WO2018221087A1 - Pcb terminal - Google Patents

Pcb terminal Download PDF

Info

Publication number
WO2018221087A1
WO2018221087A1 PCT/JP2018/016712 JP2018016712W WO2018221087A1 WO 2018221087 A1 WO2018221087 A1 WO 2018221087A1 JP 2018016712 W JP2018016712 W JP 2018016712W WO 2018221087 A1 WO2018221087 A1 WO 2018221087A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating layer
gold
nickel
gold plating
pcb terminal
Prior art date
Application number
PCT/JP2018/016712
Other languages
French (fr)
Japanese (ja)
Inventor
宏▲禎▼ 高橋
Original Assignee
オリエンタル鍍金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリエンタル鍍金株式会社 filed Critical オリエンタル鍍金株式会社
Priority to JP2019522031A priority Critical patent/JP7117784B2/en
Publication of WO2018221087A1 publication Critical patent/WO2018221087A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/62Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of gold
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials

Definitions

  • the present invention relates to a PCB terminal, and more specifically, to a PCB terminal having excellent wear resistance, electrical conductivity, slidability, and low friction and excellent durability.
  • the PCB terminal is used for various connectors for in-vehicle use and consumer use, and is indispensable for mounting printed circuit boards.
  • a plurality of terminals are arranged in a comb shape by punching a flat sheet-like metal substrate.
  • Patent Document 1 Japanese Patent Laid-Open No. 2008-287942 proposes a PCB connector terminal having an outermost surface plated with Sn.
  • the friction coefficient of the fitting portion can be 0.26 or less, and the zero cross time after aging of the soldering portion can be 5 seconds or less. In this case, it is possible to provide a PCB terminal excellent in reduction of insertion force and improvement in solder wettability of a soldered portion on the substrate side, and a manufacturing method thereof.
  • Patent Document 2 Japanese Patent Laid-Open No. 10-41027
  • Patent Document 2 Japanese Patent Laid-Open No. 10-41027
  • the surface is gold plated.
  • JP 2008-287942 A Japanese Patent Laid-Open No. 10-41027
  • the PCB terminal described in Patent Document 1 has improved sliding characteristics and solder wettability, the outermost surface is a tin-plated layer, and the electrical conductivity, durability, etc. are compared with the gold-plated layer. Not enough.
  • the object of the present invention is to provide a PCB terminal having excellent wear resistance, electrical conductivity, slidability, and low friction and having sufficient durability. There is to do.
  • the present inventor is able to control the dynamic friction coefficient and the like while ensuring the adhesion to the substrate.
  • the inventors have found that it is effective and have reached the present invention.
  • the present invention A comb-shaped PCB terminal having a plurality of male terminals having a substantially quadrangular prism shape, A nickel plating layer on the entire surface of the male terminal; On the surface of the nickel plating layer, a gold plating layer having a thickness of 0.2 ⁇ m to 1.0 ⁇ m is provided, The dynamic friction coefficient of the gold plating layer with respect to high carbon chromium bearing steel (SUJ2) is less than 0.2, A PCB terminal is provided.
  • SUJ2 high carbon chromium bearing steel
  • the outermost surface of the male terminal that contributes to energization when fitted with the female terminal is a gold plating layer, sufficient electrical conductivity can be ensured.
  • the thickness of the gold plating layer is more preferably 0.4 ⁇ m to 0.8 ⁇ m, and most preferably 0.5 ⁇ m to 0.7 ⁇ m.
  • a nickel plating layer is formed between the metal base material of the male terminal and the gold plating layer, and the nickel plating layer allows an intermetallic compound accompanying diffusion and reaction between the elements contained in the metal base material and gold. The embrittlement of the gold plating layer due to the formation of can be suppressed.
  • the thickness of the nickel plating layer is preferably 0.3 ⁇ m to 4.0 ⁇ m. By making the thickness of the nickel plating layer 0.3 ⁇ m or more, it is possible to reliably suppress embrittlement of the gold plating layer due to the diffusion and reaction between the elements contained in the metal substrate and the formation of intermetallic compounds. When the thickness is 4.0 ⁇ m or less, it is possible to suppress a decrease in conductivity and mechanical characteristics due to the presence of the nickel plating layer.
  • the thickness of the nickel plating layer is more preferably 0.4 ⁇ m to 2.0 ⁇ m, and most preferably 0.5 ⁇ m to 1.5 ⁇ m.
  • the dynamic friction coefficient of the gold plating layer with respect to the high carbon chromium bearing steel (SUJ2) is less than 0.2 with respect to the gold plating layer formed on the outermost surface. Since the dynamic friction coefficient of the gold plating layer is less than 0.2, the resistance when inserting and removing the male terminal is moderately reduced, and the damage of the male terminal and the female terminal due to wear can be suppressed. it can.
  • the measurement of a dynamic friction coefficient is not specifically limited, A conventionally well-known various measuring method can be used.
  • the gold plating layer has a Vickers hardness of 150 HV to 250 HV.
  • the Vickers hardness By setting the Vickers hardness to 150 HV or higher, the durability of the PCB terminal can be improved.
  • the Vickers hardness By setting the Vickers hardness to 250 HV or lower, damage to the female terminal due to sliding between the male terminal and the female terminal can be suppressed.
  • the cobalt concentration of the gold plating layer is 0.1% by mass to 1% by mass.
  • the Vickers hardness and the dynamic friction coefficient can be in the above numerical range.
  • the gold plating layer is formed on the surface of the nickel plating layer through a gold flash plating layer having a thickness of more than 0 and 0.1 ⁇ m or less.
  • a gold flash plating layer having a thickness of more than 0 and 0.1 ⁇ m or less.
  • the nickel plating layer is formed on the surface of the male terminal via a base strike plating layer, and the base strike plating layer is a copper strike plating layer or a nickel strike plating layer. It is preferable that at least one of them is formed. Since the nickel plating layer is formed on the metal substrate via the base strike plating layer, the adhesion between the nickel plating layer and the metal substrate can be sufficiently ensured.
  • the gold plating layer is formed only on the front side and the back side of the male terminal. Since the gold plating layer is formed on the front surface and the back surface of the male terminal that mainly contacts the female terminal at the time of fitting, sufficient energization characteristics can be ensured. On the other hand, gold plating layers are not formed on both side surfaces of the male terminal that hardly contributes to the current-carrying characteristics, and the amount of gold used is kept to a minimum.
  • the PCB terminal of the present invention it is an object to provide a PCB terminal having excellent wear resistance, electrical conductivity, slidability, and low friction and having sufficient durability.
  • FIG. 3 is a cross-sectional view of the male terminal 4 taken along the line A-A ′.
  • FIG. It is process drawing of the manufacturing method of the PCB terminal of this invention.
  • FIG. 1 is a schematic perspective view showing an example of a PCB terminal of the present invention.
  • the PCB terminal 1 has a comb-teeth shape in which a plurality of substantially quadrangular columnar male terminals 4 are arranged in parallel at the end of the metal base 2.
  • the PCB terminal 1 can be efficiently manufactured by using the PCB terminal manufacturing method of the present invention.
  • the metal substrate 2 and the male terminal 4 are made of the same material and are not particularly limited as long as they have electrical conductivity.
  • electrical conductivity aluminum and aluminum alloy, iron and iron alloy (for example, iron-nickel alloy) , Titanium and titanium alloys, stainless steel, copper and copper alloys, and the like.
  • copper or brass is preferably used because of its excellent electrical conductivity, thermal conductivity, and extensibility.
  • a nickel plating layer 12 is formed on the surface of the metal substrate 2
  • a gold plating layer 14 is formed on the surface of the nickel plating layer 12 via a gold flash plating layer (not shown). Yes.
  • the gold flash plating layer By forming the gold flash plating layer, the adhesion between the nickel plating layer 12 and the gold plating layer 14 can be sufficiently secured. As a result, even if the gold plating layer 14 is not extremely thin, the gold plating layer 14 can be prevented from peeling off from the nickel plating layer 12.
  • the gold plating layer 14 may be formed on the entire surface of the male terminal 4, but is preferably formed only on the front surface and the back surface of the male terminal 4 in contact with the female terminal.
  • the gold flash plating layer may be formed on the entire surface of the nickel plating layer 12, or may be formed only on the front and back surfaces of the male terminal 4 on which the gold plating layer 14 is formed.
  • the thickness of the gold plating layer 14 is 0.2 ⁇ m to 1.0 ⁇ m. By making the thickness of the gold plating layer 14 0.2 ⁇ m or more, the electrical characteristics and durability of gold can be fully utilized, and by using 1.0 ⁇ m or less, the amount of gold used can be suppressed. In addition, deterioration of productivity can be suppressed.
  • the thickness of the gold plating layer 14 is more preferably 0.4 ⁇ m to 0.8 ⁇ m, and most preferably 0.5 ⁇ m to 0.7 ⁇ m.
  • the thickness of the gold flash plating layer is preferably more than 0 and 0.1 ⁇ m or less.
  • the thickness of the gold flash plating layer is more preferably 0.08 ⁇ m or less, and most preferably 0.06 ⁇ m or less.
  • the gold plating layer 14 is formed on the surface of the male terminal 4 that contacts the female terminal at the time of fitting, the gold plating layer 14 has excellent wear resistance, low electrical resistance, and good Heat resistance can be utilized, and the conductivity and durability required for a PCB terminal can be sufficiently ensured. Furthermore, by not forming the gold plating layer 14 on both side surfaces of the male terminal 4, but forming the gold plating layer 14 only on the front surface and the back surface, the amount of gold used can be minimized.
  • the gold plating layer 14 has a coefficient of dynamic friction with respect to the high carbon chromium bearing steel (SUJ2) of less than 0.2. Since the dynamic friction coefficient is less than 0.2, the resistance when the male terminal 4 is inserted and removed is moderately reduced, and damage to the male terminal 4 and the female terminal due to wear can be suppressed. .
  • the measurement of the dynamic friction coefficient is not particularly limited, and various conventionally known measurement methods can be used. For example, the dynamic friction coefficient can be measured using HEIDON-14 manufactured by Shinto Kagaku Co., Ltd.
  • the Vickers hardness of the gold plating layer 14 is preferably 150 HV to 250 HV.
  • the durability of the PCB terminal 1 can be improved.
  • the Vickers hardness to 250 HV or lower damage to the female terminal due to sliding between the male terminal 4 and the female terminal can be suppressed.
  • the cobalt concentration of the gold plating layer 14 is preferably 0.1% by mass to 1% by mass.
  • the Vickers hardness and the dynamic friction coefficient can be in the above numerical range.
  • a nickel plating layer 12 is formed on the surface of the male terminal 4 via a base strike plating layer, and the base strike plating layer includes a copper strike plating layer and a nickel strike plating layer. It is preferable that at least one is formed. Since the nickel plating layer 12 is formed on the metal substrate 2 via the base strike plating layer, the adhesion between the nickel plating layer 12 and the metal substrate 2 can be sufficiently secured.
  • the nickel plating layer 12 since the nickel plating layer 12 exists between the metal base material 2 and the gold plating layer 14 in the PCB terminal 1, the nickel plating layer 12 prevents diffusion and reaction between the elements contained in the metal base material 2 and gold. Functions as a barrier layer. In other words, the presence of the nickel plating layer 12 between the metal base 2 and the gold plating layer 14 allows the gold contained in the metal base 2 to diffuse and react with the gold to form an intermetallic compound. The embrittlement of the plating layer 14 can be suppressed.
  • the nickel plating layer 12 preferably has a continuous film shape, and the thickness of the nickel plating layer 12 is preferably 0.3 ⁇ m to 4.0 ⁇ m. If it is less than 0.3 ⁇ m, the barrier effect is poor, and if it exceeds 4 ⁇ m, cracks are likely to occur during bending.
  • the thickness of the nickel plating layer 12 is more preferably 0.4 ⁇ m to 2.0 ⁇ m, and most preferably 0.5 ⁇ m to 1.5 ⁇ m.
  • the nickel plating layer 12 may have a granular or island-like discontinuous film shape as long as the effects of the present invention are not impaired. In this case, the granular and island-like portions are partially continuous. Also good.
  • FIG. 3 is a process diagram of a method of manufacturing a PCB terminal according to the present invention.
  • the PCB terminal 1 has a gold plating layer 14 formed on the outermost surface of the male terminal 4.
  • the gold plating layer 14 is formed only on the front surface and the back surface of the male terminal 4 that contacts the female terminal during use. A method for manufacturing the PCB terminal 1 will be described in detail.
  • the manufacturing method includes a first step (S01) in which nickel plating is performed on the metal substrate 2 having the shape of the PCB terminal 1 to form a nickel plating layer 12 on the entire surface of the male terminal 4, and the front and back surfaces of the male terminal 4
  • a second step (S02) in which a masking layer is formed in which a masking layer is formed, a third step (S03) in which a resist layer is formed on both side surfaces of the male terminal 4, and a gold plating layer 14 is formed on the front and back surfaces of the male terminal 4.
  • S04 four steps
  • the metal base material 2 is processed into the shape of the PCB terminal 1 and has a comb-teeth shape having a plurality of male terminals 4 having a substantially quadrangular prism shape.
  • the shape, size, number, and the like of the terminals are not particularly limited, and may be determined according to the requirements as the PCB terminal 1.
  • the metal used for the metal substrate 2 is not particularly limited as long as it has electrical conductivity.
  • copper or brass is preferably used because of its excellent electrical conductivity, thermal conductivity, and spreadability.
  • the metal substrate 2 it is preferable to wash the metal substrate 2 as a preliminary treatment for various plating treatments.
  • the method for cleaning the metal substrate 2 is not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known cleaning methods can be used.
  • As the cleaning treatment liquid for example, a general immersion degreasing liquid or electrolytic degreasing liquid can be used.
  • the base strike plating treatment is a preliminary treatment in the first step (S01), and is preferably performed when it is necessary to improve the adhesion between the metal substrate 2 and the nickel plating layer 12. .
  • the base strike plating treatment for example, a copper strike plating treatment, a nickel strike plating treatment, or the like can be used.
  • A Copper strike plating
  • a copper strike plating bath what contains a copper salt and a conductive salt can be used, for example. Further, a brightener may be added.
  • a copper cyanide bath can be used as the copper strike plating bath that can be suitably used for the copper strike plating treatment.
