WO2018221470A1 - 位相差フィルム、液晶組成物、光学部材、表示パネル、表示装置、及び、位相差フィルムの製造方法 - Google Patents

位相差フィルム、液晶組成物、光学部材、表示パネル、表示装置、及び、位相差フィルムの製造方法 Download PDF

Info

Publication number
WO2018221470A1
WO2018221470A1 PCT/JP2018/020412 JP2018020412W WO2018221470A1 WO 2018221470 A1 WO2018221470 A1 WO 2018221470A1 JP 2018020412 W JP2018020412 W JP 2018020412W WO 2018221470 A1 WO2018221470 A1 WO 2018221470A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
retardation
vertical alignment
group
represented
Prior art date
Application number
PCT/JP2018/020412
Other languages
English (en)
French (fr)
Inventor
裕之 雨宮
奥山 健一
清弘 高地
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2019521213A priority Critical patent/JPWO2018221470A1/ja
Publication of WO2018221470A1 publication Critical patent/WO2018221470A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a retardation film, a liquid crystal composition, an optical member, a display panel, a display device, and a method for producing a retardation film.
  • various optical members are arranged to improve the quality of images.
  • One of them is a retardation film having a function of causing a retardation by a liquid crystal material.
  • a metal electrode having excellent reflectivity is provided in order to efficiently use light from a light emitting layer.
  • a metal electrode having excellent reflectivity is provided in order to efficiently use light from a light emitting layer.
  • external light reflection is increased, causing problems such as a decrease in contrast. Therefore, in the organic light emitting display device, a circularly polarizing plate or the like having a function of generating a phase difference is used in order to suppress the external light reflection.
  • a compensation film is applied for the purpose of preventing light leakage in an oblique direction which is insufficient only with polarizing plates disposed on both surfaces of a liquid crystal layer.
  • the light transmitted through a polarizing plate such as a circularly polarizing plate or a compensation film has an optical anisotropy, and this anisotropy causes a decrease in contrast depending on the viewing angle of the display device.
  • a retardation film particularly a positive C type retardation film (positive C plate).
  • the positive C type means that the refractive index in the X-axis direction along the layer surface is nx, the refractive index in the Y-axis direction perpendicular to the X-axis in the direction along the layer surface is ny, and the refractive index in the layer thickness direction is nz.
  • the relationship is nz> nx ⁇ ny and the optical axis is in the nz direction.
  • Patent Document 1 has a homeotropic alignment liquid crystal film formed of a homeotropic alignment liquid crystalline composition containing a specific homeotropic alignment polymer vertical alignment agent and a photopolymerizable liquid crystal material.
  • a phase difference plate is disclosed.
  • the conventional positive C plate has a problem that when a display device using the plate is viewed from an oblique direction, the color appears to be greatly different from the observation from the front.
  • an object of the present invention is to provide a positive C-type retardation film that can suppress a change in color even when viewed obliquely with respect to the front as compared with when viewed from the front. .
  • the optical member using this retardation film, a display panel, a display apparatus, the liquid crystal composition for retardation films, and the manufacturing method of retardation film are provided.
  • the inventors of the present invention have a positive C type and a retardation film having a predetermined reverse wavelength dispersion characteristic, and when viewed from an oblique direction relative to the front, compared to when viewed from the front. And obtained the knowledge that can suppress the color change small.
  • the present invention was completed by embodying this by adding a composition having a vertical alignment regulating force to a positive A type liquid crystal material.
  • the positive A type means that the refractive index in the X-axis direction along the layer surface is Nx, the refractive index in the Y-axis direction perpendicular to the X-axis in the direction along the layer surface is Ny, and the refractive index in the layer thickness direction is Nz.
  • the reverse wavelength dispersion characteristic is a wavelength dispersion characteristic in which the phase difference in transmitted light is smaller as the wavelength is shorter, and more specifically, retardation at a wavelength of 450 nm (R 450 ) and retardation at a wavelength of 550 nm (R 550 ) is a chromatic dispersion characteristic where R 450 ⁇ R 550 .
  • One aspect of the present invention is a retardation film having a retardation layer, wherein the retardation layer contains a vertical alignment agent and a polymerizable liquid crystal material having a homeotropically aligned reverse wavelength dispersion characteristic, and a retardation.
  • R 450 / R 550 is less than 1.0 when the retardation at a wavelength of 450 nm is R 450 and the retardation at a wavelength of 550 nm is R 550 at an incident angle inclined with respect to the normal direction of the layer. It is a phase difference film.
  • the vertical alignment agent is a polymer vertical alignment agent
  • the polymer vertical alignment agent includes a structural unit represented by the following general formula (I) and a liquid crystalline structural unit. It can consist of the hardened
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a group represented by —L 1 —R 3 , or —L 1 ′ —R 4
  • L 1 represents — (CH 2 ) a linking group represented by n—
  • L 1 ′ represents a linking group represented by — (C 2 H 4 O) n ′ —
  • R 3 represents a methyl group which may have a substituent
  • An aryl group which may have an alkyl group, or —OR 5 , R 4 and R 5 each independently represents an alkyl group which may have a substituent or an aryl group which may have a substituent;
  • N and n ′ are each independently an integer of 2 or more and 18 or less.
  • liquid crystalline structural unit of the vertical alignment agent in the retardation film may be represented by the following general formula (II).
  • R 11 is a hydrogen atom or a methyl group
  • R 12 is a group represented by — (CH 2 ) m — or — (C 2 H 4 O) m ′ —.
  • L 2 is a direct bond or a linking group represented by —O—, —O—C ( ⁇ O) —, or —C ( ⁇ O) —O—
  • Ar 2 has a substituent.
  • R 13 is —F, —Cl, —CN, —OCF 3 , —OCF 2 H, —NCO, —NCS, —NO 2 , —NHC ( ⁇ O) —R 14 , —C ( ⁇ O) —OR 14 , —OH, —SH, —CHO, —SO 3 H, —NR 14 2 , —R 15 , or —OR 15 , wherein R 14 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. , R 15 represents an alkyl group having 1 to 6 carbon atoms. a is an integer of 2 to 4, and m and m ′ are each independently an integer of 2 to 10.
  • the vertical alignment agent may be a low-molecular liquid crystal, and the low-molecular liquid crystal may include a structure represented by the following formula.
  • Another embodiment of the present invention is a liquid crystal composition containing a vertical alignment agent, a polymerizable liquid crystal material having reverse wavelength dispersion characteristics, and a photopolymerization initiator.
  • the vertical alignment agent is a polymer vertical alignment agent
  • the polymer vertical alignment agent includes a structural unit represented by the following general formula (I) and a liquid crystalline structural unit. It can include coalescence.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a group represented by —L 1 —R 3 , or —L 1 ′ —R 4
  • L 1 represents — (CH 2 ) a linking group represented by n—
  • L 1 ′ represents a linking group represented by — (C 2 H 4 O) n ′ —
  • R 3 represents a methyl group which may have a substituent
  • An aryl group which may have an alkyl group, or —OR 5 , R 4 and R 5 each independently represents an alkyl group which may have a substituent or an aryl group which may have a substituent;
  • N and n ′ are each independently an integer of 2 or more and 18 or less.
  • liquid crystalline constituent unit of the vertical alignment agent in the liquid crystal composition may be represented by the following general formula (II).
  • R 11 is a hydrogen atom or a methyl group
  • R 12 is a group represented by — (CH 2 ) m — or — (C 2 H 4 O) m ′ —.
  • L 2 is a direct bond or a linking group represented by —O—, —O—C ( ⁇ O) —, or —C ( ⁇ O) —O—
  • Ar 2 has a substituent.
  • R 13 is —F, —Cl, —CN, —OCF 3 , —OCF 2 H, —NCO, —NCS, —NO 2 , —NHC ( ⁇ O) —R 14 , —C ( ⁇ O) —OR 14 , —OH, —SH, —CHO, —SO 3 H, —NR 14 2 , —R 15 , or —OR 15 , wherein R 14 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. , R 15 represents an alkyl group having 1 to 6 carbon atoms. a is an integer of 2 to 4, and m and m ′ are each independently an integer of 2 to 10.
  • the vertical alignment agent may be a low-molecular liquid crystal, and the low-molecular liquid crystal may be represented by the following formula.
  • the step of depositing the liquid crystal composition, the step of aligning the polymerizable liquid crystal material in the deposited liquid crystal composition, and the step of polymerizing the polymerizable liquid crystal material after the step of aligning are performed.
  • a retardation film is formed by having a step of forming a retardation layer.
  • an optical member provided with a polarizing plate on the retardation film can be provided.
  • This optical film may include a polarizing plate and other retardation layers such as a ⁇ / 4 retardation layer.
  • a display panel having such an optical member and a display device including the display panel can be provided.
  • FIG. 4 is a diagram for explaining a display panel 60.
  • FIG. 4 is a diagram for explaining a display panel 60.
  • the alignment regulating force means an interaction that aligns the liquid crystal compounds in the retardation layer in a specific direction.
  • (meth) acryl represents each of acryl or methacryl
  • (meth) acrylate represents each of acrylate or methacrylate.
  • film surface is a surface that coincides with the plane direction of the target film-like member (plate-like member, sheet-like member) when the target film-like (plate-like, sheet-like) member is viewed overall and globally. It shows that.
  • [Configuration of retardation film] 1 to 3 show the layer structures of the retardation films 10 and 10′10 ′′ according to the first to third embodiments.
  • the retardation film 10 shown in the example of FIG. 12 is a retardation film in which an alignment film 13 and a retardation layer 11 are laminated in this order.
  • a retardation film 10 ′ shown in the example of FIG. 3 has the retardation layer 11 directly formed on the substrate 12.
  • the retardation film shown in the example of FIG. 3 may be provided with means for expressing the orientation regulating force on the surface of the substrate 12 on the retardation layer 11 side.
  • the substrate 12 examples include a glass substrate, a metal foil, and a resin substrate.
  • the substrate preferably has transparency, and can be appropriately selected from conventionally known transparent substrates.
  • a transparent substrate in addition to a glass substrate, acetyl cellulose resins such as triacetyl cellulose, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyester resins such as polylactic acid, polypropylene, polyethylene, polymethylpentene, etc.
  • resins such as olefin resin, acrylic resin, polyurethane resin, polyether sulfone, polycarbonate, polysulfone, polyether, polyether ketone, acrylonitrile, methacrylonitrile, cycloolefin polymer, cycloolefin copolymer.
  • resins such as olefin resin, acrylic resin, polyurethane resin, polyether sulfone, polycarbonate, polysulfone, polyether, polyether ketone, acrylonitrile, methacrylonitrile, cycloolefin polymer, cycloolefin copolymer.
  • Transparent resin base materials such as olefin resin, acrylic resin, polyurethane resin, polyether sulfone, polycarbonate, polysulfone, polyether, polyether ketone, acrylonitrile, methacrylonitrile, cycloolefin polymer, cycloolefin copolymer.
  • the substrate 12 preferably has a transmittance in the visible light region of 80% or more, and more preferably 90% or more.
  • the transmittance of the transparent substrate can be measured according to JIS K7361-1: 1997 (plastic-transparent material total light transmittance test method).
  • a base material is a flexible material which has flexibility so that it can wind up in roll shape.
  • flexible materials include cellulose derivatives, norbornene polymers, cycloolefin polymers, polymethyl methacrylate, polyvinyl alcohol, polyimide, polyarylate, polyethylene terephthalate, polysulfone, polyethersulfone, amorphous polyolefin, modified acrylic polymer, polystyrene. And epoxy resins, polycarbonates, polyesters, and the like.
  • cellulose derivatives and polyethylene terephthalate are preferably used. This is because the cellulose derivative is particularly excellent in optical isotropy, and therefore can be excellent in optical characteristics.
  • Polyethylene terephthalate is preferable because it has high transparency and excellent mechanical properties.
  • the thickness of the substrate 12 is not particularly limited as long as it is within a range in which necessary supportability can be imparted depending on the use of the retardation film, etc., but is usually within a range of about 10 ⁇ m to 200 ⁇ m.
  • the thickness of the base material is preferably in the range of 25 ⁇ m to 125 ⁇ m, and more preferably in the range of 30 ⁇ m to 100 ⁇ m.
  • the structure of the base material used in this embodiment is not limited to a structure composed of a single layer, and may have a structure in which a plurality of layers are laminated.
  • the layer of the same composition may be laminated
  • the alignment film 13 in the retardation film 10 contains an ultraviolet curable resin
  • a primer layer is included on the substrate 12 in order to improve the adhesion between the substrate 12 and the ultraviolet curable resin. May be.
  • This primer layer has only adhesiveness to both the base material 12 and the ultraviolet curable resin, is visible optically transparent, and can pass ultraviolet light.
  • vinyl chloride / vinyl acetate copolymer A system, a urethane type, or the like can be appropriately selected and applied.
  • an anchor coat layer may be laminated on the base material 12. Since the anchor coat layer can suppress the penetration of a solvent or the like into the base material 12 and improve the strength of the base material 12, it is possible to ensure good vertical alignment.
  • a metal alkoxide particularly a metal silicon alkoxide sol can be used. Metal alkoxides are usually used as alcoholic solutions. Since the anchor coat layer requires a uniform and flexible film, the thickness of the anchor coat layer is preferably about 0.04 ⁇ m to 2 ⁇ m, and more preferably about 0.05 ⁇ m to 0.2 ⁇ m.
  • a binder layer is further laminated between the base material 12 and the anchor coat layer, or a material that enhances adhesion to the substrate is included in the anchor coat layer.
  • the adhesion between the substrate 12 and the anchor coat layer may be improved.
  • the binder material used for forming the binder layer a material that can improve the adhesion between the base material 12 and the anchor coat layer can be used without particular limitation. Examples of the binder material include a silane coupling agent, a titanium coupling agent, and a zirconium coupling agent.
  • the alignment film 13 is a layer for aligning liquid crystalline components contained in the retardation layer 11 in a certain direction. As will be described later, in the retardation layer 11 in this embodiment, the alignment film 13 is preferably a vertical alignment film because the liquid crystal composition constituting the retardation layer 11 is easily vertically aligned.
  • the vertical alignment film is an alignment film having an alignment regulating force in the vertical direction, and various vertical alignment films used for producing a known C-type retardation film, various VA liquid crystal display devices, etc.
  • a polyimide alignment film, an alignment film made of an LB film, or the like can be applied.
  • the constituent material of the alignment film for example, lecithin, silane-based surfactant, titanate-based surfactant, pyridinium salt-based polymer surfactant, silane coupling-based vertical such as n-octadecyltriethoxysilane, etc.
  • composition for alignment film composition for polyimide vertical alignment film such as soluble polyimide having long chain alkyl group or alicyclic structure in side chain and polyamic acid having long chain alkyl group or alicyclic structure in side chain Can be applied.
  • polyimide type vertical alignment film compositions “JALS-2021” and “JALS-204” manufactured by JSR Corporation, “RN-1517” manufactured by Nissan Chemical Industries, Ltd., “ Commercial products such as “SE-1211” and “EXPOA-018” can be applied.
  • a vertical alignment film described in JP-A-2015-191143 may be used.
  • the formation method of the alignment film 13 is not specifically limited, For example, it can be set as an alignment film by apply
  • the means for imparting the alignment regulating force to the alignment film can be a conventionally known one.
  • the thickness of the alignment film 13 may be set as appropriate as long as the liquid crystalline components in the retardation layer 11 can be aligned in a certain direction.
  • the thickness of the alignment film is usually in the range of 1 nm to 10 ⁇ m, and preferably in the range of 60 nm to 5 ⁇ m.
  • the retardation layer 11 is made of a cured product of a liquid crystal composition described later.
  • the homeotropically aligned reverse wavelength dispersion polymerizable liquid crystal material included therein is oriented so as to have a predetermined reverse wavelength dispersion characteristic and function as a positive C type retardation film. More details are as follows.
  • ⁇ R 450 / R 550 ⁇ is less than 1.00.
  • the change of the color tone by a light emission direction can be suppressed small.
  • it is 0.79 or more and less than 1.00.
  • the change in color can be further suppressed, and the effect becomes more conspicuous by setting it to 0.79 or more and 0.90 or less.
  • the specific angle of the inclined incident angle is not particularly limited, the inclination angle is 30 with respect to the normal of the film surface in consideration of the case where the device provided with the retardation film is a display device. It is preferable that the above is satisfied in the range of not less than 50 ° and not more than 50 °. More preferably, it is the range of 20 degrees or more and 70 degrees or less.
  • the reverse wavelength dispersible polymerizable liquid crystal material is vertically aligned, and the refractive index (nx, ny, nz) in each axial direction is a positive C type. It is confirmed by measuring the phase difference with an automatic birefringence measuring apparatus (for example, product name: KOBRA-WR, manufactured by Oji Scientific Instruments) that the reverse wavelength dispersion polymerizable liquid crystal material is vertically aligned. Can do.
  • an automatic birefringence measuring apparatus for example, product name: KOBRA-WR, manufactured by Oji Scientific Instruments
  • the thickness of the retardation layer 11 may be appropriately set according to the application, but is preferably 0.1 ⁇ m or more and 5 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 3 ⁇ m or less.
  • the retardation layer 11 includes a structure in which at least a part of a polymerizable group of a vertical alignment agent and a reverse wavelength dispersible polymerizable liquid crystal material included in a liquid crystal composition to be described later constituting the retardation layer is polymerized. This can be confirmed by collecting and analyzing the material from the retardation layer 11. As an analysis method, NMR, IR, GC-MS, XPS, TOF-SIMS and a combination thereof can be applied.
  • the liquid crystal composition to be described later for constituting the retardation layer 11 contains other components such as a photopolymerization initiator, a leveling agent, a polymerization inhibitor, an antioxidant, a light stabilizer, and an antistatic agent. You can leave. Accordingly, these components may remain in the retardation layer 11. However, a component that may be decomposed completely when irradiated with light to react with a polymerizable group of the polymerizable liquid crystal material such as a photopolymerization initiator is not included in the retardation layer 11. In some cases.
  • the retardation films 10, 10 ′, and 10 ′′ as described above, even in the positive C type, even when viewed from an oblique direction with respect to the front, the color change is smaller than when viewed from the front. It becomes possible to suppress.
  • the retardation of the retardation films 10, 10 ′, 10 ′′ can be measured with an automatic birefringence measuring apparatus (for example, trade name: KOBRA-WR, manufactured by Oji Scientific Instruments).
