CN107131614A - 空调风冷机组的控制方法及空调 - Google Patents

空调风冷机组的控制方法及空调 Download PDF

Info

Publication number
CN107131614A
CN107131614A CN201710420006.8A CN201710420006A CN107131614A CN 107131614 A CN107131614 A CN 107131614A CN 201710420006 A CN201710420006 A CN 201710420006A CN 107131614 A CN107131614 A CN 107131614A
Authority
CN
China
Prior art keywords
blower fan
pressure
compression ratio
rotating speed
expulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710420006.8A
Other languages
English (en)
Other versions
CN107131614B (zh
Inventor
谢吉培
赵雷
张捷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Haier Air Conditioning Electric Co Ltd
Haier Smart Home Co Ltd
Original Assignee
Qingdao Haier Air Conditioning Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Haier Air Conditioning Electric Co Ltd filed Critical Qingdao Haier Air Conditioning Electric Co Ltd
Priority to CN201710420006.8A priority Critical patent/CN107131614B/zh
Publication of CN107131614A publication Critical patent/CN107131614A/zh
Priority to PCT/CN2018/081634 priority patent/WO2018223759A1/zh
Application granted granted Critical
Publication of CN107131614B publication Critical patent/CN107131614B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/13Vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures

Abstract

本发明属于空调技术领域,旨在解决现有的空调风冷机组中在对风机进行转速调节时,无法使风冷机组与空调系统匹配至最佳状态,以及无法保证压缩机处于最优运行状态的问题。为此,本发明提供了一种空调风冷机组的控制方法及空调,该风冷机组包括风机以及与风机相连的压缩机,该控制方法包括以下步骤:在风冷机组运行的状态下,检测压缩机的进气压力和排气压力;计算压缩机的压缩比;根据排气压力和压缩比调节/维持风机的转速。本发明能够通过判断压缩机的压缩比变化来调节风机的转速,避免出现压缩机的压缩比过大或者过小而导致压缩机发生“喘振现象”,使压缩机始终处于最优工况,提高了机组运行的稳定性和可靠性。