  • the copper cyanide bath is composed of a copper salt, an alkali cyanide salt and a conductive salt, and an additive or a brightener may be added thereto.
  • copper cyanide for example, copper cyanide can be used.
  • potassium cyanide and sodium cyanide can be used as the alkali cyanide salt.
  • potassium carbonate and sodium carbonate can be used as the conductive salt.
  • Rochelle salt, potassium selenite, sodium selenite, potassium thiocyanate, lead acetate, lead tartrate and the like can be used.
  • the copper strike plating conditions such as bath temperature, anode material, and current density of the copper strike plating bath can be appropriately set according to the plating bath used, the required plating thickness, and the like.
  • the anode material it is preferable to use a soluble anode such as electrolytic copper and / or an insoluble anode such as stainless steel, a titanium platinum plate, and iridium oxide.
  • Suitable plating conditions include bath temperature: 25 to 70 ° C., current density: 0.1 to 6.0 A / dm 2 , and processing time: 5 to 60 seconds.
  • Nickel strike plating As a nickel strike plating bath, what contains nickel salt, an anodic dissolution promoter, and a pH buffer can be used, for example. Further, an additive may be added to the nickel strike plating bath.
  • nickel salt for example, nickel sulfate, nickel sulfamate, nickel chloride and the like can be used.
  • anodic dissolution accelerator for example, nickel chloride and hydrochloric acid can be used.
  • pH buffering agent for example, boric acid, nickel acetate, citric acid and the like can be used.
  • additives include primary brighteners (saccharin, benzene, naphthalene (di, tri), sodium sulfonate, sulfonamide, sulfinic acid, etc.), secondary brighteners (organic compounds: butynediol, coumarin, allylaldehyde).
  • a sulfonic acid or the like, a metal salt: cobalt, lead, zinc or the like) and a pit inhibitor (such as sodium lauryl sulfate) can be used.
  • the preferred amount of each component of the nickel strike plating bath that can be suitably used for the nickel strike plating treatment is nickel salt: 100 to 300 g / L, anodic dissolution accelerator: 0 to 300 g / L, pH buffer: 0 to 50 g / L, additive: 0 to 20 g / L.
  • Nickel strike plating conditions such as bath temperature, anode material, and current density of the nickel strike plating bath can be appropriately set according to the plating bath used, the required plating thickness, and the like.
  • the anode material it is preferable to use a soluble anode such as electrolytic nickel, carbonized nickel, depolarized nickel, and sulfur nickel.
  • bath temperature 20 to 30 ° C.
  • current density 1.0 to 5.0 A / dm 2
  • treatment time 1 to 30 seconds
  • pH 0.5 to 4.5
  • Nickel plating treatment (first step (S01))
  • the nickel plating treatment is performed to form a nickel plating layer 12 that functions as a barrier layer that prevents diffusion and reaction between elements contained in the metal substrate 2 and gold between the metal substrate 2 and the gold plating layer 14. It is a process given to.
  • the gold plating layer 14 is formed by the formation of an intermetallic compound associated with the diffusion and reaction between the elements contained in the metal substrate 2 and gold. Embrittlement can be suppressed.
  • the nickel plating bath for example, a watt bath or a sulfamic acid bath can be used, but a sulfamic acid bath having a low electrodeposition stress is preferably used. It is preferable to avoid a strongly acidic wood strike bath.
  • the nickel plating treatment various conventionally known nickel plating techniques can be used as long as the effects of the present invention are not impaired.
  • the nickel plating bath is a liquid composed of nickel salts such as nickel sulfate, nickel sulfamate and nickel chloride, an anodic dissolving agent such as nickel chloride, and a pH buffer such as boric acid, acetic acid and citric acid.
  • An additive with a small amount of brightener, leveling agent, pit inhibitor and the like can be used.
  • the preferred amount of each component is nickel salt: 100 to 600 g / L, anodic dissolving agent: 0 to 50 g / L, pH buffering agent: 20 to 50 g / L, additive: ⁇ 5000 ppm.
  • Nickel plating conditions such as bath temperature, anode material, and current density of the nickel plating bath can be set as appropriate according to the plating bath used, the required plating thickness, and the like.
  • a soluble anode such as a nickel plate
  • Suitable plating conditions include bath temperature: 40 to 60 ° C., current density: 0.1 to 50 A / dm 2 , pH: 3.0 to 5.0.
  • the nickel plating layer 12 formed by the nickel plating process in the first step is preferably a continuous film shape, and the thickness of the nickel plating layer 12 is preferably 0.3 ⁇ m to 4.0 ⁇ m. If it is less than 0.3 ⁇ m, the barrier effect is poor, and if it exceeds 4 ⁇ m, cracks are likely to occur during bending.
  • the thickness of the nickel plating layer 12 is more preferably 0.4 ⁇ m to 2.0 ⁇ m, and most preferably 0.5 ⁇ m to 1.5 ⁇ m.
  • the nickel plating layer 12 may have a granular or island-like discontinuous film shape as long as the effects of the present invention are not impaired. In this case, the granular and island-like portions are partially continuous. Also good.
  • the gold plating flash process is a process for the nickel plating layer 12 formed in the first step (S01), and is mainly a portion that is not a fitting portion (the gold plating layer 14 needs to be thickened). This process is performed to provide corrosion resistance to the non-existing part. Although there is no problem even in the order of the steps of performing the gold plating flash treatment after the gold plating treatment, it is preferable to carry out after the nickel plating from the viewpoint of adhesion. By forming a thin gold plating layer on the surface of the nickel plating layer 12, the adhesion between the gold plating layer 14 and the nickel plating layer 12 formed in the fourth step (S04) can be sufficiently secured.
  • the gold plating flash bath for example, a bath containing a gold salt, a conductive salt, a chelating agent and a crystal growth agent can be used. Further, a brightener may be added to the gold plating flash bath.
  • the gold salt examples include gold cyanide, potassium gold cyanide, potassium gold cyanide, sodium gold sulfite, and sodium gold thiosulfate.
  • the conductive salt for example, potassium citrate, potassium phosphate, potassium pyrophosphate, potassium thiosulfate, or the like can be used.
  • ethylenediaminetetraacetic acid and methylenephosphonic acid can be used as the chelating agent.
  • the crystal growth agent examples include cobalt, nickel, thallium, silver, palladium, tin, zinc, copper, bismuth, indium, arsenic, and cadmium.
  • each component of the gold plating flash bath that can be preferably used for the gold plating flash treatment is gold salt: 1 to 10 g / L, conductive salt: 0 to 200 g / L, chelating agent: 0 to 30 g / L, crystal growth agent: 0 to 30 g / L.
  • the gold plating flash conditions such as the bath temperature, anode material, and current density of the gold plating flash bath can be appropriately set according to the plating bath used, the required plating thickness, and the like.
  • the anode material is preferably a titanium platinum plate and an insoluble anode such as iridium oxide.
  • bath temperature 20 to 40 ° C.
  • current density 0.1 to 5.0 A / dm 2
  • treatment time 1 to 60 seconds
  • pH: 0.5 to 7.0 are exemplified. can do.
  • the masking process is a process for forming a masking layer that prevents the formation of a resist layer in the third step (S03).
  • the masking method is not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known masking methods can be used.
  • Examples of the masking method include a tape, a sparger mask, a drum mask, a resist, a dry film resist, and an ink jet method, and it is preferable to perform masking by combining one or more of these.
  • the surface can be masked at the first stage with a tape or drum mask, and the resist layer can be formed only on the side surface using a liquid resist at the second stage. preferable.
  • the resist After removing the masking, the resist can be cured by exposure with UV light (mercury lamp, metal halide lamp, LED, etc.).
  • the fourth step (S04) is a step for forming the gold plating layer 14 only on the front surface and the back surface of the male terminal 4.
  • a resist layer is formed on both side surfaces of the male terminal 4, and the front and back surfaces of the male terminal 4 are formed by a nickel plating layer 12 or a thin gold plating layer formed by a gold plating flash process. Therefore, the gold plating layer 14 can be formed only on the front surface and the back surface of the male terminal 4 by performing the gold plating process in the fourth step (S04).
  • the thickness of the gold plating layer 14 is preferably 0.2 ⁇ m to 1.0 ⁇ m. By making the thickness of the gold plating layer 14 0.2 ⁇ m or more, the electrical characteristics and durability of gold can be fully utilized, and by using 1.0 ⁇ m or less, the amount of gold used can be suppressed. In addition, deterioration of productivity can be suppressed.
  • the thickness of the gold plating layer 14 is more preferably 0.4 ⁇ m to 0.8 ⁇ m, and most preferably 0.5 ⁇ m to 0.7 ⁇ m.
  • the concentration of the gold salt in the plating bath is higher than that of normal gold flash plating. It is preferable to reduce the concentration of the conductive salt.
  • the gold plating bath that can be suitably used for the gold plating treatment
  • a bath containing a gold salt, a conductive salt, a chelating agent, and a crystal growth agent can be used.
  • a brightener may be added to the gold plating bath.
  • the preferred amount of each component used is: gold salt: 1 to 100 g / L, conductive salt: 10 to 300 g / L, chelating agent: ⁇ 30 g / L, crystal growth material: ⁇ 30 g / L, brightener: 50 to 500 ppm.
  • Examples of the gold salt include gold cyanide, potassium gold cyanide, potassium gold cyanide, sodium gold sulfite, and sodium gold thiosulfate.
  • Examples of the conductive salt include potassium citrate, phosphorus Examples include potassium acid, potassium pyrophosphate and potassium thiosulfate.
  • ethylenediaminetetraacetic acid and methylenephosphonic acid can be used as the chelating agent.
  • crystal growth agent examples include cobalt, nickel, thallium, silver, palladium, tin, zinc, copper, bismuth, indium, arsenic, and cadmium.
  • a pH adjuster you may add polyphosphoric acid, a citric acid, tartaric acid, potassium hydroxide, hydrochloric acid etc., for example.
  • the gold plating conditions such as the bath temperature, anode material, and current density of the gold plating bath can be appropriately set according to the plating bath used, the required plating thickness, and the like.
  • an insoluble anode such as stainless steel, a titanium platinum plate and iridium oxide
  • bath temperature 20 to 50 ° C.
  • current density 0.1 to 5.0 A / dm 2
  • treatment time 1 to 1440 seconds
  • pH 3.0 to 7.0
  • the gold plating layer 14 has a coefficient of dynamic friction with respect to the high carbon chromium bearing steel (SUJ2) of less than 0.2.
  • the Vickers hardness of the gold plating layer 14 is preferably 150 HV to 250 HV.
  • the Vickers hardness and the dynamic friction coefficient can be in the numerical range.
  • Copper strike plating bath containing 30 g / L cuprous bromide, 20 g / L free potassium cyanide, 15 g / L caustic potash after electrolytic degreasing at a voltage of 3 V for 30 seconds using an SUS plate as an anode and washing.
  • Copper strike plating treatment (underlying strike plating treatment) for 10 seconds under conditions of bath temperature: 35 ° C. and current density: 1 A / dm 2 , using an electrolytic copper plate as the anode material and a metal substrate after washing the cathode material. gave.
  • the anode material was As a metal substrate after copper strike plating with a sulfa nickel plate and a cathode material, nickel plating was applied for 200 seconds under the conditions of bath temperature: 50 ° C. and current density: 2 A / dm 2 .
  • a nickel plating layer was formed (first step).
  • the anode material is a titanium platinum plate
  • the cathode material As a metal substrate after nickel plating, a gold plating flash treatment is applied for 2 seconds under the conditions of bath temperature: 40 ° C. and current density: 0.5 A / dm 2 , and gold with a thickness of 0.1 ⁇ m is formed on the entire surface of the nickel plating layer. A plating flash layer was formed.
  • the masking tape was masked on the surface and back surface of the male terminal (2nd process).
  • a resist was applied for 30 seconds at a bath temperature of 35 ° C. and a constant voltage of 30V. Thereafter, the masking tape was peeled off, and the resist was cured by exposure with a UV light (mercury lamp) for 100 seconds (third step). The heat generated during resist exposure was quickly removed by air cooling.
  • a cleaning process was performed using an immersion process instead of an electrolytic process.
  • the anode material is a titanium platinum plate.
  • gold plating is performed for 30 seconds under conditions of bath temperature: 40 ° C. and current density: 1 A / dm 2 , and the resist is stripped using a stripping solution.
  • a gold plating layer having a thickness of 0.5 ⁇ m was formed only on the front and back surfaces of the terminal (fourth step) to obtain a PCB terminal as an example of the present invention.
  • Adhesive evaluation was performed about the plating laminated body produced as mentioned above. When cellophane tape (# 405 manufactured by Nichiban Co., Ltd.) is pressed against the gold plating layer with finger pressure and the cellophane tape is peeled off, no peeling or swelling of the gold plating layer occurs. The results obtained are shown in Table 1.
  • Example 2 A PCB terminal was produced in the same manner as in Example 1 except that the current density of the gold plating treatment in the fourth step was 3 A / dm 2, and various evaluations were performed. The obtained results are shown in Tables 1 and 2.
  • Example 3 A PCB terminal was prepared in the same manner as in Example 1 except that the potassium gold cyanide used for the gold plating treatment in the fourth step was 6 g / L, and various evaluations were performed. The obtained results are shown in Tables 1 and 2.
  • Example 4 A PCB terminal was prepared in the same manner as in Example 1 except that 150 ppm of cobalt sulfate was used for the gold plating treatment in the fourth step, and various evaluations were performed. The obtained results are shown in Tables 1 and 2.
  • the gold plating layer has excellent adhesion with respect to all the PCB terminals obtained in Examples 1 to 4. Also, the Vickers hardness of the gold plating layer is in the range of 150 HV to 250 HV, and has an appropriate hardness. On the other hand, since the PCB terminal obtained in Comparative Example 1 uses the same manufacturing conditions as the examples except for the gold plating treatment, there is no problem with the adhesion of the gold plating layer, but the Vickers hardness is 106.7 HV. It is a low value.
  • the cobalt concentration of the gold plating layer of the example is in the range of 0.1% by mass to 1% by mass.
  • the dynamic friction coefficient of the gold plating layer with respect to the high carbon chromium bearing steel (SUJ2) is less than 0.2 for all the PCB terminals obtained in Examples 1 to 4.
  • the dynamic friction coefficient of the PCB terminal obtained in Comparative Example 1 is 1.37, which is about 10 times higher than that of the PCB terminal obtained in the Example.
  • the wear depth and the wear width are greatly different between the PCB terminal obtained in the example and the PCB terminal obtained in the comparative example. Specifically, as shown in Table 2, the abrasion damage of the PCB terminal obtained in the example is extremely shallow and the width is small. From these results, it can be confirmed that a PCB terminal having excellent wear resistance, slidability and low friction properties and sufficient durability is obtained in the examples.