  • the anisotropy that increases the phase difference of the retardation layer can be confirmed from the chart of the optical phase difference and the incident angle of the measurement light.
  • the in-plane retardation (R0) of the retardation film is preferably 2.0 nm or less, and more preferably 1.0 nm or less.
  • the retardation (Rth) in the thickness direction of the retardation film may be appropriately adjusted in a range where Rth is negative in consideration of the balance with Rth of other members constituting the optical member.
  • the in-plane retardation (R0) and the thickness direction retardation (Rth) are expressed as nx in the in-plane refractive index in the slow axis direction, and ny in the in-plane orthogonal direction to nx.
  • the refractive index in the direction orthogonal to nz and the film thickness to d (nm) can be expressed by the following formula.
  • the in-plane retardation (R0) and the thickness direction retardation (Rth) are values at a wavelength of 550 nm.
  • In-plane retardation (R0) (nx ⁇ ny) ⁇ d
  • Thickness direction retardation (Rth) ((nx + ny) / 2 ⁇ nz) ⁇ d
  • the retardation layer 11 of the retardation films 10, 10 ′, 10 ′′ is formed by curing the liquid crystal composition.
  • the liquid crystal composition that forms the retardation layer 11 will be described below.
  • the liquid crystal composition is a liquid crystal composition containing a vertical alignment agent, a reverse wavelength dispersion polymerizable liquid crystal material, and a photopolymerization initiator. Since the liquid crystal composition of the present embodiment is easily vertically aligned, it can form the above-described retardation layer, and is excellent in in-plane retardation value, hardly cracked, and is a bending-resistant retardation layer. Further, since it is easy to perform vertical alignment, it is not always necessary to provide an alignment film.
  • the liquid crystal composition of the present embodiment contains at least a vertical alignment agent, a reverse wavelength dispersion polymerizable liquid crystal material, and a photopolymerization initiator, and may further contain other components as long as the effects are not impaired. Is. Hereinafter, each component constituting the liquid crystal composition will be described.
  • the reverse wavelength dispersible polymerizable liquid crystal material is a polymerizable liquid crystal material having reverse wavelength dispersibility when the liquid crystal composition is finally cured to form a retardation layer.
  • a well-known thing can be applied as a liquid crystal material which has reverse wavelength dispersion.
  • liquid crystal materials described in JP-T-2010-522892, JP-A-2010-31223, JP-A-2012-077055, JP-A-2009-62508, International Publication WO2014 / 069515, etc. Can be mentioned.
  • the photopolymerization initiator can be appropriately selected from conventionally known ones.
  • Specific examples of such photopolymerization initiators include, for example, aromatic ketones containing thioxanthone, ⁇ -aminoalkylphenones, ⁇ -hydroxy ketones, acylphosphine oxides, oxime esters, aromatic oniums.
  • Preferred examples include salts, organic peroxides, thio compounds, hexaarylbiimidazole compounds, ketoxime ester compounds, borate compounds, azinium compounds, metallocene compounds, active ester compounds, compounds having a carbon halogen bond, and alkylamine compounds.
  • acyl phosphine oxide polymerization initiator examples include bis (2,4,6-trimethylbenzoyl) -phenyl-phosphine oxide (for example, trade name: Irgacure 819, manufactured by BASF Corporation), bis (2,6- Dimethoxybenzoyl) -2,4,4-trimethyl-pentylphenylphosphine oxide, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (trade name: Lucirin TPO: manufactured by BASF Corporation) and the like.
  • Examples of the ⁇ -aminoalkylphenone polymerization initiator include 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one (for example, Irgacure 907, manufactured by BASF Corporation), 2 -Benzyl-2- (dimethylamino) -1- (4-morpholinophenyl) -1-butanone (eg Irgacure 369, manufactured by BASF Corporation), 2- (dimethylamino) -2-[(4-methylphenyl) Methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone (Irgacure 379EG, manufactured by BASF Corporation) and the like.
  • 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one for example, Irgacure 907, manufactured by BASF Corporation
  • Examples of the ⁇ -hydroxyketone polymerization initiator include 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] -phenyl ⁇ -2-methyl-propane.
  • -1-one for example, trade name: Irgacure 127, manufactured by BASF Corporation
  • 2-hydroxy-4′-hydroxyethoxy-2-methylpropiophenone for example, trade name: Irgacure 2959, manufactured by BASF Corporation, etc.
  • 1-hydroxy-cyclohexyl-phenyl-ketone for example, trade name: Irgacure 184, manufactured by BASF Corporation, etc.
  • oligo ⁇ 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] Propanone ⁇ for example, trade name: ESACURE ONE, manufactured by Lamberti, etc.
  • Examples of the oxime ester polymerization initiator include 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)] (trade name: Irgacure OXE-01, manufactured by BASF Corporation), Etanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (o-acetyloxime) (trade name: Irgacure OXE-02, manufactured by BASF Corporation) , Methanone, ethanone, 1- [9-ethyl-6- (1,3-dioxolane, 4- (2-methoxyphenoxy) -9H-carbazol-3-yl]-, 1- (o-acetyloxime) Name ADEKA OPT-N-1919, manufactured by ADEKA).
  • a photoinitiator can be used individually by 1 type or in combination of 2 or more types.
  • the content of the photopolymerization initiator is preferably 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the solid content of the liquid crystal composition from the viewpoint of promoting the curing of the polymerizable liquid crystal material. More preferably, it is 1 part by mass or more and 8 parts by mass or less.
  • the vertical alignment agent is a material having an alignment regulating force that regulates the alignment of the above-described reverse wavelength-dispersible polymerizable liquid crystal material to be vertical alignment.
  • a polymer vertical alignment agent described below can be given.
  • This polymer vertical alignment agent is a polymer vertical alignment agent containing a copolymer having a structural unit represented by the following general formula (I) and a liquid crystalline structural unit.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a group represented by —L 1 —R 3 , or —L 1 ′ —R 4
  • L 1 represents — (CH 2 ) a linking group represented by n—
  • L 1 ′ represents a linking group represented by — (C 2 H 4 O) n ′ —
  • R 3 represents a methyl group which may have a substituent
  • An aryl group which may have an alkyl group, or —OR 5 , R 4 and R 5 each independently represents an alkyl group which may have a substituent or an aryl group which may have a substituent;
  • N and n ′ are each independently an integer of 2 or more and 18 or less.
  • R 2 represents a group represented by —L 1 —R 3 or —L 1 ′ —R 4
  • L 1 represents a linkage represented by — (CH 2 ) n —
  • L 1 ′ represents a linking group represented by — (C 2 H 4 O) n ′ —, and includes n or n ′ in the molecule of the polymer vertical alignment agent.
  • Examples of the substituent that the methyl group in R 3 may have include halogen atoms such as a fluorine atom, a chlorine atom, and a bromine atom.
  • the aryl group for R 3 is not particularly limited, but is preferably an aryl group having 6 to 20 carbon atoms from the viewpoint of bending resistance and in-plane uniformity of retardation value, specifically, a phenyl group, A naphthyl group, an anthracenyl group, etc. are mentioned, A phenyl group or a naphthyl group is especially preferable, and a phenyl group is more preferable.
  • the alkyl group that the aryl group may have is not particularly limited, but an alkyl group having 1 to 12 carbon atoms is preferable from the viewpoint of bending resistance and in-plane uniformity of retardation value. May be a linear alkyl group or an alkyl group containing a branched or ring structure. Specific examples of the alkyl group include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, cyclopentyl group, cyclohexyl group, cyclohexylmethyl group, cyclohexyl group. Examples thereof include an ethyl group and a cyclohexylpropyl group.
  • the hydrogen atom of the alkyl group may be substituted with a halogen atom.
  • the alkyl group in R 4 and R 5 is not particularly limited, but is preferably an alkyl group having 1 to 12 carbon atoms from the viewpoint of bending resistance and in-plane uniformity of retardation value.
  • An alkyl group may be sufficient and the alkyl group containing a branched or ring structure may be sufficient.
  • the same as those exemplified in the above R 3 can be mentioned.
  • Examples of the aryl group for R 4 and R 5 are the same as those for R 3 .
  • the combination of the values of n and n ′ is not particularly limited, and two or more kinds may be mixed.
  • the liquid crystalline structural unit is preferably a structural unit containing a mesogen exhibiting liquid crystallinity in the side chain.
  • the mesogen means that it has two or more ring structures, preferably three or more ring structures, and the ring structures are linked by a direct bond, or the ring structure contains 1 atom to 3 atoms. This is a partial structure connected through a relatively high rigidity.
  • the ring structure may be an aromatic ring such as benzene, naphthalene or anthracene, or may be a cyclic aliphatic hydrocarbon such as cyclopentyl or cyclohexyl.
  • the mesogen is preferably a rod-shaped mesogen in which the ring
  • liquid crystalline structural unit is a structural unit containing a mesogen exhibiting liquid crystallinity in the side chain
  • the terminal of the side chain of the structural unit is a polar group or has an alkyl group from the viewpoint of vertical alignment. Is preferred.
  • polar group examples include —F, —Cl, —CN, —OCF 3 , —OCF 2 H, —NCO, —NCS, —NO 2 , —NHC ( ⁇ O) —R ′, — C ( ⁇ O) —OR ′, —OH, —SH, —CHO, —SO 3 H, —NR ′ 2 , —R ′′ , or —OR ′′ (where R ′ represents a hydrogen atom or hydrocarbon group, R ′′ represents Alkyl group) and the like.
  • the liquid crystalline structural units can be used alone or in combination of two or more.
  • the liquid crystalline structural unit is preferably a structural unit derived from a monomer having the above-described general formula (I) and a polymerizable ethylenic double bond-containing group.
  • a monomer having an ethylenic double bond-containing group include derivatives such as (meth) acrylic acid ester, styrene, (meth) acrylamide, maleimide, vinyl ether, and vinyl ester.
  • the liquid crystalline structural unit is preferably a structural unit derived from a (meth) acrylic acid ester derivative from the viewpoint of vertical alignment.
  • the liquid crystalline structural unit preferably includes a structural unit represented by the following general formula (II) from the viewpoint of vertical alignment.
  • R 11 represents a hydrogen atom or a methyl group
  • R 12 represents a group represented by — (CH 2 ) m — or — (C 2 H 4 O) m ′ —
  • L 2 is a direct bond or a linking group represented by —O—, —O—C ( ⁇ O) —, or —C ( ⁇ O) —O—
  • Ar 2 has a substituent. Represents an arylene group having 6 to 10 carbon atoms, and the plurality of L 2 and Ar 2 may be the same or different.
  • R 13 is —F, —Cl, —CN, —OCF 3 , —OCF 2 H, —NCO, —NCS, —NO 2 , —NHC ( ⁇ O) —R 14 , —C ( ⁇ O) —OR 14 , —OH, —SH, —CHO, —SO 3 H, —NR 14 2 , —R 15 , or —OR 15 , wherein R 14 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. , R 15 represents an alkyl group having 1 to 6 carbon atoms. a is an integer of 2 to 4, and m and m ′ are each independently an integer of 2 to 10.
  • M and m ′ of R 12 are each independently an integer of 2 or more and 10 or less. From the standpoint of vertical alignment, among them, m and m ′ are preferably 2 or more and 8 or less, and more preferably 2 or more and 6 or less.
  • Examples of the arylene group having 6 to 10 carbon atoms that may have a substituent in Ar 2 include a phenylene group and a naphthylene group, and among them, a phenylene group is more preferable.
  • Examples of the substituent other than R 13 that the arylene group may have include an alkyl group having 1 to 5 carbon atoms, a halogen atom such as a fluorine atom, a chlorine atom, and a bromine atom.
  • R 14 in R 13 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and among them, a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is preferable.
  • R 15 in R 13 is an alkyl group having 1 to 6 carbon atoms, and among them, an alkyl group having 1 to 5 carbon atoms is preferable.
  • liquid crystalline structural unit represented by the general formula (II) include the following, but are not limited thereto.
  • the polymer vertical aligning agent may be a block copolymer having a block part composed of the structural unit represented by the general formula (I) and a block part composed of a liquid crystalline structural unit. It may be a random copolymer in which the structural unit represented by (I) and the liquid crystalline structural unit are arranged irregularly. In this embodiment, a random copolymer is preferable from the viewpoint of improving the vertical alignment of the reverse wavelength-dispersible polymerizable liquid crystal material and in-plane uniformity of the retardation value, and making the retardation layer difficult to break. .
  • the abundance ratio of the structural unit represented by the general formula (I) and the liquid crystalline structural unit in the polymer vertical alignment agent is not particularly limited, but the structural unit represented by the general formula (I) and the liquid crystalline structural unit are The molar ratio is preferably 1: 9 to 9: 1, more preferably 2: 8 to 8: 2.
  • the copolymer has a constitutional unit represented by the above general formula (I) in addition to the constitutional unit represented by the above general formula (I) and the above liquid crystalline constitutional unit as long as the effect is not impaired.
  • You may have a structural unit which does not correspond to any of the said liquid crystalline structural unit.
  • other structural units for example, solvent solubility, heat resistance, reactivity, and the like can be improved. These other structural units may be one kind or two or more kinds.
  • the content ratio of the other structural unit is preferably in the range of 0 mol% or more and 30 mol% or less, and in the range of 0 mol% or more and 20 mol% or less with respect to 100 mol% of the entire copolymer. More preferably. When the content ratio of the structural unit is large, the content ratio of the liquid crystalline structural unit and the structural unit represented by the general formula (I) is relatively small, and it may be difficult to obtain the effect of the present application. is there.
  • the mass average molecular weight Mw of the polymer vertical alignment agent is not particularly limited, but is preferably in the range of 500 to 60000, more preferably in the range of 3000 to 50000, and more preferably in the range of 5000 to 40000. More preferably within the following range. By being in the said range, it is excellent in stability of a liquid crystal composition, and is excellent in the handleability at the time of forming a phase difference layer.
  • the said mass mean molecular weight Mw is the value of polystyrene conversion measured by GPC (gel permeation chromatography).
  • GPC gel permeation chromatography
  • elution solvent is THF (tetrahydrofuran)
  • polystyrene standards for calibration curves are Mw377400, 210500, 96000, 50400, 206500, 10850, 5460, 2930, 1300, 580 (or more) Polymer Laboratories Easi PS-2 series) and Mw 1090000 (Tosoh Corporation), and TSK-GEL ALPHA-M x 2 (Tosoh Corporation).
  • the production method of the polymer vertical alignment agent as the vertical alignment agent described so far is not particularly limited.
  • a monomer for deriving the structural unit represented by the general formula (I) and a monomer for deriving the liquid crystalline structural unit May be mixed at a desired ratio and polymerized by a known polymerization means so as to have a desired average molecular weight.
  • a monomer for deriving the structural unit represented by the general formula (I) and a monomer for deriving a liquid crystalline structural unit are each polymerized by a known polymerization means.
  • each of the obtained polymers may be linked, and one of the monomer for deriving the structural unit represented by the general formula (I) or the monomer for deriving the liquid crystalline structural unit is a known polymerization.
  • examples include a method of further polymerizing by adding the other monomer after polymerization by means.
  • the polymerization means a method generally used for polymerization of a compound having a vinyl group can be employed.
  • anionic polymerization or living radical polymerization can be used.
  • a method in which polymerization proceeds in a living manner such as group transfer polymerization (GTP) disclosed in “J. Am. Chem. Soc.” 105, 5706 (1983), is used. preferable.
  • GTP group transfer polymerization
  • the molecular weight, the molecular weight distribution, and the like can be easily set in a desired range, so that the characteristics of the obtained polymer vertical alignment agent can be made uniform.
  • the said polymer vertical aligning agent may use individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the polymer vertical alignment agent is set to 100 parts by mass of the solid content of the liquid crystal composition from the viewpoint of obtaining a liquid crystal composition capable of suppressing the precipitation of the liquid crystal and widening the temperature range in which the liquid crystal is aligned.
  • it is preferably 3 to 80 parts by mass, more preferably 5 to 70 parts by mass, and still more preferably 10 to 60 parts by mass.
  • the solid content refers to all components except for the solvent.
  • the polymerizable liquid crystal material described later is included in the solid content even if it is liquid.
  • the structure of the polymer vertical alignment agent includes nuclear magnetic resonance spectroscopy (NMR), pyrolysis gas chromatography mass spectrometry (Py-GC-MS), and matrix-assisted laser desorption / ionization time-of-flight mass spectrometry (MALDI- And at least one of (TOFMS).
  • NMR nuclear magnetic resonance spectroscopy
  • Py-GC-MS pyrolysis gas chromatography mass spectrometry
  • MALDI- And at least one of (TOFMS matrix-assisted laser desorption / ionization time-of-flight mass spectrometry
  • the liquid crystalline structural unit contained in the retardation layer includes nuclear magnetic resonance (NMR), infrared spectroscopy (IR), gas chromatogram mass spectrometry (GC-MS), X-ray photoelectron spectroscopy (XPS), It can be confirmed by using one or more methods from known analysis methods that can obtain molecular structure information such as time-of-flight secondary ion mass spectrometry (TOF-SIMS).
  • NMR nuclear magnetic resonance
  • IR infrared spectroscopy
  • GC-MS gas chromatogram mass spectrometry
  • XPS X-ray photoelectron spectroscopy
  • a liquid crystal composition comprising a polymer vertical alignment agent containing a copolymer having the structural unit represented by the general formula (I) and a liquid crystalline structural unit, and a reverse wavelength dispersible polymerizable liquid crystal material.
  • a polymer vertical alignment agent containing a copolymer having the structural unit represented by the general formula (I) and a liquid crystalline structural unit
  • a reverse wavelength dispersible polymerizable liquid crystal material since the polymer vertical alignment agent is easily aligned vertically, and the reverse wavelength dispersible polymerizable liquid crystal material is easily aligned vertically, it can exhibit vertical alignment without using an alignment film. Is.
  • the polymer vertical alignment agent has been described as one example of the vertical alignment agent.
  • a liquid crystal other than a polymer low molecular vertical alignment agent
  • a material including a structure represented by the following formula (a structure having a divalent linking group) can be used.
  • an alkyl group may be substituted as a substituent at any position of the aromatic ring.
  • a material such as the following formula (1), an onium compound such as the following formula (2) or a salt thereof, and boron such as the following formula (3)
  • An acid compound or its salt is mentioned.
  • m is an integer of 2 to 8
  • n is an integer of 1 to 7.
  • the polymer vertical alignment agent is better in the orientation.
  • the liquid crystal composition may further contain other components as long as the effect is not impaired.
  • a leveling agent a polymerization inhibitor, an antioxidant, a light stabilizer, and a solvent from the viewpoint of coating properties may be contained. These may be appropriately selected from conventionally known materials.
