JPWO2018221087A1 - PCB terminal - Google Patents

PCB terminal Download PDF

Info

Publication number
JPWO2018221087A1
JPWO2018221087A1 JP2019522031A JP2019522031A JPWO2018221087A1 JP WO2018221087 A1 JPWO2018221087 A1 JP WO2018221087A1 JP 2019522031 A JP2019522031 A JP 2019522031A JP 2019522031 A JP2019522031 A JP 2019522031A JP WO2018221087 A1 JPWO2018221087 A1 JP WO2018221087A1
Authority
JP
Japan
Prior art keywords
plating layer
gold
nickel
gold plating
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019522031A
Other languages
Japanese (ja)
Other versions
JP7117784B2 (en
Inventor
宏▲禎▼ 高橋
宏▲禎▼ 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORIENTAL ELECTRO PLATING CORPORATION
Original Assignee
ORIENTAL ELECTRO PLATING CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORIENTAL ELECTRO PLATING CORPORATION filed Critical ORIENTAL ELECTRO PLATING CORPORATION
Publication of JPWO2018221087A1 publication Critical patent/JPWO2018221087A1/en
Application granted granted Critical
Publication of JP7117784B2 publication Critical patent/JP7117784B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/62Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of gold
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials

Abstract

優れた耐摩耗特性、電導性、摺動性及び低摩擦性を有し、かつ、高価な金の使用量を低減することができるPCB端子を提供する。略四角柱形状の雄端子(4)を複数有する櫛歯状のPCB端子であって、雄端子(4)の全面にニッケルめっき層(12)を有し、ニッケルめっき層(12)の表面に、厚さが0.2μm〜1.0μmの金めっき層(14)を有し、高炭素クロム軸受鋼(SUJ2)に対する金めっき層の動摩擦係数が0.2未満であること、を特徴とするPCB端子。(EN) Provided is a PCB terminal which has excellent wear resistance, electrical conductivity, slidability and low friction, and which can reduce the amount of expensive gold used. A comb-tooth-shaped PCB terminal having a plurality of substantially square pole-shaped male terminals (4), which has a nickel plating layer (12) on the entire surface of the male terminal (4) and is provided on the surface of the nickel plating layer (12). Having a gold plating layer (14) with a thickness of 0.2 μm to 1.0 μm, and the dynamic friction coefficient of the gold plating layer with respect to high carbon chromium bearing steel (SUJ2) is less than 0.2. PCB terminal.

Description

本発明はPCB端子に関し、より具体的には、優れた耐摩耗性、電導性、摺動性及び低摩擦性を有し、かつ、耐久性に優れたPCB端子に関する。  The present invention relates to a PCB terminal, and more particularly to a PCB terminal having excellent wear resistance, electrical conductivity, slidability and low friction, and excellent durability.

PCB端子は車載用及び民生用等の各種コネクタに使用されており、プリント回路基板の実装のために不可欠なものである。一般的には、平らなシート状の金属基板を打ち抜くことにより、複数の端子が櫛歯状に並んだ形状を有している。  PCB terminals are used in various connectors for in-vehicle use, consumer use, etc., and are essential for mounting printed circuit boards. In general, a plurality of terminals are arranged in a comb shape by punching out a flat sheet-shaped metal substrate.

また、良好な電気接点を実現するために、PCB端子には優れた電気伝導性及び耐摩耗特性等が要求され、雌端子と嵌合する雄端子先端部には表面処理が施されることが多い。例えば、特許文献1(特開2008−287942号公報)では、最表面にSnめっきが施されたPCBコネクタ用端子が提案されている。  Further, in order to realize a good electrical contact, the PCB terminal is required to have excellent electrical conductivity and abrasion resistance, and the tip of the male terminal fitted with the female terminal may be surface-treated. Many. For example, Patent Document 1 (Japanese Patent Laid-Open No. 2008-287942) proposes a PCB connector terminal having an outermost surface plated with Sn.

前記特許文献1に記載のPCBコネクタ用端子においては、嵌合部の摩擦係数を0.26以下、半田付け部のエージング後のゼロクロスタイムを5秒以下とすることができることから、コネクタへの挿入に際しての挿入力の低減と、基板側への半田付け部の半田濡れ性の向上に優れたPCB端子及びその製造方法を提供することができる、としている。  In the PCB connector terminal described in Patent Document 1, since the friction coefficient of the fitting portion can be 0.26 or less and the zero cross time after aging of the soldering portion can be 5 seconds or less, insertion into the connector It is said that it is possible to provide a PCB terminal and a method for manufacturing the same that are excellent in reducing the insertion force and improving the solder wettability of the soldered portion to the board side.

また、特許文献2(特開平10−41027号公報)では、構成が簡単で、安価に製造できる表面実装接触ピンを提供するという課題に対して、過度の半田がパッドもしくはランドから半田受け/収容手段中へと除去される、プリント回路基板のための表面実装コネクタピンが提案されており、当該表面実装コネクタピンの一態様として、表面に金めっきが施される場合が示されている。  Further, in Patent Document 2 (Japanese Patent Laid-Open No. 10-41027), to solve the problem of providing a surface mount contact pin that has a simple structure and can be manufactured at low cost, excessive solder is received/accommodated from a pad or a land. Surface mount connector pins for printed circuit boards have been proposed that are removed into the means, and one form of such surface mount connector pins is shown where the surface is gold plated.

特開2008−287942号公報JP, 2008-287942, A 特開平10−41027号公報JP, 10-41027, A

しかしながら、前記特許文献1に記載のPCB用端子は摺動特性及び半田濡れ性が改善されているものの、最表面が錫めっき層であり、金めっき層と比較すると電気伝導性や耐久性等に関して十分ではない。  However, although the PCB terminal described in Patent Document 1 has improved sliding characteristics and solder wettability, the outermost surface is a tin-plated layer, and the electrical conductivity, durability, and the like in comparison with a gold-plated layer. Not enough.

また、前記特許文献2に記載の表面実装コネクタピンにおいては、PCB端子に関して好適な金めっき層の特性等については全く検討されていない。加えて、PCB端子を繰り返し使用した場合の耐久性についても考慮されていない。  Further, in the surface mount connector pin described in Patent Document 2, the characteristics of the gold plating layer suitable for the PCB terminal have not been studied at all. In addition, no consideration is given to the durability when the PCB terminal is repeatedly used.

以上のような従来技術における問題点に鑑み、本発明の目的は、優れた耐摩耗特性、電導性、摺動性及び低摩擦性を有し、かつ、十分な耐久性を有するPCB端子を提供することにある。  In view of the problems in the prior art as described above, an object of the present invention is to provide a PCB terminal having excellent wear resistance, electrical conductivity, slidability and low friction, and having sufficient durability. To do.

本発明者は上記目的を達成すべく、PCB端子の表面に形成させる金めっき層について鋭意研究を重ねた結果、基材との密着性を担保しつつ、動摩擦係数等を制御すること等が極めて有効であることを見出し、本発明に到達した。  In order to achieve the above object, the present inventor has conducted earnest research on a gold plating layer to be formed on the surface of a PCB terminal, and as a result, it is extremely possible to control the dynamic friction coefficient and the like while ensuring the adhesion to the base material. They have found that it is effective and have reached the present invention.

