WO2018223723A1 - 一种车辆自动转弯控制方法和装置 - Google Patents

一种车辆自动转弯控制方法和装置 Download PDF

Info

Publication number
WO2018223723A1
WO2018223723A1 PCT/CN2018/075482 CN2018075482W WO2018223723A1 WO 2018223723 A1 WO2018223723 A1 WO 2018223723A1 CN 2018075482 W CN2018075482 W CN 2018075482W WO 2018223723 A1 WO2018223723 A1 WO 2018223723A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
trajectory
travel trajectory
determining
automatic turning
Prior art date
Application number
PCT/CN2018/075482
Other languages
English (en)
French (fr)
Inventor
丁晨曦
何彬
章健勇
Original Assignee
蔚来汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔚来汽车有限公司 filed Critical 蔚来汽车有限公司
Publication of WO2018223723A1 publication Critical patent/WO2018223723A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/001Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits the torque NOT being among the input parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Definitions

  • the present invention relates generally to the field of autonomous driving technology and, in particular, to a solution for vehicle adaptive control.
  • the road environment is one of the main information of sensor environment perception.
  • driver assistance systems are only available for clear traffic lanes such as highways.
  • complex urban roads such as intersections without lane lines, it is difficult for vehicles to achieve automatic stop and automatic turn.
  • the present invention provides a vehicle automatic turning control method, which includes: determining whether the vehicle is in a turntable working condition; prompting the driver to activate the automatic turning mode when the vehicle is in a turnable condition; in response to the automatic
  • the activation of the turn mode performs the following steps: (a) fitting the target travel trajectory of the vehicle according to the trajectory point of the preceding vehicle; (b) determining the lateral control parameter of the vehicle based on the target travel trajectory and the current travel trajectory of the vehicle And longitudinal control parameters; and (c) turning the vehicle along the target travel trajectory according to the lateral control parameters and the longitudinal control parameters.
  • determining whether the vehicle is in a turnable condition comprises determining that the vehicle is in a turnable condition in a case where it is detected that the preceding vehicle turns on the turn signal, the vehicle enters the designated steering area, and the traffic signal state is green.
  • the trajectory point of the preceding vehicle is started to be collected when the preceding vehicle starts to turn on the turn signal, and in response to the activation of the automatic turning mode, the deviation of the trajectory of the preceding vehicle from the lateral position of the vehicle exceeds a predetermined threshold
  • the target travel track is started to be fitted.
  • the method as described above wherein the target vehicle travel trajectory is fitted to the vehicle coordinate system at the time when the preceding vehicle starts to turn the turn signal, and wherein the vehicle is determined based on the target travel trajectory and the current travel trajectory.
  • the lateral control parameter and the longitudinal control parameter include comparing the target travel trajectory with the current travel trajectory in the global coordinate system.
  • fitting the target travel trajectory comprises fitting a motion trajectory point of a preceding vehicle to a polynomial function as the target travel trajectory in the global coordinate system.
  • the current travel trajectory is determined according to a wheel speed pulse, a steering wheel angle, a vehicle speed, and a physical size of the vehicle, and is positioned under the global coordinate system.
  • determining the longitudinal control parameter comprises: determining a maximum lateral acceleration of the vehicle based on a curvature of the target travel trajectory; and determining a vehicle speed of the own vehicle based on the maximum lateral acceleration.
  • determining the lateral control parameter comprises: determining an ideal steering wheel angle according to the curvature of the target travel trajectory; determining an adjustment value of the steering wheel angle according to the lateral distance deviation and the attitude angle deviation of the current travel trajectory and the target travel trajectory; The adjustment value corrects the ideal steering wheel angle to obtain an actual steering wheel angle of the vehicle.
