WO2018223632A1 - 单分散的核壳结构的荧光粉颗粒及其制备方法 - Google Patents

单分散的核壳结构的荧光粉颗粒及其制备方法 Download PDF

Info

Publication number
WO2018223632A1
WO2018223632A1 PCT/CN2017/114710 CN2017114710W WO2018223632A1 WO 2018223632 A1 WO2018223632 A1 WO 2018223632A1 CN 2017114710 W CN2017114710 W CN 2017114710W WO 2018223632 A1 WO2018223632 A1 WO 2018223632A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
core
shell structure
shell
monodisperse
Prior art date
Application number
PCT/CN2017/114710
Other languages
English (en)
French (fr)
Inventor
田梓峰
周萌
许颜正
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2018223632A1 publication Critical patent/WO2018223632A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media

Definitions

  • the invention belongs to the technical field of luminescent materials, and in particular relates to a phosphor particle of a monodisperse core-shell structure and a preparation method thereof.
  • Phosphor materials are widely used in lighting, display, projection and other fields.
  • phosphor particles are required to have a large particle size of micron order and good monodispersity, that is, uniform particle size, regular shape, and dispersion. Good to meet special light requirements.
  • the phosphor particles prepared by the traditional high-temperature solid phase method are easy to agglomerate, and the particle size distribution is uneven, and the surface morphology is different. It is necessary to repeatedly perform ball milling to obtain the appropriate particle size, but the defects generated by the ball milling process. And the introduced impurities may impair the luminous efficiency of the phosphor.
  • the phosphor prepared by the sol-gel method and the hydrothermal synthesis method can make up for the deficiency of high-temperature solid phase synthesis, a monodisperse phosphor can be prepared, but the prepared phosphor particles are nanometer-scale, and are not suitable for preparing micron-scale. Large particle size phosphor.
  • the phosphor is not packaged when it is used, but is directly exposed to the air. At this time, the light-emitting rate of the phosphor is also an important factor affecting the application effect. Therefore, in view of the above-mentioned shortcomings, It is necessary to provide a method for preparing monodisperse phosphor microparticles to meet the specific application requirements of the phosphor.
  • the object of the present invention is to provide a monodisperse core-shell structured phosphor particle and a preparation method thereof for preparing a large particle size with uniform particle size, good dispersibility and uniform morphology.
  • Phosphor particles The specific plan is as follows:
  • the present invention provides a monodisperse core-shell structured phosphor particle, the phosphor particle comprising a centrally located core structure and a shell structure encapsulating the core structure, the core structure being an oxide microparticle having a uniform particle size a ball, the shell structure being a phosphor layer, the core structure having a refractive index smaller than a refractive index of the shell structure.
  • the oxide microspheres have a particle size of 5-30 um.
  • the phosphor layer has a thickness of 0.05-2 um.
  • the oxide microspheres are any one of silicon dioxide, aluminum oxide, and magnesium oxide.
  • the phosphor layer is a garnet-structured phosphor.
  • the material of the phosphor layer is any one of Y 3 Al 5 O 12 :Ce 3+ and Ca 3 Sc 2 Si 3 O 12 :Ce 3+ .
  • the invention also provides a preparation method of a monodisperse core-shell structured phosphor particle, comprising the following steps:
  • step S3 The above step S2 is repeated until the phosphor particles of the monodisperse core-shell structure having the phosphor layer thickness as required are obtained.
  • step S2 comprises:
  • step S21 adding cerium nitrate, aluminum nitrate and cerium nitrate to the oxide microsphere suspension obtained in step S1, and mixing with an oxalic acid solution or an ammonium hydrogencarbonate solution;
  • the step S1 further comprises: adding a surface modifier to the oxide microsphere suspension, A surface modified oxide microsphere suspension is obtained.
  • the surface modifier is an amino group-containing organic compound.
  • the amino group-containing organic compound is any one of polyethyleneimine, N,N-diethyltrimethylsilylamine, and 3-aminopropyltrimethoxysilane.
  • the step S22 further comprises: washing, the washing process is between the filtering and the drying process, and the washing process is a filter residue generated by the filtering process using deionized water. Washing is carried out.
  • the calcination temperature is from 800 to 1400 °C.
  • the calcination time is 2-6 h.
  • the molar ratio of the cerium nitrate to the aluminum nitrate is 3:5.
  • the amount of cerium nitrate added is such that the molar content of cerium ions in the raw material solution composed of the cerium nitrate, the aluminum nitrate and the cerium nitrate is 0.01% to 1%.
  • the phosphor of the core-shell structure prepared by the invention prepares the phosphor particles of the core-shell structure with good dispersibility and uniform particle size distribution by using the oxide core with high dispersibility and uniform particle size distribution on the one hand, and low utilization on the other hand.
  • the oxide core of the refractive index and the outer layer of the high refractive index phosphor cause total reflection of light at the interface between the two to improve the light extraction efficiency.