即ち、本発明は、
略四角柱形状の雄端子を複数有する櫛歯状のPCB端子であって、
前記雄端子の全面にニッケルめっき層を有し、
前記ニッケルめっき層の表面に、厚さが0.2μm〜1.0μmの金めっき層を有し、
高炭素クロム軸受鋼(SUJ2)に対する前記金めっき層の動摩擦係数が0.2未満であること、
を特徴とするPCB端子を提供する。
That is, the present invention is
A comb-tooth-shaped PCB terminal having a plurality of substantially square-pillar-shaped male terminals,
Having a nickel plating layer on the entire surface of the male terminal,
The surface of the nickel plating layer has a gold plating layer having a thickness of 0.2 μm to 1.0 μm,
The dynamic friction coefficient of the gold plating layer with respect to high carbon chromium bearing steel (SUJ2) is less than 0.2;
A PCB terminal is provided.

本発明のPCB端子においては、雌端子と嵌合させた場合に通電に寄与する雄端子の最表面を金めっき層としていることから、十分な電気伝導性を担保することができる。また、金めっき層の厚さを0.2μm以上とすることで、金の電気的特性や耐久性を十分に活用することができ、1.0μm以下とすることで、金の使用量を抑制できることに加え、生産性の悪化を抑制することができる。なお、金めっき層の厚さは0.4μm〜0.8μmとすることがより好ましく、0.5μm〜0.7μmとすることが最も好ましい。  In the PCB terminal of the present invention, since the outermost surface of the male terminal, which contributes to the conduction when fitted with the female terminal, is the gold plating layer, sufficient electrical conductivity can be ensured. Also, by setting the thickness of the gold plating layer to 0.2 μm or more, the electrical characteristics and durability of gold can be fully utilized, and by setting it to 1.0 μm or less, the amount of gold used can be suppressed. In addition to that, it is possible to suppress deterioration of productivity. The thickness of the gold plating layer is more preferably 0.4 μm to 0.8 μm, and most preferably 0.5 μm to 0.7 μm.

また、雄端子の金属基材と金めっき層の間にはニッケルめっき層が形成されており、当該ニッケルめっき層によって、金属基材に含まれる元素と金との拡散及び反応に伴う金属間化合物の形成による金めっき層の脆化を抑制することができる。  Further, a nickel plating layer is formed between the metal base material of the male terminal and the gold plating layer, and the nickel plating layer causes an intermetallic compound accompanying diffusion and reaction between the element contained in the metal base material and gold. It is possible to suppress the embrittlement of the gold plating layer due to the formation of.

ニッケルめっき層の厚さは0.3μm〜4.0μmとすること、が好ましい。ニッケルめっき層の厚さを0.3μm以上とすることで、金属基材に含まれる元素と金との拡散及び反応に伴う金属間化合物の形成による金めっき層の脆化を確実に抑制することができ、4.0μm以下とすることで、ニッケルめっき層が存在することによる導電性及び機械的特性等の低下を抑制することができる。なお、ニッケルめっき層の厚さは、0.4μm〜2.0μmとすることがより好ましく、0.5μm〜1.5μmとすることが最も好ましい。  The thickness of the nickel plating layer is preferably 0.3 μm to 4.0 μm. By setting the thickness of the nickel plating layer to 0.3 μm or more, it is possible to reliably suppress the embrittlement of the gold plating layer due to the formation of intermetallic compounds due to the diffusion and reaction of the element contained in the metal base material with gold. When the thickness is 4.0 μm or less, it is possible to suppress deterioration of conductivity and mechanical properties due to the presence of the nickel plating layer. The thickness of the nickel plating layer is more preferably 0.4 μm to 2.0 μm, and most preferably 0.5 μm to 1.5 μm.

また、本発明のPCB端子においては、最表面に形成される金めっき層に関し、高炭素クロム軸受鋼(SUJ2)に対する当該金めっき層の動摩擦係数が0.2未満となっている。金めっき層の動摩擦係数が0.2未満となっていることで、雄端子を抜差しする際の抵抗が適度に低減されることに加え、摩耗による雄端子及び雌端子の損傷を抑制することができる。なお、動摩擦係数の測定は特に限定されず、従来公知の種々の測定方法を用いることができる。  Further, in the PCB terminal of the present invention, regarding the gold plating layer formed on the outermost surface, the dynamic friction coefficient of the gold plating layer with respect to the high carbon chromium bearing steel (SUJ2) is less than 0.2. When the dynamic friction coefficient of the gold plating layer is less than 0.2, the resistance at the time of inserting and removing the male terminal can be appropriately reduced, and damage to the male terminal and the female terminal due to wear can be suppressed. it can. The measurement of the dynamic friction coefficient is not particularly limited, and various conventionally known measurement methods can be used.

また、本発明のPCB端子においては、前記金めっき層のビッカース硬度が150HV〜250HVであること、が好ましい。ビッカース硬度を150HV以上とすることでPCB端子の耐久性を向上させることができ、250HV以下とすることで、雄端子と雌端子の摺動による雌端子の損傷を抑制することができる。  Further, in the PCB terminal of the present invention, it is preferable that the gold plating layer has a Vickers hardness of 150 HV to 250 HV. By setting the Vickers hardness to 150 HV or more, the durability of the PCB terminal can be improved, and by setting it to 250 HV or less, damage to the female terminal due to sliding of the male terminal and the female terminal can be suppressed.

また、本発明のPCB端子においては、前記金めっき層のコバルト濃度が0.1質量%〜1質量%であること、が好ましい。コバルト濃度を0.1質量%〜1質量%とすることで、ビッカース硬度及び動摩擦係数を上記の数値範囲とすることができる。  Further, in the PCB terminal of the present invention, it is preferable that the gold plating layer has a cobalt concentration of 0.1% by mass to 1% by mass. By setting the cobalt concentration to 0.1% by mass to 1% by mass, the Vickers hardness and the dynamic friction coefficient can be set within the above numerical ranges.

また、本発明のPCB端子においては、厚さが0超0.1μm以下の金フラッシュめっき層を介して、前記金めっき層が前記ニッケルめっき層の表面に形成されていること、が好ましい。金めっき層が金フラッシュめっき層を介してニッケルめっき層に形成されることで、金めっき層とニッケルめっき層の密着性を十分に担保することができる。その結果、金めっき層が極めて薄い場合でなくても、金めっき層がニッケルめっき層から剥離等することを抑制することができる。  Further, in the PCB terminal of the present invention, it is preferable that the gold plating layer is formed on the surface of the nickel plating layer via a gold flash plating layer having a thickness of more than 0 and not more than 0.1 μm. By forming the gold plating layer on the nickel plating layer via the gold flash plating layer, the adhesion between the gold plating layer and the nickel plating layer can be sufficiently ensured. As a result, even if the gold plating layer is not extremely thin, it is possible to prevent the gold plating layer from peeling off from the nickel plating layer.

