by the preset compression ratio is satisfied, the fan can be optimized for speed adjustment and the stability of the unit can be improved.
  • the preset compression ratio is a parameter value set according to a refrigerant characteristic and a unit characteristic of the air conditioner. In practical applications, the preset compression ratio may be the same value in steps S35 and S36, or may be different values, and the specific values may be obtained by a person skilled in the art according to experiments or experience.
  • the step of increasing/maintaining the rotation speed of the fan according to the current rotation speed of the fan further includes: S60: determining whether the current rotation speed of the fan is equal to the second preset rotation speed; S61 If the current speed of the fan is equal to the second preset speed, the current speed of the fan is maintained unchanged; S62: if the current speed of the fan is not equal to the second preset speed, the speed of the fan is increased.
  • the second preset speed may be the maximum speed of the fan (the maximum speed of the fan may be determined according to the characteristics of the unit), that is, when the compressor is under high load conditions (at this time, the exhaust pressure of the compressor is higher), when When the compression ratio is less than the preset compression ratio, it is necessary to judge whether the fan is at the maximum speed. If the fan is at the highest speed, the speed of the fan does not need to be changed. If the fan is not at the maximum speed, the fan needs to further increase the speed to achieve compression of the compressor. The ratio is rapidly reduced, and the "surge phenomenon" occurs when the compression ratio of the compressor is too large.
  • the second preset speed is not limited to the maximum speed of the fan, and may be other speeds. As long as the boundary point determined by the second preset speed is satisfied, the fan can be optimized for speed adjustment and the stability of the unit can be improved.
  • the fan is maintained at the current speed and the preset speed is operated, and then the speed of the fan is adjusted. That is to say, when it is necessary to increase/decrease the speed of the fan, the fan is controlled to operate at the current speed for a period of time before controlling the fan to increase/decrease the speed.
  • This control mode can further improve the stability of the unit operation and reduce the unit's operation.
  • the shock allows the unit to operate in an optimal state.
  • the preset time can be flexibly adjusted and set according to the actual situation. As long as the demarcation point determined by the preset time is satisfied, the fan can be optimized for the speed adjustment and the stability of the unit can be improved.
  • the initial rotational speed of the fan start is determined according to the ambient temperature before the "detecting the intake pressure and the exhaust pressure of the compressor" in the aforementioned step S1.
  • the fan can be located at a reasonable initial speed of the speed regulation when it is turned on.
  • the ambient temperature is divided into several ranges, and each different ambient temperature range corresponds to an initial rotational speed of a different fan.
  • the higher the ambient temperature the corresponding fan The higher the starting speed.
  • it can also be judged whether the exhaust pressure of the compressor is greater than the starting pressure of the fan, and the fan will start when the exhaust pressure of the compressor is greater than the starting pressure of the fan.
  • FIG. 2 is a schematic flow chart of a control method of an air-conditioning air-cooling unit according to an embodiment of the present invention. As shown in FIG. 2, the control method includes the following steps:
  • Vs is equal to the maximum speed Vn of the fan (Vn can be obtained according to the characteristics of the unit);
  • the combination of the ambient temperature, the exhaust pressure of the compressor and the compression ratio of the compressor adjusts the rotational speed of the fan, so that the fan can always operate at an optimal rotational speed, so that the unit is under different working conditions. Both are in an optimal operating state.
  • FIG. 3 is a correspondence table between the ambient temperature and the fan starting speed of the embodiment.
  • the range of the operating environment temperature Ta of the air conditioning and cooling is set to -15 to 50 ° C, first according to the ambient temperature Ta.
  • the fan starting speed V is divided into six gear positions, and the higher the ambient temperature Ta, the higher the fan starting speed V is, the fan starting speed V in each gear position shown in FIG. 3 (ie, the first speed in the table, 2 Speed, 4 speed, 6 speed, 8 speed and 10 speed) represent the gear speed set in the air conditioning system, and do not represent the specific value of the speed.
  • Each gear speed corresponds to the actual speed of a fan.
  • the air conditioner uses R134a refrigerant.
  • the air conditioner starts the cooling operation.
  • the ambient temperature range divided according to FIG. 3 is obtained as the fourth speed of the fan, as shown in FIG.
  • the Pd is determined to be in the range of 0.6 MPa to 0.8 MPa according to the detected exhaust pressure Pd, according to