Abstract

The present invention provides a PCB terminal that has excellent abrasion resistance properties, electrical conductivity, slidability, and low frictional properties and that enables reduction in the amount of gold used, which is expensive. Provided is a comb-like PCB terminal having a plurality of male terminals (4) of a substantially square pillar shape, the PCB terminal being characterized in that: the male terminals (4) each have a nickel plated layer (12) over the entire surface thereof; the surface of the nickel plated layer (12) has a gold plated layer (14) of 0.2-1.0 μm in thickness; and the dynamic friction coefficient of the gold plated layer with respect to high carbon-chromium bearing steel (SUJ2) is a less than 0.2.

Description

PCB端子PCB terminal
 本発明はPCB端子に関し、より具体的には、優れた耐摩耗性、電導性、摺動性及び低摩擦性を有し、かつ、耐久性に優れたPCB端子に関する。 The present invention relates to a PCB terminal, and more specifically, to a PCB terminal having excellent wear resistance, electrical conductivity, slidability, and low friction and excellent durability.
 PCB端子は車載用及び民生用等の各種コネクタに使用されており、プリント回路基板の実装のために不可欠なものである。一般的には、平らなシート状の金属基板を打ち抜くことにより、複数の端子が櫛歯状に並んだ形状を有している。 The PCB terminal is used for various connectors for in-vehicle use and consumer use, and is indispensable for mounting printed circuit boards. Generally, a plurality of terminals are arranged in a comb shape by punching a flat sheet-like metal substrate.
 また、良好な電気接点を実現するために、PCB端子には優れた電気伝導性及び耐摩耗特性等が要求され、雌端子と嵌合する雄端子先端部には表面処理が施されることが多い。例えば、特許文献1(特開2008-287942号公報)では、最表面にSnめっきが施されたPCBコネクタ用端子が提案されている。 Moreover, in order to realize a good electrical contact, the PCB terminal is required to have excellent electrical conductivity and wear resistance characteristics, and the front end portion of the male terminal mated with the female terminal is subjected to surface treatment. Many. For example, Patent Document 1 (Japanese Patent Laid-Open No. 2008-287942) proposes a PCB connector terminal having an outermost surface plated with Sn.
 前記特許文献1に記載のPCBコネクタ用端子においては、嵌合部の摩擦係数を0.26以下、半田付け部のエージング後のゼロクロスタイムを5秒以下とすることができることから、コネクタへの挿入に際しての挿入力の低減と、基板側への半田付け部の半田濡れ性の向上に優れたPCB端子及びその製造方法を提供することができる、としている。 In the PCB connector terminal described in Patent Document 1, the friction coefficient of the fitting portion can be 0.26 or less, and the zero cross time after aging of the soldering portion can be 5 seconds or less. In this case, it is possible to provide a PCB terminal excellent in reduction of insertion force and improvement in solder wettability of a soldered portion on the substrate side, and a manufacturing method thereof.
 また、特許文献2(特開平10-41027号公報)では、構成が簡単で、安価に製造できる表面実装接触ピンを提供するという課題に対して、過度の半田がパッドもしくはランドから半田受け/収容手段中へと除去される、プリント回路基板のための表面実装コネクタピンが提案されており、当該表面実装コネクタピンの一態様として、表面に金めっきが施される場合が示されている。 Further, in Patent Document 2 (Japanese Patent Laid-Open No. 10-41027), in response to the problem of providing a surface mount contact pin that is simple in configuration and can be manufactured at low cost, excessive solder is received / accommodated from the pad or land. Surface mount connector pins for printed circuit boards that have been removed into the means have been proposed, and as one aspect of the surface mount connector pins, the surface is gold plated.
特開2008-287942号公報JP 2008-287942 A 特開平10-41027号公報Japanese Patent Laid-Open No. 10-41027
 しかしながら、前記特許文献1に記載のPCB用端子は摺動特性及び半田濡れ性が改善されているものの、最表面が錫めっき層であり、金めっき層と比較すると電気伝導性や耐久性等に関して十分ではない。 However, although the PCB terminal described in Patent Document 1 has improved sliding characteristics and solder wettability, the outermost surface is a tin-plated layer, and the electrical conductivity, durability, etc. are compared with the gold-plated layer. Not enough.
 また、前記特許文献2に記載の表面実装コネクタピンにおいては、PCB端子に関して好適な金めっき層の特性等については全く検討されていない。加えて、PCB端子を繰り返し使用した場合の耐久性についても考慮されていない。 Further, in the surface mount connector pin described in Patent Document 2, the characteristics of the gold plating layer suitable for the PCB terminal are not studied at all. In addition, the durability when the PCB terminal is repeatedly used is not considered.
 以上のような従来技術における問題点に鑑み、本発明の目的は、優れた耐摩耗特性、電導性、摺動性及び低摩擦性を有し、かつ、十分な耐久性を有するPCB端子を提供することにある。 In view of the above-described problems in the prior art, the object of the present invention is to provide a PCB terminal having excellent wear resistance, electrical conductivity, slidability, and low friction and having sufficient durability. There is to do.
 本発明者は上記目的を達成すべく、PCB端子の表面に形成させる金めっき層について鋭意研究を重ねた結果、基材との密着性を担保しつつ、動摩擦係数等を制御すること等が極めて有効であることを見出し、本発明に到達した。 As a result of intensive research on the gold plating layer formed on the surface of the PCB terminal in order to achieve the above object, the present inventor is able to control the dynamic friction coefficient and the like while ensuring the adhesion to the substrate. The inventors have found that it is effective and have reached the present invention.
 即ち、本発明は、
 略四角柱形状の雄端子を複数有する櫛歯状のPCB端子であって、
 前記雄端子の全面にニッケルめっき層を有し、
 前記ニッケルめっき層の表面に、厚さが0.2μm~1.0μmの金めっき層を有し、
 高炭素クロム軸受鋼(SUJ2)に対する前記金めっき層の動摩擦係数が0.2未満であること、
 を特徴とするPCB端子を提供する。
That is, the present invention
A comb-shaped PCB terminal having a plurality of male terminals having a substantially quadrangular prism shape,
A nickel plating layer on the entire surface of the male terminal;
On the surface of the nickel plating layer, a gold plating layer having a thickness of 0.2 μm to 1.0 μm is provided,
The dynamic friction coefficient of the gold plating layer with respect to high carbon chromium bearing steel (SUJ2) is less than 0.2,
A PCB terminal is provided.
 本発明のPCB端子においては、雌端子と嵌合させた場合に通電に寄与する雄端子の最表面を金めっき層としていることから、十分な電気伝導性を担保することができる。また、金めっき層の厚さを0.2μm以上とすることで、金の電気的特性や耐久性を十分に活用することができ、1.0μm以下とすることで、金の使用量を抑制できることに加え、生産性の悪化を抑制することができる。なお、金めっき層の厚さは0.4μm~0.8μmとすることがより好ましく、0.5μm~0.7μmとすることが最も好ましい。 In the PCB terminal of the present invention, since the outermost surface of the male terminal that contributes to energization when fitted with the female terminal is a gold plating layer, sufficient electrical conductivity can be ensured. In addition, by setting the thickness of the gold plating layer to 0.2 μm or more, the electrical characteristics and durability of gold can be fully utilized, and by using 1.0 μm or less, the amount of gold used is suppressed. In addition to being able to do so, deterioration of productivity can be suppressed. The thickness of the gold plating layer is more preferably 0.4 μm to 0.8 μm, and most preferably 0.5 μm to 0.7 μm.
 また、雄端子の金属基材と金めっき層の間にはニッケルめっき層が形成されており、当該ニッケルめっき層によって、金属基材に含まれる元素と金との拡散及び反応に伴う金属間化合物の形成による金めっき層の脆化を抑制することができる。 In addition, a nickel plating layer is formed between the metal base material of the male terminal and the gold plating layer, and the nickel plating layer allows an intermetallic compound accompanying diffusion and reaction between the elements contained in the metal base material and gold. The embrittlement of the gold plating layer due to the formation of can be suppressed.
 ニッケルめっき層の厚さは0.3μm~4.0μmとすること、が好ましい。ニッケルめっき層の厚さを0.3μm以上とすることで、金属基材に含まれる元素と金との拡散及び反応に伴う金属間化合物の形成による金めっき層の脆化を確実に抑制することができ、4.0μm以下とすることで、ニッケルめっき層が存在することによる導電性及び機械的特性等の低下を抑制することができる。なお、ニッケルめっき層の厚さは、0.4μm~2.0μmとすることがより好ましく、0.5μm~1.5μmとすることが最も好ましい。 The thickness of the nickel plating layer is preferably 0.3 μm to 4.0 μm. By making the thickness of the nickel plating layer 0.3 μm or more, it is possible to reliably suppress embrittlement of the gold plating layer due to the diffusion and reaction between the elements contained in the metal substrate and the formation of intermetallic compounds. When the thickness is 4.0 μm or less, it is possible to suppress a decrease in conductivity and mechanical characteristics due to the presence of the nickel plating layer. The thickness of the nickel plating layer is more preferably 0.4 μm to 2.0 μm, and most preferably 0.5 μm to 1.5 μm.
 また、本発明のPCB端子においては、最表面に形成される金めっき層に関し、高炭素クロム軸受鋼(SUJ2)に対する当該金めっき層の動摩擦係数が0.2未満となっている。金めっき層の動摩擦係数が0.2未満となっていることで、雄端子を抜差しする際の抵抗が適度に低減されることに加え、摩耗による雄端子及び雌端子の損傷を抑制することができる。なお、動摩擦係数の測定は特に限定されず、従来公知の種々の測定方法を用いることができる。 In the PCB terminal of the present invention, the dynamic friction coefficient of the gold plating layer with respect to the high carbon chromium bearing steel (SUJ2) is less than 0.2 with respect to the gold plating layer formed on the outermost surface. Since the dynamic friction coefficient of the gold plating layer is less than 0.2, the resistance when inserting and removing the male terminal is moderately reduced, and the damage of the male terminal and the female terminal due to wear can be suppressed. it can. In addition, the measurement of a dynamic friction coefficient is not specifically limited, A conventionally well-known various measuring method can be used.
 また、本発明のPCB端子においては、前記金めっき層のビッカース硬度が150HV~250HVであること、が好ましい。ビッカース硬度を150HV以上とすることでPCB端子の耐久性を向上させることができ、250HV以下とすることで、雄端子と雌端子の摺動による雌端子の損傷を抑制することができる。 In the PCB terminal of the present invention, it is preferable that the gold plating layer has a Vickers hardness of 150 HV to 250 HV. By setting the Vickers hardness to 150 HV or higher, the durability of the PCB terminal can be improved. By setting the Vickers hardness to 250 HV or lower, damage to the female terminal due to sliding between the male terminal and the female terminal can be suppressed.
 また、本発明のPCB端子においては、前記金めっき層のコバルト濃度が0.1質量%~1質量%であること、が好ましい。コバルト濃度を0.1質量%~1質量%とすることで、ビッカース硬度及び動摩擦係数を上記の数値範囲とすることができる。 In the PCB terminal of the present invention, it is preferable that the cobalt concentration of the gold plating layer is 0.1% by mass to 1% by mass. By setting the cobalt concentration to 0.1% by mass to 1% by mass, the Vickers hardness and the dynamic friction coefficient can be in the above numerical range.
 また、本発明のPCB端子においては、厚さが0超0.1μm以下の金フラッシュめっき層を介して、前記金めっき層が前記ニッケルめっき層の表面に形成されていること、が好ましい。金めっき層が金フラッシュめっき層を介してニッケルめっき層に形成されることで、金めっき層とニッケルめっき層の密着性を十分に担保することができる。その結果、金めっき層が極めて薄い場合でなくても、金めっき層がニッケルめっき層から剥離等することを抑制することができる。 Further, in the PCB terminal of the present invention, it is preferable that the gold plating layer is formed on the surface of the nickel plating layer through a gold flash plating layer having a thickness of more than 0 and 0.1 μm or less. By forming the gold plating layer on the nickel plating layer via the gold flash plating layer, the adhesion between the gold plating layer and the nickel plating layer can be sufficiently secured. As a result, even if the gold plating layer is not extremely thin, the gold plating layer can be prevented from peeling off from the nickel plating layer.
 また、本発明のPCB端子においては、前記ニッケルめっき層が下地ストライクめっき層を介して前記雄端子の表面に形成されており、前記下地ストライクめっき層として、銅ストライクめっき層又はニッケルストライクめっき層のうちの少なくとも一つが形成されていること、が好ましい。ニッケルめっき層が下地ストライクめっき層を介して金属基材に形成されていることで、ニッケルめっき層と金属基材の密着性を十分に担保することができる。 Further, in the PCB terminal of the present invention, the nickel plating layer is formed on the surface of the male terminal via a base strike plating layer, and the base strike plating layer is a copper strike plating layer or a nickel strike plating layer. It is preferable that at least one of them is formed. Since the nickel plating layer is formed on the metal substrate via the base strike plating layer, the adhesion between the nickel plating layer and the metal substrate can be sufficiently ensured.
 更に、本発明のPCB端子においては、前記金めっき層が、前記雄端子の表面側及び裏面側にのみ形成されていること、が好ましい。嵌合時に主として雌端子に接触する雄端子の表面及び裏面に金めっき層が形成されていることから、十分な通電特性を担保することができる。一方で、通電特性に殆ど寄与しない雄端子の両側面には金めっき層が形成されておらず、金の使用量が最小限に留められている。 Furthermore, in the PCB terminal of the present invention, it is preferable that the gold plating layer is formed only on the front side and the back side of the male terminal. Since the gold plating layer is formed on the front surface and the back surface of the male terminal that mainly contacts the female terminal at the time of fitting, sufficient energization characteristics can be ensured. On the other hand, gold plating layers are not formed on both side surfaces of the male terminal that hardly contributes to the current-carrying characteristics, and the amount of gold used is kept to a minimum.
 本発明のPCB端子によれば、優れた耐摩耗特性、電導性、摺動性及び低摩擦性を有し、かつ、十分な耐久性を有するPCB端子を提供することにある。 According to the PCB terminal of the present invention, it is an object to provide a PCB terminal having excellent wear resistance, electrical conductivity, slidability, and low friction and having sufficient durability.
本発明のPCB端子の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the PCB terminal of this invention. 雄端子4のA-A’断面図である。3 is a cross-sectional view of the male terminal 4 taken along the line A-A ′. FIG. 本発明のPCB端子の製造方法の工程図である。It is process drawing of the manufacturing method of the PCB terminal of this invention.
 以下、図面を参照しながら本発明のPCB端子の代表的な実施形態及び当該PCB端子の製造方法について詳細に説明するが、本発明はこれらのみに限定されるものではない。
 なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する場合がある。また、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。
Hereinafter, a representative embodiment of a PCB terminal of the present invention and a method of manufacturing the PCB terminal will be described in detail with reference to the drawings. However, the present invention is not limited to these.
In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description may be omitted. Further, since the drawings are for conceptually explaining the present invention, the dimensions and ratios of the components shown may be different from the actual ones.
≪PCB端子≫
 図1は、本発明のPCB端子の一例を示す概略斜視図である。PCB端子1は金属基材2の端部に複数の略四角柱状の雄端子4が並列した櫛歯状となっている。なお、PCB端子1は本発明のPCB端子の製造方法を用いることで、効率的に製造することができる。
≪PCB terminal≫
FIG. 1 is a schematic perspective view showing an example of a PCB terminal of the present invention. The PCB terminal 1 has a comb-teeth shape in which a plurality of substantially quadrangular columnar male terminals 4 are arranged in parallel at the end of the metal base 2. The PCB terminal 1 can be efficiently manufactured by using the PCB terminal manufacturing method of the present invention.
 基本的に金属基材2と雄端子4は同一の材質であり、電導性を有している限り特に限定されず、例えば、アルミニウム及びアルミニウム合金、鉄及び鉄合金(例えば、鉄-ニッケル合金)、チタン及びチタン合金、ステンレス、銅及び銅合金等を挙げることができるが、なかでも、電導性・熱伝導性・展延性に優れているという理由から、銅又は真鍮を用いることが好ましい。 Basically, the metal substrate 2 and the male terminal 4 are made of the same material and are not particularly limited as long as they have electrical conductivity. For example, aluminum and aluminum alloy, iron and iron alloy (for example, iron-nickel alloy) , Titanium and titanium alloys, stainless steel, copper and copper alloys, and the like. Among these, copper or brass is preferably used because of its excellent electrical conductivity, thermal conductivity, and extensibility.