  • the present invention also provides an automatic vehicle turning control device, the vehicle automatic turning control device comprising a memory, a processor, and a computer program stored on the memory, wherein when executed on the processor The computer program causes the vehicle automatic turning control device to perform the method as described above.
  • FIG. 1 is a flow chart of a method of automatic turning control of a vehicle according to an example of the present invention.
  • FIG. 2 is an application scenario of a vehicle automatic turning control method according to an example of the present invention.
  • FIG. 3 is a block diagram of a vehicle automatic turning control device according to an example of the present invention.
  • the present invention provides a vehicle assisted driving scheme that enables automatic turning control of a vehicle in an urban traffic scene without requiring a high-end assisted navigation configuration such as a high-precision map and GPS.
  • the vehicle assisted driving scheme provided by the present invention can replace the driver's duty to control the vehicle for a period of time, especially in the case where a turn is required.
  • the vehicle will have both vertical and lateral automatic control, but the driver still needs to monitor the driving activity, that is, observe the surrounding situation, and the driver can share control with the vehicle, and must be on standby at any time.
  • the vehicle exits the automatic control it can be connected at any time.
  • the method first includes determining in step 11 whether the vehicle is in a turntable condition.
  • the turntable condition refers to the condition of the road in which the vehicle is capable of turning.
  • determining whether the vehicle is in a turnable condition includes determining that the vehicle is in a turnable condition if it detects that the preceding vehicle turns on the turn signal, the vehicle enters the designated steering area, and the traffic signal state is green.
  • the distance of the traffic signal can be detected by one or more front cameras disposed on the vehicle body, thereby determining whether the vehicle enters the designated steering area.
  • the driver may be prompted to activate the automatic turning mode in step 12, and it is determined in step 13 whether the automatic turning mode is activated.
  • the driver can be enabled to activate the automatic turn mode by turning on the turn signal and to determine that the automatic turn mode can be entered in response to activation of the turn signal.
  • the driver can also activate the automatic turn mode by setting a special mode start/switch button.
  • Steps 14 through 16 are performed with the automatic turn mode activated.
  • the target travel trajectory of the vehicle is fitted according to the motion trajectory point of the preceding vehicle.
  • the trajectory points of the preceding vehicle may be continuously acquired.
  • the trajectory points of the preceding vehicle may be acquired when the preceding vehicle begins to turn the turn signal.
  • the front vehicle starting to turn the turn signal can be considered an important time node.
  • the target travel trajectory of the vehicle can be fitted in the global coordinate system.
  • FIG. 2 is an application scenario of a vehicle automatic turning control method according to an example of the present invention, that is, a case where the vehicle makes a right turn at an intersection.
  • the car below is taken by the car, while the car above is the front car.
  • the Cartesian coordinate system drawn according to the orientation of the vehicle is considered to be the global coordinate system, wherein the vehicle's center of mass is taken as the origin, and the vehicle's heading direction is taken.
  • the direction perpendicular to the body is the y-axis.
  • the target travel trajectory of the vehicle will be fitted in this global coordinate system and the subsequent trajectories of the vehicle will be characterized with the global coordinate system as a reference.
  • the target travel trajectory may be started to be fitted when the trajectory of the preceding vehicle and the lateral position of the vehicle exceed a predetermined threshold.
  • the length of a section marked by d can be regarded as the deviation of the moving track of the preceding vehicle from the lateral position of the vehicle.
  • the calculation of the lateral positional deviation can be performed in the global coordinate system. That is to say, the acquired preceding vehicle motion track points can be represented in the global coordinate system, and the real-time position of the vehicle is also represented in the global coordinate system, thereby determining the lateral position deviation of the two.