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

一种空调风冷机组的控制方法及空调,风冷机组包括风机以及与风机相连的压缩机,控制方法包括以下步骤:(S1)在风冷机组运行的状态下,检测压缩机的进气压力和排气压力;(S2)计算压缩机的压缩比;(S3)根据排气压力和压缩比调节/维持风机的转速。

Description

空调风冷机组的控制方法及空调 技术领域
本发明属于空调技术领域,具体提供一种空调风冷机组的控制方法及空调。
背景技术
按照制冷/制热方式进行分类,空调包括单冷式空调和冷热式空调。其中,单冷式空调的工作原理是:首先将室内的热空气吸入到蒸发器内,进入蒸发器内的热空气在制冷剂的汽化作用下降温,降温后的冷空气再由风机重新送入到室内,通过这样的循环达到降低室内环境温度的目的。一般在调节风机的转速时,压缩机的排气压力也会随之变化,压缩机在排气压力过大的情况下,会导致压缩机的负载增加,压缩机长时间处于高负荷工况下会降低机组的稳定性。因此,在调节风机的转速时,必须要兼顾压缩机排气压力的变化。
现有技术中一般根据压缩机的排气压力来自动调节风机的转速,例如公开号为CN104697106A的发明专利公开了一种空调系统压力控制方法。具体而言,该专利的控制方法是在空调运行时,判断压缩机的排气压力是否大于或等于预设压力,若是,则降低风机的转速。通过判断压缩机的排气压力来调节风机转速,可以避免出现因压缩机的排气压力过大而导致压缩机的负载增加以降低机组的可靠性和使用寿命的问题。但是,该专利中在调节风机转速时并没有考虑压缩机的压缩比的变化,但是压缩机的压缩比过大或者过小都会引起压缩机的“喘振现象”,这会使压缩机的吸气和排气均受到一定程度的影响,而且会引起压缩机强烈震动并可能伴有“吼声”,降低了风冷机组的运行稳定性,进而影响到机组整体的可靠性。也就是说,目前在对风机进行转速调节时,无法使风冷机组与空调系统匹配至最佳状态,以及无法保证压缩机处于最优的运行状态。
因此,本领域需要一种新的空调风冷机组的控制方法及相应的空调来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有的空调风冷机组中在对风机进行转速调节时,无法使风冷机组与空调系统匹配至最佳状态,以及无法保证压缩机处于最优的运行状态的问题,本发明提供了一种空调风冷机组的控制方法,该风冷机组包括风机以及与风机相连的压缩机,该控制方法包括以下步骤:在风冷机组运行的状态下,检测压缩机的进气压力和排气压力;计算压缩机的压缩比;根据排气压力和压缩比调节风机的转速。
在上述控制方法的优选技术方案中,“根据排气压力和压缩比调节风机的转速”的步骤进一步包括:判断排气压力是否小于或等于第一预设压力;如果排气压力小于或等于第一预设压力,则风机以第一预设转速运转;如果排气压力大于第一预设压力,则根据压缩比调节风机的转速。
在上述控制方法的优选技术方案中,“如果排气压力大于第一预设压力,则根据压缩比调节风机的转速”的步骤进一步包括:判断排气压力是否小于或等于第二预设压力;如果排气压力小于或等于第二预设压力,则根据压缩比降低/维持风机的转速;如果排气压力大于第二预设压力,则根据压缩比提高/维持风机的转速。
在上述控制方法的优选技术方案中,“如果排气压力小于或等于第二预设压力,则根据压缩比降低/维持风机的转速”的步骤进一步包括:判断压缩比是否大于预设压缩比;如果压缩比大于预设压缩比,则维持风机当前的转速不变;如果压缩比小于或等于预设压缩比,则降低风机的转速。
在上述控制方法的优选技术方案中,“如果排气压力大于第二预设压力,则根据压缩比提高/维持风机的转速”的步骤进一步包括:判断压缩比是否大于预设压缩比;如果压缩比大于预设压缩比,则根据风机当前的转速提高/维持风机的转速;如果压缩比小于或等于预设压缩比,则维持风机当前的转速不变。
