WO2023066315A1 - 空调器及空调器的控制方法 - Google Patents

空调器及空调器的控制方法 Download PDF

Info

Publication number
WO2023066315A1
WO2023066315A1 PCT/CN2022/126253 CN2022126253W WO2023066315A1 WO 2023066315 A1 WO2023066315 A1 WO 2023066315A1 CN 2022126253 W CN2022126253 W CN 2022126253W WO 2023066315 A1 WO2023066315 A1 WO 2023066315A1
Authority
WO
WIPO (PCT)
Prior art keywords
relative humidity
controller
current
operating frequency
information
Prior art date
Application number
PCT/CN2022/126253
Other languages
English (en)
French (fr)
Inventor
曹全
李德鹏
Original Assignee
海信(广东)空调有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海信(广东)空调有限公司 filed Critical 海信(广东)空调有限公司
Publication of WO2023066315A1 publication Critical patent/WO2023066315A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity

Definitions

  • the present disclosure relates to the technical field of air conditioners, in particular to an air conditioner and a control method for the air conditioner.
  • the user When the indoor temperature is high, the user usually needs to turn on the cooling function of the air conditioner to reduce the indoor temperature. In order to achieve rapid cooling, the compressor in the air conditioner will run at a high frequency to provide sufficient cooling capacity.
  • an air conditioner in one aspect, includes an outdoor unit and an indoor unit.
  • the indoor unit includes a first controller
  • the outdoor unit includes a second controller and a compressor
  • the second controller is coupled to the first controller and the compressor respectively.
  • the first controller is configured to: acquire current temperature information and current relative humidity information of the environment where the indoor unit is located.
  • the second controller is configured to: control the compressor to run at the first operating frequency, so that the temperature of the environment where the indoor unit is located is lowered; receive current temperature information and current relative humidity information; Establishing a corresponding relationship, determining the second operating frequency of the compressor corresponding to the current temperature information and the current relative humidity information in the preset corresponding relationship; wherein, the preset corresponding relationship includes a plurality of temperature information and a plurality of relative humidity information and the compressor's Correspondence between multiple operating frequencies; determine whether the first operating frequency is greater than the second operating frequency; if it is determined that the first operating frequency is greater than the second operating frequency, control the operation of the compressor at the second operating frequency. If it is determined that the first operating frequency is less than or equal to the second operating frequency, the compressor is controlled to operate at the first operating frequency.
  • a method for controlling an air conditioner includes an outdoor unit and an indoor unit.
  • the indoor unit includes a first controller
  • the outdoor unit includes a second controller and a compressor.
  • the control method of the air conditioner includes: the second controller controls the compressor to run at the first operating frequency, so that the temperature of the environment where the indoor unit is located is reduced; the first controller obtains the current temperature information and the current relative temperature of the environment where the indoor unit is located.
  • the first controller sends current temperature information and current relative humidity information to the second controller; the second controller receives current temperature information and current relative humidity information; the second controller according to the current temperature information, current relative humidity information and The preset correspondence relationship determines the second operating frequency of the compressor corresponding to the current temperature information and the current relative humidity information in the preset correspondence relationship; wherein the preset correspondence relationship includes a plurality of temperature information and a plurality of relative humidity information and the compressor The corresponding relationship of multiple operating frequencies; the second controller determines whether the first operating frequency is greater than the second operating frequency; if it is determined that the first operating frequency is greater than the second operating frequency, the second controller controls the compressor to run at the second operating frequency . If it is determined that the first operating frequency is less than or equal to the second operating frequency, the second controller controls the compressor to operate at the first operating frequency.
  • Fig. 1 is a structural diagram of an air conditioner according to some embodiments of the present disclosure
  • Fig. 2 is a structural diagram of an indoor unit of an air conditioner according to some embodiments of the present disclosure
  • Fig. 3 is a schematic diagram of an air conditioner according to some embodiments of the present disclosure.
  • Fig. 4 is a schematic diagram of another air conditioner according to some embodiments of the present disclosure.
  • Fig. 5 is a flow chart of an air conditioner control method according to some embodiments of the present disclosure.
  • Fig. 6 is a flowchart of another control method of an air conditioner according to some embodiments of the present disclosure.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of some embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integral body; it can be a direct connection or an indirect connection through an intermediary.
  • connection can be a fixed connection, a detachable connection, or an integral body; it can be a direct connection or an indirect connection through an intermediary.
  • the term “coupled” is used to indicate that two or more components are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the context herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and both include the following combinations of A, B and C: A only, B only, C only, A and B A combination of A and C, a combination of B and C, and a combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • the term “if” is optionally interpreted to mean “when” or “at” or “in response to determining” or “in response to detecting,” depending on the context.
  • the phrases “if it is determined that " or “if [the stated condition or event] is detected” are optionally construed to mean “when determining ! or “in response to determining ! depending on the context Or “upon detection of [stated condition or event]” or “in response to detection of [stated condition or event]”.
  • Fig. 1 is a structural diagram of the air conditioner provided by some embodiments of the present disclosure. As shown in FIG. 1 , the air conditioner 1 includes an indoor unit 100 and an outdoor unit 200 .
  • the indoor unit 100 includes a first controller 10
  • the outdoor unit 200 includes a second controller 20 and a compressor 30 .
  • the second controller 20 is coupled to the first controller 10 and the compressor 30 respectively.
  • the indoor unit 100 further includes an indoor heat exchanger 101 ;
  • the outdoor unit 200 further includes an outdoor heat exchanger 201 , an expansion valve 202 and a four-way valve 203 .
  • the compressor 30, the outdoor heat exchanger 201, the expansion valve 202 and the indoor heat exchanger 101 are connected by pipelines to form a refrigerant circuit.
  • the refrigerant circulates in the refrigerant circuit and passes through the indoor heat exchanger 101 and the outdoor heat exchanger.
  • the heater 201 exchanges with air respectively, so as to realize the cooling and heating functions of the air conditioner 1 .
  • the compressor 30 is configured to compress the refrigerant, so that the low-pressure refrigerant is compressed to form the high-pressure refrigerant.
  • the expansion valve 202 can be an electronic valve, connected between the indoor heat exchanger 101 and the outdoor heat exchanger 201, the opening of the expansion valve 202 is adjustable, and is used to control the flow and pressure of the refrigerant flowing through the expansion valve 202 , so as to adjust the flow of refrigerant flowing between the outdoor heat exchanger 201 and the indoor heat exchanger 101 .
  • the flow rate and pressure of the refrigerant circulating between the indoor heat exchanger 101 and the outdoor heat exchanger 201 will affect their respective heat exchange performances.
  • the expansion valve 202 may also be provided in the indoor unit 100 .
  • the four-way valve 203 is connected in the refrigerant circuit, and the four-way valve 203 is configured to switch the flow direction of the refrigerant in the refrigerant circuit so that the air conditioner 1 performs cooling or heating for the environment where the indoor unit 100 is located (hereinafter referred to as the indoor environment).
  • the working modes of the air conditioner 1 may include a heating mode and a cooling mode.
  • the heating condition when the heating condition is met, the air conditioner 1 works in the heating mode.
  • the indoor heat exchanger 101 can be used as a condenser, and the outdoor heat exchanger 201 can be used as an evaporator, and the air conditioner 1 can heat the indoor environment.
  • the heating condition may be that the operating temperature of the air conditioner 1 is higher than the first preset temperature.
  • the cooling condition is met, the air conditioner 1 works in the cooling mode.
  • the indoor heat exchanger 101 can be used as an evaporator, and when the outdoor heat exchanger 201 can be used as a condenser, the air conditioner 1 can cool the indoor environment.
  • the cooling condition may include that the operating temperature of the air conditioner 1 is lower than the second preset temperature. In some examples, the first preset temperature is greater than the second preset temperature.
  • Fig. 2 is a structural diagram of an indoor unit 100 provided by some embodiments of the present disclosure.
  • the indoor unit 100 further includes a casing 102 , an air outlet deflector 103 and an air outlet 104 .
  • the air outlet air deflector 103 is connected with the casing 102
  • the air outlet air guide 103 is disposed at the air outlet 104 to open or close the air outlet 104 .
  • the air conditioner 1 When the temperature of the indoor environment is high, the air conditioner 1 usually works in cooling mode to reduce the temperature of the indoor environment. In order to achieve rapid cooling, the compressor 30 usually operates at a relatively high operating frequency. After heating, air with a lower temperature is obtained, and the air with a lower temperature flows to the air outlet 104, and is blown into the room from the air outlet 104, so as to realize cooling of the indoor environment.
  • the dew point temperature of the indoor environment will also be high.
  • the compressor 30 runs at a higher operating frequency, the temperature of the air blown out from the air outlet 104 of the indoor unit 100 is lower, that is, the temperature of the air outlet of the indoor unit 100 is lower.
  • This will lead to a large temperature difference between the dew point temperature of the indoor environment and the air outlet temperature of the indoor unit 100, so that the water vapor in the indoor environment is easy to condense on the air outlet 104 of the indoor unit 100 or the air outlet deflector 103.
  • the water droplets cause the hidden danger of water droplets being blown out from the air outlet 104 of the indoor unit 100, and this phenomenon is called condensation phenomenon.
  • the air conditioner 1 works in cooling mode and the temperature and relative humidity of the indoor environment are high, if the compressor 30 runs at a high operating frequency, the air outlet 104 of the indoor unit 100, the casing 102 and the air outlet Condensation may occur on the wind deflector 103 and the like. Condensation will damage the indoor environment and affect the user experience.
  • condensation can be avoided by limiting (for example, reducing) the operating frequency of the compressor 30.
  • the operating frequency of the compressor 30 affects the cooling effect of the air conditioner 1. If the operating frequency of the compressor 30 is If the frequency limit is too small, the cooling effect of the air conditioner 1 may be affected, and if the operating frequency of the compressor 30 is not limited enough, the condensation phenomenon may not be completely avoided. Therefore, how to control the compressor 30 to operate at a better target operating frequency, which can not only ensure that the air conditioner 1 achieves rapid cooling, but also ensure that the air conditioner 1 does not appear condensation has become an urgent problem to be solved.
  • the operating frequency of the compressor can be calculated by collecting the coil temperature of the air conditioner 1, and the range of the coil temperature of the air conditioner 1 is generally small (such as 8°C-20°C), so it is necessary to calculate the compression