  • the motion trajectory points of the preceding vehicle may be fitted to the polynomial function as the target travel trajectory of the vehicle in the global coordinate system.
  • the polynomial function employed can be selected according to the specific scene to be targeted, such as a quadratic function, a cubic function, and the like.
  • the lateral control parameters and the longitudinal control parameters of the vehicle are determined based on the target travel trajectory and the current travel trajectory of the vehicle.
  • the step of determining the lateral control parameter and the longitudinal control parameter can include comparing the target travel trajectory to the current travel trajectory in the global coordinate system.
  • the distance deviation and the attitude angle deviation of the vehicle from the target trajectory may be utilized, wherein the distance deviation may include a lateral and longitudinal distance, and the attitude angle deviation may refer to a cut angle of the extension line of the front direction and the target traveling trajectory.
  • the current travel trajectory of the vehicle may be determined according to the wheel speed pulse, the steering wheel angle, the vehicle speed, and the physical size of the vehicle, and the current travel trajectory is positioned in the global coordinate system to facilitate real-time adjustment of the control parameters.
  • the current travel trajectory matches the target travel trajectory.
  • the wheel speed pulse can be, for example, the output of a wheel speed sensor.
  • the maximum lateral acceleration of the vehicle may be determined from the curvature of the target travel trajectory and the vehicle speed of the vehicle may be determined based on the maximum lateral acceleration.
  • the speed of the car can be considered as a longitudinal control parameter.
  • the driving comfort and safety can be comprehensively considered within the range defined by the maximum lateral acceleration to determine the vehicle speed required for the turning process, and the vehicle can be kept at the vehicle speed at a constant speed.
  • the ideal steering wheel angle of the vehicle may also be determined based on the curvature of the target travel trajectory, ie, the turning radius of the preceding vehicle.
  • the adjustment value of the steering wheel angle can also be determined according to the lateral distance deviation and the attitude angle deviation of the current driving trajectory and the target driving trajectory, and finally the correction of the ideal steering wheel angle by using the adjustment value is obtained.
  • the actual steering wheel angle of the car In some cases, this can be understood as a process of feedback adjustment.
  • the steering wheel angle can be considered as a lateral control parameter. The lateral control can reduce the error of the driving trajectory and the target trajectory, thereby ensuring that the vehicle travels along the target trajectory.
  • the vehicle is turned along the target travel trajectory according to the lateral control parameters and the longitudinal control parameters.
  • the driving state of the vehicle may be first adjusted according to a lateral control parameter such as a steering wheel angle after adjusting the running state of the vehicle according to a longitudinal control parameter such as a vehicle speed, thereby controlling the vehicle to turn along the target traveling trajectory.
  • a lateral control parameter such as a steering wheel angle
  • a longitudinal control parameter such as a vehicle speed
  • the vehicle automatic turning control method provided by the invention can be applied to a rich urban traffic scene, so that the driver can realize full-automatic driving when turning, and is not limited to whether the vehicle has a high-end navigation configuration.
  • the vehicle automatic turning control device 300 includes a memory 31 and a processor 33 in which computer programs are stored on the memory 31, and these computer programs, when executed by the processor 33, can cause the vehicle automatic turning control device to execute The vehicle automatic turning control method according to the present invention as described above.
  • the vehicle automatic turning control device 300 can be implemented separately or integrated in the electronic control unit ECU of the vehicle. In the latter case, device 300 can be implemented by sharing a processor and memory in the ECU.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