在上述控制方法的优选技术方案中,“如果压缩比大于预设压缩比,则根据风机当前的转速提高/维持风机的转速”的步骤进一步包括:判断风机当前的转速是否等于第二预设转速;如果风机当前的转速 等于第二预设转速,则维持风机当前的转速不变;如果风机当前的转速不等于第二预设转速,则将风机的转速提高到所述第二预设转速。
在上述控制方法的优选技术方案中,所述第一预设压力为所述压缩机的最小排气压力;并且/或者所述第二预设压力为所述压缩机的最大排气压力;并且/或者所述第一预设转速为所述风机的最小转速;并且/或者所述第二预设转速为所述风机的最大转速。
在上述控制方法的优选技术方案中,在需要调节风机的转速的情形下,所述控制方法先使风机维持当前的转速并运行预设时间之后,再调节风机的转速。
在上述控制方法的优选技术方案中,在“检测压缩机的进气压力和排气压力”的步骤之前,上述控制方法还包括:获取环境温度;根据环境温度确定风机启动的初始转速。
在另一方面,本发明还提供一种空调,该空调包括风冷机组,该空调还包括控制器,该控制器用于执行上述任一项所述的控制方法。
本领域技术人员能够理解的是,在本发明的优选技术方案中,先通过判断环境温度来确定风机开启时的初始转速,然后在机组运行时检测压缩机的吸气压力和排气压力,并计算得到压缩机的压缩比,根据压缩机的排气压力和压缩比调节风机的转速,与现有的单独根据压缩机的排气压力来调节风机的转速的技术方案相比,本发明不仅可以通过检测压缩机的排气压力来防止压缩机负载增加的情况,还能够通过判断压缩机的压缩比变化来调节风机的转速,避免出现压缩机的压缩比过大或者过小而导致压缩机发生“喘振现象”,使压缩机始终能够处于最优的工况下,提高了机组运行的稳定性和机组整体的可靠性,即空调风冷机组中在对风机进行转速调节时风冷机组始终能够与空调系统匹配至最佳状态,并保证压缩机始终处于最优的运行状态,从而使空调系统的性能最佳。
进一步地,经过发明人反复试验、观测、分析和比较,通过压缩机的最小排气压力和最大排气压力将压缩机的排气压力的判断范围进行划分更有利于风机转速的调节并提高机组的稳定性,即风机的转速调节可以先根据压缩机的排气压力的范围进行初始划分。在压缩机的排气压力小于或等于压缩机的最小排气压力时,此时风机以第一预设转速(例如风机的最小转速)运转;在压缩机的排气压力大于压缩机的最小 排气压力且小于或等于压缩机的最大排气压力时,此时需要结合压缩机的压缩比的判断来降低/维持风机当前的转速;在压缩机的排气压力大于压缩机的最大排气压力时,此时需要结合压缩机的压缩比的判断来提高/维持风机当前的转速。通过上述控制方法,可以避免出现压缩机的排气压力过大以及压缩机的压缩比过大或者过小的情况,在提高机组的稳定性的同时使空调系统的性能最佳。
更进一步地,在每次需要调节风机的转速之前,先控制风机在当前的转速下稳定运行一段时间后再控制风机提高/降低转速,该控制方式能够进一步提高机组运行的稳定性,减少机组的震荡,使机组能够在最优的状态下运行。
附图说明
图1是本发明的空调风冷机组的控制方法的流程示意图;
图2是本发明一种实施例的空调风冷机组的控制方法的流程示意图;
图3是本发明一种实施例的环境温度与风机启动转速的对应表;
图4是本发明一种实施例的压缩机的排气压力的分段表。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
鉴于背景技术提出的现有的空调风冷机组中在对风机进行转速调节时,由于存在“无法使风冷机组与空调系统匹配至最佳状态,以及无法保证压缩机处于最优的运行状态”的问题而使空调系统的性能无法实现最佳化,本发明提供了一种空调风冷机组的控制方法,在对风机进行转速调节时通过加入对压缩机的压缩比的判断,从而避免出现由于压缩机的压缩比过大或者过小而导致压缩机发生的“喘振现象”,进而使压缩机始终能够处于最优的运行状态,提高了机组运行的稳定性和机组整体的可靠性。