  • the target operating frequency of the machine 30 is relatively difficult, and the obtained target operating frequency is not accurate enough.
  • the air conditioner 1 provided by some embodiments of the present disclosure can obtain the target operating frequency of the compressor 30 in a simple and effective manner, so that the air conditioner 1 can avoid condensation while ensuring the cooling effect.
  • the second controller 20 is configured to: control the compressor 30 to operate at a first operating frequency, so as to lower the temperature of the environment where the indoor unit 100 is located.
  • the second controller 20 When the air conditioner 1 is working in cooling mode, the second controller 20 will control the compressor 30 to run at the first operating frequency, so as to cool the indoor environment.
  • Some embodiments of the present disclosure are illustrated by taking the air conditioner 1 working in cooling mode as an example.
  • the first operating frequency of the compressor 30 may be the operating frequency preset in the second controller 20 .
  • the first operating frequency is related to the temperature of the indoor environment, for example, the first operating frequency is related to the temperature change value and/or temperature change rate of the indoor environment. That is to say, the first operating frequency can be dynamically adjusted as the temperature of the indoor environment changes.
  • the second controller 20 can control the operating frequency of the compressor 30 according to the temperature change of the indoor environment. In some examples, the higher the first operating frequency of the compressor 30 is, the better the cooling effect of the air conditioner 1 is.
  • the first controller 10 is configured to: acquire current temperature information and current relative humidity information of the environment where the indoor unit 100 is located.
  • the indoor unit 100 further includes a detection device 40 coupled to the first controller 10 and configured to: detect current temperature information and current relative humidity information, and send current temperature information and current relative humidity information to the first controller 10 .
  • the first controller 10 is configured to: receive current temperature information and current relative humidity information sent by the detection device 40 .
  • the condensation phenomenon of the air conditioner 1 is related to the dew point temperature of the indoor environment.
  • the compressor 30 operates at the first operating frequency
  • the air blown out by the air outlet 104 of the indoor unit 100 has an outlet temperature.
  • the dew point temperature of the indoor environment is related to the temperature and relative humidity of the indoor environment. Therefore, some embodiments of the present disclosure monitor the current temperature and relative humidity of the indoor environment, and obtain the temperature of the compressor 30 according to the current temperature and the current relative humidity. A better operating frequency is used to ensure that the air conditioner 1 achieves rapid cooling, and at the same time, it can ensure that the air conditioner 1 does not have condensation.
  • the detection device 40 may include a temperature detection device 41 and a humidity detection device 42 .
  • the temperature detection device 41 and the humidity detection device 42 are respectively coupled to the first controller 10 .
  • the temperature detection device 41 is used to detect the current temperature of the indoor environment, obtain the current temperature information, and send the current temperature information to the first controller 10 .
  • the humidity detection device 42 is used to detect the current relative humidity of the indoor environment, obtain current relative humidity information, and send the current relative humidity information to the first controller 10 .
  • the first controller 10 is coupled to the second controller 20 , and the first controller 10 may send the acquired current temperature information and current relative humidity information to the second controller 20 .
  • the temperature detection device 41 may be a temperature sensor
  • the humidity detection device 42 may be a humidity sensor. Both the temperature sensor and the humidity sensor are located in the indoor environment, and are sensitive to changes in the temperature and relative humidity of the indoor environment respectively, so the accuracy of the detected current temperature information and current relative humidity information can be ensured.
  • the detection device 40 may also include a temperature and humidity sensor for detecting the temperature and relative humidity of the indoor environment, which is not limited in some embodiments of the present disclosure.
  • the second controller 20 is further configured to: receive the current temperature information and the current relative humidity information, and determine that the current temperature information and the current relative humidity information are in the preset correspondence relationship according to the current temperature information, the current relative humidity information and the preset correspondence relationship Corresponding to the second operating frequency of the compressor 30 .
  • the preset corresponding relationship includes a corresponding relationship between a plurality of temperature information and a plurality of relative humidity information and a plurality of operating frequencies of the compressor 30 .
  • one operating frequency among the plurality of operating frequencies of the compressor 30 in the preset correspondence relationship may be certain temperature information among the plurality of temperature information and certain relative humidity information among the plurality of relative humidity information,
  • the maximum allowable operating frequency of the compressor 30 may be a critical operating frequency at which the air conditioner 1 generates condensation at a certain temperature and a certain relative humidity. That is to say, at this temperature and relative humidity, if the operating frequency of the compressor 30 is greater than the maximum allowable operating frequency, the air conditioner 1 is prone to condensation, and when the operating frequency of the compressor 30 is less than or equal to the maximum allowable operating frequency When the frequency is low, the air conditioner 1 is unlikely to produce condensation.
  • the air conditioner 1 can achieve a good cooling effect and is not prone to condensation.
  • the maximum allowable operating frequency of the compressor 30 is an operating frequency that achieves a compromise between the cooling effect and the anti-condensation effect of the air conditioner 1 .
  • the preset corresponding relationship can be obtained by testing the operating frequency of the compressor 30 when the air conditioner 1 generates a critical point of condensation phenomenon under different temperatures and different humidity.
  • the air conditioner 1 in a certain temperature range and a certain humidity range, when combining between each temperature and each relative humidity, test the critical point of the condensation phenomenon in the air conditioner 1, the compressor 30, the operating frequency is the maximum allowable operating frequency of the compressor 30.
  • the outdoor unit 200 further includes a memory 50 coupled to the second controller 20 .
  • the preset corresponding relationship may be stored in the memory 50
  • the second controller 20 queries the preset corresponding relationship through the memory 50 .
  • the preset correspondence relationship may be stored in the memory 50 of the outdoor unit 200 before the air conditioner 1 leaves the factory. Alternatively, the preset corresponding relationship may also be pre-stored in the second controller 20 .
  • the temperature T corresponding to each temperature information in the plurality of temperature information satisfies the relationship: 25°C ⁇ T ⁇ 35°C; the temperature T corresponding to each relative humidity information in the plurality of relative humidity information Humidity ⁇ satisfies the relationship: 50% ⁇ 100%.
  • the air conditioner 1 when the temperature of the indoor environment is high, for example, when the temperature of the indoor environment is higher than 30°C, the air conditioner 1 will enter the cooling mode to lower the temperature of the indoor environment. equal to 25°C.
  • the indoor unit 100 of the air conditioner 1, especially the air outlet 104 of the indoor unit 100 is prone to condensation. Therefore, the temperature T corresponding to each temperature information in the plurality of temperature information in the preset correspondence can be set in the range of 25°C ⁇ T ⁇ 35°C, and the humidity ⁇ corresponding to each relative humidity information in the plurality of relative humidity information can be set to Set it in the range of 50% ⁇ 100%, in this range, the air conditioner 1 is prone to condensation.
  • the air conditioner 1 when the temperature of the indoor environment is low, such as less than 25°C, and the relative humidity is low, such as less than 50%, the air conditioner 1 generally does not produce condensation. Therefore, there is no need to set the corresponding temperature T and The range of the relative humidity ⁇ is set too large, which can reduce the complexity of the preset correspondence and improve the search efficiency of the second controller 20 .
  • different air conditioners 1 may have different preset correspondences.
  • the preset corresponding relationship is related to the compressor 30 in the air conditioner 1 .
  • the preset correspondence is related to the displacement and cooling capacity of the compressor 30 . That is to say, the maximum allowable frequency of the compressor 30 is related to the displacement and cooling capacity of the compressor 30. For example, when the cooling capacity of the compressor 30 is constant, the larger the displacement of the compressor 30, the greater the capacity of the compressor 30. The maximum allowable frequency is smaller. Therefore, different preset correspondences can be obtained according to different compressors 30 , and the preset correspondences are stored in the memory 50 .
  • the preset correspondence relationship may be in the form of a preset correspondence relationship table, for example, the preset correspondence relationship may be a data lookup table.
  • the following takes the preset corresponding relationship as a data lookup table as an example for illustrative description.
  • Table 1 is an example of a data lookup table provided by some embodiments of the present disclosure. As shown in Table 1, the data lookup table includes a plurality of temperatures and a plurality of relative humidity, and when each temperature T of the plurality of temperatures is combined with each relative humidity ⁇ of the plurality of relative humidity, the corresponding compressors Each maximum allowable operating frequency H of 30.
  • the maximum allowable frequencies H1 to H54 of the compressor 30 represent the respective maximum allowable operating frequencies of the compressor 30 at different temperatures T and different relative humidity ⁇ .
  • the second controller 20 is further configured to: if the temperature T corresponding to the current temperature information and/or the relative humidity ⁇ corresponding to the current relative humidity information are larger, according to the current temperature information and the current relative humidity information in the preset The operating frequency of the compressor 30 determined in the corresponding relationship is smaller.
  • the corresponding maximum allowable operating frequency of the compressor 30 is H25, for example, the value of H25 can be 48Hz; when the temperature T is When the temperature T is 31°C and the relative humidity ⁇ is 70%, the maximum allowable operating frequency of the corresponding compressor 30 is H26, for example, the size of H26 can be 42Hz; when the temperature T is 31°C and the relative humidity ⁇ is 80%, The corresponding maximum allowable operating frequency of the compressor 30 is H27, for example, the magnitude of H27 is 40 Hz. It can be seen that, in the preset corresponding relationship, when the temperature T is constant, the greater the relative humidity ⁇ , the smaller the maximum allowable frequency of the compressor 30 .
  • the corresponding maximum allowable operating frequency of the compressor 30 is H40, for example, the magnitude of H40 is 44Hz; when the relative humidity When ⁇ is 70% and the temperature T is 31°C, the corresponding maximum allowable operating frequency of the compressor 30 is H26, for example, the size of H26 is 42Hz; when the relative humidity ⁇ is 70% and the temperature T is 35°C, the corresponding The maximum allowable operating frequency of the compressor 30 is H3, for example, the magnitude of H3 is 40 Hz. It can be seen that, in the preset corresponding relationship, when the relative humidity ⁇ is constant, the larger the temperature T is, the smaller the maximum allowable frequency of the compressor 30 is.