  • the surface of the commercial oxide microspheres is coated with a phosphor directly, and spherical fluorescent particles having excellent particle size uniformity can be obtained.
  • the invention adopts the lower cost oxide microspheres as the core structure, and can effectively reduce the cost of the phosphor particles compared with the solid phosphor particles; since the oxide core has uniform particle size and good dispersion, the dispersion can be prepared.
  • a phosphor with a good core-shell structure since the thickness of the coated phosphor layer is controllable, a phosphor having a relatively uniform particle size of the core-shell structure can be prepared; since the refractive index of the core structure is smaller than that of the shell structure The refractive index, the particles of the phosphor layer emit a large angle of light energy at the interface of the core-shell structure Total reflection occurs, and for a uniform composition of phosphor particles, this portion of the light is absorbed and lost, thereby making the core-shell phosphor more efficient.
  • the present invention has lower cost, better dispersibility, uniform particle size distribution, uniform morphology, and high light extraction efficiency compared to the prior art phosphors.
  • FIG. 1 is a schematic structural view of a core-shell structured phosphor particle according to a first embodiment of the present invention
  • FIG. 2 is a schematic view showing light reflection of phosphor particles of a monodisperse core-shell structure according to a first embodiment of the present invention
  • FIG. 3 is a schematic view showing the structure of a phosphor particle of a monodisperse core-shell structure according to a second embodiment of the present invention.
  • the invention provides a monodisperse core-shell structure phosphor particle and a preparation method thereof, so as to solve the problem that the existing phosphor particles are easy to agglomerate, the particle size distribution is uneven, the surface morphology is different, and it is difficult to prepare a uniform particle size. Large particle size phosphor with good dispersion and single shape.
  • the phosphor particles of the monodisperse core-shell structure provided by the present invention comprise a centrally located core structure 11 and a shell structure 12 encapsulating the core structure, wherein the core structure 11 has a uniform particle size and size.
  • the shell structure 12 is a phosphor layer having a thickness of 0.05-2 um.
  • the oxide microspheres are Al2O3 (aluminum oxide) microspheres
  • the phosphor layer is Y 3 Al 5 O 12 :Ce 3+ phosphor in a YAG (yttrium aluminum garnet) phosphor. Since the Al2O3 microspheres have a uniform spherical shape, the thickness of the phosphor layer coated with the Al2O3 microspheres is uniform, that is, the morphology of the phosphor particles of the monodisperse core-shell structure is also uniform, so that the phosphor emits light emitted by the light itself. Consistent at all angles;
  • the refractive index of Al2O3 is 1.76
  • the refractive index of Y 3 Al 5 O 12 :Ce 3+ phosphor is 1.81
  • the refractive index of the core structure Al2O3 is smaller than that of the shell structure Y 3 Al 5 O 12 :Ce 3+
  • total reflection may occur, so that the light extraction efficiency is high.
  • n c is the refractive index of the core structure
  • n s is the refractive index of the shell structure
  • the method for preparing the phosphor particles of the monodisperse core-shell structure of the present invention comprises the following steps:
  • S1 preparing an oxide microsphere suspension by using an oxide microsphere having a particle size of 5-30 um, the specific step of dispersing the monodisperse, regular-formed Al2O3 microspheres having a particle size of 5-30 um. In the ionic water, an Al2O3 microsphere suspension was obtained.
  • the calcination conditions are calcined at 800-1400 ° C for 2-6 h.
  • step S3 The above step S2 is repeated until the phosphor particles of the monodisperse core-shell structure having the phosphor layer thickness as required are obtained.
  • step S2 in order to improve the quality of the dried product, the reaction is sufficiently filtered, and then the filter residue is washed with deionized water and then dried to obtain a high-quality dried product.
  • the chemical dose ratio is as long as the molar ratio of cerium nitrate to aluminum nitrate is 3:5, and the molar amount of cerium nitrate is satisfied that the molar content of cerium ions in the raw material solution composed of cerium nitrate, aluminum nitrate and cerium nitrate is 0.01. % ⁇ 1% is sufficient, and the specific mass component is determined according to the thickness of the desired shell structure.
  • the preparation method of the embodiment adopts monodisperse micron-sized oxide microspheres as a core structure, and the reaction activity is very low, and a chemical reaction needs to be performed at a relatively high temperature, and the phosphor of the shell structure is alumina and oxidized.
  • Antimony and antimony oxide have higher reactivity and can react with each other at a lower temperature, so that a phosphor having a core-shell structure can be prepared, and the phosphor can be effectively reduced compared with the solid phosphor particles.
  • the particle size of the core-shell phosphor can be controlled by adjusting the particle size of the oxide microspheres and the thickness of the phosphor layer. Therefore, a phosphor having a core-shell structure having a relatively uniform particle diameter can be prepared.