  • the leveling agent it is preferable to use a fluorine-based or silicone-based leveling agent. Specific examples of the leveling agent include, for example, the Megafac series manufactured by DIC Corporation described in JP 2010-122325 A, the TSF series manufactured by Momentive Performance Materials Japan Co., Ltd., and the footage manufactured by Neos Co., Ltd. Series etc. are mentioned.
  • the content rate shall be 0.001 mass part or more and 5 mass parts or less with respect to 100 mass parts of solid content of a liquid-crystal composition.
  • Liquid crystal this polymerizable liquid crystal may be referred to as “adjustable polymerizable liquid crystal” in order to distinguish it from the above-described reverse wavelength-dispersible polymerizable liquid crystal.
  • the polymerizable liquid crystal having a positive wavelength dispersion characteristic that can be used in such a polymerizable liquid crystal for adjustment include a polymerizable rod-like liquid crystal material, which can be a liquid crystal material that is normally horizontally aligned. Examples of the materials represented by the chemical formulas (4) to (20) are:
  • the liquid crystal composition may contain a solvent as required from the viewpoint of coatability.
  • the solvent may be appropriately selected from conventionally known solvents that can dissolve or disperse each component contained in the liquid crystal composition.
  • hydrocarbon solvents such as hexane and cyclohexane
  • ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and cyclopentanone
  • ether solvents such as tetrahydrofuran and propylene glycol monoethyl ether (PGME), Alkyl halide solvents such as chloroform and dichloromethane, ester solvents such as ethyl acetate and propylene glycol monomethyl ether acetate, amide solvents such as N, N-dimethylformamide, and sulfoxide solvents such as dimethyl sulfoxide, methanol, ethanol, And alcohol solvents such as propanol, and cyclic ether solvent
  • the retardation film described above can be produced, for example, as follows, and includes the following steps (1) to (3).
  • a polymer vertical alignment agent is used as the vertical alignment agent.
  • (1) A step of forming a film of the liquid crystal composition described above.
  • (2) A step of aligning the liquid crystalline constituent unit of the polymer vertical alignment agent in the film-formed liquid crystal composition and the polymerizable liquid crystal material.
  • (3) A step of forming a retardation layer by having a step of polymerizing a polymerizable liquid crystal material after the step of aligning. Each step will be described below.
  • a liquid crystal composition is uniformly coated on a support to form a film.
  • the support here may be on a base material, or may be on an orientation film of a base material provided with an orientation film.
  • the coating method may be any method that can form a film with a desired thickness with high accuracy, and may be appropriately selected. For example, gravure coating method, reverse coating method, knife coating method, dip coating method, spray coating method, air knife coating method, spin coating method, roll coating method, printing method, dip pulling method, curtain coating method, die coating method, casting Method, bar coating method, extrusion coating method, E-type coating method and the like.
  • the liquid crystal composition of this embodiment has the above-described polymer vertical alignment agent, the temperature range in which vertical alignment can be performed is wide and temperature management is easy.
  • the heating means known heating and drying means can be appropriately selected and used.
  • the heating time may be selected as appropriate, and is selected, for example, within a range of 10 seconds to 2 hours, preferably 20 seconds to 30 minutes.
  • the reverse wavelength dispersible polymerizable liquid crystal material is obtained by, for example, irradiating light to the coating film fixed in a state where the alignment state of the liquid crystal component is maintained.
  • the phase difference layer which consists of the hardened
  • the light irradiation ultraviolet irradiation is preferably used.
  • ultraviolet rays emitted from light rays such as ultra-high pressure mercury lamp, high pressure mercury lamp, low pressure mercury lamp, carbon arc, xenon arc, metal halide lamp can be used.
  • Irradiation of energy beam source may if appropriately selected, accumulative exposure at an ultraviolet wavelength of 365 nm, is preferably in the range of, for example, 10 mJ / cm 2 or more 10000 mJ / cm 2 or less.
  • the retardation film described above can be applied to, for example, a transfer laminate, an optical member, a display panel, and a display device. Each will be described below.
  • ⁇ Transfer laminate> 4 to 6 are views for explaining the configuration of the transfer laminates 20, 30, and 40 of this embodiment.
  • the transfer laminates 20, 30, and 40 are laminates used for transfer of the retardation layer, and include the retardation layer 11 and supports 25, 35, and 45 that support the retardation layer 11 in a peelable manner. Yes.
  • the transfer laminate 20 shown in the example of FIG. 4 includes a retardation layer 11 to be transferred and a support 25 that releasably supports the retardation layer 11, and an alignment film 23 and a retardation on a support substrate 22.
  • the layer 11 is laminated in this order.
  • the peel strength between the support substrate 22 and the alignment film 23 is larger than the peel strength between the alignment film 23 and the retardation layer 11. Thereby, it peels at the interface 27 between the alignment film 23 and the retardation layer 11, and the retardation layer 11 can be transferred.
  • the peel strength between the support substrate 22 and the alignment film 23 is greater than the peel strength between the alignment film 23 and the retardation layer 11.
  • a method of making the support substrate 22 soluble can be used as the solvent contained in the product.
  • the support base material 22 it is preferable to use a resin base material, and surface treatment for improving adhesiveness may be performed on the surface of the support base material. In such a case, the adhesion between the resin base material and the alignment film can be improved.
  • the solvent resistance of the alignment film 23 is relatively high.
  • the alignment film 23 dissolves in the solvent in the liquid crystal composition when the liquid crystal composition is applied onto the alignment film 23 to form the retardation layer 11. Since it becomes difficult, the adhesiveness of the alignment film 23 and the phase difference layer 11 can be made low.
  • the transfer laminate 30 shown in the example of FIG. 5 includes a phase difference layer 11 to be transferred and a support 35 that releasably supports the phase difference layer 11, and the alignment film 23 and the phase difference on the support substrate 22.
  • This is a transfer laminate in which the layers 11 are laminated in this order.
  • the peel strength between the support substrate 22 and the alignment film 23 is smaller than the peel strength between the alignment film 23 and the retardation layer 11.
  • the phase difference layer 11 and the alignment film 23 (13) can be transferred as the phase difference layer 11 which is peeled off at the interface 37 between the support base material 22 and the alignment film 23 and used for transfer.
  • the peel strength between the support substrate 22 and the alignment film 23 is smaller than the peel strength between the alignment film 23 and the retardation layer 11.
  • a release treatment may be applied to the surface, or a release layer may be formed. Thereby, the peelability of the support base material 22 can be improved, and the peel strength of the support base material 22 and the alignment layer 23 can be made smaller than the peel strength of the alignment layer 23 and the retardation layer 11.
  • the mold release treatment include surface treatment such as fluorine treatment and silicone treatment.
  • the material for the release layer include a fluorine release agent, a silicone release agent, and a wax release agent.
  • the method for forming the release layer include a method in which a release agent is applied by a coating method such as dip coating, spray coating, or roll coating.
  • the transfer laminate 40 a retardation layer 11 to be transferred and a support substrate 45 that supports the retardation layer in a peelable manner are laminated in this order. That is, the transfer laminate 40 is a transfer laminate that does not include an alignment film. In order to obtain such a transfer laminate 40, the surface of the support substrate may be subjected to a release treatment or a release layer may be formed as necessary.
  • a thin film retardation layer not including the substrate 12 can be transferred to any other optical member or the like. Therefore, according to the transfer laminates 20 and 40, it is possible to provide the retardation film 10 ′ including only the example retardation layer 11 shown in the example of FIG.
  • stacked without including a material can be provided. In the transfer, it is preferable to form an adhesive layer on the surface of an object to be transferred (such as an optical member).
  • peel strength between the support substrate and the alignment film is larger or smaller than the peel strength between the alignment film and the retardation layer is checked by peeling off the retardation layer and peeling off at which interface. can do. It can be analyzed, for example, by IR or the like at which interface.
  • the support base material 22 may or may not have flexibility, but it is preferable to have flexibility because the support base material 22 is easily peeled off.
  • the thickness of the support substrate 22 is usually 20 ⁇ m or more and 200 ⁇ m in the case of a sheet of the above material because of the balance between sufficient self-supporting strength and flexibility sufficient to adapt to the production of the transfer laminate and the transfer process. It is preferable to be within the following range.
  • FIG. 7 shows the configuration of the optical member 50 according to one embodiment.
  • the optical member 50 is formed by laminating another retardation layer 51 and a polarizing plate 52 on the above-described retardation film 10.
  • Each layer may be laminated
  • retardation films 10 ′ and 10 ′′ may be applied.
  • a retardation layer that functions as a so-called ⁇ / 4 retardation layer can be mentioned.
  • a retardation layer functioning as a ⁇ / 4 retardation layer and a retardation layer functioning as a ⁇ / 2 retardation layer may be used in combination.
  • a known layer can be applied to such a retardation layer.
  • the polarizing plate 52 is a plate that allows only light that vibrates in a specific direction to pass therethrough, and can be appropriately selected from conventionally known polarizing plates.
  • a polyvinyl alcohol film, a polyvinyl formal film, a polyvinyl acetal film, an ethylene-vinyl acetate copolymer saponified film, which is dyed with iodine or a dye and stretched can be used.
  • the pressure-sensitive adhesive or adhesive for the pressure-sensitive adhesive layer may be appropriately selected from conventionally known pressure-sensitive adhesives (pressure-sensitive adhesives), two-part curable adhesives, and ultraviolet curable adhesives. Any adhesive form such as an adhesive, a thermosetting adhesive, and a hot melt adhesive can be suitably used.
  • the optical member 50 may further include other layers included in the known optical member.
  • the other layers include, but are not limited to, an antireflection layer, a diffusion layer, an antiglare layer, an antistatic layer, and a protective film.
  • the optical member 50 can be used as an optical member that suppresses reflection of external light, for example.
  • the optical member in which the retardation film 10 and the circularly polarizing plate are laminated is suitably used as an optical member for suppressing external light reflection for a light emitting display device, for example, and has a wide field of view for various display devices. It can be suitably used as a rectangular polarizing plate.
  • the display panel is a display device having the retardation film 10, 10 ′ 10 ′′ or the optical member 50 on the display element.
  • the display element include a liquid crystal display element, an EL (inorganic EL, organic EL) display element, a plasma display element, an LED display element (such as a micro LED), and a display element using quantum dots.
  • the liquid crystal display element may be an in-cell touch panel liquid crystal display element having a touch panel function in the element.
  • the retardation film 10, 10 ′ 10 ′′ or the optical member 50 is provided, in particular, in a display panel (organic EL panel) having an organic EL display element and a display device (organic EL display device) including the same, external light While suppressing reflection, the viewing angle characteristic that the color difference from the front view is small even when viewed from the front is improved.
  • FIG. 8 is a diagram for explaining the layer structure of the organic EL display panel 60.
  • the organic EL display panel 60 includes an organic EL display element 61 and an optical member 50 disposed on the light exit surface side.
  • the optical member 50 is in order of the retardation film 10, the other retardation layer 51 ( ⁇ / 4 retardation layer), and the polarizing plate 52 from the organic EL display element 61 side.
  • the organic EL display element 61 includes, for example, a configuration in which a transparent electrode layer, a hole injection layer, a hole transport layer, a light emitting layer, an electron injection layer, and an electrode layer are stacked in this order from the light output side.
  • known structures can be appropriately used as the transparent electrode layer, the hole injection layer, the hole transport layer, the light emitting layer, the electron injection layer, the electrode layer, and other structures.
  • the organic EL display panel thus manufactured can be applied to, for example, a passive drive type organic EL display device and an active drive type organic EL display device.
  • the display panel is not limited to the above-described configuration, and can be a known configuration appropriately selected.
  • the display device is not particularly limited as long as it includes the display panel described above, and may include the display panel, a drive control unit electrically connected to the display panel, and a housing that accommodates these. preferable.
  • the liquid crystal monomer 1 was synthesized as follows. First, 4- [2- (acryloyloxy) ethyloxy] benzoic acid was synthesized according to the following scheme 1.
  • liquid crystal monomer 1 was obtained according to the following scheme 2. Specifically, 4- [2- (acryloyloxy) ethyloxy] benzoic acid obtained above (179.4 g, 759.4 mmol), 4′-cyano-4-hydroxybiphenyl (148.3 g, 759.0 mmol) ), N, N-dimethylaminopyridine (DMAP) (2.70 g, 23 mmol) in dichloromethane (1240 g), N, N-dicyclohexylcarbodiimide (DCC) (171.0 g, 828 mmol) in dichloromethane (170 g). The solution was added dropwise.
  • DMAP N-dimethylaminopyridine
  • DCC N-dicyclohexylcarbodiimide
  • Liquid crystal monomer 2 was synthesized in the same manner as liquid crystal monomer 1 except that 6-chloro-1-n-hexanol was used instead of 2-bromoethanol in the above liquid crystal monomer 1 synthesis. .
  • DMAP dimethylaminopyridine
  • DCC N-dicyclohexylcarbodiimide
  • Non-liquid crystal monomer 1 The non-liquid crystal monomer 1 is represented by the following formula.
  • Non-liquid crystal monomer 1 was hexadecyl acrylate (Tokyo Chemical Industry Co., Ltd.).
  • Non-liquid crystal monomer 2 The non-liquid crystal monomer 2 is represented by the following formula.
  • Non-liquid crystal monomer 2 was 2- (2-ethoxyethoxy) ethyl acrylate (Tokyo Chemical Industry Co., Ltd.).
  • Non-liquid crystal monomer 3 (Non-liquid crystal monomer 3)
  • the non-liquid crystal monomer 3 is represented by the following formula.
  • Non-liquid crystal monomer 3 used light acrylate 130A (Kyoeisha Chemical Co., Ltd.).
  • Non-liquid crystal monomer 4 (Non-liquid crystal monomer 4)
  • the non-liquid crystal monomer 4 is represented by the following formula. In the formula, n ⁇ 4.
  • the non-liquid crystal monomer 4 was nonylphenoxypolyethylene glycol acrylate FA-314A (manufactured by Hitachi Chemical Co., Ltd.).
  • Non-liquid crystal monomer 5 (Non-liquid crystal monomer 5)
  • the non-liquid crystal monomer 5 is represented by the following formula. In the formula, n ⁇ 8.
  • Non-liquid phenoxypolyethylene glycol acrylate FA-318AS was used as non-liquid crystal monomer 5 (Hitachi Chemical Co., Ltd.).
  • the polymer vertical alignment agent A-01 is exemplified as follows. Liquid crystal monomer 1 and non-liquid crystal monomer 1 are combined and mixed at a molar ratio of 60:40, N, N-dimethylacetamide (DMAc) is added, and the mixture is stirred and dissolved at 40 ° C. After dissolution, the mixture is cooled to 24 ° C., azobisisobutyronitrile (AIBN) is added and dissolved at the same temperature. The above reaction solution is added dropwise to DMAc heated to 80 ° C. over 30 minutes. After completion of the addition, the reaction solution is stirred at 80 ° C. for 6 hours. After the reaction, the reaction mixture was cooled and then reprecipitated with methanol. The vertical precipitate A-01 was obtained in a yield of 73% by filtering and drying the precipitate.
  • DMAc N, N-dimethylacetamide
  • AIBN azobisisobutyronitrile
  • the polymer vertical alignment agent A-02 to the polymer vertical alignment agent A-13 can also be obtained by using the monomers and copolymerization ratios shown in Table 1 following the example of the polymer vertical alignment agent A-01. It was.
  • Table 1 shows the types of liquid crystal monomers, types of non-liquid crystal monomers, copolymerization ratios represented by liquid crystal monomers: non-liquid crystal monomers, and molecular weights used in preparing each liquid crystal polymer.
  • the molecular weight the mass average molecular weight was measured by GPC (gel permeation chromatography), and the structure was analyzed by NMR.
  • the low molecular vertical alignment agent B-01 is represented by the following formula.
  • the low-molecular vertical alignment agent B-01 was synthesized with reference to Japanese Patent No. 4496439.
  • the vertical alignment agents selected from the polymer vertical alignment agents A-01 to A-13 and the low molecular vertical alignment agents B-01 and B-11 prepared as described above are shown in Tables 2 to 4 below.
  • liquid crystal compositions were prepared.
  • a polyimide-based vertical alignment film was formed on the base material (polyethylene terephthalate) following the retardation film 10 shown in FIG.
  • the film is dried at 120 ° C. for 2 minutes to advance the orientation of the polymerizable liquid crystal material, and further, the retardation film is formed by irradiating ultraviolet rays to cure the polymerizable liquid crystal material.
  • No. 1-No. 37 were prepared and shown in Tables 2 to 4.
  • the reverse wavelength-dispersible polymerizable liquid crystal materials D1 to D3 shown in Tables 2 to 4 are as follows.
  • D-1 As the reverse wavelength-dispersible polymerizable liquid crystal material D-1, compound A144-1 of JP2012-077055 was used. Specifically, D-1 is represented by the following formula.
  • D-2 The compound (I) -3 disclosed in JP-T-2010-528992 was used as the reverse wavelength-dispersible polymerizable liquid crystal material D-2.
  • D-2 is represented by the following formula.
  • D-3 Compound (I) -3 of International Publication No. WO2014 / 069515 was used as the reverse wavelength dispersion polymerizable liquid crystal material D-3. Specifically, D-3 is represented by the following formula.
  • Table 5 shows an example (No. 38) using the positive wavelength-dispersible polymerizable liquid crystal represented by the above formula (4) instead of the reverse wavelength-dispersible polymerizable liquid crystal, and without using the vertical alignment agent.
  • the orientation, retardation, and wavelength dispersion were measured. Tables 2 to 5 show the results.
  • the retardation film was visually observed, and the case where no whitening phenomenon occurred was evaluated as ⁇ .
  • the phase difference was measured with an automatic birefringence measuring apparatus (manufactured by Oji Scientific Instruments, trade name: KOBRA-WR).
  • R0 represents the in-plane retardation
  • Rth represents the thickness direction retardation
  • the unit is nm.
  • R50 means R 450 / R 550 when the retardation at a wavelength of 450 nm when the incident angle is inclined by 50 ° with respect to the normal direction of the retardation layer is R 450 , and the retardation at a wavelength of 550 nm is R 550.
  • This phase difference was measured by KOBRA-WR, manufactured by Oji Scientific Instruments Co., Ltd., with the wavelength dispersion characteristic measurement mode and the tilt central axis set to the fast axis.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