参见图1,图1是本发明的空调风冷机组的控制方法的流程示意图。如图1所示,本发明提供了一种空调风冷机组的控制方法,其中,风冷机组包括风机以及与风机相连的压缩机,该控制方法包括以下步骤:S1:在风冷机组运行的状态下,检测压缩机的进气压力与排气压力;S2:计算压缩机的压缩比;S3:根据排气压力和压缩比调节风机的转速。在另一方面,本发明还提供了一种空调,该空调包括上述的风冷机组,此外,该空调还包括控制器,风冷机组中检测到的压缩机的吸气压力信号和排气压力信号先反馈给控制器,再由控制器控制风机进行转速调节。在本发明中,每次风机的转速提高/降低后,压缩机的排气压力和压缩比均会发生变化,可以通过实时检测压缩机的进气压力和排气压力,并计算压缩机的压缩比,以实现随着压缩机的排气压力和压缩比的变化实时调节风机的转速。通过调节风机的转速,可以避免出现压缩机的排气压力过高以及压缩机的压缩比过大或者过小的情况,使风机能够在最优的转速下运行,并且使机组在不同的工况下都能够处于最优的运行状态,提高了机组运行的稳定性和机组整体的可靠性。
优选地,上述步骤S3中“根据排气压力和压缩比实时调节风机的转速”的步骤进一步包括:S31:判断排气压力是否小于或等于第一预设压力;S32:如果排气压力小于或等于第一预设压力,则风机以第一预设转速运转;S33:如果排气压力大于第一预设压力,则根据压缩比调节风机的转速。也就是说,根据第一预设压力的设定,可以初步给出风机以第一预设转速运转还是需要进一步判断的结论。其中的第一预设转速可以为风机的最低转速(风机的最低转速可以根据机组特性确定),即在压缩机处于低负荷的工况下(压缩机的排气压力较低时),风机以最低转速进行运转。当然,上述的第一预设转速不限于风机的最低转速,还可以为其他转速,只要满足由第一预设转速确定的分界点能够优化风机进行转速调节并提高机组的稳定性即可。同样地,其中的第一预设压力可以根据实际的情况灵活地调整和设定,只要满足由第一预设压力确定的分界点能够优化风机进行转速调节并提高机组的稳定性即可。经过发明人反复试验、观测、分析和比较,确定当第一预设压力为压缩机的最小排气压力时,风冷机组中风机的调速方案最优。即在压缩机的排气压力小于或等于压缩机的最小排气压力时,此时风机以第一预设转速运转;在压缩机的排气压力大于压缩机的最小排气压力时,需要进一步判 断风机如何进行调速。当然,上述的第一预设压力不限于压缩机的最小排气压力,还可以为其它压力值,例如本领域技术人员在特定工况下根据实验得出的实验压力值,或者根据经验得出的经验压力值。
优选地,上述步骤S33中“如果排气压力大于第一预设压力,则根据压缩比调节风机的转速”的步骤进一步包括:S34:判断排气压力是否小于或等于第二预设压力;S35:如果排气压力小于或等于第二预设压力,则根据压缩比降低/维持风机的转速;S36:如果排气压力大于第二预设压力,则根据压缩比提高/维持风机的转速。与第一预设压力类似地,通过第二预设压力的设定可以进一步划分压缩机的排气压力的范围。其中的第二预设压力可以根据实际的情况灵活地调整和设定,只要满足由第二预设压力确定的分界点能够优化风机进行转速调节并提高机组的稳定性即可。经过发明人反复试验、观测、分析和比较,确定当第二预设压力为压缩机的最大排气压力时,风冷机组中风机的调速方案最优。即在压缩机的排气压力大于压缩机的最小排气压力且小于或等于压缩机的最大排气压力时,此时需要结合压缩机的压缩比的判断来降低/维持风机当前的转速;在压缩机的排气压力大于压缩机的最大排气压力时,此时需要结合压缩机的压缩比的判断来提高/维持风机当前的转速。当然,上述的第一预设压力不限于压缩机的最大排气压力,还可以为其它压力值,例如本领域技术人员在特定工况下根据实验得出的实验压力值,或者根据经验得出的经验压力值。
通过上述中第一预设压力和第二预设压力的设定,可以将压缩机的排气压力划分在不同的范围内,在每个范围内风机选择不同的调速方式,此种方式能够更加利于风机转速的调节,同时通过实时检测和实时调节能够避免出现压缩机的排气压力过大以及压缩机的压缩比过大或者过小的情况,在提高机组的稳定性的同时使空调系统的性能最佳。以第一预设压力为压缩机的最小排气压力、第二预设压力为压缩机的最大排气压力为例,当压缩机的排气压力在大于最小排气压力且小于或等于最大排气压力的情形下,还可以将压缩机的最小排气压力和最大排气压力之间划分为多个压力区间,每个压力区间对应不同的风机调速策略,本领域技术人员可以根据不同的压力区间设定相同/不同的调速力度从而使风机可以在不同的转速下均可以稳定运转,避免风机出现频繁调速的现象,提高机组的稳定性。