  • the corresponding maximum allowable operating frequency of the compressor 30 is H48, for example, the magnitude of H48 is 48Hz; when the temperature T When the temperature is 31° C. and the relative humidity ⁇ is 80%, the corresponding maximum allowable operating frequency of the compressor 30 is H27, for example, the value of H48 is 40 Hz. It can be seen that, in the preset corresponding relationship, the larger the temperature T and the larger the relative humidity ⁇ , the smaller the corresponding maximum allowable operating frequency of the compressor 30 is. This is because when the temperature T and the relative humidity ⁇ are high, the air conditioner 1 is more prone to condensation, so it is necessary to limit the maximum allowable operating frequency of the compressor 30 to be lower, so as to better avoid the condensation .
  • H6 is the maximum allowable frequency corresponding to the maximum temperature T (35° C.) and the maximum relative humidity ⁇ (100%), H6 is The smallest maximum allowable operating frequency among H1 to H54.
  • the second controller 20 After the second controller 20 receives the current temperature information and current relative humidity information of the indoor environment, it can search for the maximum allowable operation of the compressor 30 corresponding to the current temperature information and the current relative humidity information in the pre-stored preset correspondence.
  • Frequency, the maximum allowable operating frequency is, for example, the second operating frequency, and the second operating frequency may be one of the operating frequencies included in the preset correspondence.
  • the second controller 20 is configured to: determine whether the first operating frequency is greater than the second operating frequency; if it is determined that the first operating frequency is greater than the second operating frequency, control the compressor 30 to operate at the second operating frequency.
  • the second controller 20 finds the second operating frequency (i.e. the maximum allowable operating frequency) of the compressor 30 from the preset correspondence, compare the second operating frequency with the first operating frequency (i.e. the current operating frequency) of the compressor 30 )the size of. If the first operating frequency is greater than the second operating frequency, it indicates that the current operating frequency of the compressor 30 is too high and has exceeded the maximum allowable operating frequency of the compressor 30, so when the compressor 30 operates at the first operating frequency, it will cause indoor The air temperature at the air outlet 104 of the machine 100 is too low, which may easily lead to condensation. Therefore, the second controller 20 needs to limit the current operating frequency of the compressor 30 .
  • the second controller 20 needs to limit the current operating frequency of the compressor 30 .
  • the second controller 20 may lower the first operating frequency of the compressor 30 to the second operating frequency, so that the compressor 30 operates at the second operating frequency.
  • the second operating frequency is the maximum allowable operating frequency of the compressor 30 under the current temperature information and current relative humidity information in the preset corresponding relationship.
  • the air conditioner 1 It can not only play a good role in cooling and cooling, but also avoid the occurrence of condensation to a large extent.
  • the second controller 20 is further configured to: if it is determined that the first operating frequency is less than or equal to the second operating frequency, control the compressor 30 to operate at the first operating frequency.
  • the first operating frequency is less than or equal to the second operating frequency, it indicates that the current operating frequency (i.e. the first operating frequency) of the compressor 30 does not exceed the maximum allowable operating frequency (i.e. the second operating frequency) of the compressor 30 in the preset correspondence. ), therefore, when the compressor 30 runs at the first operating frequency, it will not cause the air conditioner 1 to generate condensation.
  • the second controller 20 does not need to interfere with the current operating frequency of the compressor 30, and the compressor 30 Can still continue to run at the current operating frequency. In this way, the air conditioner 1 can flexibly determine whether to interfere with the operating frequency of the compressor 30 according to the current indoor environment.
  • the air conditioner 1 according to the current temperature information and current relative humidity information of the indoor environment when it works in the cooling mode, determines the current temperature information and the current relative humidity information through the preset corresponding relationship. Lower the maximum allowable operating frequency of the compressor 30, and when the current operating frequency of the compressor 30 (ie, the first operating frequency) is greater than the maximum allowable operating frequency (ie, the second operating frequency), reduce the current operating frequency to the maximum allowable operating frequency. Therefore, some embodiments of the present disclosure can control the operating frequency of the compressor 30 in a simple and effective manner, so as to ensure that the air conditioner 1 not only exerts a rapid cooling effect, but also avoids condensation.
  • the second controller 20 is further configured to: if according to the current temperature information, the current relative humidity information and the preset correspondence relationship, determine the corresponding result of the current temperature information and the current relative humidity information in the preset correspondence relationship empty, the compressor 30 is controlled to run at the first operating frequency.
  • the second controller 20 when the second controller 20 receives the current temperature information and the current relative humidity information, it can first determine the query result of querying the preset corresponding relationship according to the current temperature information and relative humidity information. If the query result is not empty, follow the Some of the above-mentioned embodiments process the current operating frequency of the compressor 30; if the query result is empty, the second controller 20 does not interfere with the current operating frequency (first operating frequency) of the compressor 30, and the compressor 30 can continue to use the current operating frequency. Run frequency run.
  • the second controller 20 determines that the corresponding result of the current temperature information and the current relative humidity information in the preset correspondence relationship is empty according to the current temperature information, the current relative humidity information and the preset correspondence relationship (such as a data lookup table), which means : The second controller 20 does not find the maximum allowable operating frequency of the compressor 30 corresponding to the current temperature and the current relative humidity in the preset correspondence.
  • the second controller 20 when the second controller 20 finds the current temperature information in the preset correspondence, but fails to find the current relative humidity information, it cannot find the maximum temperature of the compressor 30 corresponding to the current temperature and the current relative humidity. Allowed operating frequency. For example, referring to the data lookup table provided in Table 1, if the temperature T corresponding to the current temperature information is 28°C, and the relative humidity ⁇ corresponding to the current relative humidity information is 30%, since the data lookup table in Table 1 does not include the relative humidity ⁇ 30% of cases, therefore, the query result of the second controller 20 is empty.
  • the second controller 20 when the second controller 20 finds the current relative humidity information in the preset correspondence, but fails to find the current temperature information, it cannot find the compressor 30 corresponding to the current temperature and the current relative humidity. Maximum allowed operating frequency. For example, with reference to the data lookup table provided in Table 1, if the temperature T corresponding to the current temperature information is 23°C, and the relative humidity ⁇ corresponding to the current relative humidity information is 60%, since the data lookup table in Table 1 does not include the temperature T as 23°C, therefore, the query result of the second controller 20 is also empty.
  • the second controller 20 finds the current temperature information and the current relative humidity information in the preset correspondence, but does not find the maximum allowable operating frequency of the compressor 30 corresponding to the current temperature and the current relative humidity .
  • the maximum allowable operating frequency of the compressor 30 corresponding to certain temperature T and relative humidity ⁇ is empty.
  • the corresponding maximum allowable operating frequency of the compressor 30 is empty, that is, there is no relevant data information.
  • the query result of the second controller 20 is also empty.
  • the air conditioner works in cooling mode, if the current temperature and/or relative humidity of the indoor environment is low, the temperature difference between the dew point temperature of the indoor environment and the temperature of the air outlet 104 of the indoor unit 100 will not be too large, so even
  • the current operating frequency of the compressor 30 is very high (for example, greater than the maximum allowable operating frequency), and the possibility of condensation occurring in the air conditioner 1 is also small, or no condensation will occur.
  • the information corresponding to the maximum allowable operating frequency of the compressor 30 may be kept blank (ie, the value of the maximum allowable operating frequency is not recorded). In this way, the amount of data of the preset corresponding relationship can be reduced, the design complexity of the preset corresponding relationship can be simplified, the table lookup efficiency of the air conditioner 1 can be improved, and the lookup workload can be reduced.
  • the first controller 10 is configured to: obtain the changed current temperature information and current relative humidity information of the environment where the indoor unit 100 is located after a preset time, and send the changed information to the second controller 20 The current temperature information and the current relative humidity information after the change.
  • the second controller 20 finds the maximum allowable operating frequency of the compressor 30 in the preset correspondence according to the current temperature information and the current relative humidity information of the indoor environment, this situation is called the air conditioner 1 entering Anti-condensation mode.
  • the current temperature information and current relative humidity information of the indoor environment will change, for example, the current temperature and/or relative humidity of the indoor environment will decrease, and the current temperature information after the change and the changed current relative humidity information may not be able to find the maximum allowable operating frequency of the compressor 30 in the preset corresponding relationship.
  • the air conditioner 1 needs or may need to exit the anti-condensation mode.
  • the temperature and relative humidity of the indoor environment can be relatively stable and will not change significantly in a short period of time. Therefore, during the operation of the air conditioner 1, if the air conditioner The air conditioner 1 exits the anti-condensation mode, since the current temperature information and the current relative humidity information remain basically stable at this time, so the air conditioner 1 usually does not need to enter the anti-condensation mode again.
  • the detection device 40 needs to monitor the current temperature and relative humidity of the indoor environment in time.
  • the detecting device 40 may detect the changed current temperature and the changed current relative humidity of the indoor environment every predetermined time, and send the detection result to the first controller 10, and then the first controller 10 will The detection result is sent to the second controller 20, so that the second controller 20 looks up the corresponding maximum allowable operating frequency of the compressor 30 in the data lookup table according to the detection result. This ensures that the air conditioner 1 can decide whether to enter or exit the anti-condensation mode according to the actual situation of the indoor environment, thereby improving the adaptability of the air conditioner 1 and improving user experience.
