WO2021169059A1 - 制冷状态下定频空调的控制方法 - Google Patents

制冷状态下定频空调的控制方法 Download PDF

Info

Publication number
WO2021169059A1
WO2021169059A1 PCT/CN2020/091301 CN2020091301W WO2021169059A1 WO 2021169059 A1 WO2021169059 A1 WO 2021169059A1 CN 2020091301 W CN2020091301 W CN 2020091301W WO 2021169059 A1 WO2021169059 A1 WO 2021169059A1
Authority
WO
WIPO (PCT)
Prior art keywords
superheat
degree
air conditioner
target
actual
Prior art date
Application number
PCT/CN2020/091301
Other languages
English (en)
French (fr)
Inventor
葛龙岭
司跃元
随亚宾
张君慧
任保飞
王贺
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021169059A1 publication Critical patent/WO2021169059A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/75Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity for maintaining constant air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves

Definitions

  • the invention relates to the technical field of air conditioners, in particular to a control method of a fixed frequency air conditioner in a refrigeration state.
  • the compressor operating frequency is basically unchanged.
  • the air conditioner will automatically stop, relying on the constant "on and off” compressor to adjust the indoor temperature.
  • the control method of traditional fixed frequency air conditioner is to control the speed of indoor fan and outdoor fan according to indoor temperature, inner coil temperature and outdoor ambient temperature.
  • the temperature of the air outlet of the fixed-frequency air conditioner is a key factor in determining the comfort of the air conditioner user.
  • the large fluctuation of the rotation speed of the indoor fan causes the wind speed to fluctuate greatly, which reduces the user's comfort.
  • the current fixed-frequency air conditioner control method under the conditions determined by the outdoor unit and the electronic expansion valve, there must be a strict type of the indoor unit to match it, which limits the user's choice.
  • the present invention provides a fixed-frequency air conditioner in a refrigeration state. ⁇ Control methods.
  • the present invention provides a method for controlling a fixed-frequency air conditioner in a refrigeration state, including: obtaining the actual exhaust temperature of a compressor; determining a target superheat based on the actual exhaust temperature; and adjusting the fixed-frequency air conditioner based on the target superheat The flow rate of the intermediate refrigerant.
  • the step of “determining the target superheat degree based on the actual exhaust gas temperature” specifically includes: taking the actual exhaust gas temperature as a search item, and setting the compressor in a preset The target superheat is queried in the correspondence between the exhaust temperature and the target superheat.
  • the correspondence relationship includes a plurality of compressor discharge temperature ranges and a target superheat corresponding to each of the plurality of compressor discharge temperature ranges
  • the step of "inquiring the target superheat in the correspondence between the preset compressor discharge temperature and the target superheat" specifically includes: by comparing the actual discharge temperature with the discharge temperature range of each compressor The end value is compared to determine the compressor discharge temperature range where the actual discharge temperature is located; and the target superheat is determined based on the compressor discharge temperature range where the actual discharge temperature is located.
  • the corresponding relationship is set in the form of a look-up table or a function.
  • the step of “adjusting the flow rate of the refrigerant in the fixed-frequency air conditioner based on the target superheat” specifically includes: calculating the fixed-frequency air conditioner based on the actual exhaust temperature The actual degree of superheat; compare the actual degree of superheat and the target degree of superheat; based on the actual degree of superheat and the target degree of superheat, control the opening of the electronic expansion valve to adjust the refrigerant in the fixed-frequency air conditioner Of traffic.
  • control the opening of the electronic expansion valve based on the actual superheat and the target superheat so as to adjust the flow rate of the refrigerant in the fixed-frequency air conditioner The steps specifically include: if the actual degree of superheat is less than the target degree of superheat, reducing the opening degree of the electronic expansion valve; and/or, if the actual degree of superheat is greater than the target degree of superheat, increasing The opening degree of the electronic expansion valve.
  • the step of "comparing the actual degree of superheat and the target degree of superheat” specifically includes: calculating the difference between the actual degree of superheat and the target degree of superheat.
  • the step of "controlling the opening of the electronic expansion valve based on the actual superheat and the target superheat so as to adjust the flow of refrigerant in the fixed-frequency air conditioner” also includes: based on the actual superheat and the The difference between the target degree of superheat determines the magnitude of the numerical value for reducing/increasing the opening degree of the electronic expansion valve.