 雄端子4のA-A’断面図を図2に示す。雄端子4においては、金属基材2の表面にニッケルめっき層12が形成されており、ニッケルめっき層12の表面に金フラッシュめっき層(図示せず)を介して金めっき層14が形成されている。金フラッシュめっき層を形成させることで、ニッケルめっき層12と金めっき層14との密着性を十分に担保することができる。その結果、金めっき層14が極めて薄い場合でなくても、金めっき層14がニッケルめっき層12から剥離等することを抑制することができる。 A cross-sectional view of the male terminal 4 taken along the line A-A 'is shown in FIG. In the male terminal 4, a nickel plating layer 12 is formed on the surface of the metal substrate 2, and a gold plating layer 14 is formed on the surface of the nickel plating layer 12 via a gold flash plating layer (not shown). Yes. By forming the gold flash plating layer, the adhesion between the nickel plating layer 12 and the gold plating layer 14 can be sufficiently secured. As a result, even if the gold plating layer 14 is not extremely thin, the gold plating layer 14 can be prevented from peeling off from the nickel plating layer 12.
 金めっき層14は雄端子4の全面に形成させてもよいが、雌端子と当接する雄端子4の表面及び裏面のみに形成させることが好ましい。なお、金フラッシュめっき層はニッケルめっき層12の全面に形成していてもよく、金めっき層14を形成させる雄端子4の表面及び裏面のみに形成させてもよい。 The gold plating layer 14 may be formed on the entire surface of the male terminal 4, but is preferably formed only on the front surface and the back surface of the male terminal 4 in contact with the female terminal. The gold flash plating layer may be formed on the entire surface of the nickel plating layer 12, or may be formed only on the front and back surfaces of the male terminal 4 on which the gold plating layer 14 is formed.
 金めっき層14の厚さは0.2μm~1.0μmとなっている。金めっき層14の厚さを0.2μm以上とすることで、金の電気的特性や耐久性を十分に活用することができ、1.0μm以下とすることで、金の使用量を抑制できることに加え、生産性の悪化を抑制することができる。なお、金めっき層14の厚さは0.4μm~0.8μmとすることがより好ましく、0.5μm~0.7μmとすることが最も好ましい。 The thickness of the gold plating layer 14 is 0.2 μm to 1.0 μm. By making the thickness of the gold plating layer 14 0.2 μm or more, the electrical characteristics and durability of gold can be fully utilized, and by using 1.0 μm or less, the amount of gold used can be suppressed. In addition, deterioration of productivity can be suppressed. The thickness of the gold plating layer 14 is more preferably 0.4 μm to 0.8 μm, and most preferably 0.5 μm to 0.7 μm.
 また、金フラッシュめっき層の厚さは0超0.1μm以下であることが好ましい。なお、金フラッシュめっき層の厚さは0.08μm以下とすることがより好ましく、0.06μm以下とすることが最も好ましい。金フラッシュめっき層の厚さを0.1μm以下とすることで、金の使用量増加及び生産性の悪化を抑制することができる。 The thickness of the gold flash plating layer is preferably more than 0 and 0.1 μm or less. The thickness of the gold flash plating layer is more preferably 0.08 μm or less, and most preferably 0.06 μm or less. By setting the thickness of the gold flash plating layer to 0.1 μm or less, an increase in the amount of gold used and a deterioration in productivity can be suppressed.
 PCB端子1では、嵌合時に雌端子と当接する雄端子4の表面に金めっき層14が形成していることから、金めっき層14が有する優れた耐摩耗性、低い電気抵抗、及び良好な耐熱性を利用することができ、PCB端子として要求される導電性及び耐久性等を十分に確保することができる。更に、雄端子4の両側面には金めっき層14を形成させず、表面及び裏面のみに金めっき層14を形成させることで、金の使用量を必要最小限に抑えることができる。 In the PCB terminal 1, since the gold plating layer 14 is formed on the surface of the male terminal 4 that contacts the female terminal at the time of fitting, the gold plating layer 14 has excellent wear resistance, low electrical resistance, and good Heat resistance can be utilized, and the conductivity and durability required for a PCB terminal can be sufficiently ensured. Furthermore, by not forming the gold plating layer 14 on both side surfaces of the male terminal 4, but forming the gold plating layer 14 only on the front surface and the back surface, the amount of gold used can be minimized.
 また、金めっき層14は、高炭素クロム軸受鋼(SUJ2)に対する動摩擦係数が0.2未満となっている。当該動摩擦係数が0.2未満となっていることで、雄端子4を抜差しする際の抵抗が適度に低減されることに加え、摩耗による雄端子4及び雌端子の損傷を抑制することができる。なお、動摩擦係数の測定は特に限定されず、従来公知の種々の測定方法を用いることができ、例えば、新東科学株式会社製のHEIDON-14を用いて測定することができる。 Further, the gold plating layer 14 has a coefficient of dynamic friction with respect to the high carbon chromium bearing steel (SUJ2) of less than 0.2. Since the dynamic friction coefficient is less than 0.2, the resistance when the male terminal 4 is inserted and removed is moderately reduced, and damage to the male terminal 4 and the female terminal due to wear can be suppressed. . The measurement of the dynamic friction coefficient is not particularly limited, and various conventionally known measurement methods can be used. For example, the dynamic friction coefficient can be measured using HEIDON-14 manufactured by Shinto Kagaku Co., Ltd.
 また、金めっき層14のビッカース硬度は150HV~250HVであること、が好ましい。ビッカース硬度を150HV以上とすることでPCB端子1の耐久性を向上させることができ、250HV以下とすることで、雄端子4と雌端子の摺動による雌端子の損傷を抑制することができる。 Further, the Vickers hardness of the gold plating layer 14 is preferably 150 HV to 250 HV. By setting the Vickers hardness to 150 HV or higher, the durability of the PCB terminal 1 can be improved. By setting the Vickers hardness to 250 HV or lower, damage to the female terminal due to sliding between the male terminal 4 and the female terminal can be suppressed.
 また、金めっき層14のコバルト濃度は0.1質量%~1質量%であること、が好ましい。コバルト濃度を0.1質量%~1質量%とすることで、ビッカース硬度及び動摩擦係数を上記の数値範囲とすることができる。 The cobalt concentration of the gold plating layer 14 is preferably 0.1% by mass to 1% by mass. By setting the cobalt concentration to 0.1% by mass to 1% by mass, the Vickers hardness and the dynamic friction coefficient can be in the above numerical range.
 また、PCB端子1においては、ニッケルめっき層12が下地ストライクめっき層を介して雄端子4の表面に形成されており、前記下地ストライクめっき層として、銅ストライクめっき層及びニッケルストライクめっき層のうちの少なくとも一つが形成されていること、が好ましい。ニッケルめっき層12が下地ストライクめっき層を介して金属基材2に形成されていることで、ニッケルめっき層12と金属基材2の密着性を十分に担保することができる。 Further, in the PCB terminal 1, a nickel plating layer 12 is formed on the surface of the male terminal 4 via a base strike plating layer, and the base strike plating layer includes a copper strike plating layer and a nickel strike plating layer. It is preferable that at least one is formed. Since the nickel plating layer 12 is formed on the metal substrate 2 via the base strike plating layer, the adhesion between the nickel plating layer 12 and the metal substrate 2 can be sufficiently secured.
 また、PCB端子1では金属基材2と金めっき層14との間にニッケルめっき層12が存在するため、ニッケルめっき層12が金属基材2に含まれる元素と金との拡散及び反応を防止するバリア層として機能する。つまり、金属基材2と金めっき層14との間にニッケルめっき層12が存在することで、金属基材2に含まれる元素と金との拡散及び反応に伴う金属間化合物の形成による、金めっき層14の脆化を抑制することができる。 Moreover, since the nickel plating layer 12 exists between the metal base material 2 and the gold plating layer 14 in the PCB terminal 1, the nickel plating layer 12 prevents diffusion and reaction between the elements contained in the metal base material 2 and gold. Functions as a barrier layer. In other words, the presence of the nickel plating layer 12 between the metal base 2 and the gold plating layer 14 allows the gold contained in the metal base 2 to diffuse and react with the gold to form an intermetallic compound. The embrittlement of the plating layer 14 can be suppressed.
 ニッケルめっき層12は、連続する膜形状であることが好ましく、ニッケルめっき層12の厚さは0.3μm~4.0μmであることが好ましい。0.3μm未満であるとバリア効果に乏しく、4μm超であると曲げ加工時にクラックが発生しやすくなる。ニッケルめっき層12の厚さは、0.4μm~2.0μmとすることがより好ましく、0.5μm~1.5μmとすることが最も好ましい。なお、ニッケルめっき層12は、本発明の効果を損なわない範囲で、粒状や島状の不連続な膜形状であってもよく、その場合、粒状及び島状部分が部分的に連続していてもよい。 The nickel plating layer 12 preferably has a continuous film shape, and the thickness of the nickel plating layer 12 is preferably 0.3 μm to 4.0 μm. If it is less than 0.3 μm, the barrier effect is poor, and if it exceeds 4 μm, cracks are likely to occur during bending. The thickness of the nickel plating layer 12 is more preferably 0.4 μm to 2.0 μm, and most preferably 0.5 μm to 1.5 μm. The nickel plating layer 12 may have a granular or island-like discontinuous film shape as long as the effects of the present invention are not impaired. In this case, the granular and island-like portions are partially continuous. Also good.
 更に、摺動摩耗が顕著な雄端子4の表面及び裏面の最表面を金めっき層14とすることで、摺動摩耗によって飛散した金属片を原因とする、発火及び感電等の重大な事故を防止することができる。 Further, by making the outermost surface of the male terminal 4 and the back surface of the male terminal 4 where the sliding wear is remarkable, a serious accident such as ignition and electric shock caused by a metal piece scattered by the sliding wear. Can be prevented.
≪PCB端子の製造方法≫
 図3は、本発明のPCB端子の製造方法の工程図である。PCB端子1は雄端子4の最表面に金めっき層14が形成されたものであるが、ここでは使用時に雌端子と当接する雄端子4の表面及び裏面のみに金めっき層14を形成させたPCB端子1の製造方法について詳述する。当該製造方法は、PCB端子1の形状とした金属基材2にニッケルめっきを施し、雄端子4の全面にニッケルめっき層12を形成させる第一工程(S01)と、雄端子4の表面及び裏面にマスキング層を形成させる第二工程(S02)と、雄端子4の両側面にレジスト層を形成させる第三工程(S03)と、雄端子4の表面及び裏面に金めっき層14を形成させる第四工程(S04)と、を含むことを特徴としている。以下、各工程について詳細に説明する。
≪PCB terminal manufacturing method≫
FIG. 3 is a process diagram of a method of manufacturing a PCB terminal according to the present invention. The PCB terminal 1 has a gold plating layer 14 formed on the outermost surface of the male terminal 4. Here, the gold plating layer 14 is formed only on the front surface and the back surface of the male terminal 4 that contacts the female terminal during use. A method for manufacturing the PCB terminal 1 will be described in detail. The manufacturing method includes a first step (S01) in which nickel plating is performed on the metal substrate 2 having the shape of the PCB terminal 1 to form a nickel plating layer 12 on the entire surface of the male terminal 4, and the front and back surfaces of the male terminal 4 A second step (S02) in which a masking layer is formed, a third step (S03) in which a resist layer is formed on both side surfaces of the male terminal 4, and a gold plating layer 14 is formed on the front and back surfaces of the male terminal 4. And four steps (S04). Hereinafter, each step will be described in detail.
(1)予備処理
 金属基材2はPCB端子1の形状に加工されており、略四角柱形状の雄端子4を複数有する櫛歯状となっている。ここで、端子の形状、大きさ及び本数等は特に限定されず、PCB端子1としての要求に応じて決定すればよい。
(1) Pretreatment The metal base material 2 is processed into the shape of the PCB terminal 1 and has a comb-teeth shape having a plurality of male terminals 4 having a substantially quadrangular prism shape. Here, the shape, size, number, and the like of the terminals are not particularly limited, and may be determined according to the requirements as the PCB terminal 1.
 金属基材2に用いる金属は、電導性を有している限り特に限定されず、例えば、アルミニウム及びアルミニウム合金、鉄及び鉄合金(例えば、鉄-ニッケル合金)、チタン及びチタン合金、ステンレス、銅及び銅合金等を挙げることができるが、なかでも、電導性・熱伝導性・展延性に優れているという理由から、銅又は真鍮を用いることが好ましい。 The metal used for the metal substrate 2 is not particularly limited as long as it has electrical conductivity. For example, aluminum and aluminum alloy, iron and iron alloy (for example, iron-nickel alloy), titanium and titanium alloy, stainless steel, copper In particular, copper or brass is preferably used because of its excellent electrical conductivity, thermal conductivity, and spreadability.
 また、各種めっき処理の予備処理として、金属基材2の洗浄を施すことが好ましい。金属基材2の洗浄方法は本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の洗浄方法を用いることができる。洗浄処理液としては、例えば、一般的な浸漬脱脂液や電解脱脂液を使用することができる。 Moreover, it is preferable to wash the metal substrate 2 as a preliminary treatment for various plating treatments. The method for cleaning the metal substrate 2 is not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known cleaning methods can be used. As the cleaning treatment liquid, for example, a general immersion degreasing liquid or electrolytic degreasing liquid can be used.
(2)下地ストライクめっき処理
 下地ストライクめっき処理は、第一工程(S01)の予備処理であり、金属基材2とニッケルめっき層12との密着性を改善する必要がある場合は施すことが好ましい。下地ストライクめっき処理としては、例えば、銅ストライクめっき処理、ニッケルストライクめっき処理等を用いることができる。
(2) Base Strike Plating Treatment The base strike plating treatment is a preliminary treatment in the first step (S01), and is preferably performed when it is necessary to improve the adhesion between the metal substrate 2 and the nickel plating layer 12. . As the base strike plating treatment, for example, a copper strike plating treatment, a nickel strike plating treatment, or the like can be used.
(A)銅ストライクめっき
 銅ストライクめっき浴としては、例えば、銅塩・電導塩を含むものを用いることができる。また、光沢剤が添加されていてもよい。
(A) Copper strike plating As a copper strike plating bath, what contains a copper salt and a conductive salt can be used, for example. Further, a brightener may be added.
 銅ストライクめっき処理に好適に用いることができる銅ストライクめっき浴は例えば、シアン化銅浴を用いることができる。シアン化銅浴は、銅塩、シアン化アルカリ塩及び電導塩により構成され、添加剤や光沢剤が添加されてもよい。 For example, a copper cyanide bath can be used as the copper strike plating bath that can be suitably used for the copper strike plating treatment. The copper cyanide bath is composed of a copper salt, an alkali cyanide salt and a conductive salt, and an additive or a brightener may be added thereto.
 銅塩としては、例えば、シアン化銅を用いることが出来る。シアン化アルカリ塩には、例えば、シアン化カリウム及びシアン化ナトリウム等を用いることができる。電導塩には、例えば、炭酸カリウム及び炭酸ナトリウム等を用いることができる。添加剤には、例えば、ロッシェル塩、亜セレン酸カリウム、亜セレン酸ナトリウム、チオシアン酸カリウム、酢酸鉛、酒石酸鉛等を用いることができる。 As the copper salt, for example, copper cyanide can be used. For example, potassium cyanide and sodium cyanide can be used as the alkali cyanide salt. For example, potassium carbonate and sodium carbonate can be used as the conductive salt. As the additive, for example, Rochelle salt, potassium selenite, sodium selenite, potassium thiocyanate, lead acetate, lead tartrate and the like can be used.
 銅ストライクめっき浴の浴温度、陽極材料、電流密度等の銅ストライクめっき条件は、用いるめっき浴及び必要とするめっき厚さ等に応じて適宜設定することができる。例えば、陽極材料には、電解銅等の可溶性陽極、及び/又は、ステンレス鋼、チタン白金板、酸化イリジウム等の不溶性陽極等を用いることが好ましい。また、好適なめっき条件としては、浴温:25~70℃、電流密度:0.1~6.0A/dm、処理時間:5~60秒を例示することができる。 The copper strike plating conditions such as bath temperature, anode material, and current density of the copper strike plating bath can be appropriately set according to the plating bath used, the required plating thickness, and the like. For example, as the anode material, it is preferable to use a soluble anode such as electrolytic copper and / or an insoluble anode such as stainless steel, a titanium platinum plate, and iridium oxide. Suitable plating conditions include bath temperature: 25 to 70 ° C., current density: 0.1 to 6.0 A / dm 2 , and processing time: 5 to 60 seconds.
(B)ニッケルストライクめっき
 ニッケルストライクめっき浴としては、例えば、ニッケル塩、陽極溶解促進剤及びpH緩衝剤を含むものを用いることができる。また、ニッケルストライクめっき浴には添加剤が添加されていてもよい。
(B) Nickel strike plating As a nickel strike plating bath, what contains nickel salt, an anodic dissolution promoter, and a pH buffer can be used, for example. Further, an additive may be added to the nickel strike plating bath.