正面に対して斜め方向から見た場合にも色の変化を小さく抑えることができるポジティブC型の位相差フィルムを提供する。 位相差層が、垂直配向剤及びホメオトロピック配向した逆波長分散特性を有する重合性液晶材料を含有するとともに、位相差層の法線方向に対して傾斜した入射角における450nmの波長におけるリタデーションをR450、550nmの波長におけるリタデーションをR550としたとき、R450/R550が1.00未満である。

Description

位相差フィルム、液晶組成物、光学部材、表示パネル、表示装置、及び、位相差フィルムの製造方法
 本発明は、位相差フィルム、液晶組成物、光学部材、表示パネル、表示装置、及び、位相差フィルムの製造方法に関する。
 液晶表示装置や発光表示装置等の表示装置に関して、映像の質を高めるために種々の光学部材が配置されている。そのうちの1つとして、液晶材料により位相差を生じさせる機能を有する位相差フィルムがある。
 例えば、有機発光表示装置においては、発光層の光を効率よく利用するため、反射性に優れた金属電極が設けられている。ところがこのような金属電極を用いることにより、外光反射が大きくなり、コントラストの低下等の不具合を生じる。そのため、有機発光表示装置においては、当該外光反射を抑制するため、位相差を生じさせる機能を有する円偏光板等を用いる。
 また、液晶表示装置においては、液晶層の両面に配置された偏光板のみでは不十分な斜め方向への光漏れを防止する目的で補償フィルムが適用されている。
 円偏光板、補償フィルム等の偏光板を透過した光は光学的に異方性を有しており、この異方性が表示装置を見る角度によるコントラストの低下等の原因となっている。これに対し、位相差フィルム、特にポジティブC型の位相差フィルム(ポジティブCプレート)を用いることにより、このような問題の改善を図る手法が知られている。ここで、ポジティブC型とは、層面に沿ったX軸方向の屈折率をnx、層面に沿った方向でX軸に直交するY軸方向の屈折率をny、層厚方向の屈折率をnzとしたとき、nz>nx≒nyの関係であるとともに、光軸がnz方向となる特徴を有するものである。
 ポジティブCプレートは、プレート内の棒状液晶分子を、当該プレート面に対して垂直に配向することにより得ることができる。例えば、特許文献1には、特定のホメオトロピック配向性の高分子垂直配向剤と光重合性液晶材料とを含有してなるホメオトロピック配向液晶性組成物により形成されたホメオトロピック配向液晶フィルムを有する位相差板が開示されている。
特開2003-149441号公報
 ところが従来のポジティブCプレートでは、これを用いた表示装置を斜めから見た場合に正面からの観察に対して色が大きく異なって見える問題があった。
 そこで本発明は、正面に対して斜め方向から見た場合にも、正面から見たときと比べて色の変化を小さく抑えることができるポジティブC型の位相差フィルムを提供することを目的とする。また、この位相差フィルムを用いた光学部材、表示パネル、表示装置、及び、位相差フィルムのための液晶組成物、位相差フィルムの製造方法を提供する。
 発明者らは、鋭意検討の結果、ポジティブC型であるとともに、所定の逆波長分散特性を有する位相差フィルムにより、正面に対して斜め方向から見た場合にも、正面から見たときと比べて色の変化を小さく抑えることができる知見を得た。そしてポジティブA型の液晶材料に、垂直配向規制力を具備する組成物を添加することによりこれを具体化して本発明を完成させた。
 ここで、ポジティブA型とは、層面に沿ったX軸方向の屈折率をNx、層面に沿った方向でX軸に直交するY軸方向の屈折率をNy、層厚方向の屈折率をNzとしたとき、Nx>Ny≒Nzの関係であるとともに、光軸がNx方向となる特徴を有するものである。
 また、逆波長分散特性とは、短波長側ほど透過光における位相差が小さい波長分散特性であり、より具体的には、450nmの波長におけるリタデーション(R450)と、550nmの波長におけるリタデーション(R550)との関係が、R450<R550である波長分散特性である。
 本発明の1つの態様は、位相差層を有する位相差フィルムであって、位相差層が、垂直配向剤及びホメオトロピック配向した逆波長分散特性を有する重合性液晶材料を含有するとともに、位相差層の法線方向に対して傾斜した入射角における、450nmの波長におけるリタデーションをR450、及び、550nmの波長におけるリタデーションをR550としたとき、R450/R550が1.0未満である位相差フィルムである。
 ここで、当該位相差フィルムにおいて、垂直配向剤を高分子垂直配向剤とし、高分子垂直配向剤が、下記一般式(I)で表される構成単位と、液晶性構成単位とを有する共重合体を含む、液晶組成物の硬化物からなるものとすることができる。
Figure JPOXMLDOC01-appb-C000007
 一般式(I)中、Rは、水素原子又はメチル基を、Rは、-L-R、又は-L1’-Rで表される基を、Lは-(CH-で表される連結基を、L1’は-(CO)n’-で表される連結基を、Rは、置換基を有してもよいメチル基、アルキル基を有してもよいアリール基、又は-ORを、R及びRはそれぞれ独立に、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表し、n及びn’はそれぞれ独立に2以上18以下の整数である。
 この位相差フィルムにおける上記垂直配向剤の液晶性構成単位が、下記一般式(II)で表されるものであってもよい。
Figure JPOXMLDOC01-appb-C000008
 ここで、一般式(II)中、R11は、水素原子又はメチル基を、R12は、-(CH-、又は-(CO)m’-で表される基を表す。Lは、直接結合、又は、-O-、-O-C(=O)-、若しくは-C(=O)-O-で表される連結基を、Arは、置換基を有していてもよい炭素原子数6以上10以下のアリーレン基を表し、複数あるL及びArはそれぞれ同一であっても異なっていても良い。R13は、-F、-Cl、-CN、-OCF、-OCFH、-NCO、-NCS、-NO、-NHC(=O)-R14、-C(=O)-OR14、-OH、-SH、-CHO、-SOH、-NR14 、-R15、又は-OR15を、R14は、水素原子又は炭素原子数1以上6以下のアルキル基を表し、R15は、炭素原子数1以上6以下のアルキル基を表す。aは2以上4以下の整数、m及びm’はそれぞれ独立に2以上10以下の整数である。
 または、上記位相差フィルムにおいて、垂直配向剤を低分子の液晶としてもよく、この低分子の液晶を下記式で表される構造を含むものとすることもできる。
Figure JPOXMLDOC01-appb-C000009
 本発明の他の態様は、垂直配向剤と、逆波長分散特性を有する重合性液晶材料と、光重合開始剤と、を含有する、液晶組成物である。
 ここで、当該液晶組成物において、垂直配向剤を高分子垂直配向剤とし、高分子垂直配向剤が、下記一般式(I)で表される構成単位と、液晶性構成単位とを有する共重合体を含むものとすることができる。
Figure JPOXMLDOC01-appb-C000010
 一般式(I)中、Rは、水素原子又はメチル基を、Rは、-L-R、又は-L1’-Rで表される基を、Lは-(CH-で表される連結基を、L1’は-(CO)n’-で表される連結基を、Rは、置換基を有してもよいメチル基、アルキル基を有してもよいアリール基、又は-ORを、R及びRはそれぞれ独立に、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表し、n及びn’はそれぞれ独立に2以上18以下の整数である。
 この液晶組成物における上記垂直配向剤の液晶性構成単位が、下記一般式(II)で表されるものであってもよい。
Figure JPOXMLDOC01-appb-C000011
 ここで、一般式(II)中、R11は、水素原子又はメチル基を、R12は、-(CH-、又は-(CO)m’-で表される基を表す。Lは、直接結合、又は、-O-、-O-C(=O)-、若しくは-C(=O)-O-で表される連結基を、Arは、置換基を有していてもよい炭素原子数6以上10以下のアリーレン基を表し、複数あるL及びArはそれぞれ同一であっても異なっていても良い。R13は、-F、-Cl、-CN、-OCF、-OCFH、-NCO、-NCS、-NO、-NHC(=O)-R14、-C(=O)-OR14、-OH、-SH、-CHO、-SOH、-NR14 、-R15、又は-OR15を、R14は、水素原子又は炭素原子数1以上6以下のアルキル基を表し、R15は、炭素原子数1以上6以下のアルキル基を表す。aは2以上4以下の整数、m及びm’はそれぞれ独立に2以上10以下の整数である。
 または、上記液晶組成物において、垂直配向剤を低分子の液晶としてもよく、この低分子の液晶を下記式で表されるものとすることもできる。
Figure JPOXMLDOC01-appb-C000012
 本発明の他の態様は、上記液晶組成物を成膜する工程と、成膜された液晶組成物中の重合性液晶材料を配向する工程と、配向する工程の後に、重合性液晶材料を重合する工程とを有することにより、位相差層を形成する、位相差フィルムの製造方法である。
 また、上記位相差フィルム上に偏光板を備える光学部材を提供することができる。この光学フィルムには偏光板や、λ/4位相差層などの他の位相差層を備えても良い。
 また、このような光学部材を有する表示パネル、及び該表示パネルを備える表示装置を提供することができる。
 本発明によれば、正面に対して斜め方向から見た場合にも色の変化を小さく抑えることが可能となる。
位相差フィルムの10を説明する図である。 位相差フィルムの10’を説明する図である。 位相差フィルムの10”を説明する図である。 転写用積層体20を説明する図である。 転写用積層体30を説明する図である。 転写用積層体40を説明する図である。 光学部材50を説明する図である。 表示パネル60を説明する図である。
発明の実施するための形態
 以下、本発明の形態例について図面を参照しながら説明する。ただし、本発明はこれら形態例に限定されるものではない。この図面では分かりやすさのため実際の態様に比べ、各部の幅、厚み、形状等について誇張して表す場合がある。また、同様に考えることができる部材は共通の符号を付して説明を省略することがある。
 なお、説明において、配向規制力とは、位相差層中の液晶化合物を特定方向に配列させる相互作用を意味する。
 また、説明において(メタ)アクリルとは、アクリル又はメタアクリルの各々を表し、(メタ)アクリレートとは、アクリレート又はメタクリレートの各々を表す。
 また、本明細書において「板」、「シート」、「フィルム」の用語は、呼称の違いのみに基づいて、互いから区別されるものではなく、「フィルム面(板面、シート面)」とは、対象となるフィルム状(板状、シート状)の部材を全体的かつ大局的に見た場合において対象となるフィルム状部材(板状部材、シート状部材)の平面方向と一致する面のことを示す。
 [位相差フィルムの構成]
 図1~図3には、第1の形態~第3の形態にかかる位相差フィルム10、10’10”の層構成を表した。図1の例に示される位相差フィルム10は、基材12上に配向膜13と位相差層11がこの順に積層されている位相差フィルムである。図2の例に示される位相差フィルム10’は、位相差層11のみからなる位相差フィルムである。また図3の位相差フィルム10”は、基材12上に直接位相差層11が形成されている。図3の例に示される位相差フィルムには基材12の位相差層11側表面に配向規制力を発現する手段が付されていてもよい。
 基材12は、ガラス基材、金属箔、樹脂基材等が挙げられる。その中でも、基材は透明性を有することが好ましく、従来公知の透明基材の中から適宜選択することができる。透明基材としては、ガラス基材の他、トリアセチルセルロース等のアセチルセルロース系樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリ乳酸等のポリエステル系樹脂、ポリプロピレン、ポリエチレン、ポリメチルペンテン等のオレフィン系樹脂、アクリル系樹脂、ポリウレタン系樹脂、ポリエーテルサルホンやポリカーボネート、ポリスルホン、ポリエーテル、ポリエーテルケトン、アクロニトリル、メタクリロニトリル、シクロオレフィンポリマー、シクロオレフィンコポリマー等の樹脂を用いて形成された透明樹脂基材が挙げられる。
 基材12は、可視光領域における透過率が80%以上であることが好ましく、90%以上であることがより好ましい。ここで、透明である基材の透過率は、JIS K7361-1:1997(プラスチック-透明材料の全光透過率の試験方法)により測定することができる。
 また、ロールトゥロール方式で位相差フィルムを形成する場合には、基材はロール状に巻き取ることができるように、可撓性を有するフレキシブル材であることが好ましい。
 このようなフレキシブル材としては、セルロース誘導体、ノルボルネン系ポリマー、シクロオレフィン系ポリマー、ポリメチルメタクリレート、ポリビニルアルコール、ポリイミド、ポリアリレート、ポリエチレンテレフタレート、ポリスルホン、ポリエーテルスルホン、アモルファスポリオレフィン、変性アクリル系ポリマー、ポリスチレン、エポキシ樹脂、ポリカーボネート、ポリエステル類などを例示することができる。なかでもセルロース誘導体やポリエチレンテレフタレートを用いることが好ましい。セルロース誘導体は特に光学的等方性に優れるため、光学的特性に優れたものとすることができるからである。また、ポリエチレンテレフタレートは、透明性が高く、機械的特性に優れる点から好ましい。
 基材12の厚みは、位相差フィルムの用途等に応じて、必要な支持性を付与できる範囲内であれば特に限定されないが、10μm以上200μm以下程度の範囲内が通常である。その中でも、基材の厚みは、25μm以上125μm以下の範囲内が好ましく、30μm以上100μm以下の範囲内がさらに好ましい。厚みが上記の範囲よりも厚いと、例えば、長尺状の位相差フィルムを形成した後に裁断加工して枚葉の位相差フィルムとする際に、加工屑が増加したり、裁断刃の磨耗が早くなってしまったりする。
 本形態に用いられる基材の構成は、単一の層からなる構成に限られるものではなく、複数の層が積層された構成を有してもよい。複数の層が積層された構成を有する場合は、同一組成の層が積層されてもよく、異なった組成を有する複数の層が積層されてもよい。
 例えば、位相差フィルム10において配向膜13が紫外線硬化性樹脂を含有するものである場合、基材12と当該紫外線硬化性樹脂の接着性を向上させるため、基材12上にプライマー層を含ませてもよい。このプライマー層は、基材12および紫外線硬化性樹脂との双方に接着性を有し、可視光学的に透明であり、紫外線を通過させるものであればよく、例えば、塩化ビニル/酢酸ビニル共重合体系、ウレタン系のもの等を適宜選択して適用することができる。
 また、垂直配向膜が設けられない場合、基材12上にアンカーコート層を積層しても良い。当該アンカーコート層によって、基材12に溶剤等が浸透することを抑制して基材12の強度を向上させることができるため、良好な垂直配向性を確保できる。アンカーコート材料としては、金属アルコキシド、特に金属シリコンアルコキシドゾルを用いることができる。金属アルコキシドは、通常アルコール系の溶液として用いられる。アンカーコート層は、均一で、かつ柔軟性のある膜が必要なため、アンカーコート層の厚みは0.04μm以上2μm以下程度が好ましく、0.05μm以上0.2μm以下程度がより好ましい。
 基材12がアンカーコート層を有する場合には、基材12とアンカーコート層の間に更にバインダー層を積層したり、アンカーコート層に基板との密着性を強化する材料を含有させたりすることにより、基材12とアンカーコート層の密着性を向上させてもよい。バインダー層の形成に用いるバインダー材料は、基材12とアンカーコート層との密着性を向上できるものを特に制限なく使用することができる。バインダー材料としては、たとえば、シランカップリング剤、チタンカップリング剤、ジルコニウムカップリング剤等を例示できる。
 配向膜13は、位相差層11に含まれる液晶性成分を一定方向に配列させるための層である。後で説明するように、本形態における位相差層11は、該位相差層11を構成する液晶組成物が垂直配向しやすいことから、配向膜13は垂直配向膜を用いることが好ましい。
 垂直配向膜は、垂直方向の配向規制力を備えた配向膜であり、公知のC型の位相差フィルムの作製に供する各種垂直配向膜、VA液晶表示装置等に適用される各種の垂直配向膜を適用することができ、例えばポリイミド配向膜、LB膜による配向膜等を適用することができる。具体的に、配向膜の構成材料としては、例えば、レシチン、シラン系界面活性剤、チタネート系界面活性剤、ピリジニウム塩系高分子界面活性剤、n-オクタデシルトリエトキシシラン等のシランカップリング系垂直配向膜用組成物、長鎖アルキル基や脂環式構造を側鎖に有する可溶性ポリイミドや長鎖アルキル基や脂環式構造を側鎖に有するポリアミック酸等のポリイミド系垂直配向膜用組成物を適用することができる。