一种车辆自动转弯控制方法以及车辆自动转弯控制装置,其自动转弯控制方法包括:判断本车是否处于可转弯工况;在本车处于可转弯工况的情况下提示驾驶者激活自动转弯模式;响应于自动转弯模式的激活执行以下步骤:(a)根据前车的运动轨迹点拟合本车的目标行驶轨迹;(b)基于所述目标行驶轨迹和本车的当前行驶轨迹确定本车的横向控制参数和纵向控制参数;以及(c)根据所述横向控制参数和所述纵向控制参数使本车沿所述目标行驶轨迹转弯。

Description

一种车辆自动转弯控制方法和装置 技术领域
本发明一般地涉及自动驾驶技术领域,并且具体地,涉及一种用于车辆自适应控制的方案。
背景技术
现阶段,汽车控制技术正朝着“智能汽车”的方向发展。在普通车辆的基础上增加了越来越多先进的传感器、控制器、执行器等装置,使车辆具备智能的环境感知能力,能够自动分析车辆行驶的安全及危险状态,并且使车辆按照人的意愿到达目的地,最终实现替代人来操作的目的。
在目前的驾驶辅助系统中,道路环境是传感器环境感知的主要信息之一。然而,大部分驾驶辅助系统还只适用于车道线清晰的交通场景,如高速公路。在复杂的城市道路中,如无车道线的十字路口,车辆很难实现自动走停和自动转弯。这些问题导致驾驶辅助系统的自动化程度受限,驾驶体验不好,并且使用率很低。
因此,所期望的是设计一种适用于城市交通场景的车辆驾驶辅助方案。
发明内容
有鉴于此,本发明提供一种车辆自动转弯控制方法,其包括:判断本车是否处于可转弯工况;在本车处于可转弯工况的情况下提示驾驶者激活自动转弯模式;响应于自动转弯模式的激活执行以下步骤:(a)根据前车的运动轨迹点拟合本车的目标行驶轨迹;(b)基于所述目标行驶轨迹和本车的当前行驶轨迹确定本车的横向控制参数和纵向控制参数;以及(c)根据所述横向控制参数和所述纵向控制参数使本车沿所述目标行驶轨迹转弯。
如上所述的方法,其中,判断本车是否处于可转弯工况包括在检测到前车打开转向灯、车辆进入指定转向区域并且交通信号灯状态为绿灯的情况下判断本车处于可转弯工况。
如上所述的方法,其中,在前车开始打转向灯时开始采集前车的运动轨 迹点,并且响应于自动转弯模式的激活,在前车的运动轨迹与本车的横向位置偏差超过预定阈值时开始拟合所述目标行驶轨迹。
如上所述的方法,其还包括,使驾驶者能够通过打转向灯来激活所述自动转弯模式。
如上所述的方法,其中,以检测到前车开始打转向灯时刻的本车坐标系为全局坐标系来拟合所述目标行驶轨迹,并且其中,基于目标行驶轨迹和当前行驶轨迹确定本车的横向控制参数和纵向控制参数包括在所述全局坐标系下比较所述目标行驶轨迹与所述当前行驶轨迹。
如上所述的方法,其中,拟合所述目标行驶轨迹包括在所述全局坐标系下将前车的运动轨迹点拟合成多项式函数作为所述目标行驶轨迹。
如上所述的方法,其中,所述当前行驶轨迹根据轮速脉冲、方向盘转角、车速以及本车的物理尺寸来确定并且被定位在所述全局坐标系下。
如上所述的方法,其中,确定纵向控制参数包括:根据所述目标行驶轨迹的曲率确定车辆的最大横向加速度;并且根据所述最大横向加速度确定本车的车速。
如上所述的方法,其中,确定横向控制参数包括:根据目标行驶轨迹的曲率确定理想方向盘转角;根据当前行驶轨迹与目标行驶轨迹的横向距离偏差和姿态角偏差确定方向盘转角的调整值;并且用所述调整值对所述理想方向盘转角进行修正以得到本车的实际方向盘转角。
如上所述的方法,其中,在根据纵向控制参数调整本车的行驶状态之后再根据横向控制参数调整本车的行驶状态,从而控制本车沿所述目标行驶轨迹转弯。
另一方面,本发明还提供了一种车辆自动转弯控制装置,所述车辆自动转弯控制装置包括存储器、处理器以及存储在所述存储器上的计算机程序,其中,当在所述处理器上执行所述计算机程序时使所述车辆自动转弯控制装置执行如上所述的方法。
附图说明
本发明的前述和其他目标、特征和优点根据下面对本发明的实施例的更 具体的说明将是显而易见的,这些实施例在附图中被示意。