 ニッケル塩には、例えば、硫酸ニッケル、スルファミン酸ニッケル及び塩化ニッケル等を用いることができる。陽極溶解促進剤には、例えば、塩化ニッケル及び塩酸等を用いることができる。pH緩衝剤には、例えば、ホウ酸、酢酸ニッケル及びクエン酸等を用いることができる。添加剤には、例えば、1次光沢剤(サッカリン、ベンゼン、ナフタレン(ジ、トリ)、スルホン酸ナトリウム、スルホンアミド、スルフィン酸等)、2次光沢剤(有機化合物:ブチンジオール、クマリン、アリルアルデヒドスルホン酸等、金属塩:コバルト、鉛、亜鉛等)及びピット防止剤(ラウリル硫酸ナトリウム等)等を用いることができる。 As the nickel salt, for example, nickel sulfate, nickel sulfamate, nickel chloride and the like can be used. As the anodic dissolution accelerator, for example, nickel chloride and hydrochloric acid can be used. As the pH buffering agent, for example, boric acid, nickel acetate, citric acid and the like can be used. Examples of additives include primary brighteners (saccharin, benzene, naphthalene (di, tri), sodium sulfonate, sulfonamide, sulfinic acid, etc.), secondary brighteners (organic compounds: butynediol, coumarin, allylaldehyde). A sulfonic acid or the like, a metal salt: cobalt, lead, zinc or the like) and a pit inhibitor (such as sodium lauryl sulfate) can be used.
 ニッケルストライクめっき処理に好適に用いることができるニッケルストライクめっき浴の各構成要素の好適な使用量は、ニッケル塩:100~300g/L、陽極溶解促進剤:0~300g/L、pH緩衝剤:0~50g/L、添加剤:0~20g/Lである。 The preferred amount of each component of the nickel strike plating bath that can be suitably used for the nickel strike plating treatment is nickel salt: 100 to 300 g / L, anodic dissolution accelerator: 0 to 300 g / L, pH buffer: 0 to 50 g / L, additive: 0 to 20 g / L.
 ニッケルストライクめっき浴の浴温度、陽極材料、電流密度等のニッケルストライクめっき条件は、用いるめっき浴及び必要とするめっき厚さ等に応じて適宜設定することができる。例えば、陽極材料には、電解ニッケル、カーボナイズドニッケル、デポライズドニッケル、サルファニッケル等の可溶性陽極等を用いることが好ましい。また、好適なめっき条件としては、浴温:20~30℃、電流密度:1.0~5.0A/dm、処理時間:1~30秒、pH:0.5~4.5を例示することができる。 Nickel strike plating conditions such as bath temperature, anode material, and current density of the nickel strike plating bath can be appropriately set according to the plating bath used, the required plating thickness, and the like. For example, as the anode material, it is preferable to use a soluble anode such as electrolytic nickel, carbonized nickel, depolarized nickel, and sulfur nickel. Further, as preferable plating conditions, bath temperature: 20 to 30 ° C., current density: 1.0 to 5.0 A / dm 2 , treatment time: 1 to 30 seconds, pH: 0.5 to 4.5 can do.
(3)ニッケルめっき処理(第一工程(S01))
 ニッケルめっき処理は、金属基材2と金めっき層14との間において、金属基材2に含まれる元素と金との拡散及び反応を防止するバリア層として機能するニッケルめっき層12を形成させるために施される処理である。金属基材2と金めっき層14との間にニッケルめっき層12が存在することで、金属基材2に含まれる元素と金との拡散及び反応に伴う金属間化合物の形成による金めっき層14の脆化を抑制することができる。
(3) Nickel plating treatment (first step (S01))
The nickel plating treatment is performed to form a nickel plating layer 12 that functions as a barrier layer that prevents diffusion and reaction between elements contained in the metal substrate 2 and gold between the metal substrate 2 and the gold plating layer 14. It is a process given to. By the presence of the nickel plating layer 12 between the metal substrate 2 and the gold plating layer 14, the gold plating layer 14 is formed by the formation of an intermetallic compound associated with the diffusion and reaction between the elements contained in the metal substrate 2 and gold. Embrittlement can be suppressed.
 ニッケルめっき浴としては、例えば、ワット浴やスルファミン酸浴を用いることができるが、電着応力の低いスルファミン酸浴を用いることが好ましい。なお、強酸性のウッドストライク浴は避ける方が好ましい。ニッケルめっき処理には、本発明の効果を損なわない範囲で従来公知の種々のニッケルめっき手法を用いることができる。例えば、ニッケルめっき浴は硫酸ニッケル・スルファミン酸ニッケル・塩化ニッケル等のニッケル塩と、塩化ニッケル等の陽極溶解剤と、ホウ酸・酢酸・クエン酸等のpH緩衝剤とで構成された液に、添加剤として少量の光沢剤やレベリング剤、ピット防止剤等を添加したものを用いることができる。各構成要素の好適な使用量は、ニッケル塩:100~600g/L、陽極溶解剤:0~50g/L、pH緩衝剤:20~50g/L、添加剤:~5000ppmである。 As the nickel plating bath, for example, a watt bath or a sulfamic acid bath can be used, but a sulfamic acid bath having a low electrodeposition stress is preferably used. It is preferable to avoid a strongly acidic wood strike bath. For the nickel plating treatment, various conventionally known nickel plating techniques can be used as long as the effects of the present invention are not impaired. For example, the nickel plating bath is a liquid composed of nickel salts such as nickel sulfate, nickel sulfamate and nickel chloride, an anodic dissolving agent such as nickel chloride, and a pH buffer such as boric acid, acetic acid and citric acid. An additive with a small amount of brightener, leveling agent, pit inhibitor and the like can be used. The preferred amount of each component is nickel salt: 100 to 600 g / L, anodic dissolving agent: 0 to 50 g / L, pH buffering agent: 20 to 50 g / L, additive: ˜5000 ppm.
 ニッケルめっき浴の浴温度、陽極材料、電流密度等のニッケルめっき条件は、用いるめっき浴及び必要とするめっき厚さ等に応じて適宜設定することができる。例えば、陽極材料には、ニッケル板等の可溶性陽極を用いることが好ましい。また、好適なめっき条件としては、浴温:40~60℃、電流密度:0.1~50A/dm、pH:3.0~5.0を例示することができる。 Nickel plating conditions such as bath temperature, anode material, and current density of the nickel plating bath can be set as appropriate according to the plating bath used, the required plating thickness, and the like. For example, it is preferable to use a soluble anode such as a nickel plate as the anode material. Suitable plating conditions include bath temperature: 40 to 60 ° C., current density: 0.1 to 50 A / dm 2 , pH: 3.0 to 5.0.
 なお、第一工程のニッケルめっき処理によって形成されるニッケルめっき層12は、連続する膜形状であることが好ましく、ニッケルめっき層12の厚さは0.3μm~4.0μmであることが好ましい。0.3μm未満であるとバリア効果に乏しく、4μm超であると曲げ加工時にクラックが発生しやすくなる。ニッケルめっき層12の厚さは、0.4μm~2.0μmとすることがより好ましく、0.5μm~1.5μmとすることが最も好ましい。なお、ニッケルめっき層12は、本発明の効果を損なわない範囲で、粒状や島状の不連続な膜形状であってもよく、その場合、粒状及び島状部分が部分的に連続していてもよい。 The nickel plating layer 12 formed by the nickel plating process in the first step is preferably a continuous film shape, and the thickness of the nickel plating layer 12 is preferably 0.3 μm to 4.0 μm. If it is less than 0.3 μm, the barrier effect is poor, and if it exceeds 4 μm, cracks are likely to occur during bending. The thickness of the nickel plating layer 12 is more preferably 0.4 μm to 2.0 μm, and most preferably 0.5 μm to 1.5 μm. The nickel plating layer 12 may have a granular or island-like discontinuous film shape as long as the effects of the present invention are not impaired. In this case, the granular and island-like portions are partially continuous. Also good.
(4)金めっきフラッシュ処理
 金めっきフラッシュ処理は、第一工程(S01)で形成させたニッケルめっき層12に対する処理であり、主として、嵌合部ではない部分(金めっき層14を厚くする必要がない部分)に耐食性をもたせる為に行う処理である。金めっき処理後に金めっきフラッシュ処理を行うという工程順でも問題ないが、密着性の観点から、ニッケルめっき後に施すことが好ましい。ニッケルめっき層12の表面に薄い金めっき層を形成させることで、第四工程(S04)において形成させる金めっき層14とニッケルめっき層12との密着性を十分に担保することができる。
(4) Gold plating flash process The gold plating flash process is a process for the nickel plating layer 12 formed in the first step (S01), and is mainly a portion that is not a fitting portion (the gold plating layer 14 needs to be thickened). This process is performed to provide corrosion resistance to the non-existing part. Although there is no problem even in the order of the steps of performing the gold plating flash treatment after the gold plating treatment, it is preferable to carry out after the nickel plating from the viewpoint of adhesion. By forming a thin gold plating layer on the surface of the nickel plating layer 12, the adhesion between the gold plating layer 14 and the nickel plating layer 12 formed in the fourth step (S04) can be sufficiently secured.
 金めっきフラッシュ浴としては、例えば、金塩、電導塩、キレート剤及び結晶成長剤を含むものを用いることができる。また、金めっきフラッシュ浴には光沢剤が添加されていてもよい。 As the gold plating flash bath, for example, a bath containing a gold salt, a conductive salt, a chelating agent and a crystal growth agent can be used. Further, a brightener may be added to the gold plating flash bath.
 金塩には、例えば、シアン化金、シアン化第一金カリウム、シアン化第二金カリウム、亜硫酸金ナトリウム及びチオ硫酸金ナトリウム等を用いることができる。電導塩には、例えば、クエン酸カリウム、リン酸カリウム、ピロリン酸カリウム及びチオ硫酸カリウム等を用いることができる。キレート剤には、例えば、エチレンジアミン四酢酸及びメチレンホスホン酸等を用いることができる。結晶成長剤には、例えば、コバルト、ニッケル、タリウム、銀、パラジウム、錫、亜鉛、銅、ビスマス、インジウム、ヒ素及びカドミウム等を用いることができる。なお、pH調整剤として、例えば、ポリリン酸、クエン酸、酒石酸、水酸化カリウム及び塩酸等を添加してもよい。 Examples of the gold salt include gold cyanide, potassium gold cyanide, potassium gold cyanide, sodium gold sulfite, and sodium gold thiosulfate. As the conductive salt, for example, potassium citrate, potassium phosphate, potassium pyrophosphate, potassium thiosulfate, or the like can be used. For example, ethylenediaminetetraacetic acid and methylenephosphonic acid can be used as the chelating agent. Examples of the crystal growth agent that can be used include cobalt, nickel, thallium, silver, palladium, tin, zinc, copper, bismuth, indium, arsenic, and cadmium. In addition, as a pH adjuster, you may add polyphosphoric acid, a citric acid, tartaric acid, potassium hydroxide, hydrochloric acid etc., for example.
 金めっきフラッシュ処理に好適に用いることができる金めっきフラッシュ浴の各構成要素の好適な使用量は、金塩:1~10g/L、電導塩:0~200g/L、キレート剤:0~30g/L、結晶成長剤:0~30g/Lである。 The preferred amount of each component of the gold plating flash bath that can be preferably used for the gold plating flash treatment is gold salt: 1 to 10 g / L, conductive salt: 0 to 200 g / L, chelating agent: 0 to 30 g / L, crystal growth agent: 0 to 30 g / L.
 金めっきフラッシュ浴の浴温度、陽極材料、電流密度等の金めっきフラッシュ条件は、用いるめっき浴及び必要とするめっき厚さ等に応じて適宜設定することができる。例えば、陽極材料には、チタン白金板及び酸化イリジウム等の不溶性陽極等を用いることが好ましい。また、好適なめっき条件としては、浴温:20~40℃、電流密度:0.1~5.0A/dm、処理時間:1~60秒、pH:0.5~7.0を例示することができる。 The gold plating flash conditions such as the bath temperature, anode material, and current density of the gold plating flash bath can be appropriately set according to the plating bath used, the required plating thickness, and the like. For example, the anode material is preferably a titanium platinum plate and an insoluble anode such as iridium oxide. Further, as preferable plating conditions, bath temperature: 20 to 40 ° C., current density: 0.1 to 5.0 A / dm 2 , treatment time: 1 to 60 seconds, pH: 0.5 to 7.0 are exemplified. can do.
(5)マスキング処理(第二工程(S02))
 マスキング処理は、第三工程(S03)におけるレジスト層の形成を防止するマスキング層を形成するための処理である。なお、マスキング処理の前には、各種めっき処理を施した金属基材2を乾燥機等にて乾燥させておくことが好ましい。ここで、第三工程(S03)で雄端子4の表面及び裏面にレジスト層が形成することを防止するため、雄端子4の表面及び裏面にマスキング処理を行う必要がある。
(5) Masking process (second step (S02))
The masking process is a process for forming a masking layer that prevents the formation of a resist layer in the third step (S03). In addition, it is preferable to dry the metal base material 2 which performed various plating processes with a dryer etc. before a masking process. Here, in order to prevent the resist layer from being formed on the front surface and the back surface of the male terminal 4 in the third step (S03), it is necessary to perform a masking process on the front surface and the back surface of the male terminal 4.
 本発明の効果を損なわない限りにおいてマスキングの方法は特に限定されず、従来公知の種々のマスキング方法を用いることができる。マスキング方法としては、例えば、テープ、スパージャーマスク、ドラムマスク、レジスト、ドライフィルムレジスト、インクジェット方式を挙げることができ、これらのうちの1種類又は2種類以上を組み合わせてマスキングを行うことが好ましい。 The masking method is not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known masking methods can be used. Examples of the masking method include a tape, a sparger mask, a drum mask, a resist, a dry film resist, and an ink jet method, and it is preferable to perform masking by combining one or more of these.
 特に、基材の側面のみにレジスト層を形成したい場合、1段階目にテープ状もしくはドラムマスク等で表面をマスキングし、2段階目に液状のレジストを用いて側面のみレジスト層を形成することが好ましい。 In particular, when it is desired to form a resist layer only on the side surface of the substrate, the surface can be masked at the first stage with a tape or drum mask, and the resist layer can be formed only on the side surface using a liquid resist at the second stage. preferable.
(6)レジスト層の形成(第三工程(S03))
 第三工程(S03)では、レジストを塗布した後に第二工程で形成させたマスキングを剥離させ、第四工程(S04)で金めっき層14を形成させたくない領域(雄端子4の両側面)にレジストを形成させるための工程である。
(6) Formation of resist layer (third step (S03))
In the third step (S03), after applying the resist, the mask formed in the second step is peeled off, and the gold plating layer 14 is not desired to be formed in the fourth step (S04) (both sides of the male terminal 4). This is a step for forming a resist.
 マスキングを剥離した後、UVライト(水銀ランプ,メタルハライドランプ,LED等)にて露光することで、レジストを硬化させることができる。 After removing the masking, the resist can be cured by exposure with UV light (mercury lamp, metal halide lamp, LED, etc.).
 なお、レジストにはネガ型、ポジ型、電着レジスト、液レジスト、ドライフィルムレジスト等が存在するが、めっき槽に暗室が不要であるネガ型を使用することが好ましい。 There are negative resists, positive resists, electrodeposition resists, liquid resists, dry film resists, etc., but it is preferable to use a negative resist that does not require a dark room in the plating tank.
(7)金めっき(第四工程(S04))
 第四工程(S04)は、雄端子4の表面及び裏面のみに金めっき層14を形成させるための工程である。第三工程(S03)までを経ることにより、雄端子4の両側面にレジスト層が形成され、雄端子4の表面及び裏面はニッケルめっき層12又は金めっきフラッシュ処理によって形成された薄い金めっき層となっていることから、第四工程(S04)で金めっき処理を施すことにより、雄端子4の表面及び裏面のみに金めっき層14を形成させることができる。
(7) Gold plating (fourth step (S04))
The fourth step (S04) is a step for forming the gold plating layer 14 only on the front surface and the back surface of the male terminal 4. By going through the third step (S03), a resist layer is formed on both side surfaces of the male terminal 4, and the front and back surfaces of the male terminal 4 are formed by a nickel plating layer 12 or a thin gold plating layer formed by a gold plating flash process. Therefore, the gold plating layer 14 can be formed only on the front surface and the back surface of the male terminal 4 by performing the gold plating process in the fourth step (S04).
 金めっき層14の厚さは、0.2μm~1.0μmとすること、が好ましい。金めっき層14の厚さを0.2μm以上とすることで、金の電気的特性や耐久性を十分に活用することができ、1.0μm以下とすることで、金の使用量を抑制できることに加え、生産性の悪化を抑制することができる。なお、金めっき層14の厚さは0.4μm~0.8μmとすることがより好ましく、0.5μm~0.7μmとすることが最も好ましい。 The thickness of the gold plating layer 14 is preferably 0.2 μm to 1.0 μm. By making the thickness of the gold plating layer 14 0.2 μm or more, the electrical characteristics and durability of gold can be fully utilized, and by using 1.0 μm or less, the amount of gold used can be suppressed. In addition, deterioration of productivity can be suppressed. The thickness of the gold plating layer 14 is more preferably 0.4 μm to 0.8 μm, and most preferably 0.5 μm to 0.7 μm.
 金めっき処理には、本発明の効果を損なわない範囲で従来公知の種々の金めっき手法を用いることができるが、通常の金フラッシュめっきと比較して、めっき浴中の金塩の濃度を高く、電導塩の濃度を低くすることが好ましい。 Various known gold plating methods can be used for the gold plating treatment as long as the effects of the present invention are not impaired, but the concentration of the gold salt in the plating bath is higher than that of normal gold flash plating. It is preferable to reduce the concentration of the conductive salt.
 金めっき処理に好適に用いることができる金めっき浴は、例えば、金塩、電導塩、キレート剤及び結晶成長剤を含むものを用いることができる。また、金めっき浴には光沢剤が添加されていてもよい。各構成要素の好適な使用量は、金塩:1~100g/L、電導塩:10~300g/L、キレート剤:~30g/L、結晶成長材:~30g/L、光沢剤:50~500ppmである。 As the gold plating bath that can be suitably used for the gold plating treatment, for example, a bath containing a gold salt, a conductive salt, a chelating agent, and a crystal growth agent can be used. A brightener may be added to the gold plating bath. The preferred amount of each component used is: gold salt: 1 to 100 g / L, conductive salt: 10 to 300 g / L, chelating agent: ˜30 g / L, crystal growth material: ˜30 g / L, brightener: 50 to 500 ppm.