 なお、垂直配向膜用組成物として、ジェイエスアール株式会社製のポリイミド系垂直配向膜用組成物「JALS-2021」や「JALS-204」、日産化学工業株式会社製の「RN-1517」、「SE-1211」、「EXPOA-018」等の市販品を適用することができる。また、特開2015-191143号公報に記載の垂直配向膜であっても良い。
 配向膜13の形成方法は特に限定されないが、例えば、基材12上に、配向膜用組成物を塗布し、配向規制力を付与することにより配向膜とすることができる。配向膜に配向規制力を付与する手段は、従来公知のものとすることができる。
 配向膜13の厚みは、位相差層11における液晶性成分を一定方向に配列できればよく、適宜設定すればよい。配向膜の厚みは、通常、1nm以上10μm以下の範囲内であり、60nm以上5μm以下の範囲内が好ましい。
 位相差層11は、後で説明する液晶組成物の硬化物からなる。位相差層11では、ここに含まれるホメオトロピック配向した逆波長分散性重合性液晶材料が、所定の逆波長分散特性を有するとともにポジティブC型の位相差フィルムとして機能するように配向している。より詳しくは次の通りである。
 逆波長分散特性に関しては、位相差層の法線方向に対して傾斜した入射角について450nmの波長におけるリタデーションをR450、及び、550nmの波長におけるリタデーションをR550としたとき、位相差層において、{R450/R550}が1.00未満である。これにより出光方向による色味の変化を小さく抑えることができる。好ましくは0.79以上1.00未満である。これによりさらに色味の変化を抑えることができ、0.79以上0.90以下とすることで、その効果がより顕著となる。
  傾斜した入射角の具体的な角度は特に限定されることはないが、位相差フィルムが備えられる機器を表示装置とした場合を考慮すれば、当該傾斜角はフィルム面の法線に対して30°以上50°以下の範囲で上記を満たすことが好ましい。さらに好ましくは20°以上70°以下の範囲である。
 また、ポジティブC型であることに関しては、逆波長分散性重合性液晶材料が垂直配向し、各軸方向における屈折率(nx、ny、nz)がポジティブC型となる関係を備えている。
  逆波長分散性重合性液晶材料が垂直配向していることは、自動複屈折測定装置(例えば、王子計測機器株式会社製、商品名:KOBRA-WR)により位相差を測定することにより確認することができる。
 位相差層11の厚みは、用途に応じて適宜設定すればよいが、0.1μm以上5μm以下であることが好ましく、0.5μm以上3μm以下であることがより好ましい。
 位相差層11には、該位相差層を構成する後述する液晶組成物に含まれる垂直配向剤、逆波長分散性重合性液晶材料の重合性基の少なくとも一部が重合した構造が含まれる。このことは、位相差層11から材料を採取し分析することで確認することができる。分析方法としては、NMR、IR、GC-MS、XPS、TOF-SIMSおよびこれらの組み合わせた方法を適用することができる。
 また、位相差層11を構成するための後述する液晶組成物には、光重合開始剤、レベリング剤、重合禁止剤、酸化防止剤、光安定化剤、帯電防止剤等のその他の成分を含んでいても良い。これに伴って、位相差層11にはこれらの成分が残存することがある。ただし、光重合開始剤など、重合性液晶材料が有する重合性基を反応させるために光照射した際に、全てが分解する可能性がある成分については、位相差層11には含まれていない場合もある。
 以上のような位相差フィルム10、10’、10”により、ポジティブC型であっても、正面に対して斜め方向から見た場合にも、正面から見た場合に比べて色の変化を小さく抑えることが可能となる。
 位相差フィルム10、10’、10”の位相差は、自動複屈折測定装置(例えば、王子計測機器株式会社製、商品名:KOBRA-WR)により測定することができる。測定光を位相差層の表面に対して垂直あるいは斜めから入射して、その光学位相差と測定光の入射角度のチャートから位相差層の位相差を増加させる異方性を確認することができる。
 位相差フィルムの面内位相差(R0)は2.0nm以下であることが好ましく、1.0nm以下であることがより好ましい。また、位相差フィルムの厚さ方向の位相差(Rth)は、光学部材を構成する他の部材のRthとのバランスを考慮して、Rthがマイナスの範囲で適宜調整すればよい。
 本明細書において、面内位相差(R0)及び厚さ方向の位相差(Rth)は、面内における遅相軸方向の屈折率をnx、面内においてnxに直交する方向の屈折率をny、nx及びnyに直交する方向の屈折率をnz、膜厚をd(nm)とした際に、下記式で表すことができる。また、本明細書において、面内位相差(R0)及び厚さ方向の位相差(Rth)は、波長550nmにおける値をいうものとする。
  面内位相差(R0)=(nx-ny)×d
  厚さ方向の位相差(Rth)=((nx+ny)/2-nz)×d
 [液晶組成物]
  上記したように位相差フィルム10、10’、10”の位相差層11は、液晶組成物を硬化することにより形成されている。以下に位相差層11を形成する液晶組成物について説明する。
 本形態において液晶組成物は、垂直配向剤と、逆波長分散性重合性液晶材料と、光重合開始剤とを含有する液晶組成物である。本形態の液晶組成物は、垂直配向しやすいため、上記した位相差層を構成することができるとともに、位相差値の面内均一性に優れ、割れにくく、曲げに強い位相差層となる。また垂直配向しやすいため必ずしも配向膜を設ける必要がない。
 本形態の液晶組成物は、少なくとも、垂直配向剤と、逆波長分散性重合性液晶材料と、光重合開始剤とを含有し、効果を損なわない範囲で更に他の成分を含有してもよいものである。以下、液晶組成物を構成する各成分について説明する。
 <逆波長分散性重合性液晶材料>
 逆波長分散性重合性液晶材料は、液晶組成物が最終的に硬化して位相差層となったときに逆波長分散性を有する重合性の液晶材料である。このように逆波長分散性を有する液晶材料として公知のものを適用することができる。これには例えば特表2010-522892号公報、特開2010-31223号公報、特開2012-077055号公報、特開2009-62508号公報、国際公開WO2014/069515号等に記載された液晶材料を挙げることができる。
 <光重合開始剤>
 光重合開始剤は、従来公知の物の中から適宜選択して用いることができる。このような光重合開始剤の具体例としては、例えば、チオキサントン等を含む芳香族ケトン類、α-アミノアルキルフェノン類、α-ヒドロキシケトン類、アシルフォスフィンオキサイド類、オキシムエステル類、芳香族オニウム塩類、有機過酸化物、チオ化合物、ヘキサアリールビイミダゾール化合物、ケトオキシムエステル化合物、ボレート化合物、アジニウム化合物、メタロセン化合物、活性エステル化合物、炭素ハロゲン結合を有する化合物、及びアルキルアミン化合物等が好適に挙げられ、中でも、アシルフォスフィンオキサイド系重合開始剤、α-アミノアルキルフェノン系重合開始剤、α-ヒドロキシケトン系重合開始剤、及びオキシムエステル系重合開始剤よりなる群から選択される少なくとも1種が好ましい。
 アシルフォスフィンオキサイド系重合開始剤としては、例えばビス(2,4,6-トリメチルベンゾイル)-フェニル-フォスフィンオキサイド(例えば、商品名:イルガキュア819、BASF株式会社製)、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(商品名:Lucirin TPO:BASF株式会社製等)等が挙げられる。
 また、α-アミノアルキルフェノン系重合開始剤としては、例えば、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(例えばイルガキュア907、BASF株式会社製)、2-ベンジル-2-(ジメチルアミノ)-1-(4-モルフォリノフェニル)-1-ブタノン(例えばイルガキュア369、BASF株式会社製)、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン(イルガキュア379EG、BASF株式会社製)等が挙げられる。
 また、α-ヒドロキシケトン系重合開始剤としては、例えば、2-ヒドロキシ-1-{4-〔4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル〕-フェニル}-2-メチル-プロパン-1-オン(例えば、商品名:イルガキュア127、BASF株式会社製等)、2-ヒドロキシ-4’-ヒドロキシエトキシ-2-メチルプロピオフェノン(例えば、商品名:イルガキュア2959、BASF株式会社製等)、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(例えば、商品名:イルガキュア184、BASF株式会社製等)、オリゴ{2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン}(例えば、商品名:ESACURE ONE、Lamberti社製等)等が挙げられる。
 オキシムエステル系重合開始剤としては、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)](商品名:イルガキュアOXE-01、BASF株式会社製)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(o-アセチルオキシム)(商品名:イルガキュアOXE-02、BASF株式会社製)、メタノン,エタノン,1-[9-エチル-6-(1,3-ジオキソラン,4-(2-メトキシフェノキシ)-9H-カルバゾール-3-イル]-,1-(o-アセチルオキシム)(商品名ADEKA OPT-N-1919、ADEKA社製)等が挙げられる。
 本形態において光重合開始剤は、1種単独で、又は2種以上を組み合わせて用いることができる。
 光重合開始剤の含有割合は、この重合性液晶材料の硬化を促進する点から、液晶組成物の固形分100質量部に対して、0.1質量部以上10質量部以下であることが好ましく、1質量部以上8質量部以下であることがより好ましい。
 <垂直配向剤>
 [高分子垂直配向剤]
  垂直配向剤は、上記した逆波長分散性重合性液晶材料の配向が垂直配向となるように規制する配向規制力を有する材料である。このような材料の第1の例として以下に説明する高分子垂直配向剤を挙げることができる。
 この高分子垂直配向剤は、下記一般式(I)で表される構成単位と、液晶性構成単位とを有する共重合体を含む、高分子垂直配向剤である。
Figure JPOXMLDOC01-appb-C000013
 一般式(I)中、Rは、水素原子又はメチル基を、Rは、-L-R、又は-L1’-Rで表される基を、Lは-(CH-で表される連結基を、L1’は-(CO)n’-で表される連結基を、Rは、置換基を有してもよいメチル基、アルキル基を有してもよいアリール基、又は-ORを、R及びRはそれぞれ独立に、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表し、n及びn’はそれぞれ独立に2以上18以下の整数である。
 上記一般式(I)において、Rは、-L-R、又は-L1’-Rで表される基を表し、Lは-(CH-で表される連結基を、L1’は-(CO)n’-で表される連結基を表し、高分子垂直配向剤の分子中に、n又はn’を含んでいる。
 Rにおけるメチル基が有してもよい置換基としては、例えば、フッ素原子、塩素原子、臭素原子等のハロゲン原子が挙げられる。
  Rにおけるアリール基としては、特に限定されないが、曲げ耐性、及び位相差値の面内均一性の点から、炭素原子数6以上20以下のアリール基が好ましく、具体的には、フェニル基、ナフチル基、アントラセニル基等が挙げられ、中でもフェニル基又はナフチル基が好ましく、フェニル基がより好ましい。
  アリール基が有してもよいアルキル基としては、特に限定されないが、曲げ耐性、及び位相差値の面内均一性の点から、炭素原子数1以上12以下のアルキル基が好ましく、当該アルキル基は直鎖アルキル基であってもよく、分岐又は環構造を含むアルキル基であってもよい。当該アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、シクロペンチル基、シクロヘキシル基、シクロヘキシルメチル基、シクロヘキシルエチル基、シクロヘキシルプロピル基等が挙げられる。当該アルキル基が有する水素原子は、ハロゲン原子に置換されていてもよい。
 R及びRにおけるアルキル基は、特に限定されないが、曲げ耐性、及び位相差値の面内均一性の点から、炭素原子数1以上12以下のアルキル基が好ましく、当該アルキル基は直鎖アルキル基であってもよく、分岐又は環構造を含むアルキル基であってもよい。具体的には、上記Rにおいて例示したものと同様のものが挙げられる。また、R及びRにおけるアリール基はRと同様のものが挙げられる。
 一般式(I)で表される構成単位の具体例としては、以下のもの等が挙げられるがこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000014
 一般式(I)で表される構成単位において、n及びn’の値の組合せは特に限定されず、2種以上の混合でもよい。
 液晶性構成単位は、側鎖に液晶性を示すメソゲンを含む構成単位であることが好ましい。本開示においてメソゲンとは、2個以上の環構造、好ましくは3個以上の環構造を有し、環構造同士が直接結合により連結しているか、又は、当該環構造が1原子乃至3原子を介して連結している部分構造をいい、比較的剛直性の高い部位である。側鎖にこのような液晶性構成単位を有することにより、当該液晶性構成単位が垂直配向しやすくなる。
 前記環構造としては、ベンゼン、ナフタレン、アントラセン等の芳香環であってもよく、シクロペンチル、シクロヘキシル等の環状の脂肪族炭化水素であってもよい。
 また、当該環構造が1原子乃至3原子を介して連結している場合、当該連結部の構造としては、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-O-C(=O)-NR-、-NR-C(=O)-O-、-NR-C(=O)-NR-、-O-NR-、若しくは-NR-O-(Rは水素原子又は炭化水素基)等が挙げられる。
 中でも、メソゲンとしては、前記環構造がパラ位で接続された、棒状メソゲンであることが好ましい。
 また、液晶性構成単位が側鎖に液晶性を示すメソゲンを含む構成単位である場合、垂直配向性の点から、当該構成単位の側鎖の末端が極性基であるか、アルキル基を有することが好ましい。このような極性基の具体例としては、-F、-Cl、-CN、-OCF、-OCFH、-NCO、-NCS、-NO、-NHC(=O)-R’、-C(=O)-OR’、-OH、-SH、-CHO、-SOH、-NR’、-R、又は-OR(R’は水素原子又は炭化水素基、Rはアルキル基)等が挙げられる。
 本形態において液晶性構成単位は1種単独で、又は2種以上を組み合わせて用いることができる。
 液晶性構成単位は、上記した一般式(I)と重合可能なエチレン性二重結合含有基を有する単量体から誘導される構成単位であることが好ましい。このようなエチレン性二重結合含有基を有する単量体としては、例えば(メタ)アクリル酸エステル、スチレン、(メタ)アクリルアミド、マレイミド、ビニルエーテル、又はビニルエステル等の誘導体が挙げられる。液晶性構成単位は、中でも、(メタ)アクリル酸エステル誘導体から誘導される構成単位であることが、垂直配向性の点から、好ましい。
 本形態において液晶性構成単位は、垂直配向性の点から、中でも、下記一般式(II)で表される構成単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000015
 一般式(II)中、R11は、水素原子又はメチル基を、R12は、-(CH-、又は-(CO)m’-で表される基を表す。Lは、直接結合、又は、-O-、-O-C(=O)-、若しくは-C(=O)-O-で表される連結基を、Arは、置換基を有していてもよい炭素原子数6以上10以下のアリーレン基を表し、複数あるL及びArはそれぞれ同一であっても異なっていても良い。R13は、-F、-Cl、-CN、-OCF、-OCFH、-NCO、-NCS、-NO、-NHC(=O)-R14、-C(=O)-OR14、-OH、-SH、-CHO、-SOH、-NR14 、-R15、又は-OR15を、R14は、水素原子又は炭素原子数1以上6以下のアルキル基を表し、R15は、炭素原子数1以上6以下のアルキル基を表す。aは2以上4以下の整数、m及びm’はそれぞれ独立に2以上10以下の整数である。