  • the preset time may be 10 minutes.
  • the preset time cannot be set too short, and the preset time setting is too short, which will cause the detection device 40 to frequently obtain the current temperature and current relative humidity of the indoor environment, so that the second controller 20 frequently performs table look-up operations, frequently
  • the table lookup operation will increase the power consumption of the air conditioner 1 to a certain extent and increase the search workload; or, the preset time cannot be set too long, if the preset time is set too long, it will cause the indoor environment to deteriorate.
  • the second controller 20 cannot obtain it in time, thus causing the air conditioner to 1.
  • the anti-condensation mode cannot be adaptively entered in time. Setting the preset time to 10 minutes can not only avoid increasing the power consumption of the air conditioner 1 and make the search workload relatively low, but also ensure that the air conditioner 1 can be updated in time according to the current temperature and relative humidity of the indoor environment. Enter the anti-condensation mode when needed, thereby reducing the operating cost of the air conditioner 1 and improving user experience.
  • the preset time can also be set according to actual needs, for example, the preset time can be greater than or less than 10 minutes, such as the preset time can also be set to 5 minutes, 8 minutes, 9 minutes, 11 minutes, 12 minutes minutes or 15 minutes etc.
  • the first controller 10 acquires the changed current temperature information and the changed current relative humidity information from the detection device 40
  • the humidity information is sent to the second controller 20, and the second controller 20 controls the operating frequency of the compressor 30 according to steps 51 to 59 shown in FIG. 5 .
  • Step 51 after a preset time, the first controller 10 obtains the changed current temperature information and current relative humidity information of the environment where the indoor unit 100 is located, and sends the changed current temperature information and changed relative humidity information to the second controller 20 .
  • Current relative humidity information After a preset time, the first controller 10 obtains the changed current temperature information and current relative humidity information of the environment where the indoor unit 100 is located, and sends the changed current temperature information and changed relative humidity information to the second controller 20 .
  • Current relative humidity information After a preset time, the first controller 10 obtains the changed current temperature information and current relative humidity information of the environment where the indoor unit 100 is located, and sends the changed current temperature information and changed relative humidity information to the second controller 20 .
  • Current relative humidity information After a preset time, the first controller 10 obtains the changed current temperature information and current relative humidity information of the environment where the indoor unit 100 is located, and sends the changed current temperature information and changed relative humidity information to the second controller 20 .
  • Current relative humidity information After a preset time, the first controller 10 obtain
  • what the first controller 10 acquires for the first time is the current temperature information of the indoor environment and the current relative humidity information. After a preset time, what the first controller 10 acquires is the changed current temperature information and the changed current relative humidity information. information.
  • Step 52 the second controller 20 receives the changed current temperature information and the changed current relative humidity information.
  • Step 53 the second controller 20 queries the preset corresponding relationship according to the changed current temperature information and the changed current relative humidity information, and obtains a query result.
  • Step 54 the second controller 20 determines whether the query result is empty.
  • the air conditioner 1 enters the anti-condensation mode and continues to execute step 55; if the query result is empty, the air conditioner 1 does not enter (or exit) the anti-condensation mode and executes step 59.
  • Step 55 the second controller 20 determines the second operating frequency of the compressor 30 corresponding to the preset corresponding relationship between the changed current temperature information and the changed current relative humidity information.
  • Step 56 the second controller 20 determines whether the first operating frequency is greater than the second operating frequency.
  • the first operating frequency is the current operating frequency of the compressor 30 , if the first operating frequency is greater than the second operating frequency, perform step 57 , and if the first operating frequency is less than or equal to the second operating frequency, perform step 58 .
  • Step 57 the second controller 20 controls the compressor 30 to run at the second operating frequency.
  • step 57 After executing step 57, continue to return to step 51, wait for the next time (after the preset time) to obtain the current temperature information after the change of the indoor environment and the current relative humidity information after the change, until step 59 is executed, and the air conditioner 1 exits Anti-condensation mode.
  • Step 58 the second controller 20 controls the compressor 30 to run at the first operating frequency.
  • step 519 After executing step 519, continue to return to step 51, wait for the next time (after the preset time) to obtain the current temperature information after the change of the indoor environment and the current relative humidity information after the change, until step 59 is executed, and the air conditioner 1 exits Anti-condensation mode.
  • Step 59 the second controller 20 controls the compressor 30 to run at the first operating frequency.
  • the air conditioner 1 Since the query result of the second controller 20 is empty, the air conditioner 1 does not enter (or exit) the anti-condensation mode, and the second controller 20 controls the compressor 30 to run at the current operating frequency (ie, the first operating frequency).
  • Fig. 6 is a control method of an air conditioner provided by some embodiments of the present disclosure.
  • the air conditioner may be the air conditioner 1 in the above embodiment, and the air conditioner 1 includes an indoor unit 100 and an outdoor unit 200, wherein, The indoor unit 100 includes a first controller 10 , and the outdoor unit 200 includes a second controller 20 and a compressor 30 .
  • the control method of the air conditioner includes steps 61 to 68.
  • Step 61 the second controller 20 controls the compressor 30 to run at the first operating frequency.
  • the compressor 30 operates at the first operating frequency, which can reduce the temperature of the environment where the indoor unit 100 is located.
  • Step 62 the first controller 10 acquires current temperature information and current relative humidity information of the environment where the indoor unit 100 is located.
  • Step 63 the first controller 10 sends current temperature information and current relative humidity information to the second controller 20 .
  • Step 64 the second controller 20 receives current temperature information and current relative humidity information.
  • Step 65 the second controller 20 determines the second operating frequency of the compressor 30 corresponding to the preset correspondence between the current temperature information and the current relative humidity information according to the current temperature information, the current relative humidity information and the preset correspondence.
  • the preset corresponding relationship includes a corresponding relationship between a plurality of temperature information and a plurality of relative humidity information and a plurality of operating frequencies of the compressor 30 .
  • Step 66 the second controller 20 determines whether the first operating frequency is greater than the second operating frequency.
  • step 67 If it is determined that the first operating frequency is greater than the second operating frequency, execute step 67; if it is determined that the first operating frequency is less than or equal to the second operating frequency, execute step 68.
  • Step 67 the second controller 20 controls the compressor 30 to run at the second operating frequency.
  • Step 68 the second controller 20 controls the compressor 30 to run at the first operating frequency.
  • the operating frequency of the compressor 30 determined by the second controller 20 according to the current temperature information and the current relative humidity information is higher. Small.
  • control method of the air conditioner further includes, if according to the current temperature information, the current relative humidity information and the preset corresponding relationship, it is determined that the corresponding result of the current temperature information and the current relative humidity information in the preset corresponding relationship is empty , the second controller 20 controls the compressor 30 to operate at the first operating frequency.
  • the indoor unit 100 further includes a detection device 40 coupled to the first controller 10 , and the method further includes: the detection device 40 detects the current temperature information of the environment where the indoor unit 100 is located. and current relative humidity information, and send current temperature information and current relative humidity information to the first controller 10; the first controller 10 obtains the current temperature information and current relative humidity information of the environment where the indoor unit 100 is located, including: the first control The detector 10 receives the current temperature information and the current relative humidity information sent by the detection device 40 .
  • the first controller 10 acquires the current temperature information and current relative humidity information of the environment where the indoor unit 100 is located, including: after a preset time, the first controller 10 acquires the changed environment of the indoor unit 100 The current temperature information and the current relative humidity information, and send the changed current temperature information and the changed current relative humidity information to the second controller 20 .
  • control method of the above-mentioned air conditioner has the same beneficial effect as the air conditioner described in some of the above embodiments, and will not be repeated here.
  • Some embodiments of the present disclosure provide a computer-readable storage medium (for example, a non-transitory computer-readable storage medium), on which a computer program is stored, and when the computer program is executed by the air conditioner, the air conditioner performs the above-mentioned The air conditioner control method described in any one of the embodiments.
  • a computer-readable storage medium for example, a non-transitory computer-readable storage medium
  • the above-mentioned computer-readable storage medium may include, but is not limited to: a magnetic storage device (for example, a hard disk, a floppy disk, or a magnetic tape, etc.), an optical disk (for example, a CD (Compact Disk, a compact disk), a DVD (Digital Versatile Disk, Digital Versatile Disk), etc.), smart cards and flash memory devices (for example, EPROM (Erasable Programmable Read-Only Memory, Erasable Programmable Read-Only Memory), card, stick or key drive, etc.).
  • Various computer-readable storage media described in this disclosure can represent one or more devices and/or other machine-readable storage media for storing information.
  • Some embodiments of the present disclosure also provide a computer program product.
  • the computer program product comprises a computer program stored on a non-transitory computer readable storage medium. Wherein, when the computer program is executed by the air conditioner, the air conditioner executes the control method of the air conditioner as described in the above embodiments.
  • Some embodiments of the present disclosure also provide a computer program.
  • the computer program is stored on a non-transitory computer readable storage medium.
  • the air conditioner is made to execute the air conditioner control method described in the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器,包括室内机和室外机。室内机包括第一控制器,室外机包括第二控制器和压缩机。第一控制器被配置为:获取室内机所处环境的当前温度信息和当前相对湿度信息,并向第二控制器发送当前温度信息和所述当前相对湿度信息。第二控制器被配置为:控制压缩机以第一运行频率运行;接收当前温度信息和当前相对湿度信息;根据当前温度信息、当前相对湿度信息以及预设对应关系,确定当前温度信息和当前相对湿度信息在预设对应关系中对应的压缩机的第二运行频率;确定第一运行频率是否大于第二运行频率;若第一运行频率大于第二运行频率,控制压缩机以第二运行频率运行;若第一运行频率小于或等于第二运行频率,控制压缩机以第一运行频率运行。