 金塩としては、例えば、シアン化金、シアン化第一金カリウム、シアン化第二金カリウム、亜硫酸金ナトリウム及びチオ硫酸金ナトリウム等が挙げられ、電導塩としては、例えば、クエン酸カリウム、リン酸カリウム、ピロリン酸カリウム及びチオ硫酸カリウム等が挙げられる。 Examples of the gold salt include gold cyanide, potassium gold cyanide, potassium gold cyanide, sodium gold sulfite, and sodium gold thiosulfate. Examples of the conductive salt include potassium citrate, phosphorus Examples include potassium acid, potassium pyrophosphate and potassium thiosulfate.
 キレート剤としては、例えば、エチレンジアミン四酢酸及びメチレンホスホン酸等を用いることができる。結晶成長剤には、例えば、コバルト、ニッケル、タリウム、銀、パラジウム、錫、亜鉛、銅、ビスマス、インジウム、ヒ素及びカドミウム等を用いることができる。なお、pH調整剤として、例えば、ポリリン酸、クエン酸、酒石酸、水酸化カリウム及び塩酸等を添加してもよい。 As the chelating agent, for example, ethylenediaminetetraacetic acid and methylenephosphonic acid can be used. Examples of the crystal growth agent that can be used include cobalt, nickel, thallium, silver, palladium, tin, zinc, copper, bismuth, indium, arsenic, and cadmium. In addition, as a pH adjuster, you may add polyphosphoric acid, a citric acid, tartaric acid, potassium hydroxide, hydrochloric acid etc., for example.
 金めっき浴の浴温度、陽極材料、電流密度等の金めっき条件は、用いるめっき浴及び必要とするめっき厚さ等に応じて適宜設定することができる。例えば、陽極材料には、ステンレス、チタン白金板及び酸化イリジウム等の不溶性陽極等を用いることが好ましい。また、好適なめっき条件としては、浴温:20~50℃、電流密度:0.1~5.0A/dm、処理時間:1~1440秒、pH:3.0~7.0を例示することができる。 The gold plating conditions such as the bath temperature, anode material, and current density of the gold plating bath can be appropriately set according to the plating bath used, the required plating thickness, and the like. For example, it is preferable to use an insoluble anode such as stainless steel, a titanium platinum plate and iridium oxide as the anode material. Further, as preferable plating conditions, bath temperature: 20 to 50 ° C., current density: 0.1 to 5.0 A / dm 2 , treatment time: 1 to 1440 seconds, pH: 3.0 to 7.0 are exemplified. can do.
 ここで、金めっき層14は、高炭素クロム軸受鋼(SUJ2)に対する動摩擦係数が0.2未満となっている。また、金めっき層14のビッカース硬度は150HV~250HVであること、が好ましい。これに対し、例えば、金めっき層14のコバルト濃度を0.1質量%~1質量%とすることで、ビッカース硬度及び動摩擦係数を当該数値範囲とすることができる。 Here, the gold plating layer 14 has a coefficient of dynamic friction with respect to the high carbon chromium bearing steel (SUJ2) of less than 0.2. The Vickers hardness of the gold plating layer 14 is preferably 150 HV to 250 HV. On the other hand, for example, by setting the cobalt concentration of the gold plating layer 14 to 0.1% by mass to 1% by mass, the Vickers hardness and the dynamic friction coefficient can be in the numerical range.
 以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。 As mentioned above, although typical embodiment of this invention was described, this invention is not limited only to these, Various design changes are possible and these design changes are all contained in the technical scope of this invention. It is.
≪実施例≫
 略四角柱形状の雄端子を複数有する櫛歯状のPCB端子の形状とした銅製の金属基材を前処理として、被めっき材とSUS板をアルカリ脱脂液に入れ、被めっき材を陰極とし、SUS板を陽極として、電圧3Vで30秒間電解脱脂を行い、洗浄した後、30g/Lの青化第一銅、20g/Lの遊離青化カリ、15g/Lの苛性カリを含む銅ストライクめっき浴を用い、陽極材料を電気銅板、陰極材料を洗浄処理後の金属基板として、浴温:35℃、電流密度:1A/dmの条件で10秒間、銅ストライクめっき処理(下地ストライクめっき処理)を施した。
<Example>
A copper metal substrate in the shape of a comb-like PCB terminal having a plurality of substantially square-columnar male terminals as a pretreatment, a material to be plated and a SUS plate are placed in an alkaline degreasing solution, and the material to be plated is used as a cathode. Copper strike plating bath containing 30 g / L cuprous bromide, 20 g / L free potassium cyanide, 15 g / L caustic potash after electrolytic degreasing at a voltage of 3 V for 30 seconds using an SUS plate as an anode and washing. , Copper strike plating treatment (underlying strike plating treatment) for 10 seconds under conditions of bath temperature: 35 ° C. and current density: 1 A / dm 2 , using an electrolytic copper plate as the anode material and a metal substrate after washing the cathode material. gave.
 その後、300g/Lのスルファミン酸ニッケル、5g/Lの塩化ニッケル・6水和物、10g/Lのホウ酸、及び0.2g/Lのラウリル硫酸ナトリウムを含むニッケルめっき浴を用い、陽極材料をサルファニッケル板、陰極材料を銅ストライクめっき後の金属基板として、浴温:50℃、電流密度:2A/dmの条件で200秒間、ニッケルめっき処理を施し、端子の全面に厚さ約1μmのニッケルめっき層を形成させた(第一工程)。 Then, using a nickel plating bath containing 300 g / L nickel sulfamate, 5 g / L nickel chloride hexahydrate, 10 g / L boric acid, and 0.2 g / L sodium lauryl sulfate, the anode material was As a metal substrate after copper strike plating with a sulfa nickel plate and a cathode material, nickel plating was applied for 200 seconds under the conditions of bath temperature: 50 ° C. and current density: 2 A / dm 2 . A nickel plating layer was formed (first step).
 その後、10/Lのシアン化金カリウム、50g/Lのクエン酸カリウム、10g/Lの水酸化カリウム、2g/Lの硫酸コバルトを含む金めっき浴を用い、陽極材料をチタン白金板、陰極材料をニッケルめっき後の金属基板として、浴温:40℃、電流密度:0.5A/dmの条件で2秒間、金めっきフラッシュ処理を施し、ニッケルめっき層の全面に厚さ0.1μmの金めっきフラッシュ層を形成させた。次に、乾燥機を用いて被めっき金属基材を乾燥させた後、雄端子の表面及び裏面にマスキングテープを用いてマスキングを行った(第二工程)。 Then, using a gold plating bath containing 10 / L potassium gold cyanide, 50 g / L potassium citrate, 10 g / L potassium hydroxide, 2 g / L cobalt sulfate, the anode material is a titanium platinum plate, the cathode material As a metal substrate after nickel plating, a gold plating flash treatment is applied for 2 seconds under the conditions of bath temperature: 40 ° C. and current density: 0.5 A / dm 2 , and gold with a thickness of 0.1 μm is formed on the entire surface of the nickel plating layer. A plating flash layer was formed. Next, after drying a to-be-plated metal base material using a dryer, the masking tape was masked on the surface and back surface of the male terminal (2nd process).
 次に、ネガ型電着レジスを使用して、浴温35℃、定電圧30Vにて、30秒間レジストを塗布した。その後、マスキングテープを剥離し、UVライト(水銀ランプ)にて100秒間露光してレジストを硬化させた(第三工程)。なお、レジスト露光時の発熱は風冷にて速やかに抜熱した。 Next, using a negative electrodeposition resist, a resist was applied for 30 seconds at a bath temperature of 35 ° C. and a constant voltage of 30V. Thereafter, the masking tape was peeled off, and the resist was cured by exposure with a UV light (mercury lamp) for 100 seconds (third step). The heat generated during resist exposure was quickly removed by air cooling.
 その後、レジストの剥離を防止するため、電解処理ではなく浸漬処理を用いて洗浄処理を施した。当該洗浄処理の後、3g/Lのシアン化金カリウム、120g/Lのクエン酸カリウム、50g/Lの水酸化カリウム、100ppmの硫酸コバルトを含む金めっき浴を用い、陽極材料をチタン白金板、陰極材料をレジスト処理後の被めっき材として、浴温:40℃、電流密度:1A/dmの条件で30秒間の条件で金めっき処理を施し、剥離液を用いてレジストを剥離することで端子の表面及び裏面のみに厚さ0.5μmの金めっき層を形成させ(第四工程)、本発明の実施例であるPCB端子を得た。 Thereafter, in order to prevent the resist from being peeled off, a cleaning process was performed using an immersion process instead of an electrolytic process. After the cleaning treatment, using a gold plating bath containing 3 g / L potassium gold cyanide, 120 g / L potassium citrate, 50 g / L potassium hydroxide, 100 ppm cobalt sulfate, the anode material is a titanium platinum plate, By using a cathode material as a material to be plated after resist treatment, gold plating is performed for 30 seconds under conditions of bath temperature: 40 ° C. and current density: 1 A / dm 2 , and the resist is stripped using a stripping solution. A gold plating layer having a thickness of 0.5 μm was formed only on the front and back surfaces of the terminal (fourth step) to obtain a PCB terminal as an example of the present invention.
[評価]
(1)密着性評価
 上記のようにして作製しためっき積層体について密着性の評価を行った。セロハンテープ(ニチバン株式会社製の#405)を指圧にて金めっき層に押し付け、当該セロハンテープを引き剥がした後に金めっき層の剥がれや膨れが発生しなかった場合は○、発生した場合は×とし、得られた結果を表1に示した。
[Evaluation]
(1) Adhesive evaluation Adhesive evaluation was performed about the plating laminated body produced as mentioned above. When cellophane tape (# 405 manufactured by Nichiban Co., Ltd.) is pressed against the gold plating layer with finger pressure and the cellophane tape is peeled off, no peeling or swelling of the gold plating layer occurs. The results obtained are shown in Table 1.
(2)クロスカット密着性評価
 1mmのカット間隔で碁盤目状にカットを行った後(クロスカット試験)、セロハンテープ(ニチバン株式会社製の#405)を指圧にて金めっき層に押し付け、当該セロハンテープを引き剥がした後に金めっき層の剥がれや膨れが発生しなかった場合は○、発生した場合は×とし、得られた結果を表1に示した。
(2) Cross-cut adhesion evaluation After cutting in a grid pattern with a 1 mm cut interval (cross-cut test), cellophane tape (# 405 manufactured by Nichiban Co., Ltd.) was pressed against the gold plating layer with finger pressure. The results obtained are shown in Table 1 when the gold-plated layer did not peel or bulge after the cellophane tape was peeled off.
(3)金めっき層の硬度測定
 上記のようにして作製しためっき材について、マイクロビッカース硬度計を用いて最表面の金めっき層の硬度を測定した。得られた結果を表1に示した。
(3) Hardness measurement of gold plating layer About the plating material produced as mentioned above, the hardness of the gold plating layer of the outermost surface was measured using the micro Vickers hardness meter. The obtained results are shown in Table 1.
(4)金めっき層の動摩擦係数測定
 上記のようにして作成しためっき材について、新東科学株式会社製のHEIDON-14を用いて動摩擦係数を測定した。測定条件は、垂直荷重:100gf,移動距離:5mm,移動速度:60mm/分,サンプリング周波数:500Hz,相手材(鋼球):3/8インチSUJ2とした。得られた結果を表2に示した。
(4) Measurement of dynamic friction coefficient of gold plating layer The dynamic friction coefficient of the plated material prepared as described above was measured using HEIDON-14 manufactured by Shinto Kagaku Co., Ltd. The measurement conditions were vertical load: 100 gf, movement distance: 5 mm, movement speed: 60 mm / min, sampling frequency: 500 Hz, mating material (steel ball): 3/8 inch SUJ2. The obtained results are shown in Table 2.
(5)摩耗深さ及び摩耗幅の測定
 (4)における測定後のサンプルに関し、鋼球の摺動によって基材(めっき材)側に形成された摩耗傷の深さ及び幅を測定した。なお、当該測定にはレーザー顕微鏡を使用した。得られた結果を表2に示した。
(5) Measurement of wear depth and wear width With respect to the sample after measurement in (4), the depth and width of wear flaws formed on the base material (plating material) side by sliding of steel balls were measured. A laser microscope was used for the measurement. The obtained results are shown in Table 2.
(6)金めっき層のコバルト濃度測定
 上記のようにして作製しためっき積層体について、金めっき層のコバルト濃度(共析率)を測定した。なお、測定にはセイコーインスツル株式会社製の高周波プラズマ発光分析装置(SPS5000)を用いた。得られた結果を表2に示した。
(6) Cobalt concentration measurement of gold plating layer About the plating laminated body produced as mentioned above, the cobalt concentration (eutectoid rate) of a gold plating layer was measured. For the measurement, a high-frequency plasma emission analyzer (SPS5000) manufactured by Seiko Instruments Inc. was used. The obtained results are shown in Table 2.
≪実施例2≫
 第四工程における金めっき処理の電流密度を3A/dmとしたこと以外は、実施例1と同様にしてPCB端子を作製し、各種評価を行った。得られた結果を表1及び表2に示した。
<< Example 2 >>
A PCB terminal was produced in the same manner as in Example 1 except that the current density of the gold plating treatment in the fourth step was 3 A / dm 2, and various evaluations were performed. The obtained results are shown in Tables 1 and 2.
≪実施例3≫
 第四工程における金めっき処理に用いるシアン化金カリウムを6g/Lとしたこと以外は、実施例1と同様にしてPCB端子を作製し、各種評価を行った。得られた結果を表1及び表2に示した。
Example 3
A PCB terminal was prepared in the same manner as in Example 1 except that the potassium gold cyanide used for the gold plating treatment in the fourth step was 6 g / L, and various evaluations were performed. The obtained results are shown in Tables 1 and 2.
≪実施例4≫
 第四工程における金めっき処理に150ppmの硫酸コバルトを用いたこと以外は、実施例1と同様にしてPCB端子を作製し、各種評価を行った。得られた結果を表1及び表2に示した。
Example 4
A PCB terminal was prepared in the same manner as in Example 1 except that 150 ppm of cobalt sulfate was used for the gold plating treatment in the fourth step, and various evaluations were performed. The obtained results are shown in Tables 1 and 2.
≪比較例1≫
 第四工程における金めっき処理のコバルト濃度を0ppmとしたこと以外は、実施例1と同様にしてPCB端子を作製し、各種評価を行った。得られた結果を表1及び表2に示した。
≪Comparative example 1≫
A PCB terminal was prepared in the same manner as in Example 1 except that the cobalt concentration in the gold plating treatment in the fourth step was 0 ppm, and various evaluations were performed. The obtained results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示す結果から、実施例1~実施例4で得られた全てのPCB端子に関し、金めっき層は優れた密着性を有していることが分かる。また、金めっき層のビッカース硬度は150HV~250HVの範囲となっており、適当な硬度を有している。これに対し、比較例1で得られたPCB端子は、金めっき処理以外は実施例と同じ製造条件を用いているため、金めっき層の密着性に関しては問題ないが、ビッカース硬度が106.7HVと低い値となっている。ここで、表2に示す結果から、実施例の金めっき層のコバルト濃度は0.1質量%~1質量%の範囲に入っていることが分かる。 From the results shown in Table 1, it can be seen that the gold plating layer has excellent adhesion with respect to all the PCB terminals obtained in Examples 1 to 4. Also, the Vickers hardness of the gold plating layer is in the range of 150 HV to 250 HV, and has an appropriate hardness. On the other hand, since the PCB terminal obtained in Comparative Example 1 uses the same manufacturing conditions as the examples except for the gold plating treatment, there is no problem with the adhesion of the gold plating layer, but the Vickers hardness is 106.7 HV. It is a low value. Here, it can be seen from the results shown in Table 2 that the cobalt concentration of the gold plating layer of the example is in the range of 0.1% by mass to 1% by mass.
 また、表2に示す結果から、実施例1~実施例4で得られた全てのPCB端子に関し、高炭素クロム軸受鋼(SUJ2)に対する金めっき層の動摩擦係数が0.2未満となっている。これに対し、比較例1で得られたPCB端子の動摩擦係数は1.37であり、実施例で得られたPCB端子と比較して約10倍高い値となっている。 Further, from the results shown in Table 2, the dynamic friction coefficient of the gold plating layer with respect to the high carbon chromium bearing steel (SUJ2) is less than 0.2 for all the PCB terminals obtained in Examples 1 to 4. . In contrast, the dynamic friction coefficient of the PCB terminal obtained in Comparative Example 1 is 1.37, which is about 10 times higher than that of the PCB terminal obtained in the Example.
 加えて、金めっき層の硬度及び動摩擦係数の差異により、実施例で得られたPCB端子と比較例で得られたPCB端子とでは摩耗深さ及び摩耗幅が大きく異なっている。具体的には、表2に示されているとおり、実施例で得られたPCB端子の摩耗傷は極めて浅く、幅も小さくなっている。これらの結果より、実施例では優れた耐摩耗特性、摺動性及び低摩擦性を有し、かつ、十分な耐久性を有するPCB端子が得られていることが確認できる。 In addition, due to the difference in the hardness and dynamic friction coefficient of the gold plating layer, the wear depth and the wear width are greatly different between the PCB terminal obtained in the example and the PCB terminal obtained in the comparative example. Specifically, as shown in Table 2, the abrasion damage of the PCB terminal obtained in the example is extremely shallow and the width is small. From these results, it can be confirmed that a PCB terminal having excellent wear resistance, slidability and low friction properties and sufficient durability is obtained in the examples.
1・・・PCB端子、
2・・・金属基材、
4・・・雄端子、
12・・・ニッケルめっき層、
14・・・金めっき層。
1 ... PCB terminal,
2 ... Metal substrate,
4 ... Male terminal,
12 ... nickel plating layer,
14: Gold plating layer.