优选地,上述步骤35中“如果排气压力小于或等于第二预设压力,则根据压缩比降低/维持风机的转速”的步骤进一步包括:S40:判断压缩比是否大于预设压缩比;S41:如果压缩比大于预设压缩比,则维持风机当前的转速不变;S42:如果压缩比小于或等于预设压缩比,则降低风机的转速。该控制方式的机理是:在压缩机的排气压力大于第一预设压力且小于或等于第二预设压力时,当压缩机的压缩比大于预设压缩比时风机无需进行调速,当压缩机的压缩比小于或等于预设压缩比时为了避免压缩机的压缩比过小,需要降低风机的转速以提高压缩机的压缩比,从而使压缩机可以稳定地运行,避免压缩机的压缩比过小而发生“喘振现象”。
优选地,上述步骤S36中“如果排气压力大于第二预设压力,则根据压缩比提高/维持风机的转速”的步骤进一步包括:S50:判断压缩比是否大于预设压缩比;S51:如果压缩比大于预设压缩比,则根据风机当前的转速提高/维持风机的转速;S52:如果压缩机的压缩比小于或等于预设压缩比,则维持风机当前的转速不变。该控制方式的机理是:在压缩机的排气压力大于第二预设压力时,此时压缩机处于高负荷运转状态,当压缩机的压缩比小于或等于预设压缩比时风机无需进行调速,当压缩机的压缩比大于预设压缩比时为了避免压缩机的排气压力过大和压缩机的压缩比过大,需要提高风机的转速以降低压缩机的排气压力和压缩机的压缩比,从而使压缩机可以稳定地运行,避免压缩机的排气压力过大而导致机组功耗过大和压缩机的压缩比过大而发生“喘振现象”。
上述预设压缩比可以根据实际的情况灵活地调整和设定,只要满足由预设压缩比确定的分界点能够优化风机进行转速调节并提高机组的稳定性即可。在一种可能的实施方式中,该预设压缩比为根据空调的冷媒特性和机组特性而设定的参数值。在实际应用中,该预设压缩比在步骤S35和S36中可以为相同的数值,也可以为不同的数值,并且具体取值可以由本领域技术人员根据实验或者经验得出。
此外,上述步骤S51中“如果压缩比大于预设压缩比,则根据风机当前的转速提高/维持风机的转速”的步骤进一步包括:S60:判断风机当前的转速是否等于第二预设转速;S61:如果风机当前的转速等于第二预设转速,则维持风机当前的转速不变;S62:如果风机当前的转速不等于第二预设转速,则提高风机的转速。其中的第二预设转速可以为 风机的最高转速(风机的最高转速可以根据机组特性确定),即在压缩机处于高负荷的工况下(此时压缩机的排气压力较高),当压缩比小于预设压缩比时需要判断此时风机是否处于最高转速,若风机处于最高转速,则风机的转速无需改变,若风机不处于最高转速,则风机需要进一步提高转速以实现压缩机的压缩比的快速降低,避免压缩机的压缩比过大而发生“喘振现象”。当然,上述的第二预设转速不限于风机的最高转速,还可以为其他转速,只要满足由第二预设转速确定的分界点能够优化风机进行转速调节并提高机组的稳定性即可。
优选地,在需要调节风机的转速的情形下,先使风机维持当前的转速并运行预设时间之后,再调节风机的转速。也就是说,在需要提高/降低风机的转速时,先控制风机在当前的转速下稳定运行一段时间后再控制风机提高/降低转速,该控制方式能够进一步提高机组运行的稳定性,减少机组的震荡,使机组能够在最优的状态下运行。其中的预设时间可以根据实际的情况灵活地调整和设定,只要满足由预设时间确定的分界点能够优化风机进行转速调节并提高机组的稳定性即可。