  • the fixed frequency air conditioner includes a duct machine, an embedded machine or a cabinet machine, and the corresponding relationship includes an air duct machine, an embedded machine or a cabinet machine.
  • the control method further includes: before determining the target superheat based on the actual exhaust temperature, determining the type of the fixed frequency air conditioner;
  • the step of querying the “target superheat degree” in the correspondence relationship between the compressor discharge temperature and the target superheat degree specifically includes: determining the compressor discharge temperature and the target superheat degree of the fixed-frequency air conditioner that are set in advance. Query the target superheat degree in the corresponding relationship of.
  • the step of "determining the type of the fixed frequency air conditioner” specifically includes: determining the type of the fixed frequency air conditioner according to the detected user input information.
  • the control method of the fixed frequency air conditioner in the refrigeration state determines the target superheat degree based on the acquired actual exhaust temperature of the compressor, and adjusts the flow rate of the refrigerant in the fixed frequency air conditioner based on the target superheat degree. Therefore, it is possible to achieve the purpose of changing the cooling capacity or cooling effect of the air conditioner without adjusting the wind speed of the indoor unit fan, so that the wind speed of the indoor unit can be stably maintained within a user's suitable range. At the same time, the number of repeated shutdowns of the compressor can also be reduced, and the service life of the compressor can be prolonged.
  • the method for controlling the fixed-frequency air conditioner in the refrigeration state also uses the actual exhaust temperature as a retrieval item to query the target superheat in the preset correspondence between the compressor exhaust temperature and the target superheat.
  • This achieves the purpose of determining the target superheat based on the actual exhaust temperature, which provides convenience for adjusting the flow of refrigerant in the fixed-frequency air conditioner based on the target superheat, so as to better realize the cooling wind speed of the indoor unit through this control method. It can be stably maintained in the user's suitable range, and the same outdoor unit can be matched with different types of indoor units.
  • FIG. 1 is a schematic flowchart of a control method of a fixed-frequency air conditioner in a refrigeration state according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a specific implementation manner of step S2 in this embodiment
  • FIG. 3 is a schematic flowchart of a specific implementation of step S3 in this embodiment.
  • the method for controlling a fixed-frequency air conditioner in a refrigeration state includes:
  • the method for controlling the fixed-frequency air conditioner in the refrigeration state determines the target superheat based on the acquired actual exhaust temperature of the compressor, and adjusts the flow of refrigerant in the fixed-frequency air conditioner based on the target superheat. Therefore, it is possible to achieve the purpose of changing the cooling capacity or cooling effect of the air conditioner without adjusting the wind speed of the indoor unit fan, so that the wind speed of the cold air of the indoor unit can be stably maintained within a user's suitable range. At the same time, the number of repeated shutdowns of the compressor can also be reduced, and the service life of the compressor can be prolonged.
  • step S2 specifically includes: taking the actual exhaust temperature as the retrieval item, querying the correspondence between the preset compressor exhaust temperature and the target superheat Target overheating.
  • the control method of the fixed frequency air conditioner in the refrigeration state also uses the actual exhaust temperature as the retrieval item to query the target superheat in the preset correspondence between the compressor exhaust temperature and the target superheat, so as to achieve The purpose of determining the target superheat based on the actual exhaust temperature, which provides convenience for adjusting the flow of refrigerant in the fixed-frequency air conditioner based on the target superheat, so as to better realize that the wind speed of the indoor unit can be stably maintained through this control method Within the user's suitable range, and can match the same outdoor unit with different types of indoor units.
  • the foregoing correspondence relationship includes multiple compressor discharge temperature ranges and a target superheat corresponding to each of the multiple compressor discharge temperature ranges;
  • the step S2 when “inquiring the target superheat degree in the corresponding relationship between the preset compressor discharge temperature and the target superheat degree” in step S2 specifically includes:
  • S22 Determine the target superheat degree based on the compressor discharge temperature range where the actual discharge temperature is located.
  • the correspondence relationship may be set in the form of a lookup table or a function.
  • it can be expressed as a function:
  • a, b, and c are the target superheat degrees corresponding to different compressor discharge temperature ranges.
  • the target superheat degrees can be set to different values, 75 °C and 95°C is the end value of the compressor discharge temperature range (this is only an example, and it is not unique in practice).
  • the step of "adjusting the flow rate of the refrigerant in the fixed-frequency air conditioner based on the target superheat" in step S3 specifically includes:
  • S33 Control the opening degree of the electronic expansion valve based on the actual superheat and the target superheat so as to adjust the flow rate of the refrigerant in the fixed frequency air conditioner.
  • the actual superheat is the actual exhaust superheat of the compressor
  • the step of “controlling the opening of the electronic expansion valve based on the actual superheat and the target superheat in order to adjust the flow of refrigerant in the fixed-frequency air conditioner” in step S33 specifically includes : If the actual degree of superheat is less than the target degree of superheat, reduce the opening degree of the electronic expansion valve, which is essentially to reduce the flow of refrigerant, that is, reduce the cooling capacity of the fixed-frequency air conditioner; and/or, if the actual degree of superheat is greater than the target degree of superheat The degree of heat increases the opening of the electronic expansion valve, which essentially increases the flow of refrigerant, that is, increases the cooling capacity of the fixed-frequency air conditioner.
  • the indoor temperature is adjusted by controlling the opening degree of the electronic expansion valve, so that the wind speed of the cold air of the indoor unit can be stably maintained within the user's suitable range without adjusting the wind speed of the indoor unit fan.
  • the number of repeated shutdowns of the compressor can also be reduced, and the service life of the compressor can be prolonged.
  • the step of "compare the actual superheat and the target superheat” in step S32 specifically includes: calculating the difference between the actual superheat and the target superheat;
  • the step of S33 “controlling the opening of the electronic expansion valve based on the actual superheat and the target superheat so as to adjust the flow of refrigerant in the fixed frequency air conditioner” also includes: determining the reduction based on the difference between the actual superheat and the target superheat. Increase the numerical value of the opening of the electronic expansion valve.
  • the fixed-frequency air conditioner includes a duct machine, an embedded machine or a cabinet machine, and the corresponding relationship includes different types used for the duct machine, the embedded machine or the cabinet machine.
  • the corresponding relationship between the actual exhaust temperature of the compressor of the air duct machine, the embedded machine or the cabinet machine and the target superheat can be expressed as the relationship shown in Table 1:
  • the actual discharge temperature of the compressor is the same or falls within the same compressor discharge temperature range, which can be set by Different target superheats are used to adjust the flow of refrigerant in the fixed-frequency air conditioner to adjust the indoor temperature.
  • different target superheats are set for the same actual exhaust temperature of different indoor units or belong to the same compressor exhaust temperature range, and the flow of refrigerant in the fixed-frequency air conditioner can be adjusted based on the target superheat to change the cooling of the air conditioner. Therefore, it can also solve the problem that the same outdoor unit is difficult to match with different types of indoor units.
  • control method further includes: in step S2 "before determining the target superheat based on the actual exhaust temperature", determining the type of the fixed frequency air conditioner;
  • the step of querying the target superheat in the corresponding relationship between the compressor discharge temperature and the target superheat degree includes: setting the compressor discharge temperature and the target superheat degree of the fixed-frequency air conditioner that are set in advance. The target superheat is queried in the corresponding relationship.
  • the step of "determining the type of the fixed frequency air conditioner” specifically includes: determining the type of the fixed frequency air conditioner according to the detected user input information. For example, the user can select and confirm the type of indoor unit in the air conditioner in the early stage of air conditioner installation.
  • the method for controlling the fixed frequency air conditioner in the refrigeration state can be stored as a program in a computer readable storage medium.
  • the storage medium includes a number of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute some steps of the methods in the various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明涉及空调技术领域,具体涉及一种制冷状态下定频空调的控制方法。本发明旨在解决现有的定频空调的控制方法存在的室内风机的转速波动大导致用户的舒适性降低的问题。为此目的,本发明提供的制冷状态下定频空调的控制方法,通过基于获取的压缩机的实际排气温度确定目标过热度,并基于目标过热度调节定频空调中冷媒的流量。从而无需调节室内机风扇的风速,即可实现改变空调的制冷量或制冷效果的目的,使得室内机的冷风的风速可以稳定地保持在用户适宜的范围内。同时,也可以减少压缩机反复停机的次数,延长压缩机的使用寿命。