また、本発明のPCB端子においては、前記ニッケルめっき層が下地ストライクめっき層を介して前記雄端子の表面に形成されており、前記下地ストライクめっき層として、銅ストライクめっき層又はニッケルストライクめっき層のうちの少なくとも一つが形成されていること、が好ましい。ニッケルめっき層が下地ストライクめっき層を介して金属基材に形成されていることで、ニッケルめっき層と金属基材の密着性を十分に担保することができる。  Further, in the PCB terminal of the present invention, the nickel plating layer is formed on the surface of the male terminal through a base strike plating layer, and the base strike plating layer is a copper strike plating layer or a nickel strike plating layer. It is preferable that at least one of them is formed. Since the nickel plating layer is formed on the metal base material via the underlying strike plating layer, the adhesion between the nickel plating layer and the metal base material can be sufficiently ensured.

更に、本発明のPCB端子においては、前記金めっき層が、前記雄端子の表面側及び裏面側にのみ形成されていること、が好ましい。嵌合時に主として雌端子に接触する雄端子の表面及び裏面に金めっき層が形成されていることから、十分な通電特性を担保することができる。一方で、通電特性に殆ど寄与しない雄端子の両側面には金めっき層が形成されておらず、金の使用量が最小限に留められている。  Further, in the PCB terminal of the present invention, it is preferable that the gold plating layer is formed only on the front surface side and the back surface side of the male terminal. Since the gold plating layer is formed on the front surface and the back surface of the male terminal, which is mainly in contact with the female terminal at the time of fitting, sufficient current-carrying characteristics can be ensured. On the other hand, a gold plating layer is not formed on both side surfaces of the male terminal that hardly contributes to the current-carrying characteristics, so that the amount of gold used is kept to a minimum.

本発明のPCB端子によれば、優れた耐摩耗特性、電導性、摺動性及び低摩擦性を有し、かつ、十分な耐久性を有するPCB端子を提供することにある。  According to the PCB terminal of the present invention, it is possible to provide a PCB terminal having excellent wear resistance, electrical conductivity, slidability and low friction, and having sufficient durability.

本発明のPCB端子の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the PCB terminal of this invention. 雄端子4のA−A’断面図である。It is an A-A' sectional view of the male terminal 4. 本発明のPCB端子の製造方法の工程図である。It is process drawing of the manufacturing method of the PCB terminal of this invention.

以下、図面を参照しながら本発明のPCB端子の代表的な実施形態及び当該PCB端子の製造方法について詳細に説明するが、本発明はこれらのみに限定されるものではない。
なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する場合がある。また、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。
Hereinafter, representative embodiments of the PCB terminal of the present invention and a method of manufacturing the PCB terminal will be described in detail with reference to the drawings, but the present invention is not limited thereto.
In the following description, the same or corresponding parts will be denoted by the same reference symbols, and redundant description may be omitted. Moreover, since the drawings are for conceptually explaining the present invention, the dimensions of each of the illustrated components and their ratios may differ from the actual ones.

≪PCB端子≫
図1は、本発明のPCB端子の一例を示す概略斜視図である。PCB端子1は金属基材2の端部に複数の略四角柱状の雄端子4が並列した櫛歯状となっている。なお、PCB端子1は本発明のPCB端子の製造方法を用いることで、効率的に製造することができる。
<< PCB terminal >>
FIG. 1 is a schematic perspective view showing an example of a PCB terminal of the present invention. The PCB terminal 1 has a comb-like shape in which a plurality of substantially square pole-shaped male terminals 4 are arranged in parallel at the end of the metal base material 2. The PCB terminal 1 can be efficiently manufactured by using the PCB terminal manufacturing method of the present invention.

基本的に金属基材2と雄端子4は同一の材質であり、電導性を有している限り特に限定されず、例えば、アルミニウム及びアルミニウム合金、鉄及び鉄合金(例えば、鉄−ニッケル合金)、チタン及びチタン合金、ステンレス、銅及び銅合金等を挙げることができるが、なかでも、電導性・熱伝導性・展延性に優れているという理由から、銅又は真鍮を用いることが好ましい。  Basically, the metal base material 2 and the male terminal 4 are made of the same material and are not particularly limited as long as they have electrical conductivity. For example, aluminum and aluminum alloys, iron and iron alloys (for example, iron-nickel alloy). , Titanium and titanium alloys, stainless steel, copper and copper alloys, and the like. Among them, it is preferable to use copper or brass because of their excellent electrical conductivity, thermal conductivity, and ductility.

雄端子4のA−A’断面図を図2に示す。雄端子4においては、金属基材2の表面にニッケルめっき層12が形成されており、ニッケルめっき層12の表面に金フラッシュめっき層(図示せず)を介して金めっき層14が形成されている。金フラッシュめっき層を形成させることで、ニッケルめっき層12と金めっき層14との密着性を十分に担保することができる。その結果、金めっき層14が極めて薄い場合でなくても、金めっき層14がニッケルめっき層12から剥離等することを抑制することができる。  A sectional view of the male terminal 4 taken along the line A-A' is shown in FIG. In the male terminal 4, the nickel plating layer 12 is formed on the surface of the metal base material 2, and the gold plating layer 14 is formed on the surface of the nickel plating layer 12 via a gold flash plating layer (not shown). There is. By forming the gold flash plating layer, the adhesion between the nickel plating layer 12 and the gold plating layer 14 can be sufficiently ensured. As a result, even if the gold plating layer 14 is not extremely thin, it is possible to prevent the gold plating layer 14 from peeling off from the nickel plating layer 12.

金めっき層14は雄端子4の全面に形成させてもよいが、雌端子と当接する雄端子4の表面及び裏面のみに形成させることが好ましい。なお、金フラッシュめっき層はニッケルめっき層12の全面に形成していてもよく、金めっき層14を形成させる雄端子4の表面及び裏面のみに形成させてもよい。  Although the gold plating layer 14 may be formed on the entire surface of the male terminal 4, it is preferably formed only on the front surface and the back surface of the male terminal 4 that contacts the female terminal. The gold flash plating layer may be formed on the entire surface of the nickel plating layer 12, or may be formed only on the front surface and the back surface of the male terminal 4 on which the gold plating layer 14 is formed.

金めっき層14の厚さは0.2μm〜1.0μmとなっている。金めっき層14の厚さを0.2μm以上とすることで、金の電気的特性や耐久性を十分に活用することができ、1.0μm以下とすることで、金の使用量を抑制できることに加え、生産性の悪化を抑制することができる。なお、金めっき層14の厚さは0.4μm〜0.8μmとすることがより好ましく、0.5μm〜0.7μmとすることが最も好ましい。  The thickness of the gold plating layer 14 is 0.2 μm to 1.0 μm. When the thickness of the gold plating layer 14 is 0.2 μm or more, the electrical characteristics and durability of gold can be fully utilized, and when it is 1.0 μm or less, the amount of gold used can be suppressed. In addition, productivity deterioration can be suppressed. The thickness of the gold plating layer 14 is more preferably 0.4 μm to 0.8 μm, and most preferably 0.5 μm to 0.7 μm.

また、金フラッシュめっき層の厚さは0超0.1μm以下であることが好ましい。なお、金フラッシュめっき層の厚さは0.08μm以下とすることがより好ましく、0.06μm以下とすることが最も好ましい。金フラッシュめっき層の厚さを0.1μm以下とすることで、金の使用量増加及び生産性の悪化を抑制することができる。  The thickness of the gold flash plating layer is preferably more than 0 and 0.1 μm or less. The thickness of the gold flash plating layer is more preferably 0.08 μm or less, and most preferably 0.06 μm or less. By setting the thickness of the gold flash plating layer to 0.1 μm or less, an increase in the amount of gold used and a deterioration in productivity can be suppressed.