优选地,在前述步骤S1中的“检测压缩机的进气压力与排气压力”之前,根据环境温度确定风机启动的初始转速。通过环境温度的判断,可以使风机在开启时即可以位于合理的调速初始开度。在一种可能的实施方式中,将环境温度划分为几个范围,每个不同的环境温度范围内对应不同的风机的初始转速,在一般情况下,环境温度越高,与其相对应的风机的启动转速越高。此外,在判断环境温度时,还可以判断压缩机的排气压力是否大于风机的启动压力,当压缩机的排气压力大于风机的启动压力时风机才会启动。
参见图2,图2是本发明一种实施例的空调风冷机组的控制方法的流程示意图,如图2所示,该控制方法包括以下步骤:
S000:在风冷机组运行的状态下,根据环境温度Ta确定风机开启的初始转速V;
S050:开启风机;
S100:实时检测压缩机的进气压力Ps与排气压力Pd;
S200:计算压缩机的压缩比△P=Pd/Ps;
S300:判断Pd是否小于或等于压缩机的最小排气压力P1(P1可以根据机组的特性得到);
S310:如果Pd≤P1,则风机以风机的最小转速V1(V1可以根据机组的特性得到)运转;
S320:如果Pd>P1,则继续判断Pd是否小于或等于压缩机的最大排气压力Pn(与P1同理,Pn可以根据机组的特性得到);
S400:如果Pd≤Pn,则进一步判断△P是否大于风机调速的设定压缩比△P’(△P’可以根据冷媒特性和机组特性设定);
S410:如果△P>△P’,则维持风机当前的转速Vs(Vs为风机的实时转速);
S420:如果△P≤△P’,则降低风机当前的转速Vs,并且在降低Vs后重复步骤S30;
S500:如果Pd>Pn,则进一步判断△P是否大于风机调速的设定压比△P’;
S510:如果△P≤△P’,则维持风机当前的转速Vs;
S520:如果△P>△P’,则进一步判断Vs是否等于风机的最大转速Vn(Vn可以根据机组的特性得到);
S600:如果Vs=Vn,则维持风机当前的转速Vs;
S610:如果Vs≠Vn,则提高风机当前的转速Vs,并且在提高Vs后重复步骤S30。
在本发明的上述实施例中,通过环境温度、压缩机的排气压力和压缩机的压缩比组合调节风机的转速,能够使风机始终处于最优的转速下运行,使机组在不同工况下均能够处于最优的运行状态。
下面结合一个具体实施例来详细阐述本发明的技术方案。
参见图3,图3是该实施例的环境温度与风机启动转速的对应表,如图3所示,空调制冷的运转环境温度Ta的范围设定为-15至50℃,首先根据环境温度Ta将风机启动转速V划分为6个档位,且环境温度Ta越高,对应的风机启动转速V越高,图3中所示各个档位中的风机启动转速V(即表中1速、2速、4速、6速、8速和10速)代表的是空调系统中设定的档位转速,而不代表转速的具体数值,每个档位转速对应一个风机的实际转速。
参见图4,图4是该实施例的压缩机的排气压力的分段表,如图4所示,在风机开启后,根据压缩机的排气压力将其划分为6个分档调节区间,其中压缩机的最小排气压力P1=0.6MPa,压缩机的最大排 气压力Pn=1.4MPa。根据冷媒特性和机组特性设定△P’=3,风机的调速间隔时间为15s(即风机在每次调节速度之前先稳定运行15s后再进行调速)。
在一种可能的情形中,空调选用R134a制冷剂,当环境温度为18℃,回水温度为15℃时空调启动制冷运行,此时检测压缩机的吸气压力Ps=0.235MPa,排气压力Pd=0.697MPa。如图3所示,根据图3划分的环境温度范围得到风机的启动转速为4速,如图4所示,根据检测到的排气压力Pd判定Pd在0.6MPa至0.8MPa的范围内,根据检测到的压缩机的吸气压力Ps和排气压力Pd计算压缩机的压缩比△P=Pd/Ps=2.96(保留小数点后两位),判断△P<△P’,则风机应该减速,风机在稳定运行15s后由4速下降至3速(即风机的转速下降1档),由于风机的转速降低,导致压缩机的吸气压力和排气压力发生变化,再次检测得到压缩机的吸气压力Ps=0.232MPa,排气压力Pd=0.768MPa,根据检测到的排气压力Pd判定Pd仍然在0.6MPa至0.8MPa的范围内,并计算得到△P=3.30(保留小数点后两位),则风机无需改变转速,风机维持当前的3速稳定运行。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种空调风冷机组的控制方法,所述风冷机组包括风机以及与所述风机相连的压缩机,其特征在于,所述控制方法包括以下步骤:
    在所述风冷机组运行的状态下,检测所述压缩机的进气压力和排气压力;
    计算所述压缩机的压缩比;
    根据所述排气压力和所述压缩比调节所述风机的转速。
  2. 根据权利要求1所述的控制方法,其特征在于,“根据所述排气压力和所述压缩比调节所述风机的转速”的步骤进一步包括:
    判断所述排气压力是否小于或等于第一预设压力;
    如果所述排气压力小于或等于所述第一预设压力,则所述风机以第一预设转速运转;
    如果所述排气压力大于所述第一预设压力,则根据所述压缩比调节所述风机的转速。
  3. 根据权利要求2所述的控制方法,其特征在于,“如果所述排气压力大于所述第一预设压力,则根据所述压缩比调节所述风机的转速”的步骤进一步包括:
    判断所述排气压力是否小于或等于第二预设压力;
    如果所述排气压力小于或等于所述第二预设压力,则根据所述压缩比降低/维持所述风机的转速;
    如果所述排气压力大于所述第二预设压力,则根据所述压缩比提高/维持所述风机的转速。
  4. 根据权利要求3所述的控制方法,其特征在于,“如果所述排气压力小于或等于所述第二预设压力,则根据所述压缩比降低/维持所述风机的转速”的步骤进一步包括:
    判断所述压缩比是否大于预设压缩比;
    如果所述压缩比大于所述预设压缩比,则维持所述风机当前的转速不变;
    如果所述压缩比小于或等于所述预设压缩比,则降低所述风机的转速。
  5. 根据权利要求3所述的控制方法,其特征在于,“如果所述排气压力大于所述第二预设压力,则根据所述压缩比提高/维持所述风机的转速”的步骤进一步包括:
    判断所述压缩比是否大于所述预设压缩比;
    如果所述压缩比大于所述预设压缩比,则根据所述风机当前的转速提高/维持所述风机的转速;
    如果所述压缩比小于或等于所述预设压缩比,则维持所述风机当前的转速不变。
  6. 根据权利要求5所述的控制方法,其特征在于,“如果所述压缩比大于所述预设压缩比,则根据所述风机当前的转速提高/维持所述风机的转速”的步骤进一步包括:
    判断所述风机当前的转速是否等于第二预设转速;
    如果所述风机当前的转速等于所述第二预设转速,则维持所述风机当前的转速不变;
    如果所述风机当前的转速不等于所述第二预设转速,则将所述风机的转速提高到所述第二预设转速。
  7. 根据权利要求6所述的控制方法,其特征在于,所述第一预设压力为所述压缩机的最小排气压力;并且/或者所述第二预设压力为所述压缩机的最大排气压力;并且/或者所述第一预设转速为所述风机的最小转速;并且/或者所述第二预设转速为所述风机的最大转速。
  8. 根据权利要求1至7中任一项所述的控制方法,其特征在于,在需要调节所述风机的转速的情形下,所述控制方法先使所述风机维持当前的转速并运行预设时间之后,再调节所述风机的转速。
  9. 根据权利要求1至7中任一项所述的控制方法,其特征在于,在“检测所述压缩机的进气压力和排气压力”的步骤之前,所述控制方法还包 括:
    获取环境温度;
    根据所述环境温度确定所述风机启动的初始转速。
  10. 一种空调,所述空调包括风冷机组,其特征在于,所述空调还包括控制器,所述控制器用于执行权利要求1至9中任一项所述的控制方法。
PCT/CN2018/081634 2017-06-06 2018-04-02 空调风冷机组的控制方法及空调 WO2018223759A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710420006.8A CN107131614B (zh) 2017-06-06 2017-06-06 空调风冷机组的控制方法及空调
CN201710420006.8 2017-06-06