Description

制冷状态下定频空调的控制方法 技术领域
本发明涉及空调技术领域,具体涉及一种制冷状态下定频空调的控制方法。
背景技术
定频空调在工作时压缩机运行频率基本不变,在室内达到用户设定的温度后空调会出现自动停机,依靠不断地“开、停”压缩机来调整室内温度。
传统定频空调的控制方式是根据室内温度、内盘管温度、室外环境温度来控制室内风机和室外风机的转速。但是,定频空调出风口的温度是决定空调用户舒适性的关键因素,室内风机的转速波动大导致其风速波动较大,从而使用户的舒适性降低。同时,目前定频空调的控制方式中,在室外机和电子膨胀阀确定的条件下,必须有严格的室内机的类型与其进行匹配,限制了用户的选择。
相应地,本领域需要一种新的定频空调的控制方法来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有的定频空调的控制方法存在的室内风机的转速波动大导致用户的舒适性降低的问题,本发明提供了一种制冷状态下定频空调的控制方法。
本发明提供的一种制冷状态下定频空调的控制方法,包括:获取压缩机的实际排气温度;基于所述实际排气温度确定目标过热度;基于所述目标过热度调节所述定频空调中冷媒的流量。
作为本发明提供的上述控制方法的优选的技术方案,“基于所述实际排气温度确定目标过热度”的步骤具体包括:以所述实际排气温度为检索项,在预先设定的压缩机排气温度与目标过热度的对应关系中查询所述目标过热度。
作为本发明提供的上述控制方法的优选的技术方案,所述对应关系包括多个压缩机排气温度范围以及与所述多个压缩机排气温度范围中的每个相对应的一个目标过热度;“在预先设定的压缩机排气温度与目标过热度的对应关系中查询所述目标过热度”的步骤具体包括:通过将所述实际排气温度与每个压缩机排气温度范围的端值进行比较来确定所述实际排气温度所在的压缩机排气温度范围;基于所述实际排气温度所在的压缩机排气温度范围,确定所述目标过热度。
作为本发明提供的上述控制方法的优选的技术方案,所述对应关系设置成查找表或函数的形式。
作为本发明提供的上述控制方法的优选的技术方案,“基于所述目标过热度调节所述定频空调中冷媒的流量”的步骤具体包括:基于所述实际排气温度计算所述定频空调的实际过热度;比较所述实际过热度与所述目标过热度的大小;基于所述实际过热度与所述目标过热度的大小控制电子膨胀阀的开度以便调节所述定频空调中冷媒的流量。
作为本发明提供的上述控制方法的优选的技术方案,“基于所述实际过热度与所述目标过热度的大小控制所述电子膨胀阀的开度以便调节所述定频空调中冷媒的流量”的步骤具体包括:若所述实际过热度小于所述目标过热度,则减小所述电子膨胀阀的开度;并且/或者,若所述实际过热度大于所述目标过热度,则增大所述电子膨胀阀的开度。
作为本发明提供的上述控制方法的优选的技术方案,“比较所述实际过热度与所述目标过热度的大小”的步骤具体包括:计算所述实际过热度与所述目标过热度的差值;“基于所述实际过热度与所述目标过热度的大小控制所述电子膨胀阀的开度以便调节所述定频空调中冷媒的流量”的步骤还包括:基于所述实际过热度与所述目标过热度的差值,确定减小/增大所述电子膨胀阀的开度的数值大小。
作为本发明提供的上述控制方法的优选的技术方案,其特征在于,所述定频空调包括风管机、嵌入机或柜机,所述对应关系包括用于风管机、嵌入机或柜机的不同的对应关系。
作为本发明提供的上述控制方法的优选的技术方案,所述控制方法还包括:在基于所述实际排气温度确定目标过热度之前,确定所述定频空调的类型;“在预先设定的压缩机排气温度与目标过热度的对 应关系中查询所述目标过热度”的步骤具体包括:在预先设定的用于确定出的那种定频空调的压缩机排气温度与目标过热度的对应关系中查询所述目标过热度。
作为本发明提供的上述控制方法的优选的技术方案,“确定所述定频空调的类型”的步骤具体包括:根据检测到的用户输入信息来确定所述定频空调的类型。