Description

空调器及空调器的控制方法
本申请要求于2021年10月22日提交的、申请号为202111230558.5的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及空调器技术领域,尤其涉及一种空调器及空调器的控制方法。
背景技术
当室内温度较高时,用户通常需要开启空调器的制冷功能,以降低室内温度。为了实现快速降温,空调器中的压缩机会以一个高频率运行,以提供足够有的制冷量。
发明内容
一方面,提供一种空调器。该空调器包括室外机和室内机。其中,室内机包括第一控制器,室外机包括第二控制器和压缩机,第二控制器分别与第一控制器和压缩机耦接。第一控制器被配置为:获取室内机所处环境的当前温度信息和当前相对湿度信息。第二控制器被配置为:控制压缩机以第一运行频率运行,以使室内机所处环境的温度降低;接收当前温度信息和当前相对湿度信息;根据当前温度信息、当前相对湿度信息以及预设对应关系,确定当前温度信息和当前相对湿度信息在预设对应关系中对应的压缩机的第二运行频率;其中,预设对应关系包括多个温度信息和多个相对湿度信息与压缩机的多个运行频率的对应关系;确定第一运行频率是否大于第二运行频率;若确定第一运行频率大于第二运行频率,控制压缩机以第二运行频率的运行。若确定第一运行频率小于或等于第二运行频率,控制压缩机以第一运行频率运行。
另一方面,提供一种空调器的控制方法。该空调器包括室外机和室内机。其中,室内机包括第一控制器,室外机包括第二控制器和压缩机。该空调器的控制方法包括:第二控制器控制压缩机以第一运行频率运行,以使室内机所处环境的温度降低;第一控制器获取室内机所处环境的当前温度信息和当前相对湿度信息;第一控制器向第二控制器发送当前温度信息和当前相对湿度信息;第二控制器接收当前温度信息和当前相对湿度信息;第二控制器根据当前温度信息、当前相对湿度信息以及预设对应关系,确定当前温度信息和当前相对湿度信息在预设对应关系中对应的压缩机的第二运行频率;其中,预设对应关系包括多个温度信息和多个相对湿度信息与压缩机的多个运行频率的对应关系;第二控制器确定第一运行频率是否大于第二运行频率;若确定第一运行频率大于第二运行频率,第二控制器控制压缩机以第二运行频率运行。若确定第一运行频率小于或等于第二运行频率,第二控制器控制压缩机以第一运行频率运行。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显然,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开一些实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据本公开一些实施例的一种空调器的结构图;
图2为根据本公开一些实施例的一种空调器的室内机的结构图;
图3为根据本公开一些实施例的一种空调器的示意图;
图4为根据本公开一些实施例的另一种空调器的示意图;
图5为根据本公开一些实施例的一种空调器的控制方法的流程图;
图6为根据本公开一些实施例的另一种空调器的控制方法的流程图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开一些实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应作为广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接连接,也可以是通过中间媒介间接连接。术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值 的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
本公开的一些实施例提供一种空调器,图1为本公开的一些实施例提供的一种空调器的结构图。如图1所示,空调器1包括室内机100和室外机200。
示例性地,如图1所示,室内机100包括第一控制器10,室外机200包括第二控制器20和压缩机30。其中,第二控制器20分别与第一控制器10和压缩机30耦接。
在一些示例中,室内机100还包括室内换热器101;室外机200还包括室外换热器201、膨胀阀202和四通阀203。其中,压缩机30、室外换热器201、膨胀阀202和室内换热器101之间通过管路连接,形成冷媒回路,冷媒在冷媒回路中循环流动,并通过室内换热器101和室外换热器201分别与空气进行交换,以实现空调器1的制冷和制热功能。
在一些实施例中,压缩机30被配置为压缩冷媒,以使得低压冷媒受压缩形成高压冷媒。膨胀阀202,例如可以为电子阀,连接于室内换热器101与室外换热器201之间,膨胀阀202的开度是可调节,用于控制流经膨胀阀202的冷媒的流量和压力,从而用于调节流通于室外换热器201和室内换热器101之间的冷媒流量。室内换热器101和室外换热器201之间流通的冷媒的流量和压力将影响其各自的换热性能。在一些示例中,膨胀阀202也可以设置在室内机100中。四通阀203连接于冷媒回路内,四通阀203被配置为切换冷媒在冷媒回路中的流向以使空调器1对室内机100所处环境(以下称为室内环境)执行制冷或制热。
示例性地,空调器1的工作模式可以包括制热模式和制冷模式。其中,当满足制热条件时,空调器1工作在制热模式。当空调器1工作在制热模式时,室内换热器101可以用作冷凝器,室外换热器201可以用作蒸发器,空调器1实现对室内环境进行制热。例如,制热条件可以空调器1的运行温度高于第一预设温度。当满足制冷条件时,空调器1工作在制冷模式。当空调器1工作在制冷模式时,室内换热器101可以用作蒸发器,室外换热器201可以用作冷凝器时,空调器1实现对室内环境进行制冷。例如,制冷条件可以包括空调器1的运行温度低于第二预设温度。在一些示例中,第一预设温度大于第二预设温度。
图2为本公开的一些实施例提供的一种室内机100的结构图。如图2所示,室内机100还包括机壳102、出风导风板103以及出风口104。其中,出风导风板103与机壳102连接,且出风导风板103设于出风口104处,以打开或关闭出风口104。
在室内环境的温度较高时,空调器1通常工作在制冷模式,以降低室内环境的温度。为了实现快速降温,压缩机30通常会以一个较高的运行频率运行,此时,室内环境中温度较高的空气进入机壳102的内部后,经过与室内换热器101中的冷媒进行换热后,得到温度较低的空气,该温度较低的空气流向出风口104,并从出风口104吹到室内,实现对室内环境的降温。
示例性地,当空调器1工作在制冷模式时,若室内环境的温度和相对湿度较高,室内环境的露点温度也会较高。这种情况下,若压缩机30以一个较高的运行频率运行时,在室内机100的出风口104所吹出空气的温度较低,即室内机100的出风温度较低。这样会导致室内环境的露点温度与室内机100的出风温度之间的温差较大,从而使室内环境中的水蒸气容易凝结在室内机100的出风口104或者出风导风板103上产生水珠,导致室内机100的出风口104存在吹出水珠的隐患,这种现象称为凝露现象。
也就是说,当空调器1工作在制冷模式,且室内环境的温度和相对湿度较高时,若压缩机30以一个较高的运行频率运行,室内机100的出风口104、外壳102以及出风导风板103等处可能会发生凝露现象。凝露现象会破坏室内环境,影响用户的使用体验。
在一些实施例中,可以通过限制(例如降低)压缩机30的运行频率来避免凝露现象的产生,但是,压缩机30的运行频率影响空调器1的制冷效果,如果将压缩机30的运行频率限制的过小可能会影响空调器1的制冷效果,而如果将压缩机30的运行频率限制的不够,可能不能完全避免凝露现象的产生。因此,如何控制压缩机30以一个较佳的目标运行频率运行,既可以保证空调器1达到快速降温的同时,又可以保证空调器1不会出现凝露现象成为亟待解决的问题。相关技术中,可以通过采集空调器1的盘管温度来计算压缩机的运行频率,而空调器1的盘管温度的变化范围一般较小(如8℃-20℃),因此要计算得到压缩机30的目标运行频率较为困难,且获取到的目标运行频率也不够准确。
本公开的一些实施例提供的空调器1,能够以简单有效的方式来获取到压缩机30的目标运行频率,实现空调器1在保证制冷效果的同时,避免凝露现象的产生。
如图1所示,第二控制器20被配置为:控制压缩机30以第一运行频率运行,以使室内机100所处环境的温度降低。
当空调器1工作在制冷模式时,第二控制器20会控制压缩机30以第一运行频率运行,实现对室内环境的制冷。本公开一些实施例以空调器1工作在制冷模式为例进行示例性说明。
示例性地,压缩机30的第一运行频率可以为第二控制器20中预设的运行频率。第一运行频率与室内环境的温度情况有关,例如第一运行频率与室内环境的温度变化值和/或温度变化速率有关。也就是说,第一运行频率可以随着室内环境的温度变化而动态调整。空调器1工作在制冷过程中,第二控制器20可以根据室内环境的温度变化情况来控制压缩机30的运行频率。在一些示例中,压缩机30的第一运行频率越大,空调器1的制冷效果越好。
第一控制器10被配置为:获取室内机100所处环境的当前温度信息和当前相对湿度信息。
在一些实施例中,如图3所示,室内机100还包括检测装置40,检测装置40与第一控制器10耦接,且被配置为:检测室内机100所处环境的当前温度信息和当前相对湿度信息,并向第一控制器10发送当前温度信息和当前相对湿度信息。第一控制器10被配置为:接收检测装置40发送的当前温度信息和当前相对湿度信息。
由上述实施例可知,空调器1产生凝露现象与室内环境的露点温度相关,当压缩机30以第一运行频率运行时,室内机100的出风口104吹出的空气具有一个出风温度,此时,当室内环境的露点温度越高时,与出风口104的出风温度之间的温差越大,因而空调器1也就越容易产生凝露现象。而室内环境的露点温度与室内环境的温度及相对湿度相关,因此,本公开一些实施例对室内环境的当前温度和当前相对湿度进行监控,并根据当前温度和当前相对湿度来获取压缩机30的较佳的运行频率,以保证空调器1达到快速降温的同时,又能够保证空调器1不会出现凝露现象。
示例性地,参照图4,检测装置40可以包括温度检测装置41和湿度检测装置42。 温度检测装置41和湿度检测装置42分别与第一控制器10耦接。其中,温度检测装置41用于对室内环境的当前温度进行检测,获取当前温度信息,并将当前温度信息发送给第一控制器10。湿度检测装置42用于对室内环境的当前相对湿度进行检测,获取当前相对湿度信息,并将当前相对湿度信息发送给第一控制器10。
示例性地,第一控制器10与第二控制器20耦接,第一控制器10可以将获取到的当前温度信息和当前相对湿度信息发送给第二控制器20。
在一些实施例中,温度检测装置41可以为温度传感器,湿度检测装置42可以为湿度传感器。温度传感器和湿度传感器均处于室内环境,且分别对室内环境的温度变化和相对湿度的变化的反应较为灵敏,因此,可以确保所检测到的当前温度信息和当前相对湿度信息的准确性较高。或者,检测装置40也可以包括温湿度传感器,用于对室内环境的温度和相对湿度进行检测,本公开一些实施例对此不作限制。