Description

空调风冷机组的控制方法及空调
技术领域
本发明属于空调技术领域,具体提供一种空调风冷机组的控制方法及空调。
背景技术
按照制冷/制热方式进行分类,空调包括单冷式空调和冷热式空调。其中,单冷式空调的工作原理是:首先将室内的热空气吸入到蒸发器内,进入蒸发器内的热空气在制冷剂的汽化作用下降温,降温后的冷空气再由风机重新送入到室内,通过这样的循环达到降低室内环境温度的目的。一般在调节风机的转速时,压缩机的排气压力也会随之变化,压缩机在排气压力过大的情况下,会导致压缩机的负载增加,压缩机长时间处于高负荷工况下会降低机组的稳定性。因此,在调节风机的转速时,必须要兼顾压缩机排气压力的变化。
现有技术中一般根据压缩机的排气压力来自动调节风机的转速,例如公开号为CN104697106A的发明专利公开了一种空调系统压力控制方法。具体而言,该专利的控制方法是在空调运行时,判断压缩机的排气压力是否大于或等于预设压力,若是,则降低风机的转速。通过判断压缩机的排气压力来调节风机转速,可以避免出现因压缩机的排气压力过大而导致压缩机的负载增加以降低机组的可靠性和使用寿命的问题。但是,该专利中在调节风机转速时并没有考虑压缩机的压缩比的变化,但是压缩机的压缩比过大或者过小都会引起压缩机的“喘振现象”,这会使压缩机的吸气和排气均受到一定程度的影响,而且会引起压缩机强烈震动并可能伴有“吼声”,降低了风冷机组的运行稳定性,进而影响到机组整体的可靠性。也就是说,目前在对风机进行转速调节时,无法使风冷机组与空调系统匹配至最佳状态,以及无法保证压缩机处于最优的运行状态。
因此,本领域需要一种新的空调风冷机组的控制方法及相应的空调来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有的空调风冷机组中在对风机进行转速调节时,无法使风冷机组与空调系统匹配至最佳状态,以及无法保证压缩机处于最优的运行状态的问题,本发明提供了一种空调风冷机组的控制方法,该风冷机组包括风机以及与风机相连的压缩机,该控制方法包括以下步骤:在风冷机组运行的状态下,检测压缩机的进气压力和排气压力;计算压缩机的压缩比;根据排气压力和压缩比调节风机的转速。
在上述控制方法的优选技术方案中,“根据排气压力和压缩比调节风机的转速”的步骤进一步包括:判断排气压力是否小于或等于第一预设压力;如果排气压力小于或等于第一预设压力,则风机以第一预设转速运转;如果排气压力大于第一预设压力,则根据压缩比调节风机的转速。
在上述控制方法的优选技术方案中,“如果排气压力大于第一预设压力,则根据压缩比调节风机的转速”的步骤进一步包括:判断排气压力是否小于或等于第二预设压力;如果排气压力小于或等于第二预设压力,则根据压缩比降低/维持风机的转速;如果排气压力大于第二预设压力,则根据压缩比提高/维持风机的转速。
在上述控制方法的优选技术方案中,“如果排气压力小于或等于第二预设压力,则根据压缩比降低/维持风机的转速”的步骤进一步包括:判断压缩比是否大于预设压缩比;如果压缩比大于预设压缩比,则维持风机当前的转速不变;如果压缩比小于或等于预设压缩比,则降低风机的转速。
在上述控制方法的优选技术方案中,“如果排气压力大于第二预设压力,则根据压缩比提高/维持风机的转速”的步骤进一步包括:判断压缩比是否大于预设压缩比;如果压缩比大于预设压缩比,则根据风机当前的转速提高/维持风机的转速;如果压缩比小于或等于预设压缩比,则维持风机当前的转速不变。
在上述控制方法的优选技术方案中,“如果压缩比大于预设压缩比,则根据风机当前的转速提高/维持风机的转速”的步骤进一步包括:判断风机当前的转速是否等于第二预设转速;如果风机当前的转速等于第二预设转速,则维持风机当前的转速不变;如果风机当前的转速不等于第二预设转速,则将风机的转速提高到所述第二预设转速。
在上述控制方法的优选技术方案中,所述第一预设压力为所述压缩机的最小排气压力;并且/或者所述第二预设压力为所述压缩机的最大排气压力;并且/或者所述第一预设转速为所述风机的最小转速;并且/或者所述第二预设转速为所述风机的最大转速。
在上述控制方法的优选技术方案中,在需要调节风机的转速的情形下,所述控制方法先使风机维持当前的转速并运行预设时间之后,再调节风机的转速。
在上述控制方法的优选技术方案中,在“检测压缩机的进气压力和排气压力”的步骤之前,上述控制方法还包括:获取环境温度;根据环境温度确定风机启动的初始转速。
在另一方面,本发明还提供一种空调,该空调包括风冷机组,该空调还包括控制器,该控制器用于执行上述任一项所述的控制方法。