PCB端子1では、嵌合時に雌端子と当接する雄端子4の表面に金めっき層14が形成していることから、金めっき層14が有する優れた耐摩耗性、低い電気抵抗、及び良好な耐熱性を利用することができ、PCB端子として要求される導電性及び耐久性等を十分に確保することができる。更に、雄端子4の両側面には金めっき層14を形成させず、表面及び裏面のみに金めっき層14を形成させることで、金の使用量を必要最小限に抑えることができる。  In the PCB terminal 1, since the gold plating layer 14 is formed on the surface of the male terminal 4 that comes into contact with the female terminal at the time of fitting, the gold plating layer 14 has excellent wear resistance, low electric resistance, and good wear resistance. The heat resistance can be utilized, and the conductivity and durability required for the PCB terminal can be sufficiently ensured. Furthermore, by not forming the gold plating layer 14 on both side surfaces of the male terminal 4 and forming the gold plating layer 14 only on the front surface and the back surface, the amount of gold used can be suppressed to a necessary minimum.

また、金めっき層14は、高炭素クロム軸受鋼(SUJ2)に対する動摩擦係数が0.2未満となっている。当該動摩擦係数が0.2未満となっていることで、雄端子4を抜差しする際の抵抗が適度に低減されることに加え、摩耗による雄端子4及び雌端子の損傷を抑制することができる。なお、動摩擦係数の測定は特に限定されず、従来公知の種々の測定方法を用いることができ、例えば、新東科学株式会社製のHEIDON−14を用いて測定することができる。  The gold plating layer 14 has a dynamic friction coefficient of less than 0.2 with respect to the high carbon chromium bearing steel (SUJ2). When the coefficient of dynamic friction is less than 0.2, the resistance at the time of inserting/removing the male terminal 4 can be appropriately reduced, and damage to the male terminal 4 and the female terminal due to wear can be suppressed. . The measurement of the dynamic friction coefficient is not particularly limited, and various conventionally known measurement methods can be used, for example, HEIDON-14 manufactured by Shinto Scientific Co., Ltd. can be used for measurement.

また、金めっき層14のビッカース硬度は150HV〜250HVであること、が好ましい。ビッカース硬度を150HV以上とすることでPCB端子1の耐久性を向上させることができ、250HV以下とすることで、雄端子4と雌端子の摺動による雌端子の損傷を抑制することができる。  The Vickers hardness of the gold plating layer 14 is preferably 150HV to 250HV. By setting the Vickers hardness to 150 HV or higher, the durability of the PCB terminal 1 can be improved, and by setting it to 250 HV or lower, damage to the female terminal due to sliding between the male terminal 4 and the female terminal can be suppressed.

また、金めっき層14のコバルト濃度は0.1質量%〜1質量%であること、が好ましい。コバルト濃度を0.1質量%〜1質量%とすることで、ビッカース硬度及び動摩擦係数を上記の数値範囲とすることができる。  The cobalt concentration of the gold plating layer 14 is preferably 0.1% by mass to 1% by mass. By setting the cobalt concentration to 0.1% by mass to 1% by mass, the Vickers hardness and the dynamic friction coefficient can be set within the above numerical ranges.

また、PCB端子1においては、ニッケルめっき層12が下地ストライクめっき層を介して雄端子4の表面に形成されており、前記下地ストライクめっき層として、銅ストライクめっき層及びニッケルストライクめっき層のうちの少なくとも一つが形成されていること、が好ましい。ニッケルめっき層12が下地ストライクめっき層を介して金属基材2に形成されていることで、ニッケルめっき層12と金属基材2の密着性を十分に担保することができる。  In addition, in the PCB terminal 1, the nickel plating layer 12 is formed on the surface of the male terminal 4 via the underlying strike plating layer, and as the underlying strike plating layer, one of the copper strike plating layer and the nickel strike plating layer is used. It is preferable that at least one is formed. Since the nickel plating layer 12 is formed on the metal substrate 2 via the underlying strike plating layer, the adhesion between the nickel plating layer 12 and the metal substrate 2 can be sufficiently ensured.

また、PCB端子1では金属基材2と金めっき層14との間にニッケルめっき層12が存在するため、ニッケルめっき層12が金属基材2に含まれる元素と金との拡散及び反応を防止するバリア層として機能する。つまり、金属基材2と金めっき層14との間にニッケルめっき層12が存在することで、金属基材2に含まれる元素と金との拡散及び反応に伴う金属間化合物の形成による、金めっき層14の脆化を抑制することができる。  Further, in the PCB terminal 1, since the nickel plating layer 12 exists between the metal base material 2 and the gold plating layer 14, the nickel plating layer 12 prevents diffusion and reaction between the element contained in the metal base material 2 and gold. Function as a barrier layer. That is, the presence of the nickel plating layer 12 between the metal base material 2 and the gold plating layer 14 causes the formation of an intermetallic compound due to the diffusion and reaction of the element contained in the metal base material 2 and gold, Embrittlement of the plating layer 14 can be suppressed.

ニッケルめっき層12は、連続する膜形状であることが好ましく、ニッケルめっき層12の厚さは0.3μm〜4.0μmであることが好ましい。0.3μm未満であるとバリア効果に乏しく、4μm超であると曲げ加工時にクラックが発生しやすくなる。ニッケルめっき層12の厚さは、0.4μm〜2.0μmとすることがより好ましく、0.5μm〜1.5μmとすることが最も好ましい。なお、ニッケルめっき層12は、本発明の効果を損なわない範囲で、粒状や島状の不連続な膜形状であってもよく、その場合、粒状及び島状部分が部分的に連続していてもよい。  The nickel plating layer 12 preferably has a continuous film shape, and the thickness of the nickel plating layer 12 is preferably 0.3 μm to 4.0 μm. If it is less than 0.3 μm, the barrier effect is poor, and if it exceeds 4 μm, cracks are likely to occur during bending. The thickness of the nickel plating layer 12 is more preferably 0.4 μm to 2.0 μm, and most preferably 0.5 μm to 1.5 μm. In addition, the nickel plating layer 12 may have a granular or island-shaped discontinuous film shape as long as the effect of the present invention is not impaired. In that case, the granular and island-shaped portions are partially continuous. Good.

更に、摺動摩耗が顕著な雄端子4の表面及び裏面の最表面を金めっき層14とすることで、摺動摩耗によって飛散した金属片を原因とする、発火及び感電等の重大な事故を防止することができる。  Furthermore, by forming the outermost surfaces of the front and back surfaces of the male terminal 4 where the sliding wear is remarkable, a serious accident such as ignition and electric shock due to the metal pieces scattered by the sliding wear is caused. Can be prevented.