 R12のm及びm’は、それぞれ独立に2以上10以下の整数である。垂直配向性の点から、中でも、m及びm’が2以上8以下であることが好ましく、更に2以上6以下であることが好ましい。
 Arにおける、置換基を有していてもよい炭素原子数6以上10以下のアリーレン基としては、フェニレン基、ナフチレン基等が挙げられ、中でもフェニレン基がより好ましい。当該アリーレン基が有してもよいR13以外の置換基としては、炭素原子数1以上5以下のアルキル基、フッ素原子、塩素原子、臭素原子等のハロゲン原子等が挙げられる。
 R13における、R14は、水素原子又は炭素原子数1以上6以下のアルキル基であるが、中でも、水素原子又は炭素原子数1以上3以下のアルキル基であることが好ましい。また、R13における、R15は、炭素原子数1以上6以下のアルキル基であるが、中でも、炭素原子数1以上5以下のアルキル基であることが好ましい。
 一般式(II)で表される液晶性構成単位の好適な具体例としては、以下のもの等が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000016
 本形態において、高分子垂直配向剤は、一般式(I)で表される構成単位からなるブロック部と、液晶性構成単位からなるブロック部を有するブロック共重合体であってもよく、一般式(I)で表される構成単位と液晶性構成単位とが不規則に並ぶランダム共重合体であってもよい。本形態においては、逆波長分散性重合性液晶材料の垂直配向性や位相差値の面内均一性の向上、また、位相差層を割れにくくする点から、ランダム共重合体であることが好ましい。
 高分子垂直配向剤中の一般式(I)で表される構成単位と、液晶性構成単位の存在比は特に限定されないが、一般式(I)で表される構成単位と液晶性構成単位との比がモル比で1:9~9:1であることが好ましく、2:8~8:2であることがより好ましい。
 本形態において共重合体は、効果を損なわない範囲で、上記一般式(I)で表される構成単位および上記液晶性構成単位の他に、上記一般式(I)で表される構成単位および上記液晶性構成単位のいずれにも該当しない構成単位を有していてもよい。共重合体に他の構成単位が含まれることにより、例えば溶剤溶解性、耐熱性、反応性等を高めることができる。
 これらの他の構成単位は、1種であってもよく2種以上であってもよい。当該他の構成単位の含有割合は、共重合体全体を100モル%に対し、0モル%以上30モル%以下の範囲内であることが好ましく、0モル%以上20モル%以下の範囲内であることがより好ましい。上記構成単位の含有割合が多いと、相対的に液晶性構成単位および上記一般式(I)で表される構成単位の含有割合が少なくなり、本願の前記効果を得るのが困難になる場合がある。
 本形態において、高分子垂直配向剤の質量平均分子量Mwは特に限定されないが、500以上60000以下の範囲内であることが好ましく、3000以上50000以下の範囲内であることがより好ましく、5000以上40000以下の範囲内であることがさらに好ましい。上記範囲内であることにより、液晶組成物の安定性に優れ、位相差層を形成する時の取り扱い性に優れている。
 なお、上記質量平均分子量Mwは、GPC(ゲルパーミエーションクロマトグラフィー)により測定されたポリスチレン換算の値である。測定は、東ソー株式会社製のHLC-8120GPCを用い、溶出溶剤をTHF(テトラヒドロフラン)とし、校正曲線用ポリスチレンスタンダードをMw377400、210500、96000、50400、206500、10850、5460、2930、1300、580(以上、Polymer Laboratories社製 Easi PS-2シリーズ)及びMw1090000(東ソー株式会社製)とし、測定カラムをTSK-GEL ALPHA-M×2本(東ソー株式会社製)として行われたものである。
 ここまで説明した垂直配向剤としての高分子垂直配向剤の製造方法は特に限定されず、例えば、一般式(I)で表される構成単位を誘導するモノマーと、液晶性構成単位を誘導するモノマーとを所望の比率で混合し、公知の重合手段により所望の平均分子量となるように重合すればよい。
 また、ブロック共重合体とする場合には、例えば、上記の一般式(I)で表される構成単位を誘導するモノマーと、液晶性構成単位を誘導するモノマーをそれぞれ公知の重合手段により重合した後、得られた各重合体を連結してもよく、また、上記の一般式(I)で表される構成単位を誘導するモノマー又は液晶性構成単位を誘導するモノマーのうち一方を公知の重合手段により重合した後、他方のモノマーを加えて更に重合する方法などが挙げられる。
 上記重合手段としては、ビニル基を有する化合物の重合に一般的に用いられる方法を採用することができ、例えば、アニオン重合やリビングラジカル重合などを用いることができる。本形態においては、なかでも、「J.Am.Chem.Soc.」105、5706(1983)に開示されているグループトランスファー重合(GTP)のようにリビング的に重合が進行する方法を用いることが好ましい。この方法によると、分子量、分子量分布などを所望の範囲とすることが容易であるので、得られる高分子垂直配向剤の特性を均一にすることができる。
 上記高分子垂直配向剤は1種単独を用いてもよく、2種以上を組み合わせて用いてもよい。本形態において、液晶の析出が抑制され、液晶が配向する温度範囲を広くできる液晶組成物が得られる点から、上記高分子垂直配向剤の含有割合は、液晶組成物の固形分100質量部に対して3質量部以上80質量部以下であることが好ましく、5質量部以上70質量部以下であることがより好ましく、10質量部以上60質量部以下であることがより更に好ましい。
 なお、本開示において固形分とは溶剤を除く全ての成分をいい、例えば、後述する重合性液晶材料が液状であっても固形分に含まれるものとする。
 高分子垂直配向剤の構造は核磁気共鳴分光法(NMR)と、熱分解型ガスクロマトグラフ質量分析法(Py-GC-MS)、及びマトリックス支援レーザー脱離イオン化飛行時間型質量分析法(MALDI-TOFMS)のうちの少なくとも一方と、を組み合わせて解析することができる。
 なお、位相差層に含まれる液晶性構成単位は、核磁気共鳴法(NMR)、赤外分光法(IR)、ガスクロマトグラム質量分析法(GC-MS)、X線光電子分光法(XPS)、飛行時間型二次イオン質量分析法(TOF-SIMS)等、分子構造情報が得られる公知の分析方法より1種以上の方法を用いて確認することができる。
 なお、上記一般式(I)で表される構成単位と液晶性構成単位とを有する共重合体を含む高分子垂直配向剤と、逆波長分散性重合性液晶材料とを含有する、液晶組成物は、前述のように、高分子垂直配向剤が垂直配向しやすく、それに伴い、逆波長分散性重合性液晶材料が垂直配向しやすいため、配向膜を用いなくても、垂直配向性を示し得るものである。
 [高分子以外の垂直配向剤]
 ここまで、垂直配向剤の1つの例として高分子垂直配向剤を説明したが、垂直配向剤の第2の例として、高分子以外の液晶(低分子垂直配向剤)を適用することもできる。これには例えば下記式で表される構造(二価の連結基を有する構造)を含む材料を用いることができる。
Figure JPOXMLDOC01-appb-C000017
 なお、この構造中で芳香環の任意の位置には置換基としてアルキル基を有しても良い。このような構造を含む低分子垂直配向剤として具体的には下記式(1)のような材料、下記式(2)のようなオニウム化合物又はその塩、及び下記式(3)のようなボロン酸化合物又はその塩が挙げられる。下記式(1)中のmは2~8の整数、nは1~7の整数である。
Figure JPOXMLDOC01-appb-C000018
 これによっても上記高分子垂直配向剤と同様の効果を奏するものとなる。ただし、配向性は上記高分子垂直配向剤の方が良好である。
 <その他の成分>
 液晶組成物は、効果を損なわない範囲で更に他の成分を含有してもよい。具体的には、他の成分として、レベリング剤、重合禁止剤、酸化防止剤、光安定化剤や、塗工性の観点から溶剤等を含有してもよい。これらは従来公知の材料を適宜選択して用いればよい。
  レベリング剤としては、フッ素系又はシリコーン系のレベリング剤を用いることが好ましい。レベリング剤の具体例としては、例えば、特開2010-122325号公報に記載のDIC株式会社製のメガファックシリーズ、モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製のTSFシリーズ及び株式会社ネオス製のフタージェントシリーズ等が挙げられる。本実施形態においてレベリング剤を用いる場合、その含有割合は、液晶組成物の固形分100質量部に対して0.001質量部以上5質量部以下とすることが好ましい。
 また、当該その他の成分として上記の特徴を損なわない範囲で、波長分散特性の調整、組成物の塗工性向上、配向温度の調整のため等の調整に供する正波長分散特性を有する他の重合性液晶(この重合性液晶を上記した逆波長分散性重合性液晶と区別するため「調整用重合性液晶」と記載することがある。)を含有してもよい。このような調整用重合性液晶に用いることができる正波長分散特性を有する重合性液晶としては、重合性棒状液晶材料であって、通常において水平配向となる液晶材料を挙げることができ、例えば以下の化学式(4)~(20)のような材料を例示できる。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 液晶組成物は、塗工性の点から、必要に応じて溶剤を含んでいてもよい。溶剤としては、液晶組成物に含まれる各成分を溶解乃至分散し得る従来公知の溶剤の中から適宜選択すればよい。具体的には、例えば、ヘキサン、シクロヘキサン等の炭化水素系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン等のケトン系溶剤、テトラヒドロフラン、プロピレングリコールモノエチルエーテル(PGME)等のエーテル系溶剤、クロロホルム、ジクロロメタン等のハロゲン化アルキル系溶剤、酢酸エチル、プロピレングリコールモノメチルエーテルアセテート等のエステル系溶剤、N,N-ジメチルホルムアミド等のアミド系溶剤、およびジメチルスルホキシド等のスルホキシド系溶剤、メタノール、エタノール、およびプロパノール等のアルコール系溶剤、テトラヒドロフラン、ジオキソラン等の環状エーテル系溶剤等が挙げられる。本実施形態において溶剤は1種単独で、又は2種以上を組み合わせて混合溶剤として用いることができる。
 [位相差フィルムの製造方法]
  以上説明した位相差フィルムは例えば次のように製造することができ、次の(1)~(3)の工程を含む。なお本例では垂直配向剤として高分子垂直配向剤を用いた例とする。
(1)上記した液晶組成物を成膜する工程。
(2)成膜された液晶組成物中の高分子垂直配向剤が有する液晶性構成単位と、重合性液晶材料を配向する工程。
(3)配向する工程の後に、重合性液晶材料を重合する工程と、を有することにより、位相差層を形成する工程。
  以下に各工程について説明する。
(1)液晶組成物を成膜する工程
 支持体上に、液晶組成物を均一に塗布して成膜を形成する。
ここでの支持体上としては、基材上であっても良いし、配向膜を備えた基材の配向膜上であってもよい。
 塗布方法は、所望の厚みで精度良く成膜できる方法であればよく、適宜選択すればよい。例えば、グラビアコート法、リバースコート法、ナイフコート法、ディップコート法、スプレーコート法、エアーナイフコート法、スピンコート法、ロールコート法、プリント法、浸漬引き上げ法、カーテンコート法、ダイコート法、キャスティング法、バーコート法、エクストルージョンコート法、E型塗布方法などが挙げられる。
(2)重合性液晶材料を配向する工程
 次いで、成膜された液晶組成物中の高分子垂直配向剤が有する液晶性構成単位と、逆波長分散性重合性液晶材料が垂直配向可能な温度に調整し、加熱する。当該加熱処理により、高分子垂直配向剤が有する液晶性構成単位と、逆波長分散性重合性液晶材料とを垂直配向させて乾燥することができ、配向状態を維持した状態で固定化することができる。上記(1)の塗布による成膜後でも所定量は配向しているが、(2)の乾燥によって配向が進行して配向が完了すると考えられる。
 垂直配向可能な温度は、液晶組成物中の各物質に応じて異なるため、適宜調整する必要がある。例えば、40℃以上200℃以下の範囲内で行うことが好ましく、40℃以上120℃以下の範囲内で行うことが更に好ましい。本形態の液晶組成物は、上記の高分子垂直配向剤を有するため、垂直配向可能な温度範囲が広く、温度管理が容易である。
 加熱手段としては、公知の加熱、乾燥手段を適宜選択して用いることができる。また、加熱時間は、適宜選択されれば良いが、例えば、10秒以上2時間以内、好ましくは20秒以上30分以内の範囲内で選択される。
(3)重合性液晶材料を重合する工程
 配向する工程において、液晶性成分の配向状態を維持した状態で固定化された塗膜に、例えば光照射することにより、逆波長分散性重合性液晶材料を重合することができ、液晶組成物の硬化物からなる位相差層を得ることができる。光照射としては、紫外線照射が好適に用いられる。紫外線照射は、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光線から発する紫外線を使用することができる。エネルギー線源の照射量は、適宜選択されれば良く、紫外線波長365nmでの積算露光量として、例えば10mJ/cm以上10000mJ/cm以下の範囲内であることが好ましい。
 [位相差フィルムの適用]
  以上説明した位相差フィルムはその用途として例えば転写用積層体、光学部材、表示パネル及び表示装置などに適用することができる。以下、それぞれについて説明する。
 <転写用積層体>
  図4~図6は本形態の転写用積層体20、30、40の構成を説明する図である。転写用積層体20、30、40は、位相差層の転写に供する積層体であり、位相差層11と、位相差層11を剥離可能に支持した支持体25、35、45とを備えている。
 図4の例に示される転写用積層体20は、転写に供する位相差層11と、位相差層11を剥離可能に支持した支持体25として、支持基材22上に配向膜23と位相差層11とがこの順に積層されている。
  図4の例に示される転写用積層体20においては、支持基材22と配向膜23との剥離強度が、配向膜23と位相差層11との剥離強度よりも大きくなっている。これにより、配向膜23と位相差層11との界面27で剥離され、位相差層11を転写することができる。
 転写用積層体20を得るために、支持基材22と配向膜23との剥離強度が、配向膜23と位相差層11との剥離強度よりも大きくするには、例えば、配向膜形成用組成物に含まれる溶剤を、支持基材22を溶解可能なものとする方法を用いることができる。当該支持基材22としては樹脂基材を用いることが好ましく、また、支持基材表面に接着性が向上するための表面処理を行っても良い。このような場合、樹脂基材および配向膜の密着性を向上させることができる。
  また、支持基材22と配向膜23との剥離強度が配向膜23と位相差層11との剥離強度よりも大きくなるよう、配向膜23と位相差層11との剥離強度を小さくするために、配向膜23の耐溶剤性を比較的高くすることも好ましい。配向膜23の耐溶剤性が比較的高い場合には、配向膜23上に液晶組成物を塗布して位相差層11を形成する際に、液晶組成物中の溶剤に配向膜23が溶解しにくくなるため、配向膜23および位相差層11の密着性を低くすることができる。
 図5の例に示される転写用積層体30は、転写に供する位相差層11と、位相差層11を剥離可能に支持した支持体35として、支持基材22上に配向膜23と位相差層11がこの順に積層されている転写用積層体である。
  図5の例に示される転写用積層体30においては、支持基材22と配向膜23との剥離強度が、配向膜23と位相差層11との剥離強度よりも小さくなっている。これにより、支持基材22と配向膜23との界面37で剥離され、転写に供する位相差層11としては、位相差層11及び配向膜23(13)を転写することができる。
 転写用積層体30を得るために、支持基材22と配向膜23との剥離強度が、配向膜23と位相差層11との剥離強度よりも小さくするためには、例えば、支持基材22の表面に離型処理が施されていてもよく、あるいは離型層が形成されていてもよい。これにより、支持基材22の剥離性を高めることができ、支持基材22および配向層23の剥離強度を配向層23および位相差層11の剥離強度よりも小さくすることができる。
  離型処理としては、例えばフッ素処理、シリコーン処理等の表面処理が挙げられる。
  離型層の材料としては、例えばフッ素系離型剤、シリコーン系離型剤、ワックス系離型剤等が挙げられる。離型層の形成方法としては、例えば離型剤をディップコート、スプレーコート、ロールコート等の塗布法により塗布する方法が挙げられる。