本领域技术人员能够理解的是,在本发明的优选技术方案中,先通过判断环境温度来确定风机开启时的初始转速,然后在机组运行时检测压缩机的吸气压力和排气压力,并计算得到压缩机的压缩比,根据压缩机的排气压力和压缩比调节风机的转速,与现有的单独根据压缩机的排气压力来调节风机的转速的技术方案相比,本发明不仅可以通过检测压缩机的排气压力来防止压缩机负载增加的情况,还能够通过判断压缩机的压缩比变化来调节风机的转速,避免出现压缩机的压缩比过大或者过小而导致压缩机发生“喘振现象”,使压缩机始终能够处于最优的工况下,提高了机组运行的稳定性和机组整体的可靠性,即空调风冷机组中在对风机进行转速调节时风冷机组始终能够与空调系统匹配至最佳状态,并保证压缩机始终处于最优的运行状态,从而使空调系统的性能最佳。
进一步地,经过发明人反复试验、观测、分析和比较,通过压缩机的最小排气压力和最大排气压力将压缩机的排气压力的判断范围进行划分更有利于风机转速的调节并提高机组的稳定性,即风机的转速调节可以先根据压缩机的排气压力的范围进行初始划分。在压缩机的排气压力小于或等于压缩机的最小排气压力时,此时风机以第一预设转速(例如风机的最小转速)运转;在压缩机的排气压力大于压缩机的最小排气压力且小于或等于压缩机的最大排气压力时,此时需要结合压缩机的压缩比的判断来降低/维持风机当前的转速;在压缩机的排气压力大于压缩机的最大排气压力时,此时需要结合压缩机的压缩比的判断来提高/维持风机当前的转速。通过上述控制方法,可以避免出现压缩机的排气压力过大以及压缩机的压缩比过大或者过小的情况,在提高机组的稳定性的同时使空调系统的性能最佳。
更进一步地,在每次需要调节风机的转速之前,先控制风机在当前的转速下稳定运行一段时间后再控制风机提高/降低转速,该控制方式能够进一步提高机组运行的稳定性,减少机组的震荡,使机组能够在最优的状态下运行。
附图说明
图1是本发明的空调风冷机组的控制方法的流程示意图;
图2是本发明一种实施例的空调风冷机组的控制方法的流程示意图;
图3是本发明一种实施例的环境温度与风机启动转速的对应表;
图4是本发明一种实施例的压缩机的排气压力的分段表。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
鉴于背景技术提出的现有的空调风冷机组中在对风机进行转速调节时,由于存在“无法使风冷机组与空调系统匹配至最佳状态,以及无法保证压缩机处于最优的运行状态”的问题而使空调系统的性能无法实现最佳化,本发明提供了一种空调风冷机组的控制方法,在对风机进行转速调节时通过加入对压缩机的压缩比的判断,从而避免出现由于压缩机的压缩比过大或者过小而导致压缩机发生的“喘振现象”,进而使压缩机始终能够处于最优的运行状态,提高了机组运行的稳定性和机组整体的可靠性。
参见图1,图1是本发明的空调风冷机组的控制方法的流程示意图。如图1所示,本发明提供了一种空调风冷机组的控制方法,其中,风冷机组包括风机以及与风机相连的压缩机,该控制方法包括以下步骤:S1:在风冷机组运行的状态下,检测压缩机的进气压力与排气压力;S2:计算压缩机的压缩比;S3:根据排气压力和压缩比调节风机的转速。在另一方面,本发明还提供了一种空调,该空调包括上述的风冷机组,此外,该空调还包括控制器,风冷机组中检测到的压缩机的吸气压力信号和排气压力信号先反馈给控制器,再由控制器控制风机进行转速调节。在本发明中,每次风机的转速提高/降低后,压缩机的排气压力和压缩比均会发生变化,可以通过实时检测压缩机的进气压力和排气压力,并计算压缩机的压缩比,以实现随着压缩机的排气压力和压缩比的变化实时调节风机的转速。通过调节风机的转速,可以避免出现压缩机的排气压力过高以及压缩机的压缩比过大或者过小的情况,使风机能够在最优的转速下运行,并且使机组在不同的工况下都能够处于最优的运行状态,提高了机组运行的稳定性和机组整体的可靠性。
优选地,上述步骤S3中“根据排气压力和压缩比实时调节风机的转速”的步骤进一步包括:S31:判断排气压力是否小于或等于第一预设压力;S32:如果排气压力小于或等于第一预设压力,则风机以第一预设转速运转;S33:如果排气压力大于第一预设压力,则根据压缩比调节风机的转速。也就是说,根据第一预设压力的设定,可以初步给出风机以第一预设转速运转还是需要进一步判断的结论。其中的第一预设转速可以为风机的最低转速(风机的最低转速可以根据机组特性确定),即在压缩机处于低负荷的工况下(压缩机的排气压力较低时),风机以最低转速进行运转。当然,上述的第一预设转速不限于风机的最低转速,还可以为其他转速,只要满足由第一预设转速确定的分界点能够优化风机进行转速调节并提高机组的稳定性即可。同样地,其中的第一预设压力可以根据实际的情况灵活地调整和设定,只要满足由第一预设压力确定的分界点能够优化风机进行转速调节并提高机组的稳定性即可。经过发明人反复试验、观测、分析和比较,确定当第一预设压力为压缩机的最小排气压力时,风冷机组中风机的调速方案最优。即在压缩机的排气压力小于或等于压缩机的最小排气压力时,此时风机以第一预设转速运转;在压缩机的排气压力大于压缩机的最小排气压力时,需要进一步判断风机如何进行调速。当然,上述的第一预设压力不限于压缩机的最小排气压力,还可以为其它压力值,例如本领域技术人员在特定工况下根据实验得出的实验压力值,或者根据经验得出的经验压力值。