≪PCB端子の製造方法≫
図3は、本発明のPCB端子の製造方法の工程図である。PCB端子1は雄端子4の最表面に金めっき層14が形成されたものであるが、ここでは使用時に雌端子と当接する雄端子4の表面及び裏面のみに金めっき層14を形成させたPCB端子1の製造方法について詳述する。当該製造方法は、PCB端子1の形状とした金属基材2にニッケルめっきを施し、雄端子4の全面にニッケルめっき層12を形成させる第一工程(S01)と、雄端子4の表面及び裏面にマスキング層を形成させる第二工程(S02)と、雄端子4の両側面にレジスト層を形成させる第三工程(S03)と、雄端子4の表面及び裏面に金めっき層14を形成させる第四工程(S04)と、を含むことを特徴としている。以下、各工程について詳細に説明する。
<< PCB terminal manufacturing method >>
FIG. 3 is a process drawing of the method for manufacturing a PCB terminal of the present invention. In the PCB terminal 1, the gold plating layer 14 is formed on the outermost surface of the male terminal 4, but here, the gold plating layer 14 is formed only on the front surface and the back surface of the male terminal 4 that contacts the female terminal during use. A method of manufacturing the PCB terminal 1 will be described in detail. In the manufacturing method, the metal base material 2 in the shape of the PCB terminal 1 is nickel-plated to form a nickel plating layer 12 on the entire surface of the male terminal 4, and a front surface and a back surface of the male terminal 4. A second step (S02) of forming a masking layer on the first side, a third step (S03) of forming a resist layer on both side surfaces of the male terminal 4, and a first step of forming a gold plating layer 14 on the front and back surfaces of the male terminal 4. It is characterized by including four steps (S04). Hereinafter, each step will be described in detail.

(1)予備処理
金属基材2はPCB端子1の形状に加工されており、略四角柱形状の雄端子4を複数有する櫛歯状となっている。ここで、端子の形状、大きさ及び本数等は特に限定されず、PCB端子1としての要求に応じて決定すればよい。
(1) Pretreatment The metal base material 2 is processed into the shape of the PCB terminal 1 and has a comb-like shape having a plurality of substantially square pole-shaped male terminals 4. Here, the shape, size, number of terminals, and the like of the terminals are not particularly limited, and may be determined according to the requirements of the PCB terminal 1.

金属基材2に用いる金属は、電導性を有している限り特に限定されず、例えば、アルミニウム及びアルミニウム合金、鉄及び鉄合金(例えば、鉄−ニッケル合金)、チタン及びチタン合金、ステンレス、銅及び銅合金等を挙げることができるが、なかでも、電導性・熱伝導性・展延性に優れているという理由から、銅又は真鍮を用いることが好ましい。  The metal used for the metal substrate 2 is not particularly limited as long as it has electrical conductivity, and examples thereof include aluminum and aluminum alloys, iron and iron alloys (for example, iron-nickel alloys), titanium and titanium alloys, stainless steel, and copper. Examples thereof include copper alloys and the like. Among them, it is preferable to use copper or brass because of its excellent electrical conductivity, thermal conductivity and spreadability.

また、各種めっき処理の予備処理として、金属基材2の洗浄を施すことが好ましい。金属基材2の洗浄方法は本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の洗浄方法を用いることができる。洗浄処理液としては、例えば、一般的な浸漬脱脂液や電解脱脂液を使用することができる。  Further, it is preferable to wash the metal base material 2 as a pretreatment for various plating treatments. The method for cleaning the metal substrate 2 is not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known cleaning methods can be used. As the cleaning treatment liquid, for example, a general immersion degreasing liquid or an electrolytic degreasing liquid can be used.

(2)下地ストライクめっき処理
下地ストライクめっき処理は、第一工程(S01)の予備処理であり、金属基材2とニッケルめっき層12との密着性を改善する必要がある場合は施すことが好ましい。下地ストライクめっき処理としては、例えば、銅ストライクめっき処理、ニッケルストライクめっき処理等を用いることができる。
(2) Base Strike Plating Treatment The base strike plating treatment is a preliminary treatment of the first step (S01), and is preferably performed when it is necessary to improve the adhesion between the metal base 2 and the nickel plating layer 12. .. As the base strike plating treatment, for example, copper strike plating treatment, nickel strike plating treatment, or the like can be used.

(A)銅ストライクめっき
銅ストライクめっき浴としては、例えば、銅塩・電導塩を含むものを用いることができる。また、光沢剤が添加されていてもよい。
(A) Copper Strike Plating As the copper strike plating bath, for example, a bath containing a copper salt/conductive salt can be used. Further, a brightening agent may be added.

銅ストライクめっき処理に好適に用いることができる銅ストライクめっき浴は例えば、シアン化銅浴を用いることができる。シアン化銅浴は、銅塩、シアン化アルカリ塩及び電導塩により構成され、添加剤や光沢剤が添加されてもよい。  As the copper strike plating bath that can be suitably used for the copper strike plating treatment, for example, a copper cyanide bath can be used. The copper cyanide bath is composed of a copper salt, an alkali cyanide salt and a conductive salt, and an additive or a brightening agent may be added.

銅塩としては、例えば、シアン化銅を用いることが出来る。シアン化アルカリ塩には、例えば、シアン化カリウム及びシアン化ナトリウム等を用いることができる。電導塩には、例えば、炭酸カリウム及び炭酸ナトリウム等を用いることができる。添加剤には、例えば、ロッシェル塩、亜セレン酸カリウム、亜セレン酸ナトリウム、チオシアン酸カリウム、酢酸鉛、酒石酸鉛等を用いることができる。  As the copper salt, for example, copper cyanide can be used. As the alkali cyanide salt, for example, potassium cyanide, sodium cyanide, or the like can be used. As the conductive salt, for example, potassium carbonate, sodium carbonate or the like can be used. As the additive, for example, Rochelle salt, potassium selenite, sodium selenite, potassium thiocyanate, lead acetate, lead tartrate or the like can be used.

銅ストライクめっき浴の浴温度、陽極材料、電流密度等の銅ストライクめっき条件は、用いるめっき浴及び必要とするめっき厚さ等に応じて適宜設定することができる。例えば、陽極材料には、電解銅等の可溶性陽極、及び/又は、ステンレス鋼、チタン白金板、酸化イリジウム等の不溶性陽極等を用いることが好ましい。また、好適なめっき条件としては、浴温:25〜70℃、電流密度:0.1〜6.0A/dm、処理時間:5〜60秒を例示することができる。The copper strike plating conditions such as the bath temperature of the copper strike plating bath, the anode material, and the current density can be appropriately set according to the plating bath used, the required plating thickness, and the like. For example, it is preferable to use a soluble anode such as electrolytic copper and/or an insoluble anode such as stainless steel, a titanium platinum plate, or iridium oxide as the anode material. As suitable plating conditions, bath temperature: 25 to 70° C., current density: 0.1 to 6.0 A/dm 2 , and treatment time: 5 to 60 seconds can be exemplified.

(B)ニッケルストライクめっき
ニッケルストライクめっき浴としては、例えば、ニッケル塩、陽極溶解促進剤及びpH緩衝剤を含むものを用いることができる。また、ニッケルストライクめっき浴には添加剤が添加されていてもよい。
(B) Nickel Strike Plating As the nickel strike plating bath, for example, one containing a nickel salt, an anodic dissolution accelerator and a pH buffer can be used. Further, an additive may be added to the nickel strike plating bath.