 転写用積層体40は、転写に供する位相差層11と、位相差層を剥離可能に支持した支持基材45とがこの順に積層されている。すなわち、転写用積層体40は配向膜を具備していない転写用積層体である。
 このような転写用積層体40を得るためにも、必要に応じて、支持基材の表面に離型処理が施されていてもよく、あるいは離型層が形成されていてもよい。
 これら転写用積層体20、30、40によれば、他の任意の光学部材等に、例えば、基材12を含まない薄膜の位相差層を転写することができる。従って、転写用積層体20、40によれば、図2の例に示される例位相差層11のみからなる位相差フィルム10’を提供することができ、転写用積層体30によれば、基材は含まず配向膜23と位相差層11とが積層された積層体からなる位相差フィルムを提供することができる。なお、転写の際は、被転写物(光学部材等)の表面に粘着層を形成しておくことが好ましい。
 なお、支持基材と配向膜との剥離強度が配向膜と位相差層との剥離強度よりも大きいか小さいかは、位相差層の剥離を行って、いずれの界面で剥離しているかで確認することができる。いずれの界面で剥離しているかは、例えば、IR等により分析可能である。
 ここで支持基材22は、可撓性を有していてもよく有さなくてもよいが、支持基材22を剥離しやすいことから、可撓性を有することが好ましい。
 支持基材22の厚みは、充分な自己支持強度と、転写用積層体の製造および転写工程に適応出来るだけの可撓性との兼合いから、通常、上記材料のシートの場合、20μm以上200μm以下の範囲内であることが好ましい。
 <光学部材>
  図7には1つの形態にかかる光学部材50の構成を示した。光学部材50は、上記した位相差フィルム10に他の位相差層51、及び偏光板52が積層されてなる。各層は、必要に応じて粘着層(接着層)を介して積層されてもよい(図示せず)。なお、位相差フィルム10の代わりに位相差フィルム10’、10”が適用されてもよい。
 本形態の他の位相差層51としては、いわゆるλ/4位相差層として機能する位相差層が挙げられる。また、他の位相差層51として、λ/4位相差層として機能する位相差層と、λ/2位相差層として機能する位相差層とを併用してもよい。このような位相差層は公知のものを適用することができる。
 偏光板52は、特定方向に振動する光のみを通過させる板状ものであり、従来公知の偏光板の中から適宜選択して用いることができる。例えば、ヨウ素又は染料により染色し、延伸してなるポリビニルアルコールフィルム、ポリビニルホルマールフィルム、ポリビニルアセタールフィルム、エチレン-酢酸ビニル共重合体系ケン化フィルム等を用いることができる。
 また、粘着層(接着層)用の粘着剤又は接着剤としては、従来公知のものの中から適宜選択すればよく、感圧接着剤(粘着剤)、2液硬化型接着剤、紫外線硬化型接着剤、熱硬化型接着剤、熱溶融型接着剤等、いずれの接着形態のもの好適に用いることができる。
 光学部材50には、偏光板の他にも、公知の光学部材が備える他の層を更に有していても良い。当該他の層としては、例えば、反射防止層、拡散層、防眩層、帯電防止層、保護フィルム等が挙げられるが、これらに限定されるものではない。
 光学部材50は、例えば、外光反射を抑制する光学部材として用いることができる。位相差フィルム10と円偏光板とが積層されている光学部材は、例えば、発光表示装置用の外光反射を抑制するための光学部材として好適に用いられ、また、各種表示装置用の広視野角偏光板として好適に用いることができる。
 <表示パネル>
 表示パネルは、表示素子上に、位相差フィルム10、10’10”、又は光学部材50を有する表示装置である。
 表示素子としては、液晶表示素子、EL(無機EL、有機EL)表示素子、プラズマ表示素子、LED表示素子(マイクロLEDなど)、量子ドットを用いた表示素子等が挙げられる。なお、液晶表示素子は、タッチパネル機能を素子内に備えたインセルタッチパネル液晶表示素子であってもよい。
 位相差フィルム10、10’10”又は光学部材50を備えるため、特に、有機EL表示素子を有する表示パネル(有機ELパネル)、及びそれを備えた表示装置(有機EL表示装置)において、外光反射を抑制しながら、正面に対して斜めから見た場合においても正面から見た場合との色の差が小さいという視野角特性が向上する。
 図8は有機EL表示パネル60の層構成を説明する図である。有機EL表示パネル60は、有機EL表示素子61、及びその出光面側に配置された光学部材50を具備して構成されている。このとき、光学部材50は有機EL表示素子61側から位相差フィルム10、他の位相差層51(λ/4位相差層)、及び偏光板52の順である。
  有機EL表示素子61は、例えば出光側から透明電極層、正孔注入層、正孔輸送層、発光層、電子注入層、電極層の順に積層する構成等が挙げられる。本形態において、透明電極層、正孔注入層、正孔輸送層、発光層、電子注入層、電極層、及びその他の構成は、公知のものを適宜用いることができる。このようにして作製された有機EL表示パネルは、例えば、パッシブ駆動方式の有機EL表示装置にもアクティブ駆動方式の有機EL表示装置にも適用可能である。
 なお、表示パネルは、上記構成に限定されるものではなく、適宜選択した公知の構成とすることができる。
 <表示装置>
 表示装置は、上記の表示パネルを備えるものであれば特に限定されないが、上記表示パネルと、該表示パネルに電気的に接続された駆動制御部と、これらを収容する筐体とを備えることが好ましい。
 (合成例1:液晶モノマー1の合成)
  液晶モノマー1は、下記式で表される。
Figure JPOXMLDOC01-appb-C000021
 液晶モノマー1の合成は次のように行った。
 まず下記スキーム1に従い、4-[2-(アクリロイルオキシ)エチルオキシ]安息香酸を合成した。
Figure JPOXMLDOC01-appb-C000022
 次に、下記スキーム2に従って、液晶モノマー1を得た。具体的には、上記で得られた4-[2-(アクリロイルオキシ)エチルオキシ]安息香酸(179.4g、759.4mmol)、4’-シアノ-4-ヒドロキシビフェニル(148.3g、759.0mmol)、N,N-ジメチルアミノピリジン(DMAP)(2.70g、23mmol)のジクロロメタン(1240g)懸濁液に、N,N-ジシクロヘキシルカルボジイミド(DCC)(171.0g、828mmol)のジクロロメタン(170g)溶液を滴下した。滴下終了後、12時間撹拌し、沈殿物をろ過した後、溶媒を留去した。得られた粗体にメタノール(1400g)を加え、室温で1時間撹拌し懸濁精製した。沈殿物をろ過し、得られた結晶を乾燥させることにより、下記化学式、4’-シアノ-4-{4-[2-(アクリロイルオキシ)エチルオキシ]ベンゾアート}を収率96%(301.1g、728mmol)で得た。
Figure JPOXMLDOC01-appb-C000023
 (合成例2:液晶モノマー2の合成)
  液晶モノマー2は、下記式で表される。
Figure JPOXMLDOC01-appb-C000024
 液晶モノマー2の合成は、上記液晶モノマー1合成における2-ブロモエタノールの代わりに、6-クロロ-1-n-ヘキサノールを用い、それ以外は、液晶モノマー1と同様にして液晶モノマー2を得た。
 (合成例3:液晶モノマー3の合成)
  液晶モノマー3は、下記式で表される。
Figure JPOXMLDOC01-appb-C000025
 液晶モノマー3の合成は次のように行った。
 まず下記スキーム3に従って、4-プロポキシカルボニルフェニル=4-ヒドロキシベンゾアートを得た。具体的には、4-アセトキシ安息香酸(523.0g、2.9mol)、4-ヒドロキシ安息香酸プロピル(500g、2.8mol)、N,N-ジメチルアミノピリジン(DMAP)(20.3g、0.17mmol)のジクロロメタン(2.5L)懸濁液に、N,N-ジシクロヘキシルカルボジイミド(DCC)(599.2g、2.9mol)のジクロロメタン(601.3g)溶液を滴下した。滴下終了後、1夜撹拌し、沈殿物をろ過したのち、溶媒を留去した。得られた油状物にメタノール(3.4L)を加え、溶解させたのち、冷却下に炭酸カリウム(442.0g、3.2mol)の水(1.7L)溶液をゆっくりと滴下した。反応混合物を1時間撹拌したのち、濃塩酸で中和し、析出した結晶をろ過し、粗体を乾燥させることにより、4-プロポキシカルボニルフェニル=4-ヒドロキシベンゾアートを72%(602.2g、2.0mol)の収率で得た。
Figure JPOXMLDOC01-appb-C000026
 次に下記スキーム4に従って液晶モノマー3を得た。具体的には、4-プロポキシカルボニルフェニル=4-ヒドロキシベンゾアート(664g、2.3mol)、4-[6-(アクリロイルオキシ)ヘキシルオキシ]安息香酸(650g、2.2mol)、N,N-ジメチルアミノピリジン(DMAP)(7.9g,0.06mol)のジクロロメタン(2.8L)懸濁液に、N,N-ジシクロヘキシルカルボジイミド(DCC)(489.0g、2.4mol)のジクロロメタン(489g)溶液を滴下した。滴下終了後、1夜撹拌し、沈殿物をろ過したのち、溶媒を留去した。得られた粗体にメタノール(5.0L)を加え溶解させたのち、冷却下で5時間撹拌した。析出した結晶をろ過し、得られた結晶を乾燥させることにより、4-[(4-プロポキシカルボニルフェニルオキシカルボニル)フェニル=4-[6-(アクリロイルオキシ)ヘキシルオキシ]ベンゾアートを収率88%(1090g、1.9mol)で得た。
Figure JPOXMLDOC01-appb-C000027
 (非液晶モノマー1)
  非液晶モノマー1は下記式で表される。
Figure JPOXMLDOC01-appb-C000028
 非液晶モノマー1はアクリル酸ヘキサデシルを用いた(東京化成株式会社)。
 (非液晶モノマー2)
  非液晶モノマー2は下記式で表される。
Figure JPOXMLDOC01-appb-C000029
 非液晶モノマー2はアクリル酸2-(2-エトキシエトキシ)エチルを用いた(東京化成株式会社)。
 (非液晶モノマー3)
  非液晶モノマー3は下記式で表される。
Figure JPOXMLDOC01-appb-C000030
 非液晶モノマー3はライトアクリレート130Aを用いた(共栄社化学株式会社)。
 (非液晶モノマー4)
  非液晶モノマー4は下記式で表される。なお、式中でn≒4である。
Figure JPOXMLDOC01-appb-C000031
 非液晶モノマー4はノニルフェノキシポリエチレングリコールアクリレート FA-314Aを用いた(日立化成株式会社製)。
 (非液晶モノマー5)
  非液晶モノマー5は下記式で表される。なお、式中でn≒8である。
Figure JPOXMLDOC01-appb-C000032
 非液晶モノマー5はノニルフェノキシポリエチレングリコールアクリレート FA-318ASを用いた(日立化成株式会社)。
 (高分子垂直配向剤の合成)
 以上のような液晶モノマー1~液晶モノマー3、及び非液晶モノマー1~非液晶モノマー5を用いて、表1にA-01~A-13で示した高分子垂直配向剤を合成した。
 高分子垂直配向剤A-01を例に挙げると次の通りである。
 液晶モノマー1と、非液晶モノマー1とをモル比で60:40となるように組み合わせて混合し、N,N-ジメチルアセトアミド(DMAc)を加え、40℃で撹拌し溶解させる。溶解後24℃まで冷却し、アゾビスイソブチロニトリル(AIBN)を加え同温にて溶解させる。80℃に加温したDMAcに上記反応溶液を30分かけて滴下し、滴下終了後、80℃で6時間撹拌する。反応終了後冷却した後、メタノールにて再沈殿を行った。沈殿物をろ別、乾燥させることにより高分子垂直配向剤A-01を収率73%で得ることができた。
 高分子垂直配向剤A-02~高分子垂直配向剤A-13も、上記高分子垂直配向剤A-01の例に倣って、表1のモノマー及び共重合比とすることで得ることができた。
 以上説明した高分子垂直配向剤A-01~A-13を表1に示した。表1には、各液晶高分子を作製する際に用いる液晶モノマーの種類、非液晶モノマーの種類、液晶モノマー:非液晶モノマーで表す共重合比、及び分子量をそれぞれ表した。分子量はGPC(ゲル浸透クロマトグラフィー)により質量平均分子量を測定し、NMRにより構造解析を行った。
Figure JPOXMLDOC01-appb-T000033
 (合成例4:低分子垂直配向剤B-01の合成)
 低分子垂直配向剤B-01は次の式で表される。
Figure JPOXMLDOC01-appb-C000034
 低分子垂直配向剤B-01は特許4496439号公報を参考にして合成した。
 (合成例5:低分子垂直配向剤B-11の合成)
  低分子垂直配向剤B-11は特開2016-105127号公報に記載のオニウム塩、及びボロン酸化合物を混合して使用した。このときオニウム塩:ボロン酸化合物を質量比で2:1とした。
 以上のように作成した高分子垂直配向剤A-01~A-13、低分子垂直配向剤B-01、B-11から下記表2~表4に示したように選択した材料を垂直配向剤として用い、表2~表4に示した逆波長分散性重合性液晶材料と組み合わせて液晶組成物を作製した。
 次いで、図1に示した位相差フィルム10に倣って、基材(ポリエチレンテレフタレート)上に、ポリイミド系の垂直配向膜を形成した。
 次いで、該配向膜上に、液晶組成物及び溶剤(ジオキソランとシクロペンタノンとの混合溶剤)を含む塗布液(液晶組成物と溶剤との質量比=1:1)を塗布し、該配向膜上液晶組成物を成膜した。
 次いで、120℃で2分乾燥し、重合性液晶材料の配向を進行させ、さらに、紫外線を照射して重合性液晶材料を硬化させることにより位相差層を形成し、各例にかかる位相差フィルムNo.1~No.37を作成し、表2~表4に表した。表2~表4に示した逆波長分散性重合性液晶材料D1~D3は次の通りである。
 逆波長分散性重合性液晶材料D-1として特開2012-077055号公報の化合物A144-1を用いた。D-1は具体的には次のような式で表される。
Figure JPOXMLDOC01-appb-C000035
 逆波長分散性重合性液晶材料D-2として特表2010-522892号公報の化合物(I)-3を用いた。D-2は具体的には次のような式で表される。
Figure JPOXMLDOC01-appb-C000036
 逆波長分散性重合性液晶材料D-3として国際公開WO2014/069515号の化合物(I)-3を用いた。D-3は具体的には次のような式で表される。
Figure JPOXMLDOC01-appb-C000037
 また、表5には逆波長分散性重合性液晶の代わりに上記式(4)で表した正波長分散性重合性液晶を用いた例(No.38)、及び、垂直配向剤を用いずに逆波長分散性重合性液晶材料を適用した例(No.39~No.41)を表した。
 各例の位相差フィルムについて、配向性、位相差、及び波長分散性をそれぞれ測定した。表2~表5に結果を示す。
  配向性は目視で位相差フィルムの観察を行い、白くなる現象が起こらない場合を○とした。
  位相差は自動複屈折測定装置(王子計測機器株式会社製、商品名:KOBRA-WR)により測定した。R0は面内位相差、Rthは厚み方向位相差をそれぞれ表し、単位はnmである。
  R50は、入射角が位相差層の法線方向に対して50°傾斜したときにおける450nmの波長におけるリタデーションをR450、550nmの波長におけるリタデーションをR550としたときのR450/R550を意味する。この位相差は、王子計測機器株式会社製、KOBRA-WRにより、波長分散特性の測定モード、傾斜中心軸が進相軸の設定にて測定した。
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
 表2~表4に示したNo.1~No.37の位相差フィルムでは、ポジティブC型であるとともに、R50を1.00未満に抑えることができた。従って、正面に対して斜め方向から見た場合にも色の変化を小さく抑えることができる位相差フィルムとすることができた。
  これに対して、正波長分散性重合性液晶を用いた例であるNo.38では配向性は良好であるものの、R50を1.0未満とすることができず、正面に対して斜め方向から見た場合に色の変化を小さく抑えることはできなかった。
  また、垂直配向剤を用いない例であるNo.39~No.41では逆波長分散性重合性液晶材料を配向させることができなかった。
   10、10’、10” 位相差フィルム
   11 位相差層
   12 基材
   13 配向膜
   20、30、40 転写用積層体
   22 支持基材
   23 配向膜
   25、45 剥離可能な支持体
   27 配向膜と位相差等との界面
   50 光学部材
   51 位相差層
   52 偏光板
   60 有機EL表示パネル(表示パネル)
   61 有機EL表示素子