第二控制器20还被配置为:接收当前温度信息和当前相对湿度信息,根据当前温度信息、当前相对湿度信息以及预设对应关系,确定当前温度信息和当前相对湿度信息在预设对应关系中对应的压缩机30的第二运行频率。其中,预设对应关系包括多个温度信息和多个相对湿度信息与压缩机30的多个运行频率的对应关系。
示例性地,预设对应关系中的压缩机30的多个运行频率中的一个运行频率可以为多个温度信息中的某一温度信息和多个相对湿度信息中的某一相对湿度信息下,压缩机30的最大允许运行频率。示例性地,压缩机30的最大允许运行频率可以为在某一温度和某一相对湿度下,空调器1产生凝露现象的一个临界运行频率。也就是说,在该温度和相对湿度下,若压缩机30的运行频率大于该最大允许运行频率,空调器1容易产生凝露现象,而当压缩机30的运行频率小于或等于该最大允许运行频率时,空调器1不容易会产生凝露现象。
但是,在该温度和相对湿度下,若压缩机30的运行频率小于该最大允许运行频率时,虽然空调器1不容易产生凝露现象,但是也不能达到较佳的制冷效果。而当压缩机30的运行频率为该最大允许运行频率时,空调器1既能达到佳的制冷效果,也不容易产生凝露现象。
因此,在预设对应关系中,压缩机30的最大允许运行频率即为实现空调器1的制冷效果和防凝露效果的一个折中的运行频率。
示例性地,预设对应关系可以通过在不同温度和不同湿度下,对空调器1产生凝露现象的临界点时,压缩机30的运行频率进行测试得到。例如,对于空调器1来说,可以某一温度范围和某一湿度范围内,对每个温度和每个相对湿度之间组合时,测试在空调器1产生凝露现象的临界点,压缩机30的各运行频率,该运行频率即为压缩机30的最大允许运行频率。
在一些实施例中,参照图3,室外机200还包括存储器50,存储器50与第二控制器20耦接。其中,预设对应关系可以存储在存储器50中,第二控制器20通过存储器50对预设对应关系进行查询。在一些示例中,可以在空调器1在出厂前,将预设对应关系存储在室外机200的存储器50中。或者,预设对应关系也可以预先存储在第二控制器20中。
在一些实施例中,在预设对应关系中,多个温度信息中每个温度信息对应的温度T满足关系:25℃≤T≤35℃;多个相对湿度信息中每个相对湿度信息对应的湿度Φ满 足关系:50%≤Φ≤100%。
通常,在室内环境的温度较高时,例如在室内环境的温度大于30℃时,空调器1会进入制冷模式以降低室内环境的温度,同时考虑到舒适性,会选择室内环境的温度大于或等于25℃。并且,在室内环境的相对湿度大于或等于50%的情况下,空调器1的室内机100,尤其是室内机100的出风口104处容易发生凝露现象。因此,可以将预设对应关系中多个温度信息中每个温度信息对应的温度T设置在25℃≤T≤35℃的范围,将多个相对湿度信息中每个相对湿度信息对应的湿度Φ设置在50%≤Φ≤100%的范围,在这个范围内,空调器1容易产生凝露现象。而当室内环境的温度较低,例如小于25℃,相对湿度较小,例如小于50%时,空调器1一般不会产生凝露现象,因此,无需将预设对应关系中对应的温度T和相对湿度Φ的范围设置过大,这样可以降低预设对应关系的复杂度,提高第二控制器20的查找效率。
示例性的,不同的空调器1对应的预设对应关系可能不同。预设对应关系与空调器1中的压缩机30相关。在一些示例中,预设对应关系与压缩机30的排量大小和制冷量相关。也就是说,压缩机30的最大允许频率与压缩机30的排量大小和制冷量有关,例如,在压缩机30的制冷量一定的情况下,压缩机30的排量越大,压缩机30的最大允许频率就越小。因此,可以根据不同的压缩机30,得到不同的预设对应关系,并将该预设对应关系存储在存储器50中。
在一些示例中,预设对应关系可以为预设对应关系表的形式,比如,该预设对应关系可以为一个数据查找表。下面以预设对应关系为数据查找表为例进行示例性说明。
表1为本公开一些实施例提供的一个数据查找表的示例。如表1所示,该数据查找表中包括了多个温度和多个相对湿度,以及多个温度中每个温度T与多个相对湿度中每个相对湿度Φ组合时,分别对应的压缩机30的各最大允许运行频率H。
表1
Figure PCTCN2022126253-appb-000001
如表1所示,压缩机30的最大允许频率H1至H54分别表示在不同的温度T和不同相对湿度Φ下,压缩机30的各最大允许运行频率。
在一些实施例中,第二控制器20还配置为:若当前温度信息对应的温度T和/或当前相对湿度信息对应的相对湿度Φ越大,根据当前温度信息和当前相对湿度信息在预设对应关系中确定的压缩机30的运行频率越小。
在一些示例中,参照表1,当温度T为31℃,相对湿度为60%时,所对应的压缩机30的最大允许运行频率为H25,例如,H25的大小可以为48Hz;当温度T为31℃,相对湿度Φ为70%时,所对应的压缩机30的最大允许运行频率为H26,例如,H26的大小可以为42Hz;当温度T为31℃,相对湿度Φ分别为80%时,所对应的压缩机30的最大允许运行频率为H27,例如,H27的大小为40Hz。由此可以看出,在预设对应关系中,温度T一定的情况下,相对湿度Φ越大,压缩机30的最大允许频率就越小。
在另一些示例中,参照表1,当相对湿度Φ为70%,温度T为28℃时,所对应的压缩机30的最大允许运行频率为H40,例如,H40的大小为44Hz;当相对湿度Φ为70%,温度T为31℃时,所对应的压缩机30的最大允许运行频率为H26,例如,H26的大小为42Hz;当相对湿度Φ为70%,温度T为35℃时,对应的压缩机30的最大允许运行频率为H3,例如,H3的大小为40Hz。由此可以看出,在预设对应关系中,相对湿度Φ一定的情况下,温度T越大,压缩机30的最大允许频率就越小。
在又一些示例中,参照表1,当温度T为26℃,相对湿度Φ为70%时,所对应的压缩机30的最大允许运行频率为H48,例如,H48的大小为48Hz;当温度T为31℃,相对湿度Φ为80%时,所对应的压缩机30的最大允许运行频率为H27,例如,H48的大小为40Hz。由此可以看出,在预设对应关系中,温度T越大,且相对湿度Φ越大,其对应的压缩机30的最大允许运行频率就越小。这是因为当温度T和相对湿度Φ较高时,空调器1更容易产生凝露现象,因此需要限制压缩机30的最大允许运行频率更低一些,才能够更好的避免凝露现象的产生。
因此,在表1所示的压缩机30的最大允许运行频率H1至H54中,由于H6为最大温度T(35℃)和最大相对湿度Φ(100%)所对应的最大允许频率,因此H6为H1至H54中最小的一个最大允许运行频率。
在第二控制器20接收到室内环境的当前温度信息和当前相对湿度信息后,可以在预先存储的预设对应关系中查找当前温度信息和当前相对湿度信息所对应的压缩机30的最大允许运行频率,该最大允许运行频率例如为第二运行频率,第二运行频率可以为预设对应关系中包括的多个运行频率中的一个运行频率。
第二控制器20被配置为:确定第一运行频率是否大于第二运行频率;若确定第一运行频率大于第二运行频率,控制压缩机30以第二运行频率运行。
当第二控制器20从预设对应关系中查找到压缩机30的第二运行频率(即最大允许运行频率)后,比较第二运行频率与压缩机30的第一运行频率(即当前运行频率)的大小。若第一运行频率大于第二运行频率,表明压缩机30的当前运行频率过高,且已超出压缩机30的最大允许运行频率,因而当压缩机30以第一运行频率运行时,会导致室内机100的出风口104处的出风温度过低,容易导致凝露现象的发生,因此,第二控制器20需要限制压缩机30的当前运行频率。
示例性地,第二控制器20可以将压缩机30的第一运行频率下降到第二运行频率,以使压缩机30以第二运行频率运行。由上述实施例可知,第二运行频率为预设对应关系中,当前温度信息和当前相对湿度信息下,压缩机30的最大允许运行频率,当压缩机30以第二运行频率运行时,空调器1既可以很好地发挥制冷降温作用,又可以很大程度上避免凝露现象的产生。
在一些实施例中,第二控制器20还被配置为:若确定第一运行频率小于或等于第二运行频率,控制压缩机30以第一运行频率运行。
若第一运行频率小于或等于第二运行频率,表明压缩机30的当前运行频率(即第一运行频率)没有超过预设对应关系中的压缩机30的最大允许运行频率(即第二运行频率),因此,当压缩机30以第一运行频率运行时,不会引起空调器1产生凝露现象,此时,第二控制器20无需对压缩机30的当前运行频率进行干涉,压缩机30可以仍继续以当前运行频率运行。这样,可以使空调器1灵活地按照当前室内环境确定是否干涉压缩机30的运行频率。
因此,本公开一些实施例提供的空调器1,根据其工作在制冷模式下时,室内环境的当前温度信息和当前相对湿度信息,通过预设对应关系,确定在当前温度信息和当前相对湿度信息下,压缩机30的最大允许运行频率,并在压缩机30的当前运行频率(即第一运行频率)大于该最大允许运行频率(即第二运行频率)时,将当前运行频率降低至最大允许运行频率。因此,本公开一些实施例可以以简单且有效的方式实现对压缩机30的运行频率的控制,以确保空调器1既发挥快速降温作用,又避免凝露现象的产生。
在一些实施例中,第二控制器20还被配置为:若根据当前温度信息、当前相对湿度信息以及预设对应关系,确定当前温度信息和当前相对湿度信息在预设对应关系中对应的结果为空,控制压缩机30以第一运行频率运行。
示例性地,在第二控制器20接收到当前温度信息和当前相对湿度信息时,可以先判断根据当前温度信息和相对湿度信息查询预设对应关系的查询结果,若查询结果不为空,按照上述一些实施例对压缩机30的当前运行频率进行处理;若查询结果为空,第二控制器20不对压缩机30的当前运行频率(第一运行频率)进行干涉,压缩机30可以继续以当前运行频率运行。
第二控制器20根据当前温度信息、当前相对湿度信息以及预设对应关系(例如数据查找表),确定当前温度信息和当前相对湿度信息在预设对应关系中对应的结果为空,指的是:第二控制器20在预设对应关系中,未查找到与当前温度和当前相对湿度相对应的压缩机30的最大允许运行频率。
在一些示例中,第二控制器20在预设对应关系中查找到当前温度信息,但未查找到当前相对湿度信息时,无法查找到与当前温度和当前相对湿度相对应的压缩机30的最大允许运行频率。例如,参照表1提供的数据查询表,若当前温度信息对应的温度T为28℃,当前相对湿度信息对应的相对湿度Φ为30%时,由于表1的数据查询表中不包括相对湿度Φ为30%的情况,因此,第二控制器20的查询结果为空。
在另一些示例中,第二控制器20在预设对应关系中查找到当前相对湿度信息,但未查找到当前温度信息时,无法查找到与当前温度和当前相对湿度相对应的压缩机30的最大允许运行频率。例如,参照表1提供的数据查询表,若当前温度信息对应的温度T为23℃,当前相对湿度信息对应的相对湿度Φ为60%时,由于表1的数据查询表中不包括温度T为23℃的情况,因此,第二控制器20的查询结果也为空。