  • the oxide core has a uniform particle size and good dispersibility
  • the prepared phosphor particles of the monodisperse core-shell structure are also spherical and uniform in particle size, and have good dispersibility.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the embodiment is substantially the same as the first embodiment, and the phosphor particles of the monodisperse core-shell structure include a centrally located core structure 21 and a shell structure 22 covering the core structure, wherein the core Structure 21 is an oxide microsphere having a particle size of 5-30 um, and shell structure 22 is a phosphor layer having a thickness of 0.05-2 um.
  • the oxide microspheres of the core structure 21 are SiO2 (silica) microspheres, and the phosphor layer is Y 3 Al 5 O 12 :Ce 3+ .
  • the refractive index of SiO2 was 1.46
  • the refractive index of Y 3 Al 5 O 12 :Ce 3+ phosphor was 1.81. Since the refractive index of SiO2 is smaller than the refractive index of Al2O3, in the present embodiment, the difference in refractive index between the core structure and the shell structure is large, according to the total reflection angle formula (n c is the refractive index of the core structure, and n s is the refractive index of the shell structure).
  • total reflection occurs when the incident angle of the excitation light and the laser light at the interface of the core shell is greater than 53.77°.
  • the total reflection angle is smaller, more light is totally reflected by the light-emitting between the core shells, and the light-emitting efficiency is higher.
  • the light extraction efficiency is higher.
  • the preparation method of the present embodiment is basically the same as that of the first embodiment, except that in step S1, the monodisperse, regular-form SiO2 microspheres having a particle size of 5 to 30 um are dispersed in deionized water to obtain SiO2 microsphere suspension.
  • the present embodiment is an improvement made on the basis of the first two embodiments, except that in the preparation method of the present embodiment, the step S1 further includes adding a surface modifier to the oxide microsphere suspension.
  • the surface is modified to obtain a surface-modified oxide microsphere suspension.
  • the surface modifier is preferably an amino group-containing organic compound, and may be at least one of polyethyleneimine, N,N-diethyltrimethylsilylamine, and 3-aminopropyltrimethoxysilane.
  • step S2 cerium nitrate, aluminum nitrate and cerium nitrate are added to the suspension of the oxide microspheres, and an oxalic acid solution is added under stirring to cause cerium ions, aluminum ions and cerium ions to be attached to the oxide microspheres by an acid amine condensation reaction.
  • the surface is sintered at a high temperature to obtain a denser phosphor layer outer shell.
  • the monodisperse, regular-form SiO2 microspheres with a particle size of 5-30 um are dispersed in deionized water, and the surface modifier polyethyleneimine or N,N-diethyl three is added under stirring. Methylsilylamine or 3-aminopropyltrimethoxysilane was then magnetically stirred for 2 to 4 hours to obtain a surface-modified SiO2 microsphere suspension.
  • cerium nitrate, aluminum nitrate and cerium nitrate to the above oxide microsphere suspension in a stoichiometric ratio.
  • the oxalic acid solution is added under stirring, and the cerium ion, aluminum ion and cerium ion are attached to the surface of the oxide microsphere by an acid amine condensation reaction.
  • the ammonia water is added to adjust the pH, and the product is dried, filtered, washed and dried. Calcined at 1400 ° C for 2-6 h to obtain a phosphor composed of phosphor particles of a monodisperse core-shell structure.
  • the phosphor layer can be coated with SiO2 more easily and the phosphor coating layer is more dense, and the structure is more desirable.
  • the stoichiometric ratio in this embodiment can be referred to the first embodiment.
  • the oxide microspheres may also be magnesium oxide
  • the phosphor layer may also be Ca 3 Sc 2 Si 3 O 12 :Ce 3+
  • the raw material of the phosphor shell layer is calcium nitrate.
  • the ruthenium nitrate and the ethyl orthosilicate are basically the same in structure and preparation method, and are also the concept of the present invention and can achieve the object of the present invention, and are not limited to the enumeration of the above several embodiments.
  • the invention adopts a lower-cost micro-scale oxide microsphere as a core structure, and the phosphor layer is coated on the surface of the micro-scale oxide microsphere by a chemical precipitation method to form a shell structure.
  • the cost of the phosphor particles can be effectively reduced; since the particle size of the oxide core is uniform and the dispersibility is good, the prepared core-shell structure has better dispersibility of the phosphor; and
  • the thickness of the phosphor layer is controllable, so the phosphor particle size of the core-shell structure is also relatively uniform; since the refractive index of the core structure is smaller than the refractive index of the shell structure, the particles of the phosphor layer emit large-angle light energy in the core-shell structure.
  • the present invention has lower cost, better dispersibility, uniform particle size distribution, uniform morphology, and high light extraction efficiency compared to the prior art phosphors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种单分散的核壳结构的荧光粉颗粒及其制备方法。荧光粉颗粒包括位于中心的核结构和包覆所述核结构的壳结构,核结构为粒径均一的氧化物微球,壳结构为荧光粉层,核结构的折射率小于壳结构的折射率。相较现有技术的荧光粉成本低,分散性好、粒径分布均匀、形貌均一、出光效率高。