图1是根据本发明一个示例的车辆自动转弯控制方法的流程图。
图2是根据本发明一个示例的车辆自动转弯控制方法的应用场景。
图3是根据本发明一个示例的车辆自动转弯控制装置的框图。
具体实施方式
现在参照附图描述本发明的示意性示例,相同的附图标号表示相同的元件。下文描述的各示例有助于本领域技术人员透彻理解本发明,且各示例意在示例而非限制。图中各元件、部件、模块、装置及设备本体的图示仅示意性表明存在这些元件、部件、模块、装置及设备本体同时亦表明它们之间的相对关系,但并不用以限定它们的具体形状;流程图中各步骤的关系也不以所给出的顺序为限,可根据实际应用进行调整但不脱离本申请的保护范围。
如在背景技术中所提及的那样,在复杂的城市道路中,如果没有车道线信息,车辆将很难实现自动走停和自动转弯,尤其是在大部分车辆中并未配置高精地图和全球定位系统GPS的情况下。本发明提供了一种车辆辅助驾驶方案,能够在不需要诸如高精地图和GPS等高端辅助导航配置的情况下实现车辆在城市交通场景下的自动转弯控制。
本发明所提供的车辆辅助驾驶方案能够在一段时间内代替驾驶员承担操控车辆的职责,尤其是在需要转弯的情况下。依据本发明的方法,车辆将同时具有纵向和侧向的自动控制,但驾驶员仍需对驾驶活动进行监控,即观察周围情况,并且驾驶员可以与车辆分享控制权,还必须随时待命,在车辆退出自动控制的时候随时接上。
图1是根据本发明一个示例的车辆自动转弯控制方法的流程图。如图1所示,该方法首先包括在步骤11中判断本车是否处于可转弯工况。在本发明的背景下,可转弯工况指的是本车能够进行转弯的道路状况。
在一些实施例中,判断本车是否处于可转弯工况包括在检测到前车打开转向灯、车辆进入指定转向区域并且交通信号灯状态为绿灯的情况下判断本车处于可转弯工况。在实现中,可以通过车身上布置的一个或多个前置摄像头来检测交通信号灯的距离,由此判断车辆是否进入指定的转向区域。此外, 还可以利用前置摄像头来检测交通信号灯的状态,并且在交通信号灯为绿灯的情况下认为本车处于可转弯工况的条件之一得到满足。另外,还可以将前车是否打开转向灯作为判断本车是否处于可转弯工况的一个重要条件,这将在下文中进行详细描述。
本领域技术人员将理解,对这种可转弯工况的判断并不限于上述示例的情形。举例来说,在目前的右转情况下,可能不需要判断交通信号灯的状态,而可以仅通过确定车辆是否处于指定转向区域(诸如右转弯车道)来判断本车是否处于可转弯工况。
进一步地,如果环境条件满足,即本车处在能够进行转弯的道路状况下,则可以在步骤12中提示驾驶者激活自动转弯模式,并且在步骤13中判断自动转弯模式是否被激活。在一些示例中,可以使驾驶者能够通过打转向灯来激活自动转弯模式,并且响应于转向灯的启动来确定可以进入自动转弯模式。在另外的一些示例中,还可以通过设置专门的模式启动/切换按钮使驾驶者激活自动转弯模式。
在自动转弯模式启动的情况下执行步骤14至步骤16。如图1所示,在步骤14中根据前车的运动轨迹点拟合本车的目标行驶轨迹。在一些示例中,可以持续采集前车的运动轨迹点。在另一些示例中,可以在前车开始打转向灯时开始采集前车的运动轨迹点。在本发明的一些实施例中,前车开始打转向灯可以被认为是一个重要的时间节点。除了在该时刻开始采集前车的运动轨迹点之外,还可以以检测到前车开始打转向灯时刻的本车坐标系为全局坐标系。一方面,可以在该全局坐标系中拟合本车的目标行驶轨迹。另一方面,还可以以这个全局坐标系为基准对本车后续的移动轨迹进行控制。
图2是根据本发明一个示例的车辆自动转弯控制方法的应用场景,即本车在十字路口进行右转的情况。在图2中位于下方的汽车被本车,而位于上方的汽车为前车。如果将图2示意的场景认为是前车开始打转向灯的时刻,则按照本车的方位所绘制的直角坐标系即被认为是全局坐标系,其中以车辆的质心为原点,车辆的前进方向为x轴,与车身垂直的方向为y轴。在一些实施例中,将在这个全局坐标系中拟合本车的目标行驶轨迹,并且将本车随后的移动轨迹都以该全局坐标系作为参考来表征。