本发明提供的制冷状态下定频空调的控制方法,通过基于获取的压缩机的实际排气温度确定目标过热度,并基于目标过热度调节定频空调中冷媒的流量。从而无需调节室内机风扇的风速,即可实现改变空调的制冷量或制冷效果的目的,使得室内机的风速可以稳定地保持在用户适宜的范围内。同时,也可以减少压缩机反复停机的次数,延长压缩机的使用寿命。
进一步地,本发明提供的制冷状态下定频空调的控制方法,还通过以实际排气温度为检索项,在预先设定的压缩机排气温度与目标过热度的对应关系中查询目标过热度,从而实现了基于实际排气温度确定目标过热度的目的,从而为基于目标过热度调节定频空调中冷媒的流量提供了方便,以便更好的通过该控制方法来实现将室内机的冷风的风速可以稳定地保持在用户适宜的范围内,以及可以使同一室外机与不同类型的室内机匹配使用。
附图说明
下面参照附图来描述本发明的制冷状态下定频空调的控制方法。附图中:
图1为本实施例的制冷状态下定频空调的控制方法的流程示意图;
图2为本实施例的步骤S2的一个具体实施方式的流程示意图;
图3为本实施例的步骤S3的一个具体实施方式的流程示意图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,虽然本实施例中压缩机排气温度范围的端值,以及风管机、嵌入机或柜机对应的目标过热度是以具体数值进行说明的,但是压缩机排气温度范围的界定,以及管机、嵌入机或柜机对应的目标过热度的数值在实际中并非一成不变的,不应理解为对本发明的保护范围的限制,在不偏离本发明原理的条件下,本领域技术人员可以根据需要对其作出调整,以便适应具体的应用场合。
本实施例提供的一种制冷状态下定频空调的控制方法,如图1所示,包括:
S1、获取压缩机的实际排气温度;
S2、基于实际排气温度确定目标过热度;
S3、基于目标过热度调节定频空调中冷媒的流量。
本实施例提供的制冷状态下定频空调的控制方法,通过基于获取的压缩机的实际排气温度确定目标过热度,并基于目标过热度调节定频空调中冷媒的流量。从而无需调节室内机风扇的风速,即可实现改变空调的制冷量或制冷效果的目的,使得室内机的冷风的风速可以稳定地保持在用户适宜的范围内。同时,也可以减少压缩机反复停机的次数,延长压缩机的使用寿命。
其中,步骤S2中的“基于实际排气温度确定目标过热度”的步骤具体包括:以实际排气温度为检索项,在预先设定的压缩机排气温度与目标过热度的对应关系中查询目标过热度。
本实施方式提供的制冷状态下定频空调的控制方法,还通过以实际排气温度为检索项,在预先设定的压缩机排气温度与目标过热度的对应关系中查询目标过热度,从而实现了基于实际排气温度确定目标过热度的目的,从而为基于目标过热度调节定频空调中冷媒的流量提供了方便,以便更好的通过该控制方法来实现将室内机的风速可以稳定地保持在用户适宜的范围内,以及可以使同一室外机与不同类型的室内机匹配使用。
作为本实施例提供的上述控制方法的优选的实施方式,上述的对应关系包括多个压缩机排气温度范围以及与多个压缩机排气温度范 围中的每个相对应的一个目标过热度;如此,如图2所示,步骤S2通过“在预先设定的压缩机排气温度与目标过热度的对应关系中查询目标过热度”时的步骤具体包括:
S21、通过将实际排气温度与每个压缩机排气温度范围的端值进行比较来确定实际排气温度所在的压缩机排气温度范围;
S22、基于实际排气温度所在的压缩机排气温度范围,确定目标过热度。
作为本实施例提供的上述控制方法的优选的实施方式,对应关系可以设置成查找表或函数的形式。例如,可以通过函数形式表达为:
Figure PCTCN2020091301-appb-000001
其中,a、b、c为不同的压缩机排气温度范围分别对应的目标过热度,根据不同的空调类型、同一类型空调不同的规格,其目标过热度可以设定不同的数值,75℃与95℃为压缩机排气温度范围的端值(在此仅为示例,实际中并不唯一)。
作为本实施例提供的上述控制方法的优选的实施方式,如图3所示,步骤S3中“基于目标过热度调节定频空调中冷媒的流量”的步骤具体包括:
S31、基于实际排气温度计算定频空调的实际过热度;
S32、比较实际过热度与目标过热度的大小;
S33、基于实际过热度与目标过热度的大小控制电子膨胀阀的开度以便调节定频空调中冷媒的流量。
其中,实际过热度为压缩机的实际排气过热度,其计算方法为:实际排气过热度=实际排气温度-实际排气压力对应的饱和温度。通过控制电子膨胀阀的开度来调节定频空调中冷媒的流量,可以将压缩机的实际排气过热度调节为目标过热度,以保证定频空调的制冷效果。
作为本实施例提供的上述控制方法的优选的实施方式,步骤S33中“基于实际过热度与目标过热度的大小控制电子膨胀阀的开度以便调节定频空调中冷媒的流量”的步骤具体包括:若实际过热度小于目标过热度,则减小电子膨胀阀的开度,其实质为减小冷媒的流量,即减小定频空调的制冷量;并且/或者,若实际过热度大于目标过热度,则增大电子膨胀阀的开度,其实质为增大冷媒的流量,即增大定频空调的制冷 量。通过控制电子膨胀阀的开度实现了对室内温度的调节,从而无需调节室内机风扇的风速,即可使室内机的冷风的风速稳定地保持在用户适宜的范围内。同时,也可以减少压缩机反复停机的次数,延长压缩机的使用寿命。
作为本实施例提供的上述控制方法的另一个优选的实施方式,步骤S32中“比较实际过热度与目标过热度的大小”的步骤具体包括:计算实际过热度与目标过热度的差值;步骤S33“基于实际过热度与目标过热度的大小控制电子膨胀阀的开度以便调节定频空调中冷媒的流量”的步骤还包括:基于实际过热度与目标过热度的差值,确定减小/增大电子膨胀阀的开度的数值大小。
作为本实施例提供的上述控制方法的优选的实施方式,其特征在于,定频空调包括风管机、嵌入机或柜机,对应关系包括用于风管机、嵌入机或柜机的不同的对应关系。例如,风管机、嵌入机或柜机的压缩机的实际排气温度与目标过热度的对应关系可以表示为表1所示的关系:
表1
Figure PCTCN2020091301-appb-000002
上述以列举的方式说明了对于风管机、嵌入机或柜机的不同类型的室内机,压缩机的实际排气温度相同或者属于同一压缩机排气温度范围内的条件下,可以通过设定不同的目标过热度,来调节定频空调中冷媒的流量,以实现对室内温度的调节。且由于对不同的室内机的相同的实际排气温度或者属于同一压缩机排气温度范围设定了不同的目标过热度,并基于目标过热度调节定频空调中冷媒的流量可以改变空调的制冷量,从而还可以解决同一室外机与不同类型的室内机难以匹配使用的问题。
作为本实施例提供的上述控制方法的优选的实施方式,控制方法还包括:在步骤S2“基于实际排气温度确定目标过热度之前”,确定定频空调的类型;如此,“在预先设定的压缩机排气温度与目标过热 度的对应关系中查询目标过热度”的步骤具体包括:在预先设定的用于确定出的那种定频空调的压缩机排气温度与目标过热度的对应关系中查询目标过热度。
作为本实施例提供的上述控制方法的优选的实施方式,“确定定频空调的类型”的步骤具体包括:根据检测到的用户输入信息来确定定频空调的类型。例如,用户可以在空调安装的初期在空调中选择并确认室内机的类型。
当然,上述可以替换的实施方式之间、以及可以替换的实施方式和优选的实施方式之间还可以交叉配合使用,从而组合出新的实施方式以适用于更加具体的应用场景。
需要说明的是,尽管上文详细描述了本发明方法的详细步骤,但是,在不偏离本发明的基本原理的前提下,本领域技术人员可以对上述步骤进行组合、拆分及调换顺序,如此修改后的技术方案并没有改变本发明的基本构思,因此也落入本发明的保护范围之内。例如,上述实施例是以“在步骤S2基于实际排气温度确定目标过热度之前,确定定频空调的类型”为例进行说明的,其中,“确定定频空调的类型”的步骤可以在步骤S1之前、之后或者与步骤S1同时发生。