优选地,上述步骤S33中“如果排气压力大于第一预设压力,则根据压缩比调节风机的转速”的步骤进一步包括:S34:判断排气压力是否小于或等于第二预设压力;S35:如果排气压力小于或等于第二预设压力,则根据压缩比降低/维持风机的转速;S36:如果排气压力大于第二预设压力,则根据压缩比提高/维持风机的转速。与第一预设压力类似地,通过第二预设压力的设定可以进一步划分压缩机的排气压力的范围。其中的第二预设压力可以根据实际的情况灵活地调整和设定,只要满足由第二预设压力确定的分界点能够优化风机进行转速调节并提高机组的稳定性即可。经过发明人反复试验、观测、分析和比较,确定当第二预设压力为压缩机的最大排气压力时,风冷机组中风机的调速方案最优。即在压缩机的排气压力大于压缩机的最小排气压力且小于或等于压缩机的最大排气压力时,此时需要结合压缩机的压缩比的判断来降低/维持风机当前的转速;在压缩机的排气压力大于压缩机的最大排气压力时,此时需要结合压缩机的压缩比的判断来提高/维持风机当前的转速。当然,上述的第一预设压力不限于压缩机的最大排气压力,还可以为其它压力值,例如本领域技术人员在特定工况下根据实验得出的实验压力值,或者根据经验得出的经验压力值。
通过上述中第一预设压力和第二预设压力的设定,可以将压缩机的排气压力划分在不同的范围内,在每个范围内风机选择不同的调速方式,此种方式能够更加利于风机转速的调节,同时通过实时检测和实时调节能够避免出现压缩机的排气压力过大以及压缩机的压缩比过大或者过小的情况,在提高机组的稳定性的同时使空调系统的性能最佳。以第一预设压力为压缩机的最小排气压力、第二预设压力为压缩机的最大排气压力为例,当压缩机的排气压力在大于最小排气压力且小于或等于最大排气压力的情形下,还可以将压缩机的最小排气压力和最大排气压力之间划分为多个压力区间,每个压力区间对应不同的风机调速策略,本领域技术人员可以根据不同的压力区间设定相同/不同的调速力度从而使风机可以在不同的转速下均可以稳定运转,避免风机出现频繁调速的现象,提高机组的稳定性。
优选地,上述步骤35中“如果排气压力小于或等于第二预设压力,则根据压缩比降低/维持风机的转速”的步骤进一步包括:S40:判断压缩比是否大于预设压缩比;S41:如果压缩比大于预设压缩比,则维持风机当前的转速不变;S42:如果压缩比小于或等于预设压缩比,则降低风机的转速。该控制方式的机理是:在压缩机的排气压力大于第一预设压力且小于或等于第二预设压力时,当压缩机的压缩比大于预设压缩比时风机无需进行调速,当压缩机的压缩比小于或等于预设压缩比时为了避免压缩机的压缩比过小,需要降低风机的转速以提高压缩机的压缩比,从而使压缩机可以稳定地运行,避免压缩机的压缩比过小而发生“喘振现象”。
优选地,上述步骤S36中“如果排气压力大于第二预设压力,则根据压缩比提高/维持风机的转速”的步骤进一步包括:S50:判断压缩比是否大于预设压缩比;S51:如果压缩比大于预设压缩比,则根据风机当前的转速提高/维持风机的转速;S52:如果压缩机的压缩比小于或等于预设压缩比,则维持风机当前的转速不变。该控制方式的机理是:在压缩机的排气压力大于第二预设压力时,此时压缩机处于高负荷运转状态,当压缩机的压缩比小于或等于预设压缩比时风机无需进行调速,当压缩机的压缩比大于预设压缩比时为了避免压缩机的排气压力过大和压缩机的压缩比过大,需要提高风机的转速以降低压缩机的排气压力和压缩机的压缩比,从而使压缩机可以稳定地运行,避免压缩机的排气压力过大而导致机组功耗过大和压缩机的压缩比过大而发生“喘振现象”。
上述预设压缩比可以根据实际的情况灵活地调整和设定,只要满足由预设压缩比确定的分界点能够优化风机进行转速调节并提高机组的稳定性即可。在一种可能的实施方式中,该预设压缩比为根据空调的冷媒特性和机组特性而设定的参数值。在实际应用中,该预设压缩比在步骤S35和S36中可以为相同的数值,也可以为不同的数值,并且具体取值可以由本领域技术人员根据实验或者经验得出。
此外,上述步骤S51中“如果压缩比大于预设压缩比,则根据风机当前的转速提高/维持风机的转速”的步骤进一步包括:S60:判断风机当前的转速是否等于第二预设转速;S61:如果风机当前的转速等于第二预设转速,则维持风机当前的转速不变;S62:如果风机当前的转速不等于第二预设转速,则提高风机的转速。其中的第二预设转速可以为风机的最高转速(风机的最高转速可以根据机组特性确定),即在压缩机处于高负荷的工况下(此时压缩机的排气压力较高),当压缩比小于预设压缩比时需要判断此时风机是否处于最高转速,若风机处于最高转速,则风机的转速无需改变,若风机不处于最高转速,则风机需要进一步提高转速以实现压缩机的压缩比的快速降低,避免压缩机的压缩比过大而发生“喘振现象”。当然,上述的第二预设转速不限于风机的最高转速,还可以为其他转速,只要满足由第二预设转速确定的分界点能够优化风机进行转速调节并提高机组的稳定性即可。