ニッケル塩には、例えば、硫酸ニッケル、スルファミン酸ニッケル及び塩化ニッケル等を用いることができる。陽極溶解促進剤には、例えば、塩化ニッケル及び塩酸等を用いることができる。pH緩衝剤には、例えば、ホウ酸、酢酸ニッケル及びクエン酸等を用いることができる。添加剤には、例えば、1次光沢剤(サッカリン、ベンゼン、ナフタレン(ジ、トリ)、スルホン酸ナトリウム、スルホンアミド、スルフィン酸等)、2次光沢剤(有機化合物:ブチンジオール、クマリン、アリルアルデヒドスルホン酸等、金属塩:コバルト、鉛、亜鉛等)及びピット防止剤(ラウリル硫酸ナトリウム等)等を用いることができる。  As the nickel salt, for example, nickel sulfate, nickel sulfamate, nickel chloride or the like can be used. As the anodic dissolution promoter, for example, nickel chloride, hydrochloric acid or the like can be used. As the pH buffer, for example, boric acid, nickel acetate, citric acid, etc. can be used. Examples of additives include primary brighteners (saccharin, benzene, naphthalene (di, tri), sodium sulfonate, sulfonamide, sulfinic acid, etc.), secondary brighteners (organic compounds: butynediol, coumarin, allyl aldehyde). Sulfonic acid and the like, metal salts: cobalt, lead, zinc and the like), pit inhibitors (sodium lauryl sulfate and the like) and the like can be used.

ニッケルストライクめっき処理に好適に用いることができるニッケルストライクめっき浴の各構成要素の好適な使用量は、ニッケル塩:100〜300g/L、陽極溶解促進剤:0〜300g/L、pH緩衝剤:0〜50g/L、添加剤:0〜20g/Lである。  A suitable amount of each component of the nickel strike plating bath that can be suitably used for the nickel strike plating treatment is as follows: nickel salt: 100 to 300 g/L, anodic dissolution accelerator: 0 to 300 g/L, pH buffer: 0 to 50 g/L, additive: 0 to 20 g/L.

ニッケルストライクめっき浴の浴温度、陽極材料、電流密度等のニッケルストライクめっき条件は、用いるめっき浴及び必要とするめっき厚さ等に応じて適宜設定することができる。例えば、陽極材料には、電解ニッケル、カーボナイズドニッケル、デポライズドニッケル、サルファニッケル等の可溶性陽極等を用いることが好ましい。また、好適なめっき条件としては、浴温:20〜30℃、電流密度:1.0〜5.0A/dm、処理時間:1〜30秒、pH:0.5〜4.5を例示することができる。The nickel strike plating conditions such as the bath temperature of the nickel strike plating bath, the anode material, and the current density can be appropriately set depending on the plating bath used, the required plating thickness, and the like. For example, as the anode material, it is preferable to use a soluble anode such as electrolytic nickel, carbonized nickel, deposited nickel, and sulfa nickel. As suitable plating conditions, bath temperature: 20 to 30° C., current density: 1.0 to 5.0 A/dm 2 , treatment time: 1 to 30 seconds, pH: 0.5 to 4.5 are exemplified. can do.

(3)ニッケルめっき処理(第一工程(S01))
ニッケルめっき処理は、金属基材2と金めっき層14との間において、金属基材2に含まれる元素と金との拡散及び反応を防止するバリア層として機能するニッケルめっき層12を形成させるために施される処理である。金属基材2と金めっき層14との間にニッケルめっき層12が存在することで、金属基材2に含まれる元素と金との拡散及び反応に伴う金属間化合物の形成による金めっき層14の脆化を抑制することができる。
(3) Nickel plating treatment (first step (S01))
The nickel plating treatment forms the nickel plating layer 12 which functions as a barrier layer between the metal base material 2 and the gold plating layer 14 to prevent the diffusion and reaction of the element contained in the metal base material 2 and gold. Is a process performed on the. The presence of the nickel plating layer 12 between the metal base material 2 and the gold plating layer 14 causes the formation of an intermetallic compound due to the diffusion and reaction between the elements contained in the metal base material 2 and gold, thereby forming the gold plating layer Embrittlement can be suppressed.

ニッケルめっき浴としては、例えば、ワット浴やスルファミン酸浴を用いることができるが、電着応力の低いスルファミン酸浴を用いることが好ましい。なお、強酸性のウッドストライク浴は避ける方が好ましい。ニッケルめっき処理には、本発明の効果を損なわない範囲で従来公知の種々のニッケルめっき手法を用いることができる。例えば、ニッケルめっき浴は硫酸ニッケル・スルファミン酸ニッケル・塩化ニッケル等のニッケル塩と、塩化ニッケル等の陽極溶解剤と、ホウ酸・酢酸・クエン酸等のpH緩衝剤とで構成された液に、添加剤として少量の光沢剤やレベリング剤、ピット防止剤等を添加したものを用いることができる。各構成要素の好適な使用量は、ニッケル塩:100〜600g/L、陽極溶解剤:0〜50g/L、pH緩衝剤:20〜50g/L、添加剤:〜5000ppmである。  As the nickel plating bath, for example, a Watts bath or a sulfamic acid bath can be used, but a sulfamic acid bath having a low electrodeposition stress is preferably used. In addition, it is preferable to avoid a strong acid wood strike bath. For the nickel plating treatment, various conventionally known nickel plating techniques can be used within a range that does not impair the effects of the present invention. For example, a nickel plating bath is a solution composed of a nickel salt such as nickel sulfate, nickel sulfamate and nickel chloride, an anodic dissolving agent such as nickel chloride, and a pH buffering agent such as boric acid, acetic acid and citric acid. As an additive, a material to which a small amount of a brightening agent, a leveling agent, a pit preventing agent, etc. are added can be used. A suitable amount of each constituent used is nickel salt: 100 to 600 g/L, anodic dissolution agent: 0 to 50 g/L, pH buffer: 20 to 50 g/L, additive: to 5000 ppm.

ニッケルめっき浴の浴温度、陽極材料、電流密度等のニッケルめっき条件は、用いるめっき浴及び必要とするめっき厚さ等に応じて適宜設定することができる。例えば、陽極材料には、ニッケル板等の可溶性陽極を用いることが好ましい。また、好適なめっき条件としては、浴温:40〜60℃、電流密度:0.1〜50A/dm、pH:3.0〜5.0を例示することができる。The nickel plating conditions such as the bath temperature of the nickel plating bath, the anode material, and the current density can be appropriately set according to the plating bath used, the required plating thickness, and the like. For example, it is preferable to use a soluble anode such as a nickel plate as the anode material. Moreover, as suitable plating conditions, bath temperature: 40-60 degreeC, current density: 0.1-50 A/dm< 2 >, pH: 3.0-5.0 can be illustrated.