Description

单分散的核壳结构的荧光粉颗粒及其制备方法 技术领域
本发明属于发光材料技术领域,尤其涉及一种单分散的核壳结构的荧光粉颗粒及其制备方法。
背景技术
荧光粉材料广泛应用于照明、显示、投影等领域,在某些特殊的应用领域中,要求荧光粉颗粒具有微米级的大粒径且单分散性良好,即粒径均匀、形貌规整、分散性好,以满足特殊的出光要求。
然而,传统的高温固相法制备得到的荧光粉颗粒易团聚,且粒径分布不均匀,表面形貌各异,需要多次反复球磨过筛才能获得适当的粒径,但是球磨过程产生的缺陷和引入的杂质会损害荧光粉的发光效率。采用溶胶-凝胶法、水热合成法制备的荧光粉虽然可弥补高温固相法合成的不足,可以制备单分散的荧光粉,但是制备的荧光粉颗粒属于纳米级,不适用于制备微米级大粒径荧光粉。
此外,在某些具体的应用场合,荧光粉在使用时不进行封装,而是直接暴露在空气中,此时荧光粉的出光率也是影响其应用效果的重要因素因此,针对上述不足,实有必要提供一种单分散的荧光粉微米颗粒的制备方法,以满足荧光粉的特殊应用需求。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种单分散的核壳结构的荧光粉颗粒及其制备方法,以制备粒径均匀、分散性好且形貌均一的大粒径 荧光粉颗粒。具体方案如下:
本发明提供一种单分散的核壳结构的荧光粉颗粒,所述荧光粉颗粒包括位于中心的核结构和包覆所述核结构的壳结构,所述核结构为粒径均一的氧化物微球,所述壳结构为荧光粉层,所述核结构的折射率小于所述壳结构的折射率。
优选的,所述氧化物微球粒径大小为5-30um。
优选的,所述荧光粉层的厚度为0.05-2um。
优选的,所述氧化物微球为二氧化硅,三氧化二铝,氧化镁中的任意一种。
优选的,所述荧光粉层为石榴石结构的荧光粉。
优选的,所述荧光粉层的材质为Y3Al5O12:Ce3+,Ca3Sc2Si3O12:Ce3+中的任意一种。
本发明还提供一种单分散的核壳结构的荧光粉颗粒的制备方法,包括如下步骤:
S1:制备单分散的氧化物微球悬浮液,氧化物微球的粒径大小为5-30um;
S2:采用化学沉淀法在上述氧化物微球表面包覆荧光粉层;
S3:重复上述步骤S2直到获得荧光粉层厚度符合需求的单分散的核壳结构的荧光粉颗粒。
其中,步骤S2包括:
S21:向步骤S1得到的氧化物微球悬浮液中加入硝酸钇、硝酸铝及硝酸铈,并与草酸溶液或碳酸氢铵溶液混合;
S22:经过滤、干燥得到干燥产物,再将所述干燥产物经煅烧得到单分散的核壳结构的荧光粉颗粒组成的荧光粉。
优选的,所述步骤S1还包括:向所述氧化物微球悬浮液中加入表面改性剂, 得到表面改性的氧化物微球悬浮液。
优选的,所述表面改性剂为含氨基的有机化合物。
优选的,所述含氨基的有机化合物为聚乙烯亚胺、N,N-二乙基三甲基硅烷基胺、3-氨丙基三甲氧基硅烷中的任意一种
优选的,所述步骤S22还包括:洗涤,所述洗涤的工艺介于所述过滤和所述干燥的工艺之间,所述洗涤的工艺为使用去离子水对所述过滤的工艺产生的滤渣进行洗涤。
优选的,所述煅烧温度为800-1400℃。
优选的,所述煅烧时间为2-6h。
优选的,所述硝酸钇和所述硝酸铝的摩尔比为3:5。
优选的,所述硝酸铈的添加量满足铈离子在所述硝酸钇、所述硝酸铝及所述硝酸铈所组成的原料溶液中的摩尔含量为0.01%~1%。
相对于现有技术,本发明的有益效果如下:
本发明制备的核壳结构的荧光粉一方面利用高分散性和粒径分布均匀的氧化物内核制备出分散性较好、粒径分布均匀的核壳结构的荧光粉颗粒,另一方面利用低折射率的氧化物内核、高折射率的荧光粉外层使光在两者界面发生全反射使其出光效率提高。尤其直接采用商用氧化物微球表面包覆荧光粉,能够得到粒径均匀性极佳的球形荧光颗粒。