优选地,在需要调节风机的转速的情形下,先使风机维持当前的转速并运行预设时间之后,再调节风机的转速。也就是说,在需要提高/降低风机的转速时,先控制风机在当前的转速下稳定运行一段时间后再控制风机提高/降低转速,该控制方式能够进一步提高机组运行的稳定性,减少机组的震荡,使机组能够在最优的状态下运行。其中的预设时间可以根据实际的情况灵活地调整和设定,只要满足由预设时间确定的分界点能够优化风机进行转速调节并提高机组的稳定性即可。
优选地,在前述步骤S1中的“检测压缩机的进气压力与排气压力”之前,根据环境温度确定风机启动的初始转速。通过环境温度的判断,可以使风机在开启时即可以位于合理的调速初始开度。在一种可能的实施方式中,将环境温度划分为几个范围,每个不同的环境温度范围内对应不同的风机的初始转速,在一般情况下,环境温度越高,与其相对应的风机的启动转速越高。此外,在判断环境温度时,还可以判断压缩机的排气压力是否大于风机的启动压力,当压缩机的排气压力大于风机的启动压力时风机才会启动。
参见图2,图2是本发明一种实施例的空调风冷机组的控制方法的流程示意图,如图2所示,该控制方法包括以下步骤:
S000:在风冷机组运行的状态下,根据环境温度Ta确定风机开启的初始转速V;
S050:开启风机;
S100:实时检测压缩机的进气压力Ps与排气压力Pd;
S200:计算压缩机的压缩比△P=Pd/Ps;
S300:判断Pd是否小于或等于压缩机的最小排气压力P1(P1可以根据机组的特性得到);
S310:如果Pd≤P1,则风机以风机的最小转速V1(V1可以根据机组的特性得到)运转;
S320:如果Pd>P1,则继续判断Pd是否小于或等于压缩机的最大排气压力Pn(与P1同理,Pn可以根据机组的特性得到);
S400:如果Pd≤Pn,则进一步判断△P是否大于风机调速的设定压缩比△P’(△P’可以根据冷媒特性和机组特性设定);
S410:如果△P>△P’,则维持风机当前的转速Vs(Vs为风机的实时转速);
S420:如果△P≤△P’,则降低风机当前的转速Vs,并且在降低Vs后重复步骤S30;
S500:如果Pd>Pn,则进一步判断△P是否大于风机调速的设定压比△P’;
S510:如果△P≤△P’,则维持风机当前的转速Vs;
S520:如果△P>△P’,则进一步判断Vs是否等于风机的最大转速Vn(Vn可以根据机组的特性得到);
S600:如果Vs=Vn,则维持风机当前的转速Vs;
S610:如果Vs≠Vn,则提高风机当前的转速Vs,并且在提高Vs后重复步骤S30。
在本发明的上述实施例中,通过环境温度、压缩机的排气压力和压缩机的压缩比组合调节风机的转速,能够使风机始终处于最优的转速下运行,使机组在不同工况下均能够处于最优的运行状态。
下面结合一个具体实施例来详细阐述本发明的技术方案。
参见图3,图3是该实施例的环境温度与风机启动转速的对应表,如图3所示,空调制冷的运转环境温度Ta的范围设定为-15至50℃,首先根据环境温度Ta将风机启动转速V划分为6个档位,且环境温度Ta越高,对应的风机启动转速V越高,图3中所示各个档位中的风机启动转速V(即表中1速、2速、4速、6速、8速和10速)代表的是空调系统中设定的档位转速,而不代表转速的具体数值,每个档位转速对应一个风机的实际转速。
参见图4,图4是该实施例的压缩机的排气压力的分段表,如图4所示,在风机开启后,根据压缩机的排气压力将其划分为6个分档调节区间,其中压缩机的最小排气压力P1=0.6MPa,压缩机的最大排气压力Pn=1.4MPa。根据冷媒特性和机组特性设定△P’=3,风机的调速间隔时间为15s(即风机在每次调节速度之前先稳定运行15s后再进行调速)。
在一种可能的情形中,空调选用R134a制冷剂,当环境温度为18℃,回水温度为15℃时空调启动制冷运行,此时检测压缩机的吸气压力Ps=0.235MPa,排气压力Pd=0.697MPa。如图3所示,根据图3划分的环境温度范围得到风机的启动转速为4速,如图4所示,根据检测到的排气压力Pd判定Pd在0.6MPa至0.8MPa的范围内,根据检测到的压缩机的吸气压力Ps和排气压力Pd计算压缩机的压缩比△P=Pd/Ps=2.96(保留小数点后两位),判断△P<△P’,则风机应该减速,风机在稳定运行15s后由4速下降至3速(即风机的转速下降1档),由于风机的转速降低,导致压缩机的吸气压力和排气压力发生变化,再次检测得到压缩机的吸气压力Ps=0.232MPa,排气压力Pd=0.768MPa,根据检测到的排气压力Pd判定Pd仍然在0.6MPa至0.8MPa的范围内,并计算得到△P=3.30(保留小数点后两位),则风机无需改变转速,风机维持当前的3速稳定运行。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