Publications (1)

Publication Number Publication Date
WO2018223759A1 true WO2018223759A1 (zh) 2018-12-13

Family

ID=59735058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081634 WO2018223759A1 (zh) 2017-06-06 2018-04-02 空调风冷机组的控制方法及空调

Country Status (2)

Country Link
CN (1) CN107131614B (zh)
WO (1) WO2018223759A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107062563B (zh) * 2017-06-06 2021-04-20 青岛海尔空调电子有限公司 空调风冷机组的控制方法及空调
CN107131614B (zh) * 2017-06-06 2021-04-20 青岛海尔空调电子有限公司 空调风冷机组的控制方法及空调
CN108344115B (zh) * 2018-02-07 2020-10-20 广东美的暖通设备有限公司 风冷机组的控制方法、风冷机组及存储介质
CN110006139B (zh) * 2019-03-04 2021-12-28 青岛海尔空调电子有限公司 用于风冷磁悬浮机组的控制方法
CN110006140A (zh) * 2019-03-04 2019-07-12 青岛海尔空调电子有限公司 用于风冷磁悬浮机组的控制方法和风冷磁悬浮机组
CN111750481B (zh) * 2019-03-27 2022-06-07 日立江森自控空调有限公司 一种空调控制方法和空调系统
CN110332742A (zh) * 2019-07-08 2019-10-15 广东Tcl智能暖通设备有限公司 热水装置及热泵系统控制方法、热泵系统控制装置
CN112856856B (zh) * 2020-05-22 2023-02-28 青岛海尔新能源电器有限公司 一种热泵机组控制方法及热泵机组
CN112628895B (zh) * 2020-12-28 2022-10-28 青岛海尔空调电子有限公司 直膨式空调机组及其控制方法
CN112815489A (zh) * 2021-01-19 2021-05-18 珠海格力电器股份有限公司 风冷冷水机组的控制方法、装置及风冷冷水机组
CN113639396A (zh) * 2021-08-23 2021-11-12 青岛海尔空调电子有限公司 用于空调系统的控制方法
CN116222073A (zh) * 2023-01-09 2023-06-06 海信冰箱有限公司 一种电子变频冷柜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2921802A1 (en) * 2014-03-18 2015-09-23 Samsung Electronics Co., Ltd. Air conditioner and method for controlling the same
CN105333563A (zh) * 2014-07-29 2016-02-17 海信(山东)空调有限公司 一种制冷控制方法、装置及空调器
US20160216025A1 (en) * 2011-02-11 2016-07-28 Johnson Controls Technology Company Hvac unit with hot gas reheat
CN106500241A (zh) * 2016-10-10 2017-03-15 芜湖美智空调设备有限公司 空调器的停机控制方法及装置和空调器
CN107131614A (zh) * 2017-06-06 2017-09-05 青岛海尔空调电子有限公司 空调风冷机组的控制方法及空调

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160216025A1 (en) * 2011-02-11 2016-07-28 Johnson Controls Technology Company Hvac unit with hot gas reheat
EP2921802A1 (en) * 2014-03-18 2015-09-23 Samsung Electronics Co., Ltd. Air conditioner and method for controlling the same
CN105333563A (zh) * 2014-07-29 2016-02-17 海信(山东)空调有限公司 一种制冷控制方法、装置及空调器
CN106500241A (zh) * 2016-10-10 2017-03-15 芜湖美智空调设备有限公司 空调器的停机控制方法及装置和空调器
CN107131614A (zh) * 2017-06-06 2017-09-05 青岛海尔空调电子有限公司 空调风冷机组的控制方法及空调

Also Published As

Publication number Publication date
CN107131614B (zh) 2021-04-20
CN107131614A (zh) 2017-09-05

Similar Documents

Publication Publication Date Title
WO2018223759A1 (zh) 空调风冷机组的控制方法及空调
WO2018223758A1 (zh) 空调风冷机组的控制方法及空调
CN111692736B (zh) 电子膨胀阀的控制方法及空调系统
EP1862745B1 (en) Air conditioner
CN111780333B (zh) 空调器的控制方法及装置、空调器设备
WO2021135679A1 (zh) 空调外风机的转速控制方法
CN108548269B (zh) 空调的控制方法
CN109855252B (zh) 多联机空调系统的冷媒控制方法
CN109028491B (zh) 一种变频空调压缩机软启动方法、系统及空调器
CN105402845B (zh) 一种空调系统的调节方法
CN109237703B (zh) 用于多联机空调系统的控制方法
CN106091271A (zh) 空调器异音消除方法及装置
CN107143973A (zh) 一种多联机低负荷制冷运行的控制方法
CN110068119B (zh) 一种空调压缩机的动态变频方法及装置
CN108758998B (zh) 空调的控制方法
WO2021169059A1 (zh) 制冷状态下定频空调的控制方法
CN109869873B (zh) 冷凝风机转速控制方法及空调系统
WO2021022766A1 (zh) 用于空调机组的压缩机冷却控制方法
KR101689724B1 (ko) 공기조화기 및 그 제어방법
CN108548304B (zh) 空调的控制方法
CN106288130B (zh) 空调室外机电机的控制方法以及空调器
CN111998446A (zh) 一种飞机地面空调机组及其冷量控制方法
CN111156651B (zh) 补气阀控制方法、压缩机、空调器、存储器及控制器
CN111780371B (zh) 一种空调器的节能控制方法、装置及存储介质
CN213841387U (zh) 变频器冷却系统及空调机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813155

Country of ref document: EP

Kind code of ref document: A1