本领域的技术人员应当理解的是,可以将本实施例提供的制冷状态下定频空调的控制方法作为程序存储在一个计算机可读取存储介质中。该存储介质中包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的保护范围之内并且形成不同的实施例。例如,在本发明的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然 不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种制冷状态下定频空调的控制方法,其特征在于,包括:
    获取压缩机的实际排气温度;
    基于所述实际排气温度确定目标过热度;
    基于所述目标过热度调节所述定频空调中冷媒的流量。
  2. 根据权利要求1所述的控制方法,其特征在于,“基于所述实际排气温度确定目标过热度”的步骤具体包括:
    以所述实际排气温度为检索项,在预先设定的压缩机排气温度与目标过热度的对应关系中查询所述目标过热度。
  3. 根据权利要求2所述的控制方法,其特征在于,所述对应关系包括多个压缩机排气温度范围以及与所述多个压缩机排气温度范围中的每个相对应的一个目标过热度;
    “在预先设定的压缩机排气温度与目标过热度的对应关系中查询所述目标过热度”的步骤具体包括:
    通过将所述实际排气温度与每个压缩机排气温度范围的端值进行比较来确定所述实际排气温度所在的压缩机排气温度范围;
    基于所述实际排气温度所在的压缩机排气温度范围,确定所述目标过热度。
  4. 根据权利要求2所述的控制方法,其特征在于,所述对应关系设置成查找表或函数的形式。
  5. 根据权利要求1所述的控制方法,其特征在于,“基于所述目标过热度调节所述定频空调中冷媒的流量”的步骤具体包括:
    基于所述实际排气温度计算所述定频空调的实际过热度;
    比较所述实际过热度与所述目标过热度的大小;
    基于所述实际过热度与所述目标过热度的大小控制电子膨胀阀的开度以便调节所述定频空调中冷媒的流量。
  6. 根据权利要求5所述的控制方法,其特征在于,“基于所述实际过热度与所述目标过热度的大小控制所述电子膨胀阀的开度以便调节所述定频空调中冷媒的流量”的步骤具体包括:
    若所述实际过热度小于所述目标过热度,则减小所述电子膨胀阀的开度;并且/或者
    若所述实际过热度大于所述目标过热度,则增大所述电子膨胀阀的开度。
  7. 根据权利要求6所述的控制方法,其特征在于,“比较所述实际过热度与所述目标过热度的大小”的步骤具体包括:
    计算所述实际过热度与所述目标过热度的差值;
    “基于所述实际过热度与所述目标过热度的大小控制所述电子膨胀阀的开度以便调节所述定频空调中冷媒的流量”的步骤还包括:
    基于所述实际过热度与所述目标过热度的差值,确定减小/增大所述电子膨胀阀的开度的数值大小。
  8. 根据权利要求2至7中任一项所述的控制方法,其特征在于,所述定频空调包括风管机、嵌入机或柜机,所述对应关系包括用于风管机、嵌入机或柜机的不同的对应关系。
  9. 根据权利要求8所述的控制方法,其特征在于,所述控制方法还包括:
    在基于所述实际排气温度确定目标过热度之前,确定所述定频空调的类型;
    “在预先设定的压缩机排气温度与目标过热度的对应关系中查询所述目标过热度”的步骤具体包括:
    在预先设定的用于确定出的那种定频空调的压缩机排气温度与目标过热度的对应关系中查询所述目标过热度。
  10. 根据权利要求9所述的控制方法,其特征在于,“确定所述定频空 调的类型”的步骤具体包括:
    根据检测到的用户输入信息来确定所述定频空调的类型。
PCT/CN2020/091301 2020-02-25 2020-05-20 制冷状态下定频空调的控制方法 WO2021169059A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010117206.8A CN113375319A (zh) 2020-02-25 2020-02-25 制冷状态下定频空调的控制方法
CN202010117206.8 2020-02-25