1.一种空调风冷机组的控制方法,所述风冷机组包括风机以及与所述风机相连的压缩机,其特征在于,所述控制方法包括以下步骤:
在所述风冷机组运行的状态下,检测所述压缩机的进气压力和排气压力;
计算所述压缩机的压缩比;
根据所述排气压力和所述压缩比调节所述风机的转速。
2.根据权利要求1所述的控制方法,其特征在于,“根据所述排气压力和所述压缩比调节所述风机的转速”的步骤进一步包括:
判断所述排气压力是否小于或等于第一预设压力;
如果所述排气压力小于或等于所述第一预设压力,则所述风机以第一预设转速运转;
如果所述排气压力大于所述第一预设压力,则根据所述压缩比调节所述风机的转速。
3.根据权利要求2所述的控制方法,其特征在于,“如果所述排气压力大于所述第一预设压力,则根据所述压缩比调节所述风机的转速”的步骤进一步包括:
判断所述排气压力是否小于或等于第二预设压力;
如果所述排气压力小于或等于所述第二预设压力,则根据所述压缩比降低/维持所述风机的转速;
如果所述排气压力大于所述第二预设压力,则根据所述压缩比提高/维持所述风机的转速。
4.根据权利要求3所述的控制方法,其特征在于,“如果所述排气压力小于或等于所述第二预设压力,则根据所述压缩比降低/维持所述风机的转速”的步骤进一步包括:
判断所述压缩比是否大于预设压缩比;
如果所述压缩比大于所述预设压缩比,则维持所述风机当前的转速不变;
如果所述压缩比小于或等于所述预设压缩比,则降低所述风机的转速。
5.根据权利要求3所述的控制方法,其特征在于,“如果所述排气压力大于所述第二预设压力,则根据所述压缩比提高/维持所述风机的转速”的步骤进一步包括:
判断所述压缩比是否大于所述预设压缩比;
如果所述压缩比大于所述预设压缩比,则根据所述风机当前的转速提高/维持所述风机的转速;
如果所述压缩比小于或等于所述预设压缩比,则维持所述风机当前的转速不变。
6.根据权利要求5所述的控制方法,其特征在于,“如果所述压缩比大于所述预设压缩比,则根据所述风机当前的转速提高/维持所述风机的转速”的步骤进一步包括:
判断所述风机当前的转速是否等于第二预设转速;
如果所述风机当前的转速等于所述第二预设转速,则维持所述风机当前的转速不变;
如果所述风机当前的转速不等于所述第二预设转速,则将所述风机的转速提高到所述第二预设转速。
7.根据权利要求6所述的控制方法,其特征在于,所述第一预设压力为所述压缩机的最小排气压力;并且/或者所述第二预设压力为所述压缩机的最大排气压力;并且/或者所述第一预设转速为所述风机的最小转速;并且/或者所述第二预设转速为所述风机的最大转速。
8.根据权利要求1至7中任一项所述的控制方法,其特征在于,在需要调节所述风机的转速的情形下,所述控制方法先使所述风机维持当前的转速并运行预设时间之后,再调节所述风机的转速。
9.根据权利要求1至7中任一项所述的控制方法,其特征在于,在“检测所述压缩机的进气压力和排气压力”的步骤之前,所述控制方法还包括:
获取环境温度;
根据所述环境温度确定所述风机启动的初始转速。
10.一种空调,所述空调包括风冷机组,其特征在于,所述空调还包括控制器,所述控制器用于执行权利要求1至9中任一项所述的控制方法。
CN201710420006.8A 2017-06-06 2017-06-06 空调风冷机组的控制方法及空调 Active CN107131614B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710420006.8A CN107131614B (zh) 2017-06-06 2017-06-06 空调风冷机组的控制方法及空调
PCT/CN2018/081634 WO2018223759A1 (zh) 2017-06-06 2018-04-02 空调风冷机组的控制方法及空调