在一些示例中,可以在前车的运动轨迹与本车的横向位置偏差超过预定阈值时开始拟合目标行驶轨迹。以图2所示的场景为例,其中用d所标注的一段长度可以被看作前车的运动轨迹与本车的横向位置偏差。如上所述,该横向位置偏差的计算可以是在全局坐标系下进行。也就是说,可以将所采集的前车运动轨迹点表示在全局坐标系下,同时还将本车的实时位置也表示在全局坐标系下,由此确定两者的横向位置偏差。
在一些示例中,可以在全局坐标系下将前车的运动轨迹点拟合成多项式函数作为本车的目标行驶轨迹。所采用的多项式函数可以根据具体所针对的场景来选择,例如是二次函数、三次函数等等。
在步骤15中,基于目标行驶轨迹和本车的当前行驶轨迹确定本车的横向控制参数和纵向控制参数。在一些示例中,确定横向控制参数和纵向控制参数的步骤可以包括在所述全局坐标系下比较所述目标行驶轨迹与所述当前行驶轨迹。例如,可以利用本车距离目标轨迹线的距离偏差和姿态角偏差,其中距离偏差可以包括横向和纵向距离,而姿态角偏差可以指车头方向的延伸线与目标行驶轨迹的切角。
在一些示例中,可以根据轮速脉冲、方向盘转角、车速以及本车的物理尺寸来确定本车的当前行驶轨迹,并且将该当前行驶轨迹定位在全局坐标系下,以便于实时调整控制参数使得当前行驶轨迹符合目标行驶轨迹。在实现中,轮速脉冲可以例如是轮速传感器的输出。本领域技术人员能够理解可以根据任何已知或将来可得到的方法来确定本车的当前行驶轨迹,而并不受限于本文中的记载。
在一些示例中,可以根据目标行驶轨迹的曲率确定车辆的最大横向加速度并且根据该最大横向加速度来确定本车的车速。车速可以被认为是纵向控制参数。可以在该最大横向加速度所限定的范围内综合考虑驾驶的舒适度和安全性来确定转弯过程所需要的车速,并且使本车保持该车速匀速行驶。
在一些示例中,还可以根据目标行驶轨迹的曲率,即前车的转弯半径来确定本车的理想方向盘转角。为了更精确地生成方向盘转角请求,还可以根据当前行驶轨迹与目标行驶轨迹的横向距离偏差和姿态角偏差来确定方向盘转角的调整值,并且最终通过用该调整值对理想方向盘转角进行修正来得 到本车的实际方向盘转角。在一些情况下,这可以被理解为一种反馈调整的过程。方向盘转角可以被认为是横向控制参数。通过横向控制可以减小行驶轨迹和目标轨迹的误差,从而确保本车沿目标轨迹行驶。
最后,在步骤16中,根据横向控制参数和纵向控制参数使本车沿目标行驶轨迹转弯。在一些示例中,可以首先根据诸如车速的纵向控制参数调整车辆的行驶状态之后,再根据诸如方向盘转角的横向控制参数调整车辆的行驶状态,由此控制本车沿目标行驶轨迹转弯。通过这样的纵横向动力学解耦控制,尤其是解耦车辆加减速运动和转向运动使得自动转向的体验符合驾驶员的正常驾驶习惯,并且防止车辆在转弯过程中车速过快产生侧翻,同时在匀速下也能保证车辆横向控制的准确、实时、稳定性。
本发明所提供的车辆自动转弯控制方法能够适用丰富的城市交通场景,使得驾驶员在转弯时可实现全自动驾驶,并且不受限于车辆是否具有高端的导航配置。
图3是根据本发明一个示例的车辆自动转弯控制装置的框图。如图3所示,车辆自动转弯控制装置300包括存储器31和处理器33,其中在存储器31上存储有计算机程序,并且这些计算机程序在由处理器33执行时可以使该车辆自动转弯控制装置执行如上所述的根据本发明的车辆自动转弯控制方法。
车辆自动转弯控制装置300可以单独地被实现,或者被集成在车辆的电子控制单元ECU中。在后一种情况下,装置300可以通过共享ECU中的处理器和存储器来实现。
应当说明的是,以上具体实施方式仅用以说明本发明的技术方案而非对其进行限制。尽管参照上述具体实施方式对本发明进行了详细的说明,本领域的普通技术人员应当理解,依然可以对本发明的具体实施方式进行修改或对部分技术特征进行等同替换而不脱离本发明的实质,其均涵盖在本发明请求保护的范围中。