なお、第一工程のニッケルめっき処理によって形成されるニッケルめっき層12は、連続する膜形状であることが好ましく、ニッケルめっき層12の厚さは0.3μm〜4.0μmであることが好ましい。0.3μm未満であるとバリア効果に乏しく、4μm超であると曲げ加工時にクラックが発生しやすくなる。ニッケルめっき層12の厚さは、0.4μm〜2.0μmとすることがより好ましく、0.5μm〜1.5μmとすることが最も好ましい。なお、ニッケルめっき層12は、本発明の効果を損なわない範囲で、粒状や島状の不連続な膜形状であってもよく、その場合、粒状及び島状部分が部分的に連続していてもよい。  The nickel plating layer 12 formed by the nickel plating treatment in the first step preferably has a continuous film shape, and the thickness of the nickel plating layer 12 is preferably 0.3 μm to 4.0 μm. If it is less than 0.3 μm, the barrier effect is poor, and if it exceeds 4 μm, cracks are likely to occur during bending. The thickness of the nickel plating layer 12 is more preferably 0.4 μm to 2.0 μm, and most preferably 0.5 μm to 1.5 μm. The nickel plating layer 12 may have a granular or island-shaped discontinuous film shape as long as the effect of the present invention is not impaired. In that case, the particles and island-shaped portions are partially continuous. Good.

(4)金めっきフラッシュ処理
金めっきフラッシュ処理は、第一工程(S01)で形成させたニッケルめっき層12に対する処理であり、主として、嵌合部ではない部分(金めっき層14を厚くする必要がない部分)に耐食性をもたせる為に行う処理である。金めっき処理後に金めっきフラッシュ処理を行うという工程順でも問題ないが、密着性の観点から、ニッケルめっき後に施すことが好ましい。ニッケルめっき層12の表面に薄い金めっき層を形成させることで、第四工程(S04)において形成させる金めっき層14とニッケルめっき層12との密着性を十分に担保することができる。
(4) Gold plating flash treatment The gold plating flash treatment is a treatment for the nickel plating layer 12 formed in the first step (S01), and is mainly a portion that is not the fitting portion (the gold plating layer 14 needs to be thickened). This is a process performed to give corrosion resistance to the non-existing part). Although there is no problem in the order of the steps of performing gold plating flash treatment after gold plating treatment, it is preferable to perform after gold plating from the viewpoint of adhesion. By forming a thin gold plating layer on the surface of the nickel plating layer 12, the adhesion between the gold plating layer 14 and the nickel plating layer 12 formed in the fourth step (S04) can be sufficiently secured.

金めっきフラッシュ浴としては、例えば、金塩、電導塩、キレート剤及び結晶成長剤を含むものを用いることができる。また、金めっきフラッシュ浴には光沢剤が添加されていてもよい。  As the gold plating flash bath, for example, one containing a gold salt, a conductive salt, a chelating agent and a crystal growth agent can be used. Further, a brightener may be added to the gold plating flash bath.

金塩には、例えば、シアン化金、シアン化第一金カリウム、シアン化第二金カリウム、亜硫酸金ナトリウム及びチオ硫酸金ナトリウム等を用いることができる。電導塩には、例えば、クエン酸カリウム、リン酸カリウム、ピロリン酸カリウム及びチオ硫酸カリウム等を用いることができる。キレート剤には、例えば、エチレンジアミン四酢酸及びメチレンホスホン酸等を用いることができる。結晶成長剤には、例えば、コバルト、ニッケル、タリウム、銀、パラジウム、錫、亜鉛、銅、ビスマス、インジウム、ヒ素及びカドミウム等を用いることができる。なお、pH調整剤として、例えば、ポリリン酸、クエン酸、酒石酸、水酸化カリウム及び塩酸等を添加してもよい。  As the gold salt, for example, gold cyanide, potassium gold(I) cyanide, potassium gold(II) cyanide, gold(II) sulfite, gold(II) thiosulfate and the like can be used. As the conductive salt, for example, potassium citrate, potassium phosphate, potassium pyrophosphate, potassium thiosulfate and the like can be used. As the chelating agent, for example, ethylenediaminetetraacetic acid and methylenephosphonic acid can be used. As the crystal growth agent, for example, cobalt, nickel, thallium, silver, palladium, tin, zinc, copper, bismuth, indium, arsenic and cadmium can be used. As the pH adjuster, for example, polyphosphoric acid, citric acid, tartaric acid, potassium hydroxide, hydrochloric acid, etc. may be added.

金めっきフラッシュ処理に好適に用いることができる金めっきフラッシュ浴の各構成要素の好適な使用量は、金塩:1〜10g/L、電導塩:0〜200g/L、キレート剤:0〜30g/L、結晶成長剤:0〜30g/Lである。  The suitable amount of each component of the gold plating flash bath that can be preferably used for the gold plating flash treatment is as follows: gold salt: 1 to 10 g/L, conductive salt: 0 to 200 g/L, chelating agent: 0 to 30 g /L, crystal growth agent: 0 to 30 g/L.

金めっきフラッシュ浴の浴温度、陽極材料、電流密度等の金めっきフラッシュ条件は、用いるめっき浴及び必要とするめっき厚さ等に応じて適宜設定することができる。例えば、陽極材料には、チタン白金板及び酸化イリジウム等の不溶性陽極等を用いることが好ましい。また、好適なめっき条件としては、浴温:20〜40℃、電流密度:0.1〜5.0A/dm、処理時間:1〜60秒、pH:0.5〜7.0を例示することができる。The gold plating flash conditions such as the bath temperature of the gold plating flash bath, the anode material, and the current density can be appropriately set according to the plating bath used, the required plating thickness, and the like. For example, a titanium platinum plate and an insoluble anode such as iridium oxide are preferably used as the anode material. Moreover, as suitable plating conditions, bath temperature: 20-40 degreeC, current density: 0.1-5.0 A/dm< 2 >, processing time: 1-60 seconds, pH: 0.5-7.0 is illustrated. can do.

(5)マスキング処理(第二工程(S02))
マスキング処理は、第三工程(S03)におけるレジスト層の形成を防止するマスキング層を形成するための処理である。なお、マスキング処理の前には、各種めっき処理を施した金属基材2を乾燥機等にて乾燥させておくことが好ましい。ここで、第三工程(S03)で雄端子4の表面及び裏面にレジスト層が形成することを防止するため、雄端子4の表面及び裏面にマスキング処理を行う必要がある。
(5) Masking treatment (second step (S02))
The masking process is a process for forming a masking layer that prevents the formation of the resist layer in the third step (S03). Before the masking process, it is preferable to dry the metal substrate 2 that has been subjected to various plating processes with a dryer or the like. Here, in order to prevent the resist layer from being formed on the front surface and the back surface of the male terminal 4 in the third step (S03), it is necessary to perform a masking process on the front surface and the back surface of the male terminal 4.

本発明の効果を損なわない限りにおいてマスキングの方法は特に限定されず、従来公知の種々のマスキング方法を用いることができる。マスキング方法としては、例えば、テープ、スパージャーマスク、ドラムマスク、レジスト、ドライフィルムレジスト、インクジェット方式を挙げることができ、これらのうちの1種類又は2種類以上を組み合わせてマスキングを行うことが好ましい。  The masking method is not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known masking methods can be used. Examples of the masking method include a tape, a sparger mask, a drum mask, a resist, a dry film resist, and an inkjet method, and it is preferable to perform masking by using one kind or a combination of two or more kinds thereof.