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710420006.8A CN107131614B (zh) 2017-06-06 2017-06-06 空调风冷机组的控制方法及空调

Publications (2)

Publication Number Publication Date
CN107131614A true CN107131614A (zh) 2017-09-05
CN107131614B CN107131614B (zh) 2021-04-20

Family

ID=59735058

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710420006.8A Active CN107131614B (zh) 2017-06-06 2017-06-06 空调风冷机组的控制方法及空调

Country Status (2)

Country Link
CN (1) CN107131614B (zh)
WO (1) WO2018223759A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108344115A (zh) * 2018-02-07 2018-07-31 广东美的暖通设备有限公司 风冷机组的控制方法、风冷机组及存储介质
WO2018223759A1 (zh) * 2017-06-06 2018-12-13 青岛海尔空调电子有限公司 空调风冷机组的控制方法及空调
WO2018223758A1 (zh) * 2017-06-06 2018-12-13 青岛海尔空调电子有限公司 空调风冷机组的控制方法及空调
CN110006140A (zh) * 2019-03-04 2019-07-12 青岛海尔空调电子有限公司 用于风冷磁悬浮机组的控制方法和风冷磁悬浮机组
CN110006139A (zh) * 2019-03-04 2019-07-12 青岛海尔空调电子有限公司 用于风冷磁悬浮机组的控制方法
CN110332742A (zh) * 2019-07-08 2019-10-15 广东Tcl智能暖通设备有限公司 热水装置及热泵系统控制方法、热泵系统控制装置
CN111750481A (zh) * 2019-03-27 2020-10-09 日立江森自控空调有限公司 一种空调控制方法和空调系统
CN112628895A (zh) * 2020-12-28 2021-04-09 青岛海尔空调电子有限公司 直膨式空调机组及其控制方法
CN112815489A (zh) * 2021-01-19 2021-05-18 珠海格力电器股份有限公司 风冷冷水机组的控制方法、装置及风冷冷水机组
CN112856856A (zh) * 2020-05-22 2021-05-28 青岛海尔新能源电器有限公司 一种热泵机组控制方法及热泵机组
CN113639396A (zh) * 2021-08-23 2021-11-12 青岛海尔空调电子有限公司 用于空调系统的控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2921802A1 (en) * 2014-03-18 2015-09-23 Samsung Electronics Co., Ltd. Air conditioner and method for controlling the same
CN105333563A (zh) * 2014-07-29 2016-02-17 海信(山东)空调有限公司 一种制冷控制方法、装置及空调器
US20160216025A1 (en) * 2011-02-11 2016-07-28 Johnson Controls Technology Company Hvac unit with hot gas reheat
CN106500241A (zh) * 2016-10-10 2017-03-15 芜湖美智空调设备有限公司 空调器的停机控制方法及装置和空调器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107131614B (zh) * 2017-06-06 2021-04-20 青岛海尔空调电子有限公司 空调风冷机组的控制方法及空调

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160216025A1 (en) * 2011-02-11 2016-07-28 Johnson Controls Technology Company Hvac unit with hot gas reheat
EP2921802A1 (en) * 2014-03-18 2015-09-23 Samsung Electronics Co., Ltd. Air conditioner and method for controlling the same
CN105333563A (zh) * 2014-07-29 2016-02-17 海信(山东)空调有限公司 一种制冷控制方法、装置及空调器
CN106500241A (zh) * 2016-10-10 2017-03-15 芜湖美智空调设备有限公司 空调器的停机控制方法及装置和空调器