Claims (11)

  1. 一种车辆自动转弯控制方法,其包括:
    判断本车是否处于可转弯工况;
    在本车处于可转弯工况的情况下提示驾驶者激活自动转弯模式;
    响应于自动转弯模式的激活执行以下步骤:
    (a)根据前车的运动轨迹点拟合本车的目标行驶轨迹;
    (b)基于所述目标行驶轨迹和本车的当前行驶轨迹确定本车的横向控制参数和纵向控制参数;以及
    (c)根据所述横向控制参数和所述纵向控制参数使本车沿所述目标行驶轨迹转弯。
  2. 如权利要求1所述的方法,其中,判断本车是否处于可转弯工况包括在检测到前车打开转向灯、车辆进入指定转向区域并且交通信号灯状态为绿灯的情况下判断本车处于可转弯工况。
  3. 如权利要求1所述的方法,其中,在前车开始打转向灯时开始采集前车的运动轨迹点,并且响应于自动转弯模式的激活,在前车的运动轨迹与本车的横向位置偏差超过预定阈值时开始拟合所述目标行驶轨迹。
  4. 如权利要求1所述的方法,其还包括,使驾驶者能够通过打转向灯来激活所述自动转弯模式。
  5. 如权利要求1所述的方法,其中,以检测到前车开始打转向灯时刻的本车坐标系为全局坐标系来拟合所述目标行驶轨迹,并且其中,基于目标行驶轨迹和当前行驶轨迹确定本车的横向控制参数和纵向控制参数包括在所述全局坐标系下比较所述目标行驶轨迹与所述当前行驶轨迹。
  6. 如权利要求5所述的方法,其中,拟合所述目标行驶轨迹包括在所述全局坐标系下将前车的运动轨迹点拟合成多项式函数作为所述目标行驶轨迹。
  7. 如权利要求5所述的方法,其中,所述当前行驶轨迹根据轮速脉冲、方向盘转角、车速以及本车的物理尺寸来确定并且被定位在所述全局坐标系下。
  8. 如权利要求1所述的方法,其中,确定纵向控制参数包括:
    根据所述目标行驶轨迹的曲率确定车辆的最大横向加速度;并且
    根据所述最大横向加速度确定本车的车速。
  9. 如权利要求1所述的方法,其中,确定横向控制参数包括:
    根据目标行驶轨迹的曲率确定理想方向盘转角;
    根据当前行驶轨迹与目标行驶轨迹的横向距离偏差和姿态角偏差确定方向盘转角的调整值;并且
    用所述调整值对所述理想方向盘转角进行修正以得到本车的实际方向盘转角。
  10. 如权利要求1所述的方法,其中,在根据纵向控制参数调整本车的行驶状态之后再根据横向控制参数调整本车的行驶状态,从而控制本车沿所述目标行驶轨迹转弯。
  11. 一种车辆自动转弯控制装置,所述车辆自动转弯控制装置包括存储器、处理器以及存储在所述存储器上的计算机程序,其中,当在所述处理器上执行所述计算机程序时使所述车辆自动转弯控制装置执行如权利要求1-10中任一项所述的方法。
PCT/CN2018/075482 2017-06-06 2018-02-06 一种车辆自动转弯控制方法和装置 WO2018223723A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710417478.8A CN108995708B (zh) 2017-06-06 2017-06-06 一种车辆自动转弯控制方法和装置
CN201710417478.8 2017-06-06

Publications (1)

Publication Number Publication Date
WO2018223723A1 true WO2018223723A1 (zh) 2018-12-13

Family

ID=64565727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075482 WO2018223723A1 (zh) 2017-06-06 2018-02-06 一种车辆自动转弯控制方法和装置

Country Status (2)