本发明采用成本较低的氧化物微球作为核结构,相较实心的荧光粉颗粒,能够有效降低荧光粉颗粒的成本;由于氧化物内核的粒径均匀、分散性好,因此可制备出分散性较好的核壳结构的荧光粉;由于包覆的荧光粉层厚度可控,因此可制备出粒径较为均匀的核壳结构的荧光粉;由于核结构的折射率小于所述壳结构的折射率,荧光粉层的微粒发射出大角度光能在核壳结构的界面处会 发生全反射,而对于均一组成的荧光粉颗粒来说,这部分的光是被吸收而损失,因而使该核壳结构荧光粉的出光效率更高。综上所述,本发明相较现有技术的荧光粉成本低,分散性好、粒径分布均匀、形貌均一、出光效率高。
下面将结合附图及实施例对本发明作进一步说明。
附图说明
图1是本发明第一种实施方式的核壳结构荧光粉颗粒的结构示意图;
图2是本发明第一种实施方式的单分散的核壳结构的荧光粉颗粒的光反射示意图;
图3是本发明第二种实施方式的单分散的核壳结构的荧光粉颗粒的结构示意图。
具体实施方式
本发明提供一种单分散的核壳结构的荧光粉颗粒及其制备方法,以解决现有荧光粉颗粒易团聚,且粒径分布不均匀,表面形貌各异,很难制备出粒径均匀、分散性好且形貌单一的大粒径荧光粉。
实施例一
参照图1所示,本发明提供的单分散的核壳结构的荧光粉颗粒包括位于中心的核结构11和包覆所述核结构的壳结构12,其中,核结构11为粒径均一、大小为5-30um的氧化物微球,壳结构12为厚度为0.05-2um的荧光粉层。
具体在本实施方式中,氧化物微球为Al2O3(三氧化二铝)微球,荧光粉层采用YAG(钇铝柘榴石)荧光粉中的Y3Al5O12:Ce3+荧光粉。由于Al2O3微球为均一的球形,包覆Al2O3微球的荧光粉层厚度均一,即单分散的核壳结构的荧光 粉颗粒的形貌也是均一的球形,使得该荧光粉激发光自身发射的光在各个角度均一致;
此外,Al2O3的折射率为1.76,Y3Al5O12:Ce3+荧光粉的折射率为1.81,使得核结构Al2O3的折射率小于壳结构Y3Al5O12:Ce3+的折射率,当激发光和受激光照射在两者界面时可能会发生全反射,使其出光效率较高。参照图2所示,根据全反射角公式
Figure PCTCN2017114710-appb-000001
(nc为核结构的折射率,ns为壳结构的折射率)可知,本实施例中当激发光和受激光在核壳界面上的入射角度大于76.5°时即可发生全反射。
本发明单分散的核壳结构的荧光粉颗粒的制备方法包括如下步骤:
S1:采用粒径大小为5-30um的氧化物微球制备氧化物微球悬浮液,具体步骤为将单分散的、形貌规则的、粒径大小为5-30um的Al2O3微球分散到去离子水中,得到Al2O3微球悬浮液。
S2:采用化学沉淀法将悬浮液中氧化物微球表面包覆荧光粉层,按化学计量比向上述氧化物微球悬浮液中加入硝酸钇、硝酸铝及硝酸铈,在搅拌条件下加入碳酸氢铵溶液,待反应充分后过滤、干燥,得到干燥产物,将干燥产物经煅烧即可得到单分散的核壳结构的荧光粉颗粒组成的荧光粉。
具体的,在本实施例中干燥条件为60℃的温度环境中烘干。
具体的,在本实施例中煅烧条件为800-1400℃下煅烧2-6h。
S3:重复上述步骤S2直到获得荧光粉层厚度符合需求的单分散的核壳结构的荧光粉颗粒。
需要说明的是,在上述步骤S2中,为提高干燥产物的品质,待反应充分后过滤,再使用去离子水对滤渣进行洗涤,而后干燥,得到高品质的干燥产物。
上述步骤S2中,化学剂量比只要满足硝酸钇和硝酸铝的摩尔比为3:5,硝酸铈添加量满足铈离子在硝酸钇、硝酸铝及硝酸铈所组成的原料溶液中的摩尔含量为0.01%~1%即可,具体的质量组分根据所需壳结构的厚度来确定。
本实施方式的制备方法,采用单分散的微米级氧化物微球作为核结构,其反应活性很低,需在较高的温度下才能发生化学反应,而壳结构的荧光粉为氧化铝、氧化钇和氧化铈,其反应活性较高,在较低温度下就能相互之间发生化学反应,故可以制备出核壳结构的荧光粉,且相较实心的荧光粉颗粒,能够有效降低荧光粉颗粒的成本;其次,由于可以根据需要多次重复步骤S2以获得厚度可控的荧光粉层,进而可以通过调节氧化物微球的颗粒大小以及荧光粉层的厚度控制核壳荧光粉的颗粒大小,因此可制备出粒径较为均匀的核壳结构的荧光粉。此外,由于氧化物内核的粒径均匀、分散性好,因此制备出的单分散的核壳结构的荧光粉颗粒也是球形且粒径均匀,分散性好。