在又一些示例中,第二控制器20在预设对应关系中查找到当前温度信息和当前相对湿度信息,但未查找到与当前温度和当前相对湿度相对应的压缩机30的最大允许运行频率。例如,参照表1提供的数据查询表,某些温度T和相对湿度Φ所对应的压缩 机30的最大允许运行频率处为空。比如,当温度T为25℃,相对湿度Φ为50%时,所对应的压缩机30的最大允许运行频率为空,即没有相关数据信息。此时,第二控制器20的查询结果也为空。
由于当空调器工作在制冷模式时,若室内环境的当前温度和/或相对湿度较低,室内环境的露点温度与室内机100的出风口104的出风温度的温差不会太大,因而即使压缩机30的当前运行频率很高(如大于最大允许运行频率),空调器1发生凝露现象的可能性也较小,或者不会发生凝露现象。因此,在预设对应关系中可以无需记录室内环境的较低温度和较低相对湿度的情况;或者,即使预设对应关系中记录了室内环境的较低温度和较低相对湿度的组合,也可使其对应的压缩机30的最大允许运行频率的信息保持为空(即不记录最大允许运行频率的值)。这样可以降低预设对应关系的数据量,简化预设对应关系的设计复杂度,并提高空调器1的查表效率,降低查找工作量。
在一些实施例中,第一控制器10被配置为:经过预设时间,获取变化后的室内机100所处环境的当前温度信息和当前相对湿度信息,并向第二控制器20发送变化后的当前温度信息和变化后的当前相对湿度信息。
示例性地,若第二控制器20根据室内环境的当前温度信息和当前相对湿度信息,在预设对应关系中查找到了压缩机30的最大允许运行频率,将这种情况称为空调器1进入防凝露模式。在空调器1进入防凝露模式一段时间后,室内环境的当前温度信息和当前相对湿度信息会进行发生变化,例如,室内环境的当前温度和/或相对湿度会降低,变化后的当前温度信息和变化后的当前相对湿度信息可能在预设对应关系中无法查找到压缩机30的最大允许运行频率,此时,表明变化后的当前温度和当前湿度可能不会导致或者不容易导致空调器1发生凝露现象,因此,空调器1需要或可能需要退出防凝露模式。
在一些示例中,当空调器1运行一段时间后,室内环境的温度和相对湿度可以达到相对稳定,在短时间内不会发生明显的变化,因此,在空调器1的运行过程中,若空调器1退出防凝露模式,由于此时当前温度信息和当前相对湿度信息以保持基本稳定,因而空调器1通常无需再次进入防凝露模式。
为了保证空调器1能够实现根据室内环境决定是否进入或退出防凝露模式,需要检测装置40及时对室内环境的当前温度和当前相对湿度进行监控。
示例性地,检测装置40可以每隔预定时间检测室内环境的变化后的当前温度和变化后的当前相对湿度,并将检测结果发送给第一控制器10,再由第一控制器10将该检测结果发送给第二控制器20,以使第二控制器20根据该检测结果在数据查找表中查询压缩机30对应的最大允许运行频率。从而保证空调器1能够根据室内环境的实际情况决定是否进入或退出防凝露模式,从而提高空调器1的适应性,提高用户体验。
在一些实施例中,预设时间可以为10分钟。其中,预设时间不能设置的过短,预设时间设置过短,会导致检测装置40频繁获取室内环境的当前温度和当前相对湿度,以使第二控制器20频繁地进行查表操作,频繁查表操作会在一定程度上增大空调器1的功率消耗且增大查找工作量;或者,预设时间也不能设置过长,若将预设时间设置得过长,会导致在室内环境的当前温度和当前相对湿度发生明显变化后,尤其是在室内环境的当前温度和当前相对湿度导致空调器1发生或容易发生凝露现象时,第二控制器20无法及时获 取到,从而导致空调器1不能及时适应性地进入防凝露模式。将预设时间设为10分钟,既可避免增大空调器1的功率消耗且使查找工作量相对低,又可确保空调器1及时地根据室内环境的当前温度和当前相对湿度的变化而在需要时进入防凝露模式,从而降低空调器1的运行成本,提高用户使用体验。
示例性地,预设时间也可以根据实际需要进行设定,例如,预设时间可以大于或小于10分钟,如预设时间还可以设定为5分钟、8分钟、9分钟、11分钟、12分钟或15分钟等。
在一些实施例中,在经过预设时间,室内环境的当前温度信息和当前相对湿度信息会发生变化,第一控制器10从检测装置40获取到变化后的当前温度信息和变化后的当前相对湿度信息后,再发送给第二控制器20,第二控制器20按照如图5所示的步骤51到步骤59来实现对压缩机30的运行频率的控制。
步骤51,经过预设时间,第一控制器10获取变化后的室内机100所处环境的当前温度信息和当前相对湿度信息,向第二控制器20发送变化后的当前温度信息和变化后的当前相对湿度信息。
其中,第一控制器10首次获取的为室内环境当前温度信息和当前相对湿度信息,在经过预设时间后,第一控制器10获取的为变化后的当前温度信息和变化后的当前相对湿度信息。
步骤52,第二控制器20接收变化后的当前温度信息和变化后的当前相对湿度信息。
步骤53,第二控制器20根据变化后的当前温度信息和变化后的当前相对湿度信息,查询预设对应关系,得到查询结果。
步骤54,第二控制器20确定查询结果是否为空。
若查询结果不为空,空调器1进入防凝露模式,继续执行步骤55;若查询结果为空,空调器1不进入(或者退出)防凝露模式,执行步骤59。
步骤55,第二控制器20确定变化后的当前温度信息和变化后的当前相对湿度信息在预设对应关系中对应的压缩机30的第二运行频率。
步骤56,第二控制器20确定第一运行频率是否大于第二运行频率。
其中,第一运行频率为压缩机30的当前运行频率,若第一运行频率大于第二运行频率,执行步骤57,若第一运行频率小于或等于第二运行频率,执行步骤58。
步骤57,第二控制器20控制压缩机30以第二运行频率运行。
在执行完步骤57后,继续返回步骤51,等待下一次(预设时间后)获取室内环境的变化后的当前温度信息和变化后的当前相对湿度信息,直至执行到步骤59,空调器1退出防凝露模式。
步骤58,第二控制器20控制压缩机30以第一运行频率运行。
在执行完步骤519后,继续返回步骤51,等待下一次(预设时间后)获得室内环境的变化后的当前温度信息和变化后的当前相对湿度信息,直至执行到步骤59,空调器1退出防凝露模式。
步骤59,第二控制器20控制压缩机30以第一运行频率运行。
由于第二控制器20的查询结果为空,因而空调器1不进入(或者退出)防凝露模式,第二控制器20控制压缩机30以当前运行频率运行(即第一运行频率)。
按照图5所示的过程,可以通过周期性地检测空调器1是否需要进入或退出防凝露模 式,以提高空调器1的适应性,提高用户的使用体验。
图6为本公开一些实施例提供的一种空调器的控制方法,参照图1,该空调器可以为上述实施例中的空调器1,空调器1包括室内机100和室外机200,其中,室内机100包括第一控制器10,室外机200包括第二控制器20和压缩机30。空调器的控制方法包括步骤61到步骤68。
步骤61,第二控制器20控制压缩机30以第一运行频率运行。
其中,压缩机30以第一运行频率运行,可以使室内机100所处环境的温度降低。
步骤62,第一控制器10获取室内机100所处环境的当前温度信息和当前相对湿度信息。
步骤63,第一控制器10向第二控制器20发送当前温度信息和当前相对湿度信息。
步骤64,第二控制器20接收当前温度信息和当前相对湿度信息。
步骤65,第二控制器20根据当前温度信息、当前相对湿度信息以及预设对应关系,确定当前温度信息和当前相对湿度信息在预设对应关系中对应的压缩机30的第二运行频率。
其中,预设对应关系包括多个温度信息和多个相对湿度信息与压缩机30的多个运行频率的对应关系。
步骤66,第二控制器20确定第一运行频率是否大于第二运行频率。
若确定第一运行频率大于第二运行频率,执行步骤67,若确定第一运行频率小于或等于第二运行频率,执行步骤68。
步骤67,第二控制器20控制压缩机30以第二运行频率运行。
步骤68,第二控制器20控制压缩机30以第一运行频率运行。
在一些实施例中,若当前温度信息对应的温度和/或当前相对湿度信息对应的相对湿度越大,第二控制器20根据当前温度信息和当前相对湿度信息确定的压缩机30的运行频率越小。
在一些实施例中,空调器的控制方法还包括,若根据当前温度信息、当前相对湿度信息以及预设对应关系,确定当前温度信息和当前相对湿度信息在预设对应关系中对应的结果为空,第二控制器20控制压缩机30以第一运行频率运行。
在一些实施例中,参照图3,室内机100还包括检测装置40,检测装置40与第一控制器10耦接,该方法还包括:检测装置40检测室内机100所处环境的当前温度信息和当前相对湿度信息,并向第一控制器10发送当前温度信息和当前相对湿度信息;第一控制器10获取室内机100所处环境的当前温度信息和当前相对湿度信息,包括:第一控制器10接收检测装置40发送的当前温度信息和当前相对湿度信息。
在一些实施例中,第一控制器10获取室内机100所处环境的当前温度信息和当前相对湿度信息,包括:经过预设时间,第一控制器10获取变化后的室内机100所处环境的当前温度信息和当前相对湿度信息,并向第二控制器20发送变化后当前温度信息和变化后的当前相对湿度信息。
上述空调器的控制方法和上述一些实施例所述的空调器的有益效果相同,此处不再赘述。
需要说明的是,本公开一些实施例的附图中以特定顺序描述的各个步骤,并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望 的结果。可以对附图中的各步骤进行附加,也可以省略某些步骤,或者将多个步骤合并为一个步骤执行,或者将一个步骤分解为多个步骤执行等。
本公开的一些实施例提供了一种计算机可读存储介质(例如,非暂态计算机可读存储介质),其上存储有计算机程序,该计算机程序被空调器执行时,使得空调器执行如上述实施例中任一实施例所述的空调器的控制方法。
示例性的,上述计算机可读存储介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD(Compact Disk,压缩盘)、DVD(Digital Versatile Disk,数字通用盘)等),智能卡和闪存器件(例如,EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、卡、棒或钥匙驱动器等)。本公开描述的各种计算机可读存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读存储介质。
本公开的一些实施例还提供了一种计算机程序产品。该计算机程序产品包括计算机程序,该计算机程序存储在非暂态计算机可读存储介质上。其中,该计算机程序在被空调器执行时,使得空调器执行如上述实施例所述的空调器的控制方法。
本公开的一些实施例还提供了一种计算机程序。该计算机程序存储在非暂态计算机可读存储介质上。当该计算机程序在被空调器执行时,使得空调器执行如上述实施例所述的空调器的控制方法。
上述计算机可读存储介质、计算机程序产品及计算机程序的有益效果和上述一些实施例所述的空调器的控制方法的有益效果相同,此处不再赘述。
本领域技术人员将会理解,本公开的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本公开的范围受附权利要求的限制。