Claims (7)

  1.  略四角柱形状の雄端子を複数有する櫛歯状のPCB端子であって、
     前記雄端子の全面にニッケルめっき層を有し、
     前記ニッケルめっき層の表面に、厚さが0.2μm~1.0μmの金めっき層を有し、
     高炭素クロム軸受鋼(SUJ2)に対する前記金めっき層の動摩擦係数が0.2未満であること、
     を特徴とするPCB端子。
    A comb-shaped PCB terminal having a plurality of male terminals having a substantially quadrangular prism shape,
    A nickel plating layer on the entire surface of the male terminal;
    On the surface of the nickel plating layer, a gold plating layer having a thickness of 0.2 μm to 1.0 μm is provided,
    The dynamic friction coefficient of the gold plating layer with respect to high carbon chromium bearing steel (SUJ2) is less than 0.2,
    PCB terminal characterized by
  2.  前記金めっき層のビッカース硬度が150HV~250HVであること、
     を特徴とする請求項1に記載のPCB端子。
    The gold plating layer has a Vickers hardness of 150 HV to 250 HV,
    The PCB terminal according to claim 1.
  3.  前記金めっき層のコバルト濃度が0.1質量%~1質量%であること、
     を特徴とする請求項1又は2に記載のPCB端子。
    The cobalt concentration of the gold plating layer is 0.1% by mass to 1% by mass;
    The PCB terminal according to claim 1 or 2.
  4.  厚さが0超0.1μm以下の金フラッシュめっき層を介して、前記金めっき層が前記ニッケルめっき層の表面に形成されていること、
     を特徴とする請求項1~3のうちのいずれかに記載のPCB端子。
    The gold plating layer is formed on the surface of the nickel plating layer through a gold flash plating layer having a thickness of more than 0 and 0.1 μm or less,
    The PCB terminal according to any one of claims 1 to 3, wherein:
  5.  前記ニッケルめっき層の厚さが0.3μm~4.0μmであること、
     を特徴とする請求項1~4のうちのいずれかに記載のPCB端子。
    The nickel plating layer has a thickness of 0.3 μm to 4.0 μm;
    The PCB terminal according to any one of claims 1 to 4, wherein:
  6.  前記ニッケルめっき層が下地ストライクめっき層を介して前記雄端子の表面に形成されており、
     前記下地ストライクめっき層として、銅ストライクめっき層又はニッケルストライクめっき層のうちの少なくとも一つが形成されていること、
     を特徴とする請求項1~5のうちのいずれかに記載のPCB端子。
    The nickel plating layer is formed on the surface of the male terminal through a base strike plating layer,
    As the base strike plating layer, at least one of a copper strike plating layer or a nickel strike plating layer is formed,
    The PCB terminal according to any one of claims 1 to 5, wherein:
  7.  前記金めっき層が、前記雄端子の表面側及び裏面側にのみ形成されていること、
     を特徴とする請求項1~6のうちのいずれかに記載のPCB端子。
    The gold plating layer is formed only on the front side and the back side of the male terminal,
    The PCB terminal according to any one of claims 1 to 6.
PCT/JP2018/016712 2017-05-30 2018-04-25 Pcb terminal WO2018221087A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019522031A JP7117784B2 (en) 2017-05-30 2018-04-25 PCB terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-106303 2017-05-30
JP2017106303 2017-05-30