实施例二:
如图3所示,本实施方式与第一种实施方式基本相同,单分散的核壳结构的荧光粉颗粒包括位于中心的核结构21和包覆所述核结构的壳结构22,其中,核结构21为粒径大小为5-30um的氧化物微球,壳结构22为厚度为0.05-2um的荧光粉层。
区别在于,在本实施方式中,核结构21的氧化物微球采用SiO2(二氧化硅)微球,荧光粉层为Y3Al5O12:Ce3+。其中,SiO2的折射率为1.46,Y3Al5O12:Ce3+荧光粉的折射率为1.81。由于SiO2的折射率小于Al2O3的折射率,在本实施方式中,核结构与壳结构的折射率之差较大,根据全反射角公式
Figure PCTCN2017114710-appb-000002
(nc为 核结构的折射率,ns为壳结构的折射率)可知,本实施例中当激发光和受激光在核壳界面上的入射角度大于53.77°时即可发生全反射。相较第一种实施方式,本实施方式中,全反射角更小,更多的光在核壳之间发光全反射,出光效率较高。,出光效率较高。
本实施方式的制备方法与第一种实施方式基本相同,区别在于,步骤S1中为将单分散的、形貌规则的、粒径大小为5~30um的SiO2微球分散到去离子水中,得到SiO2微球悬浮液。
实施例三
本实施方式为在前两种实施方式的基础上做出的改进,区别在于,在本实施方式的制备方法中,步骤S1中,还包括向氧化物微球悬浮液中加入表面改性剂进行表面改性,从而获得表面改性后的氧化物微球悬浮液。
所述表面改性剂优选含氨基的有机化合物,可以是聚乙烯亚胺、N,N-二乙基三甲基硅烷基胺、3-氨丙基三甲氧基硅烷中至少一种。
步骤S2中,向氧化物微球悬浮液中加入硝酸钇、硝酸铝及硝酸铈,在搅拌条件下加入草酸溶液,使钇离子、铝离子、铈离子通过酸胺缩合反应附于氧化物微球表面,高温烧结后获得更为致密的荧光粉层外壳。
下面以针对第二种实施方式进行改进为例进行说明:
将单分散的、形貌规则的、粒径大小为5~30um的SiO2微球分散到去离子水中,在搅拌的条件下加入表面改性剂聚乙烯亚胺或N,N-二乙基三甲基硅烷基胺或3-氨丙基三甲氧基硅烷,然后磁力搅拌2~4h,得到表面改性后的SiO2微球悬浮液。
按化学计量比向上述氧化物微球悬浮液中加入硝酸钇、硝酸铝及硝酸铈, 在搅拌条件下加入草酸溶液,使钇离子、铝离子、铈离子通过酸胺缩合反应附于氧化物微球表面,待反应充分后加入氨水调节pH,过滤、洗涤、干燥,将干燥产物在800~1400℃下煅烧2~6h,得到单分散的核壳结构的荧光粉颗粒组成的荧光粉。
在本实施方式中,对SiO2微球表面进行改性处理后,可以使得荧光粉层包覆SiO2更加容易且荧光粉包覆层更加致密,结构更加理想。
本实施方式中化学计量比可参照实施例一。
在可选择的其他实施方式中,氧化物微球还可以为氧化镁,荧光粉层还可以采用Ca3Sc2Si3O12:Ce3+,相应的,荧光粉壳层的原料为硝酸钙、硝酸钪、正硅酸乙酯,其结构与制备方法基本相同,也是属于本发明构思并能够实现本发明目的的,并不仅限于上述几种实施方式的列举。
本发明采用成本较低的微米级氧化物微球作为内核结构,通过化学沉淀法在所述微米级氧化物微球表面包覆荧光粉层,形成壳结构。相较实心的荧光粉颗粒,能够有效降低荧光粉颗粒的成本;由于氧化物内核的粒径均匀、分散性好,制备出的核壳结构的荧光粉分散性也较好;并且由于包覆的荧光粉层厚度可控,因此核壳结构的荧光粉粒径也较为均匀;由于核结构的折射率小于所述壳结构的折射率,荧光粉层的微粒发射出大角度光能在核壳结构的界面处会发生全反射,而对于均一组成的荧光粉颗粒来说,这部分的光是被吸收而损失,因而使该核壳结构荧光粉的出光效率更高。综上所述,本发明相较现有技术的荧光粉成本低,分散性好、粒径分布均匀、形貌均一、出光效率高。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (15)