Claims (11)

  1. 一种空调器,包括:
    室内机,包括第一控制器;其中,所述第一控制器被配置为:获取所述室内机所处环境的当前温度信息和当前相对湿度信息;
    室外机,包括第二控制器和压缩机,所述第二控制器分别与所述第一控制器和所述压缩机耦接;其中,所述第二控制器被配置为:
    控制所述压缩机以第一运行频率运行,以使所述室内机所处环境的温度降低;
    接收所述当前温度信息和所述当前相对湿度信息;
    根据所述当前温度信息、所述当前相对湿度信息以及预设对应关系,确定所述当前温度信息和所述当前相对湿度信息在所述预设对应关系中对应的所述压缩机的第二运行频率;其中,所述预设对应关系包括多个温度信息和多个相对湿度信息与所述压缩机的多个运行频率的对应关系;
    确定所述第一运行频率是否大于所述第二运行频率;
    若确定所述第一运行频率大于所述第二运行频率,控制所述压缩机以第二运行频率运行;
    若确定所述第一运行频率小于或等于所述第二运行频率,控制所述压缩机以所述第一运行频率运行。
  2. 根据权利要求1所述的空调器,其中,所述第二控制器,还配置为:
    若所述当前温度信息对应的温度和/或所述当前相对湿度信息对应的相对湿度越大,根据所述当前温度信息和所述当前相对湿度信息在所述预设对应关系中确定的所述压缩机的运行频率越小。
  3. 根据权利要求1或2所述的空调器,其中,所述第二控制器,还被配置为:
    若根据所述当前温度信息、所述当前相对湿度信息以及所述预设对应关系,确定所述当前温度信息和所述当前相对湿度信息在所述预设对应关系中对应的结果为空,控制所述压缩机以所述第一运行频率运行。
  4. 根据权利要求1-3中任一项所述的空调器,其中,所述室内机还包括检测装置;所述检测装置与所述第一控制器耦接,且被配置为:检测所述室内机所处环境的当前温度信息和当前相对湿度信息,并向所述第一控制器发送所述当前温度信息和所述当前相对湿度信息;
    所述第一控制器被配置为:接收所述检测装置发送的所述当前温度信息和所述当前相对湿度信息。
  5. 根据权利要求1-4中任一项所述的空调器,其中,所述检测装置包括温度传感器和/或湿度传感器。
  6. 根据权利要求1-5中任一项所述的空调器,其中,所述第一控制器,被配置为:
    经过预设时间,获取变化后的所述室内机所处环境的当前温度信息和当前相对湿度信息,并向所述第二控制器发送变化后的所述当前温度信息和变化后的所述当前相对湿度信息。
  7. 一种空调器的控制方法,所述空调器包括室内机和室外机,所述室内机包括第一控制器,所述室外机包括第二控制器和压缩机,所述第二控制器分别与所述第一控制器和所述压缩机耦接;所述方法包括:
    所述第二控制器控制所述压缩机以第一运行频率运行,以使所述室内机所处环境的温 度降低;
    所述第一控制器获取所述室内机所处环境的当前温度信息和当前相对湿度信息;
    所述第一控制器向所述第二控制器发送所述当前温度信息和所述当前相对湿度信息;
    所述第二控制器接收所述当前温度信息和所述当前相对湿度信息;
    所述第二控制器根据所述当前温度信息、所述当前相对湿度信息以及预设对应关系,确定所述当前温度信息和所述当前相对湿度信息在所述预设对应关系中对应的所述压缩机的第二运行频率;其中,所述预设对应关系包括多个温度信息和多个相对湿度信息与所述压缩机的多个运行频率的对应关系;
    所述第二控制器确定所述第一运行频率是否大于所述第二运行频率;
    若确定所述第一运行频率大于所述第二运行频率,所述第二控制器控制所述压缩机以第二运行频率运行;
    若确定所述第一运行频率小于或等于所述第二运行频率,所述第二控制器控制所述压缩机以所述第一运行频率运行。
  8. 根据权利要求7所述的方法,其中,若所述当前温度信息对应的温度和/或所述当前相对湿度信息对应的相对湿度越大,所述第二控制器根据所述当前温度信息和所述当前相对湿度信息确定的所述压缩机的运行频率越小。
  9. 根据权利要求7或8所述的方法,还包括:
    若所述第二控制器根据所述当前温度信息、所述当前相对湿度信息以及所述预设对应关系,确定所述当前温度信息和所述当前相对湿度信息在所述预设对应关系中对应的结果为空,所述第二控制器控制所述压缩机以所述第一运行频率运行。
  10. 根据权利要求7-9中任一项所述的方法,其中,所述室内机还包括检测装置;所述方法还包括:所述检测装置检测所述室内机所处环境的当前温度信息和当前相对湿度信息,并向所述第一控制器发送所述当前温度信息和所述当前相对湿度信息;
    所述第一控制器获取所述室内机所处环境的当前温度信息和当前相对湿度信息,包括:
    所述第一控制器接收所述检测装置发送的所述当前温度信息和所述当前相对湿度信息。
  11. 根据权利要求7-10中任一项所述的方法,其中,所述第一控制器获取所述室内机所处环境的当前温度信息和当前相对湿度信息,包括:
    经过预设时间,所述第一控制器获取变化后的所述室内机所处环境的当前温度信息和当前相对湿度信息,并向所述第二控制器发送变化后的所述当前温度信息和变化后的所述当前相对湿度信息。
PCT/CN2022/126253 2021-10-22 2022-10-19 空调器及空调器的控制方法 WO2023066315A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111230558.5 2021-10-22
CN202111230558.5A CN113847694A (zh) 2021-10-22 2021-10-22 空调器及其控制方法、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2023066315A1 true WO2023066315A1 (zh) 2023-04-27

Family

ID=78982741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126253 WO2023066315A1 (zh) 2021-10-22 2022-10-19 空调器及空调器的控制方法

Country Status (2)

Country Link
CN (1) CN113847694A (zh)
WO (1) WO2023066315A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847694A (zh) * 2021-10-22 2021-12-28 海信(广东)空调有限公司 空调器及其控制方法、计算机可读存储介质
CN115377539A (zh) * 2022-04-26 2022-11-22 宁德时代新能源科技股份有限公司 电池加热方法、装置、用电设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104266319A (zh) * 2014-10-29 2015-01-07 珠海格力电器股份有限公司 一种空调器的防止凝露产生的控制方法、系统及空调器
CN104613600A (zh) * 2015-01-29 2015-05-13 广东美的制冷设备有限公司 空调器的控制方法及系统
CN105241017A (zh) * 2015-10-26 2016-01-13 广东美的制冷设备有限公司 空调系统及空调压缩机的频率控制方法
CN107003027A (zh) * 2015-07-21 2017-08-01 三星电子株式会社 空调及其控制方法
CN109237728A (zh) * 2018-08-29 2019-01-18 四川长虹空调有限公司 变频空调防凝露控制方法
CN109323439A (zh) * 2018-10-17 2019-02-12 青岛海尔空调器有限总公司 空调器及其防凝露控制方法
CN113847694A (zh) * 2021-10-22 2021-12-28 海信(广东)空调有限公司 空调器及其控制方法、计算机可读存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102600975B1 (ko) * 2016-12-21 2023-11-14 삼성전자주식회사 공기조화기 및 그 제어방법
CN106765975B (zh) * 2017-01-05 2018-11-09 珠海格力电器股份有限公司 空调器控制方法及装置
CN111306739B (zh) * 2020-02-26 2021-09-21 广东美的制冷设备有限公司 空调器的控制方法、装置、空调器和电子设备
CN113074446A (zh) * 2021-03-09 2021-07-06 海信(山东)空调有限公司 空调控制方法及装置、空调器以及计算机可读存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104266319A (zh) * 2014-10-29 2015-01-07 珠海格力电器股份有限公司 一种空调器的防止凝露产生的控制方法、系统及空调器
CN104613600A (zh) * 2015-01-29 2015-05-13 广东美的制冷设备有限公司 空调器的控制方法及系统
CN107003027A (zh) * 2015-07-21 2017-08-01 三星电子株式会社 空调及其控制方法
CN105241017A (zh) * 2015-10-26 2016-01-13 广东美的制冷设备有限公司 空调系统及空调压缩机的频率控制方法
CN109237728A (zh) * 2018-08-29 2019-01-18 四川长虹空调有限公司 变频空调防凝露控制方法
CN109323439A (zh) * 2018-10-17 2019-02-12 青岛海尔空调器有限总公司 空调器及其防凝露控制方法
CN113847694A (zh) * 2021-10-22 2021-12-28 海信(广东)空调有限公司 空调器及其控制方法、计算机可读存储介质

Also Published As

Publication number Publication date
CN113847694A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
WO2023066315A1 (zh) 空调器及空调器的控制方法
CN108731224B (zh) 定频空调系统的控制方法、装置、设备及定频空调系统
CN111023401B (zh) 空调器的除湿控制方法及空调器
CN106152382B (zh) 一种防止空调压缩机频率波动的控制方法及系统
WO2017206679A1 (zh) 空调器及其模式切换控制方法
US20120291984A1 (en) Kind Of Air Conditioner System And Control Method Of Its Condensing Fan
US11639802B2 (en) Control method and device of air conditioning system and air conditioning system
CN111271836B (zh) 一种控制方法、装置、空调器及计算机可读存储介质
JPH10153353A (ja) 空気調和機
CN110986326A (zh) 空调器及其控制方法
US10174964B2 (en) Optimized dehumidification with HVAC systems
CN113339978A (zh) 全品质空调的基准运行频率确定方法、装置和全品质空调
CN113739341A (zh) 空调器舒适性控制方法、装置、空调器及可读存储介质
CN106225171B (zh) 一种空调停机时的风机控制方法及空调
WO2021169059A1 (zh) 制冷状态下定频空调的控制方法
CN114060967B (zh) 控制板温度的控制方法、系统、模组、空调和存储介质
US10823474B2 (en) Perturbation of expansion valve in vapor compression system
CN115200163A (zh) 一种空调器控制方法、控制装置以及空调器
JP6615371B2 (ja) 冷凍サイクル装置
JPWO2020003490A1 (ja) 空気調和装置
CN111121242B (zh) 一种空调系统运行参数的调节方法、调节装置和空调系统
JP6297176B2 (ja) 室内機及びこれを用いた空気調和装置
CN114427735A (zh) 空调器控制方法、控制装置和非易失性存储介质
KR100565995B1 (ko) 실내기 설치 위치에 따른 멀티형 에어컨의 운전 방법
CA2885449C (en) System for controlling operation of an hvac system having tandem compressors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882920

Country of ref document: EP

Kind code of ref document: A1