Publications (1)

Publication Number Publication Date
WO2021169059A1 true WO2021169059A1 (zh) 2021-09-02

Family

ID=77490649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091301 WO2021169059A1 (zh) 2020-02-25 2020-05-20 制冷状态下定频空调的控制方法

Country Status (2)

Country Link
CN (1) CN113375319A (zh)
WO (1) WO2021169059A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113757940A (zh) * 2021-09-16 2021-12-07 广东省智能家电研究院 定频空调的控制系统、调节方法、装置、设备及存储介质
CN116007159A (zh) * 2022-12-12 2023-04-25 珠海格力电器股份有限公司 低气压定频空调控制方法、装置及空调器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114322249A (zh) * 2021-12-17 2022-04-12 宁波奥克斯电气股份有限公司 一种空调器的排气压力调节方法、装置及空调器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162235A (ja) * 2004-12-06 2006-06-22 Samsung Electronics Co Ltd マルチエアコンシステム及びマルチエアコンシステムのバルブ開度制御方法
CN102954555A (zh) * 2011-08-22 2013-03-06 浙江三花股份有限公司 一种控制膨胀阀开度的方法
CN106610091A (zh) * 2016-12-13 2017-05-03 青岛海尔空调器有限总公司 基于过热度的空调膨胀阀控制方法和控制装置
CN109520136A (zh) * 2017-09-18 2019-03-26 青岛经济技术开发区海尔热水器有限公司 热泵热水器控制方法和热泵热水器
CN110671781A (zh) * 2019-10-24 2020-01-10 宁波奥克斯电气股份有限公司 一种多联机冷媒调节控制方法、装置、存储介质及空调器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102242996B (zh) * 2011-07-05 2013-06-12 海尔集团公司 中央空调机组中电子膨胀阀的开度的控制方法
EP3147587B1 (en) * 2015-07-27 2018-03-21 Mitsubishi Electric Corporation Air conditioning device
CN105865074B (zh) * 2016-04-25 2018-09-07 广东美的暖通设备有限公司 多联机系统及其制热节流元件的控制方法
CN107120786B (zh) * 2017-04-12 2019-11-05 广东美的暖通设备有限公司 空调器及空调器中内机节流元件的控制方法和装置
EP3633278B1 (en) * 2017-05-24 2022-09-07 Toshiba Carrier Corporation Air conditioner
CN109425069B (zh) * 2017-08-17 2021-06-04 宁波奥克斯电气股份有限公司 一种制热电子膨胀阀控制方法
CN107676922A (zh) * 2017-10-31 2018-02-09 广东美的暖通设备有限公司 空调器的控制方法及空调器
CN108561981B (zh) * 2018-03-30 2021-01-29 青岛海尔空调器有限总公司 一种空调系统的控制方法及装置
CN110388769B (zh) * 2019-07-10 2021-09-21 郑州海尔空调器有限公司 电子膨胀阀的控制方法及控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162235A (ja) * 2004-12-06 2006-06-22 Samsung Electronics Co Ltd マルチエアコンシステム及びマルチエアコンシステムのバルブ開度制御方法
CN102954555A (zh) * 2011-08-22 2013-03-06 浙江三花股份有限公司 一种控制膨胀阀开度的方法
CN106610091A (zh) * 2016-12-13 2017-05-03 青岛海尔空调器有限总公司 基于过热度的空调膨胀阀控制方法和控制装置
CN109520136A (zh) * 2017-09-18 2019-03-26 青岛经济技术开发区海尔热水器有限公司 热泵热水器控制方法和热泵热水器
CN110671781A (zh) * 2019-10-24 2020-01-10 宁波奥克斯电气股份有限公司 一种多联机冷媒调节控制方法、装置、存储介质及空调器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113757940A (zh) * 2021-09-16 2021-12-07 广东省智能家电研究院 定频空调的控制系统、调节方法、装置、设备及存储介质
CN116007159A (zh) * 2022-12-12 2023-04-25 珠海格力电器股份有限公司 低气压定频空调控制方法、装置及空调器

Also Published As

Publication number Publication date
CN113375319A (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
WO2021169059A1 (zh) 制冷状态下定频空调的控制方法
CN108375170B (zh) 一种电子膨胀阀的控制方法、装置及空调器
CN111550904B (zh) 一种电子膨胀阀控制方法、控制装置及空调器
CN110094857B (zh) 空调电子膨胀阀的控制方法、装置、计算机产品及空调
CN110671777B (zh) 一种空调器的控制方法、装置和空调器
CN113418275B (zh) 多联机中内机电子膨胀阀的控制方法
CN105509387A (zh) 风冷热泵机组及其中的电子膨胀阀开度控制方法、空调
CN109855252B (zh) 多联机空调系统的冷媒控制方法
WO2021184615A1 (zh) 空调系统的控制方法
CN103884140A (zh) 空调压缩机排气过热度的控制方法及系统
CN104807139A (zh) 空调器的控制方法及控制装置
JP2013178058A (ja) 空気調和機
CN107477798B (zh) 用于控制空调的冷媒的方法和装置、空调
CN106895623B (zh) 一种空调器的排气温度控制方法
CN111059727A (zh) 一种空调压缩机频率控制方法
JP2012067985A (ja) 冷凍機、冷凍装置及び空気調和装置
CN109869941B (zh) 热泵系统、吸气过热度及气液分离器积液蒸发控制方法
JP6355325B2 (ja) 冷蔵庫、及び、冷蔵庫の制御方法
WO2023066315A1 (zh) 空调器及空调器的控制方法
US20140039687A1 (en) Field custom frequency skipping
US5970728A (en) Multiple compressor heat pump or air conditioner
CN109869873B (zh) 冷凝风机转速控制方法及空调系统
WO2021169185A1 (zh) 制热状态下定频空调的控制方法
WO2020001091A1 (zh) 一种风机转速的控制方法、装置及计算机可读存储介质
US20210025628A1 (en) Method and Device For Controlling Pressure of Units with Height Drop, and Air Conditioner Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921182

Country of ref document: EP

Kind code of ref document: A1