  1. 一种单分散的核壳结构的荧光粉颗粒,其特征在于,所述荧光粉颗粒包括位于中心的核结构和包覆所述核结构的壳结构,所述核结构为粒径均一的氧化物微球,所述壳结构为荧光粉层,所述核结构的折射率小于所述壳结构的折射率。
  2. 根据权利要求1所述的单分散的核壳结构的荧光粉颗粒,其特征在于,所述氧化物微球粒径大小为5-30um。
  3. 根据权利要求1所述的单分散的核壳结构的荧光粉颗粒,其特征在于,所述荧光粉层的厚度为0.05-2um。
  4. 根据权利要求3所述的单分散的核壳结构的荧光粉颗粒,其特征在于,所述氧化物微球为二氧化硅,三氧化二铝,氧化镁中的任意一种。
  5. 根据权利要求3所述的单分散的核壳结构的荧光粉颗粒,其特征在于,所述荧光粉层的材质为石榴石结构的荧光粉。
  6. 根据权利要求5所述的单分散的核壳结构的荧光粉颗粒,其特征在于,所述荧光粉层的材质为Y3Al5O12:Ce3+,Ca3Sc2Si3O12:Ce3+中的任意一种。
  7. 一种单分散的核壳结构的荧光粉颗粒的制备方法,其特征在于,包括如下步骤:
    S1:制备单分散的氧化物微球悬浮液,氧化物微球的粒径大小为5-30um;
    S2:采用化学沉淀法在所述氧化物微球表面包覆荧光粉层;
    S3:重复上述步骤S2直到获得的荧光粉层厚度符合需求的单分散的核壳结构的荧光粉颗粒。
    其中,步骤S2包括:
    S21:向步骤S1得到的氧化物微球悬浮液中加入硝酸钇、硝酸铝及硝酸铈,并与草酸溶液或碳酸氢铵溶液混合;
    S22:经过滤、干燥得到干燥产物,再将所述干燥产物煅烧得到单分散的核壳结构的荧光粉颗粒组成的荧光粉。
  8. 根据权利要求7所述的单分散的核壳结构的荧光粉颗粒的制备方法,其特征在于,所述步骤S1还包括:向所述氧化物微球悬浮液中加入表面改性剂,得到表面改性的氧化物微球悬浮液。
  9. 根据权利要求8所述的单分散的核壳结构的荧光粉颗粒的制备方法,其特征在于,所述表面改性剂为含氨基的有机化合物。
  10. 根据权利要求9所述的单分散的核壳结构的荧光粉颗粒的制备方法,其特征在于,所述含氨基的有机化合物为聚乙烯亚胺、N,N-二乙基三甲基硅烷基胺、3-氨丙基三甲氧基硅烷中的任意一种。
  11. 根据权利要求7所述的单分散的核壳结构的荧光粉颗粒的制备方法,其特征在于,所述步骤S22还包括:洗涤,所述洗涤的工艺介于所述过滤和所述干燥的工艺之间,所述洗涤的工艺为使用去离子水对所述过滤的工艺产生的滤渣进行洗涤。
  12. 根据权利要求7所述的单分散的核壳结构的荧光粉颗粒的制备方法,其特征在于,所述煅烧温度为800-1400℃。
  13. 根据权利要求12所述的单分散的核壳结构的荧光粉颗粒的制备方法,其特征在于,所述煅烧时间为2-6h。
  14. 根据权利要求7所述的单分散的核壳结构的荧光粉颗粒的制备方法,其特征在于,所述硝酸钇和所述硝酸铝的摩尔比为3:5。
  15. 根据权利要求7或14所述的单分散的核壳结构的荧光粉颗粒的制备方法,其特征在于,所述硝酸铈的添加量满足铈离子在所述硝酸钇、所述硝酸铝及所述硝酸铈所组成的原料溶液中的摩尔含量为0.01%~1%。
PCT/CN2017/114710 2017-06-06 2017-12-06 单分散的核壳结构的荧光粉颗粒及其制备方法 WO2018223632A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710417073.4A CN108997998A (zh) 2017-06-06 2017-06-06 单分散的核壳结构的荧光粉颗粒及其制备方法
CN201710417073.4 2017-06-06