Country Link
CN (1) CN108995708B (zh)
WO (1) WO2018223723A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109635516A (zh) * 2019-01-23 2019-04-16 合肥工业大学 一种大型车转弯内轮差的危险区域预测方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110861650B (zh) * 2019-11-21 2021-04-16 驭势科技(北京)有限公司 车辆的路径规划方法、装置,车载设备和存储介质
CN111731307B (zh) * 2020-06-28 2021-09-17 中国第一汽车股份有限公司 一种车辆转弯控制方法、装置、车辆及存储介质
CN115200604B (zh) * 2022-09-16 2023-05-16 广州小鹏自动驾驶科技有限公司 转弯路径规划方法、设备、车辆及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008087635A (ja) * 2006-10-02 2008-04-17 Denso It Laboratory Inc 運転支援装置
JP2009107574A (ja) * 2007-10-31 2009-05-21 Toyota Motor Corp 車両用走行制御装置
CN102529963A (zh) * 2010-12-14 2012-07-04 上海摩西海洋工程有限公司 计算机辅助驾驶系统
US20140100756A1 (en) * 2012-10-04 2014-04-10 Robert Bosch Gmbh Acc reaction to target object turn offs
CN104349926A (zh) * 2012-03-22 2015-02-11 捷豹路虎有限公司 自适应巡航控制方法、自适应巡航控制系统和结合有这样的系统的车辆
CN105667509A (zh) * 2015-12-30 2016-06-15 苏州安智汽车零部件有限公司 一种用于汽车自适应巡航控制系统的弯道控制系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2637072B1 (en) * 2012-03-05 2017-10-11 Volvo Car Corporation Path following of a target vehicle
JP5821917B2 (ja) * 2013-09-20 2015-11-24 トヨタ自動車株式会社 運転支援装置
EP2853458B1 (en) * 2013-09-30 2019-12-18 Hitachi, Ltd. Method and apparatus for performing driving assistance
CN104742906B (zh) * 2013-12-26 2017-11-21 中国移动通信集团公司 实现自动驾驶的方法及系统
JP5991340B2 (ja) * 2014-04-28 2016-09-14 トヨタ自動車株式会社 運転支援装置
CN106828495B (zh) * 2017-02-16 2019-05-07 奇瑞汽车股份有限公司 一种控制车辆行驶的方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008087635A (ja) * 2006-10-02 2008-04-17 Denso It Laboratory Inc 運転支援装置
JP2009107574A (ja) * 2007-10-31 2009-05-21 Toyota Motor Corp 車両用走行制御装置
CN102529963A (zh) * 2010-12-14 2012-07-04 上海摩西海洋工程有限公司 计算机辅助驾驶系统
CN104349926A (zh) * 2012-03-22 2015-02-11 捷豹路虎有限公司 自适应巡航控制方法、自适应巡航控制系统和结合有这样的系统的车辆
US20140100756A1 (en) * 2012-10-04 2014-04-10 Robert Bosch Gmbh Acc reaction to target object turn offs
CN104684782A (zh) * 2012-10-04 2015-06-03 罗伯特·博世有限公司 对目标物体转弯作出反应的acc
CN105667509A (zh) * 2015-12-30 2016-06-15 苏州安智汽车零部件有限公司 一种用于汽车自适应巡航控制系统的弯道控制系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109635516A (zh) * 2019-01-23 2019-04-16 合肥工业大学 一种大型车转弯内轮差的危险区域预测方法
CN109635516B (zh) * 2019-01-23 2023-03-24 合肥工业大学 一种大型车转弯内轮差的危险区域预测方法

Also Published As

Publication number Publication date
CN108995708B (zh) 2022-10-04
CN108995708A (zh) 2018-12-14

Similar Documents

Publication Publication Date Title
CN108983768B (zh) 自动驾驶系统
JP6259797B2 (ja) 車両走行制御装置
WO2018223890A1 (zh) 一种车辆自动换道控制方法和装置
JP5982034B1 (ja) 車両の運転支援システム
US10583835B2 (en) Method for automatically adapting acceleration in a motor vehicle
US9499169B2 (en) Driving assistance device
WO2018223723A1 (zh) 一种车辆自动转弯控制方法和装置
JP6432679B2 (ja) 停車位置設定装置及び方法
KR20190118947A (ko) 차량의 주행 제어 장치 및 방법
US10001782B2 (en) Target pathway generating device and driving control device
CN111216792B (zh) 一种自动驾驶车辆状态监测系统及方法、汽车
US9994220B2 (en) Target vehicle speed generating device and driving control device
US20120283912A1 (en) System and method of steering override end detection for automated lane centering
US20120277955A1 (en) Driving assistance device
WO2012137355A1 (ja) 運転支援システム
US11904936B2 (en) Driving support device for vehicle
US20200317266A1 (en) Vehicle controller
KR101481134B1 (ko) 자율 주행 차량의 센서융합을 통한 곡률반경 추정시스템 및 방법
US10107631B2 (en) Methods and systems for vehicle positioning feedback
JP2019131077A (ja) 車両制御装置、車両制御方法、およびプログラム
WO2016194168A1 (ja) 走行制御装置及び方法
CN111634279A (zh) 用于控制通过交叉路口的车辆的横向位置的方法和系统
JP2016206976A (ja) 車両の運転支援制御のための先行車軌跡算出装置
JP2008059366A (ja) 操舵角決定装置、自動車及び操舵角決定方法
US20180122238A1 (en) Vehicle Periphery Information Verification Device and Method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18812914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18812914

Country of ref document: EP

Kind code of ref document: A1