Claims (16)

  1.  位相差層を有する位相差フィルムであって、
     前記位相差層が、垂直配向剤及びホメオトロピック配向した逆波長分散特性を有する重合性液晶材料を含有するとともに、
     前記位相差層の法線方向に対して傾斜した入射角における450nmの波長におけるリタデーションをR450、550nmの波長におけるリタデーションをR550としたとき、R450/R550が1.00未満である位相差フィルム。
  2.  前記垂直配向剤が高分子垂直配向剤であり、
     前記高分子垂直配向剤が、下記一般式(I)で表される構成単位と、液晶性構成単位とを有する共重合体を含む、液晶組成物の硬化物からなる請求項1に記載の位相差フィルム。
    Figure JPOXMLDOC01-appb-C000001

    (一般式(I)中、Rは、水素原子又はメチル基を、Rは、-L-R、又は-L1’-Rで表される基を、Lは-(CH-で表される連結基を、L1’は-(CO)n’-で表される連結基を、Rは、置換基を有してもよいメチル基、アルキル基を有してもよいアリール基、又は-ORを、R及びRはそれぞれ独立に、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表し、n及びn’はそれぞれ独立に2以上18以下の整数である。)
  3.  前記液晶性構成単位が、下記一般式(II)で表される請求項2に記載の位相差フィルム。
    Figure JPOXMLDOC01-appb-C000002

    (一般式(II)中、R11は、水素原子又はメチル基を、R12は、-(CH-、又は-(CO)m’-で表される基を表す。Lは、直接結合、又は、-O-、-O-C(=O)-、若しくは-C(=O)-O-で表される連結基を、Arは、置換基を有していてもよい炭素原子数6以上10以下のアリーレン基を表し、複数あるL及びArはそれぞれ同一であっても異なっていても良い。R13は、-F、-Cl、-CN、-OCF、-OCFH、-NCO、-NCS、-NO、-NHC(=O)-R14、-C(=O)-OR14、-OH、-SH、-CHO、-SOH、-NR14 、-R15、又は-OR15を、R14は、水素原子又は炭素原子数1以上6以下のアルキル基を表し、R15は、炭素原子数1以上6以下のアルキル基を表す。aは2以上4以下の整数、m及びm’はそれぞれ独立に2以上10以下の整数である。)
  4.  前記垂直配向剤が低分子の液晶である、請求項1に記載の位相差フィルム。
  5.  前記低分子の液晶が、下記式で表される構造を含む請求項4に記載の位相差フィルム。
    Figure JPOXMLDOC01-appb-C000003
  6.  垂直配向剤と、逆波長分散特性を有する重合性液晶材料と、光重合開始剤と、を含有する、液晶組成物。
  7.  前記垂直配向剤が、高分子垂直配向剤であり、
     前記高分子垂直配向剤が、下記一般式(I)で表される構成単位と、液晶性構成単位とを有する共重合体を含む、請求項6に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-C000004

    (一般式(I)中、Rは、水素原子又はメチル基を、Rは、-L-R、又は-L1’-Rで表される基を、Lは-(CH-で表される連結基を、L1’は-(CO)n’-で表される連結基を、Rは、置換基を有してもよいメチル基、アルキル基を有してもよいアリール基、又は-ORを、R及びRはそれぞれ独立に、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表し、n及びn’はそれぞれ独立に2以上18以下の整数である。)
  8.  前記液晶性構成単位が、下記一般式(II)で表される請求項7に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-C000005

    (一般式(II)中、R11は、水素原子又はメチル基を、R12は、-(CH-、又は-(CO)m’-で表される基を表す。Lは、直接結合、又は、-O-、-O-C(=O)-、若しくは-C(=O)-O-で表される連結基を、Arは、置換基を有していてもよい炭素原子数6以上10以下のアリーレン基を表し、複数あるL及びArはそれぞれ同一であっても異なっていても良い。R13は、-F、-Cl、-CN、-OCF、-OCFH、-NCO、-NCS、-NO、-NHC(=O)-R14、-C(=O)-OR14、-OH、-SH、-CHO、-SOH、-NR14 、-R15、又は-OR15を、R14は、水素原子又は炭素原子数1以上6以下のアルキル基を表し、R15は、炭素原子数1以上6以下のアルキル基を表す。aは2以上4以下の整数、m及びm’はそれぞれ独立に2以上10以下の整数である。)
  9.  前記垂直配向剤が低分子の液晶である、請求項6に記載の液晶組成物。
  10.  前記低分子の液晶が、下記式で表される構造を含む請求項9に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-C000006
  11.  請求項6乃至10のいずれかに記載の液晶組成物を成膜する工程と、
     前記成膜された前記液晶組成物中の前記重合性液晶材料を配向する工程と、
     前記配向する工程の後に、前記重合性液晶材料を重合する工程と、を有することにより、位相差層を形成する、位相差フィルムの製造方法。
  12.  請求項1乃至5のいずれかに記載の位相差フィルムを具備する光学部材。
  13.  偏光板を備える請求項12に記載の光学部材。
  14.  さらに他の位相差層が積層されてなる請求項12又は13に記載の光学部材。
  15.  表示素子上に、請求項12乃至14のいずれかに記載の光学部材を有する表示パネル。
  16.  請求項15に記載の表示パネルを備えた表示装置。
PCT/JP2018/020412 2017-05-29 2018-05-28 位相差フィルム、液晶組成物、光学部材、表示パネル、表示装置、及び、位相差フィルムの製造方法 WO2018221470A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019521213A JPWO2018221470A1 (ja) 2017-05-29 2018-05-28 位相差フィルム、液晶組成物、光学部材、表示パネル、表示装置、及び、位相差フィルムの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017105405 2017-05-29
JP2017-105405 2017-05-29

Publications (1)

Publication Number Publication Date
WO2018221470A1 true WO2018221470A1 (ja) 2018-12-06

Family

ID=64455883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020412 WO2018221470A1 (ja) 2017-05-29 2018-05-28 位相差フィルム、液晶組成物、光学部材、表示パネル、表示装置、及び、位相差フィルムの製造方法

Country Status (3)

Country Link
JP (1) JPWO2018221470A1 (ja)
TW (1) TWI760498B (ja)
WO (1) WO2018221470A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018205364A (ja) * 2017-05-30 2018-12-27 大日本印刷株式会社 位相差フィルム、転写用積層体、光学部材、表示装置、及び、位相差フィルムの製造方法
WO2020218103A1 (ja) * 2019-04-26 2020-10-29 住友化学株式会社 積層体および垂直配向液晶硬化膜形成用組成物
JP2021001973A (ja) * 2019-06-21 2021-01-07 Dic株式会社 重合性液晶組成物、光学異方体及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333524A (ja) * 2001-05-10 2002-11-22 Nitto Denko Corp ホメオトロピック配向液晶フィルムの屈折率特性制御方法
JP2003149441A (ja) * 2001-11-15 2003-05-21 Nitto Denko Corp 位相差板およびその製造方法、光学フィルム
JP2016081035A (ja) * 2014-10-21 2016-05-16 富士フイルム株式会社 光学異方性層とその製造方法、積層体、偏光板、表示装置、液晶化合物とその製造方法、カルボン酸化合物
JP2016105127A (ja) * 2014-12-01 2016-06-09 富士フイルム株式会社 配向膜、積層体、光学フィルム、光学フィルムの製造方法、偏光板、液晶表示装置および配向膜形成用組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015014712A (ja) * 2013-07-05 2015-01-22 大日本印刷株式会社 光学フィルム及び光学フィルムの作製方法
WO2017022592A1 (ja) * 2015-07-31 2017-02-09 富士フイルム株式会社 積層体および窓

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333524A (ja) * 2001-05-10 2002-11-22 Nitto Denko Corp ホメオトロピック配向液晶フィルムの屈折率特性制御方法
JP2003149441A (ja) * 2001-11-15 2003-05-21 Nitto Denko Corp 位相差板およびその製造方法、光学フィルム
JP2016081035A (ja) * 2014-10-21 2016-05-16 富士フイルム株式会社 光学異方性層とその製造方法、積層体、偏光板、表示装置、液晶化合物とその製造方法、カルボン酸化合物
JP2016105127A (ja) * 2014-12-01 2016-06-09 富士フイルム株式会社 配向膜、積層体、光学フィルム、光学フィルムの製造方法、偏光板、液晶表示装置および配向膜形成用組成物

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018205364A (ja) * 2017-05-30 2018-12-27 大日本印刷株式会社 位相差フィルム、転写用積層体、光学部材、表示装置、及び、位相差フィルムの製造方法
WO2020218103A1 (ja) * 2019-04-26 2020-10-29 住友化学株式会社 積層体および垂直配向液晶硬化膜形成用組成物
JP2020181150A (ja) * 2019-04-26 2020-11-05 住友化学株式会社 積層体および垂直配向液晶硬化膜形成用組成物
JP7368103B2 (ja) 2019-04-26 2023-10-24 住友化学株式会社 積層体および垂直配向液晶硬化膜形成用組成物
JP2021001973A (ja) * 2019-06-21 2021-01-07 Dic株式会社 重合性液晶組成物、光学異方体及びその製造方法

Also Published As

Publication number Publication date
TWI760498B (zh) 2022-04-11
JPWO2018221470A1 (ja) 2020-03-26
TW201905557A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
TWI791443B (zh) 側鏈型液晶聚合物、液晶組成物、相位差膜、相位差膜之製造方法、轉印用積層體、光學構件、光學構件之製造方法及顯示裝置
JP6551154B2 (ja) 光学異方性シート
TWI713619B (zh) 偏光板、具備該偏光板的顯示裝置,及其製造方法
KR20220145322A (ko) 원편광판 및 표시 장치
JP5905272B2 (ja) 光学異方性層の製造方法
TWI712636B (zh) 液晶硬化膜、含有液晶硬化膜的光學膜及顯示裝置
US7981320B2 (en) Polymerizable composition
CN106371164B (zh) 层叠体、包含层叠体的圆偏振板及具备层叠体的显示装置
JP2018151535A (ja) 位相差フィルム、転写用積層体、光学部材、光学部材の製造方法、及び、表示装置
WO2018221470A1 (ja) 位相差フィルム、液晶組成物、光学部材、表示パネル、表示装置、及び、位相差フィルムの製造方法
JP2010001284A (ja) 化合物及び光学フィルム
JP7207318B2 (ja) 液晶組成物、位相差フィルム及びその製造方法、転写用積層体、光学部材及びその製造方法、並びに表示装置
JP2018205364A (ja) 位相差フィルム、転写用積層体、光学部材、表示装置、及び、位相差フィルムの製造方法
JP6922205B2 (ja) 側鎖型液晶ポリマー、液晶組成物、位相差フィルム及びその製造方法、転写用積層体、光学部材、並びに表示装置
JP7172053B2 (ja) 液晶組成物、位相差フィルム、位相差フィルムの製造方法、転写用積層体、光学部材、光学部材の製造方法、及び表示装置
JP2018194709A (ja) 位相差フィルム、転写用積層体、光学部材、表示装置、及び、位相差フィルムの製造方法
JP6822062B2 (ja) 側鎖型液晶ポリマー、液晶組成物、位相差フィルム、位相差フィルムの製造方法、転写用積層体、光学部材、及び表示装置
JP2017111257A (ja) 位相差フィルムの製造方法、及び、位相差層転写シートの製造方法
JP2021195408A (ja) 重合性液晶組成物、重合体、位相差フィルム及びその製造方法、転写用積層体、光学部材及びその製造方法、並びに表示装置
JP2012118117A (ja) 表示装置の製造方法
JP2017111256A (ja) 位相差フィルム、位相差層転写シート、反射防止フィルム、及び有機発光表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809921

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521213

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809921

Country of ref document: EP

Kind code of ref document: A1