Publications (1)

Publication Number Publication Date
WO2018223632A1 true WO2018223632A1 (zh) 2018-12-13

Family

ID=64566371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114710 WO2018223632A1 (zh) 2017-06-06 2017-12-06 单分散的核壳结构的荧光粉颗粒及其制备方法

Country Status (2)

Country Link
CN (1) CN108997998A (zh)
WO (1) WO2018223632A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107805056A (zh) * 2016-09-09 2018-03-16 深圳市光峰光电技术有限公司 陶瓷复合材料的制备方法及陶瓷复合材料、光源装置
CN113025305B (zh) * 2019-12-09 2023-07-14 上海航空电器有限公司 高折射率包边宽谱发射复合荧光体及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102191033A (zh) * 2010-03-11 2011-09-21 海洋王照明科技股份有限公司 一种核壳结构荧光材料及其制备方法
CN102206490A (zh) * 2010-03-30 2011-10-05 海洋王照明科技股份有限公司 核壳结构红色荧光粉的制备方法及其制备的核壳结构红色荧光粉
US20170352840A1 (en) * 2014-12-22 2017-12-07 Corning Precision Materials Co., Ltd. Method for manufacturing light extraction substrate for organic light-emitting element, light extraction substrate for organic light-emitting element, and organic light-emitting element comprising same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102191033A (zh) * 2010-03-11 2011-09-21 海洋王照明科技股份有限公司 一种核壳结构荧光材料及其制备方法
CN102206490A (zh) * 2010-03-30 2011-10-05 海洋王照明科技股份有限公司 核壳结构红色荧光粉的制备方法及其制备的核壳结构红色荧光粉
US20170352840A1 (en) * 2014-12-22 2017-12-07 Corning Precision Materials Co., Ltd. Method for manufacturing light extraction substrate for organic light-emitting element, light extraction substrate for organic light-emitting element, and organic light-emitting element comprising same

Also Published As

Publication number Publication date
CN108997998A (zh) 2018-12-14

Similar Documents

Publication Publication Date Title
US8895143B2 (en) Double core-shell fluorescent materials and preparation methods thereof
CN102079975B (zh) 稀土掺杂钇铝石榴石荧光粉的共沉淀制备方法
JP3875027B2 (ja) 球状のオルトケイ酸亜鉛系緑色発光蛍光体の製造方法
CN105858706B (zh) 氧化钇粉体的制备方法
KR20110131117A (ko) 알루민산염 형광체, 그 제조 방법 및 발광 소자
CN103725282B (zh) 一种经包覆的硅酸盐荧光粉及其包膜方法
US20220135487A1 (en) Preparation method for ceramic composite material, ceramic composite material, and wavelength converter
CN100543110C (zh) 草酸非均相沉淀制备稀土掺杂钇铝石榴石荧光粉的方法
CN104818023A (zh) 含有晶体缺陷修复工艺的稀土发光材料制备方法及其产物
CN105733507A (zh) 一种壳核包覆型氧化铈-氧化硅复合磨粒的制备方法
WO2018223632A1 (zh) 单分散的核壳结构的荧光粉颗粒及其制备方法
CN111019648A (zh) 一种含氧酸盐或氮氧化物荧光粉的熔盐法制备方法
CN111087235B (zh) 一种采用钇/助剂/铝三重核壳结构粉体制备yag透明陶瓷的方法
CN102660261B (zh) 一种硅氧氮化物荧光粉的制备方法
JP2014019860A (ja) 蛍光体前駆体の製造方法、蛍光体の製造方法及び波長変換部品
CN103468263B (zh) 蓝光激发的白色led用狭窄粒度分布荧光粉及其制造方法
JP5926449B2 (ja) コア−シェル構造のケイ酸塩発光材料およびその製造方法
CN102433117A (zh) 钨钼酸盐固溶体发光微晶的一种化学溶液制备方法
KR101358557B1 (ko) 구형의 중공형 yag 형광체 제조 방법 및 구형의 중공형 yag 형광체
CN110590361B (zh) 复合相荧光陶瓷及其制备方法、应用
CN113213523A (zh) 一种具有高切削效率的纳米级氧化铈粉末及其制备方法
TWI431099B (zh) 製造螢光粉之方法及該方法所製得之螢光粉
CN106281313A (zh) 一种硅酸盐荧光粉及其制备方法和应用
CN109734121A (zh) 一种用于硅片抛光的纳米氧化铈的制备方法
CN110511027A (zh) 一种高光学质量的氧化铥透明陶瓷的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17912573

Country of ref document: EP

Kind code of ref document: A1