Publications (1)

Publication Number Publication Date
WO2018221087A1 true WO2018221087A1 (en) 2018-12-06

Family

ID=64455767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016712 WO2018221087A1 (en) 2017-05-30 2018-04-25 Pcb terminal

Country Status (2)

Country Link
JP (1) JP7117784B2 (en)
WO (1) WO2018221087A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110565133A (en) * 2019-08-27 2019-12-13 东莞康源电子有限公司 method for manufacturing low-roughness electroplated nickel and gold
JP2020202239A (en) * 2019-06-07 2020-12-17 富士電機株式会社 External connection portion of semiconductor module, manufacturing method of external connection portion of semiconductor module, semiconductor module, vehicle, and connection method of external connection portion and bus bar
WO2021054108A1 (en) * 2019-09-19 2021-03-25 株式会社オートネットワーク技術研究所 Pin terminal, connector, connector-equipped wire harness, and control unit
JP2021046593A (en) * 2019-09-19 2021-03-25 株式会社オートネットワーク技術研究所 Pin terminal, connector, wire harness having connector and control unit
JP2021046594A (en) * 2019-09-19 2021-03-25 株式会社オートネットワーク技術研究所 Pin terminal, connector, wire harness having connector and control unit
WO2021193781A1 (en) * 2020-03-26 2021-09-30 住友電装株式会社 Pcb terminal, connector, wire harness with connector, and board unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246424A (en) * 2004-03-03 2005-09-15 Murata:Kk Apparatus and method for forming solder wicking prevention zone and connector member
JP2006286574A (en) * 2005-04-05 2006-10-19 D D K Ltd Electric contact
JP2008287942A (en) * 2007-05-15 2008-11-27 Dowa Metaltech Kk Male terminal for printed circuit board connectors, and manufacturing method thereof
JP2014191998A (en) * 2013-03-27 2014-10-06 Furukawa Electric Co Ltd:The Partially plated flat conductor, manufacturing device of partially plated flat conductor, and manufacturing device for partially plated flat conductor
WO2014199837A1 (en) * 2013-06-11 2014-12-18 株式会社Kanzacc Contact terminal structure
WO2015092979A1 (en) * 2013-12-20 2015-06-25 オリエンタル鍍金株式会社 Silver-plated member, and production method therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3555366B2 (en) * 1996-02-29 2004-08-18 松下電工株式会社 Manufacturing method of pressure sensor
JP4343735B2 (en) 2004-02-26 2009-10-14 東京特殊電線株式会社 Probe needle
JP4945193B2 (en) 2006-08-21 2012-06-06 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. Hard gold alloy plating solution
KR101079554B1 (en) 2008-06-11 2011-11-04 니혼 고쥰도가가쿠 가부시키가이샤 Electrolytic gold plating solution and gold film obtained using same
JP5396139B2 (en) 2009-05-08 2014-01-22 株式会社神戸製鋼所 Press-fit terminal
EP2716796A4 (en) 2011-06-03 2015-09-09 Panasonic Corp Electrical contact component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246424A (en) * 2004-03-03 2005-09-15 Murata:Kk Apparatus and method for forming solder wicking prevention zone and connector member
JP2006286574A (en) * 2005-04-05 2006-10-19 D D K Ltd Electric contact
JP2008287942A (en) * 2007-05-15 2008-11-27 Dowa Metaltech Kk Male terminal for printed circuit board connectors, and manufacturing method thereof
JP2014191998A (en) * 2013-03-27 2014-10-06 Furukawa Electric Co Ltd:The Partially plated flat conductor, manufacturing device of partially plated flat conductor, and manufacturing device for partially plated flat conductor
WO2014199837A1 (en) * 2013-06-11 2014-12-18 株式会社Kanzacc Contact terminal structure
WO2015092979A1 (en) * 2013-12-20 2015-06-25 オリエンタル鍍金株式会社 Silver-plated member, and production method therefor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020202239A (en) * 2019-06-07 2020-12-17 富士電機株式会社 External connection portion of semiconductor module, manufacturing method of external connection portion of semiconductor module, semiconductor module, vehicle, and connection method of external connection portion and bus bar
JP7334485B2 (en) 2019-06-07 2023-08-29 富士電機株式会社 External connection part of semiconductor module, method for manufacturing external connection part of semiconductor module, semiconductor module, vehicle, and method for connecting external connection part and bus bar
CN110565133A (en) * 2019-08-27 2019-12-13 东莞康源电子有限公司 method for manufacturing low-roughness electroplated nickel and gold
JP7226209B2 (en) 2019-09-19 2023-02-21 株式会社オートネットワーク技術研究所 Pin terminals, connectors, wire harnesses with connectors, and control units
JP2021046595A (en) * 2019-09-19 2021-03-25 株式会社オートネットワーク技術研究所 Pin terminal, connector, wire harness having connector and control unit
WO2021054105A1 (en) * 2019-09-19 2021-03-25 株式会社オートネットワーク技術研究所 Pin terminal, connector, connector-equipped wiring harness, and control unit
JP2021046594A (en) * 2019-09-19 2021-03-25 株式会社オートネットワーク技術研究所 Pin terminal, connector, wire harness having connector and control unit
WO2021054107A1 (en) * 2019-09-19 2021-03-25 株式会社オートネットワーク技術研究所 Pin terminal, connector, connector-equipped wire harness, and control unit
CN114391053A (en) * 2019-09-19 2022-04-22 株式会社自动网络技术研究所 Pin terminal, connector, harness with connector, and control unit
JP7223332B2 (en) 2019-09-19 2023-02-16 株式会社オートネットワーク技術研究所 Pin terminals, connectors, wire harnesses with connectors, and control units
JP7226210B2 (en) 2019-09-19 2023-02-21 株式会社オートネットワーク技術研究所 Pin terminals, connectors, wire harnesses with connectors, and control units
JP2021046593A (en) * 2019-09-19 2021-03-25 株式会社オートネットワーク技術研究所 Pin terminal, connector, wire harness having connector and control unit
WO2021054108A1 (en) * 2019-09-19 2021-03-25 株式会社オートネットワーク技術研究所 Pin terminal, connector, connector-equipped wire harness, and control unit
US11901655B2 (en) 2019-09-19 2024-02-13 Autonetworks Technologies, Ltd. Pin terminal, connector, wiring harness with connector and control unit
WO2021193781A1 (en) * 2020-03-26 2021-09-30 住友電装株式会社 Pcb terminal, connector, wire harness with connector, and board unit
JP7382027B2 (en) 2020-03-26 2023-11-16 株式会社オートネットワーク技術研究所 PCB terminals, connectors, wire harnesses with connectors, and board units

Also Published As

Publication number Publication date
JPWO2018221087A1 (en) 2020-05-28
JP7117784B2 (en) 2022-08-15

Similar Documents

Publication Publication Date Title
WO2018221087A1 (en) Pcb terminal
JP5667152B2 (en) Surface treatment plating material, method for producing the same, and electronic component
WO2014199547A1 (en) Method for producing plated laminate, and plated laminate
JP6484844B2 (en) Silver plating material and method for producing the same
WO2014207975A1 (en) Method for producing plated material, and plated material
JP2008285729A (en) REFLOW Sn-PLATED MATERIAL AND ELECTRONIC PARTS USING THE SAME
JP2015187303A (en) Conductive member for connecting component and method for producing the same
JP4368931B2 (en) Male terminal and manufacturing method thereof
CN110199054B (en) Surface treatment plating material, connector terminal, connector, FFC terminal, FFC, FPC, and electronic component
KR101270770B1 (en) Electroplating method for printed circuit board
KR20190117596A (en) Metal materials for electronic components and manufacturing methods thereof, connector terminals, connectors and electronic components using the same
KR20180004762A (en) Sn plating material and manufacturing method thereof
WO2015092978A1 (en) Silver-plated member, and production method therefor
JP2007291457A (en) HEAT-RESISTANT Sn SOLDERED STRIP OF Cu-Zn ALLOY WITH SUPPRESSED GENERATION OF WHISKER
JP2018123422A (en) Surface treatment plating material, connector terminal, connector, ffc terminal, ffc, fpc and electronic part
JP6651852B2 (en) Silver plated member and method of manufacturing the same
JP5185759B2 (en) Conductive material and manufacturing method thereof
JP2022082619A (en) PCB terminal manufacturing method and PCB terminal
JP6182757B2 (en) Plating material manufacturing method and plating material
JP2023067943A (en) Silver plated material, and method of producing the same
JP5226032B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP7040544B2 (en) Terminal material for connectors
JP7302364B2 (en) Connector terminal materials and connector terminals
JP7162341B2 (en) Method for manufacturing plated laminate and plated laminate
JP2017218663A (en) Method of manufacturing plated laminate and plated laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810249

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019522031

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18810249

Country of ref document: EP

Kind code of ref document: A1