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018223759A1 (zh) * 2017-06-06 2018-12-13 青岛海尔空调电子有限公司 空调风冷机组的控制方法及空调
WO2018223758A1 (zh) * 2017-06-06 2018-12-13 青岛海尔空调电子有限公司 空调风冷机组的控制方法及空调
CN108344115B (zh) * 2018-02-07 2020-10-20 广东美的暖通设备有限公司 风冷机组的控制方法、风冷机组及存储介质
CN108344115A (zh) * 2018-02-07 2018-07-31 广东美的暖通设备有限公司 风冷机组的控制方法、风冷机组及存储介质
CN110006140A (zh) * 2019-03-04 2019-07-12 青岛海尔空调电子有限公司 用于风冷磁悬浮机组的控制方法和风冷磁悬浮机组
CN110006139A (zh) * 2019-03-04 2019-07-12 青岛海尔空调电子有限公司 用于风冷磁悬浮机组的控制方法
CN110006139B (zh) * 2019-03-04 2021-12-28 青岛海尔空调电子有限公司 用于风冷磁悬浮机组的控制方法
WO2020177308A1 (zh) * 2019-03-04 2020-09-10 青岛海尔空调电子有限公司 用于风冷磁悬浮机组的控制方法
WO2020177309A1 (zh) * 2019-03-04 2020-09-10 青岛海尔空调电子有限公司 用于风冷磁悬浮机组的控制方法和风冷磁悬浮机组
CN111750481A (zh) * 2019-03-27 2020-10-09 日立江森自控空调有限公司 一种空调控制方法和空调系统
CN110332742A (zh) * 2019-07-08 2019-10-15 广东Tcl智能暖通设备有限公司 热水装置及热泵系统控制方法、热泵系统控制装置
CN112856856A (zh) * 2020-05-22 2021-05-28 青岛海尔新能源电器有限公司 一种热泵机组控制方法及热泵机组
CN112856856B (zh) * 2020-05-22 2023-02-28 青岛海尔新能源电器有限公司 一种热泵机组控制方法及热泵机组
CN112628895A (zh) * 2020-12-28 2021-04-09 青岛海尔空调电子有限公司 直膨式空调机组及其控制方法
CN112628895B (zh) * 2020-12-28 2022-10-28 青岛海尔空调电子有限公司 直膨式空调机组及其控制方法
CN112815489A (zh) * 2021-01-19 2021-05-18 珠海格力电器股份有限公司 风冷冷水机组的控制方法、装置及风冷冷水机组
CN113639396A (zh) * 2021-08-23 2021-11-12 青岛海尔空调电子有限公司 用于空调系统的控制方法

Also Published As

Publication number Publication date
CN107131614B (zh) 2021-04-20
WO2018223759A1 (zh) 2018-12-13

Similar Documents

Publication Publication Date Title
CN107131614A (zh) 空调风冷机组的控制方法及空调
CN107062563A (zh) 空调风冷机组的控制方法及空调
EP2313709B1 (en) Chiller with setpoint adjustment
EP1862745B1 (en) Air conditioner
CN106556099B (zh) 多联机空调系统的室内机的电子膨胀阀的控制方法
EP3365618B1 (en) A method for controlling a vapour compression system with a variable receiver pressure setpoint
CN104266307B (zh) 空调的保护方法和空调的保护装置
CN110332664A (zh) 一种空调器控制方法和空调器
CN108375175A (zh) 空调系统控制方法及装置
JP2018531359A6 (ja) 可変のレシーバ圧力設定点を有する蒸気圧縮システムを制御する方法
CN107525217B (zh) 一种空调器控制方法、控制装置及空调器
CN107514731A (zh) 冷水机组的变频风机控制方法及空调器
CN105042763B (zh) 变频磁悬浮离心式中央空调机组正常运行的控制方法
CN102884382A (zh) 热源侧热交换器用风扇的控制方法及空调装置
KR20100121961A (ko) 공기조화기
CN107143973A (zh) 一种多联机低负荷制冷运行的控制方法
CN110887189A (zh) 一种多联机风机转速控制方法、装置、空调器及存储介质
JP2008024288A (ja) 空気流を制御するシステムおよび方法
JPH05322335A (ja) 自動冷却停止シーケンス
CN106152414A (zh) 一拖二空调器控制方法及装置
CN108758998B (zh) 空调的控制方法
CN108548269B (zh) 空调的控制方法
JP2016031173A (ja) 空気調和機
JP2002081391A (ja) 冷凍装置用スクリュ圧縮機
CN106286246A (zh) 一种压缩机系统的控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210225

Address after: 266101 Haier Industrial Park, 1 Haier Road, Laoshan District, Shandong, Qingdao

Applicant after: QINGDAO HAIER AIR CONDITIONER ELECTRIC Co.,Ltd.

Applicant after: Haier Zhijia Co.,Ltd.

Address before: 266101 Haier Industrial Park, 1 Haier Road, Laoshan District, Shandong, Qingdao

Applicant before: QINGDAO HAIER AIR CONDITIONER ELECTRIC Co.,Ltd.

GR01 Patent grant
GR01 Patent grant