特に、基材の側面のみにレジスト層を形成したい場合、1段階目にテープ状もしくはドラムマスク等で表面をマスキングし、2段階目に液状のレジストを用いて側面のみレジスト層を形成することが好ましい。  In particular, when it is desired to form the resist layer only on the side surface of the base material, the surface may be masked with a tape or a drum mask in the first step, and the resist layer may be formed only in the side surface with the liquid resist in the second step. preferable.

(6)レジスト層の形成(第三工程(S03))
第三工程(S03)では、レジストを塗布した後に第二工程で形成させたマスキングを剥離させ、第四工程(S04)で金めっき層14を形成させたくない領域(雄端子4の両側面)にレジストを形成させるための工程である。
(6) Formation of resist layer (third step (S03))
In the third step (S03), after the resist is applied, the masking formed in the second step is peeled off, and in the fourth step (S04), areas where the gold plating layer 14 is not desired to be formed (both sides of the male terminal 4) This is a step for forming a resist on.

マスキングを剥離した後、UVライト(水銀ランプ,メタルハライドランプ,LED等)にて露光することで、レジストを硬化させることができる。  After removing the masking, the resist can be cured by exposing it with a UV light (a mercury lamp, a metal halide lamp, an LED, etc.).

なお、レジストにはネガ型、ポジ型、電着レジスト、液レジスト、ドライフィルムレジスト等が存在するが、めっき槽に暗室が不要であるネガ型を使用することが好ましい。  Note that there are negative resists, positive resists, electrodeposition resists, liquid resists, dry film resists, and the like, but it is preferable to use the negative resist that does not require a dark room in the plating tank.

(7)金めっき(第四工程(S04))
第四工程(S04)は、雄端子4の表面及び裏面のみに金めっき層14を形成させるための工程である。第三工程(S03)までを経ることにより、雄端子4の両側面にレジスト層が形成され、雄端子4の表面及び裏面はニッケルめっき層12又は金めっきフラッシュ処理によって形成された薄い金めっき層となっていることから、第四工程(S04)で金めっき処理を施すことにより、雄端子4の表面及び裏面のみに金めっき層14を形成させることができる。
(7) Gold plating (fourth step (S04))
The fourth step (S04) is a step for forming the gold plating layer 14 only on the front and back surfaces of the male terminal 4. By passing through the third step (S03), a resist layer is formed on both side surfaces of the male terminal 4, and the front surface and the back surface of the male terminal 4 are a nickel plating layer 12 or a thin gold plating layer formed by a gold plating flash process. Therefore, by performing the gold plating treatment in the fourth step (S04), the gold plating layer 14 can be formed only on the front surface and the back surface of the male terminal 4.

金めっき層14の厚さは、0.2μm〜1.0μmとすること、が好ましい。金めっき層14の厚さを0.2μm以上とすることで、金の電気的特性や耐久性を十分に活用することができ、1.0μm以下とすることで、金の使用量を抑制できることに加え、生産性の悪化を抑制することができる。なお、金めっき層14の厚さは0.4μm〜0.8μmとすることがより好ましく、0.5μm〜0.7μmとすることが最も好ましい。  The thickness of the gold plating layer 14 is preferably 0.2 μm to 1.0 μm. When the thickness of the gold plating layer 14 is 0.2 μm or more, the electrical characteristics and durability of gold can be fully utilized, and when it is 1.0 μm or less, the amount of gold used can be suppressed. In addition, productivity deterioration can be suppressed. The thickness of the gold plating layer 14 is more preferably 0.4 μm to 0.8 μm, and most preferably 0.5 μm to 0.7 μm.

金めっき処理には、本発明の効果を損なわない範囲で従来公知の種々の金めっき手法を用いることができるが、通常の金フラッシュめっきと比較して、めっき浴中の金塩の濃度を高く、電導塩の濃度を低くすることが好ましい。  For the gold plating treatment, various conventionally known gold plating methods can be used within a range that does not impair the effects of the present invention. However, the gold salt concentration in the plating bath is higher than that of ordinary gold flash plating. It is preferable to lower the concentration of the conductive salt.

金めっき処理に好適に用いることができる金めっき浴は、例えば、金塩、電導塩、キレート剤及び結晶成長剤を含むものを用いることができる。また、金めっき浴には光沢剤が添加されていてもよい。各構成要素の好適な使用量は、金塩:1〜100g/L、電導塩:10〜300g/L、キレート剤:〜30g/L、結晶成長材:〜30g/L、光沢剤:50〜500ppmである。  As the gold plating bath that can be suitably used for the gold plating treatment, for example, one containing a gold salt, a conductive salt, a chelating agent and a crystal growth agent can be used. Further, a brightening agent may be added to the gold plating bath. A suitable amount of each component used is gold salt: 1 to 100 g/L, conductive salt: 10 to 300 g/L, chelating agent: -30 g/L, crystal growth material: -30 g/L, brightener: 50- It is 500 ppm.

金塩としては、例えば、シアン化金、シアン化第一金カリウム、シアン化第二金カリウム、亜硫酸金ナトリウム及びチオ硫酸金ナトリウム等が挙げられ、電導塩としては、例えば、クエン酸カリウム、リン酸カリウム、ピロリン酸カリウム及びチオ硫酸カリウム等が挙げられる。  Gold salts include, for example, gold cyanide, potassium potassium cyanide, potassium diammonium cyanide, sodium gold bisulfite, and sodium gold thiosulfate, and examples of conductive salts include potassium citrate and phosphorus. Examples thereof include potassium acid salt, potassium pyrophosphate and potassium thiosulfate.

キレート剤としては、例えば、エチレンジアミン四酢酸及びメチレンホスホン酸等を用いることができる。結晶成長剤には、例えば、コバルト、ニッケル、タリウム、銀、パラジウム、錫、亜鉛、銅、ビスマス、インジウム、ヒ素及びカドミウム等を用いることができる。なお、pH調整剤として、例えば、ポリリン酸、クエン酸、酒石酸、水酸化カリウム及び塩酸等を添加してもよい。  As the chelating agent, for example, ethylenediaminetetraacetic acid and methylenephosphonic acid can be used. As the crystal growth agent, for example, cobalt, nickel, thallium, silver, palladium, tin, zinc, copper, bismuth, indium, arsenic and cadmium can be used. As the pH adjuster, for example, polyphosphoric acid, citric acid, tartaric acid, potassium hydroxide, hydrochloric acid, etc. may be added.

金めっき浴の浴温度、陽極材料、電流密度等の金めっき条件は、用いるめっき浴及び必要とするめっき厚さ等に応じて適宜設定することができる。例えば、陽極材料には、ステンレス、チタン白金板及び酸化イリジウム等の不溶性陽極等を用いることが好ましい。また、好適なめっき条件としては、浴温:20〜50℃、電流密度:0.1〜5.0A/dm、処理時間:1〜1440秒、pH:3.0〜7.0を例示することができる。The gold plating conditions such as the bath temperature of the gold plating bath, the anode material, and the current density can be appropriately set according to the plating bath used, the required plating thickness, and the like. For example, as the anode material, it is preferable to use stainless steel, a titanium platinum plate, an insoluble anode such as iridium oxide, or the like. Moreover, as suitable plating conditions, bath temperature: 20 to 50° C., current density: 0.1 to 5.0 A/dm 2 , treatment time: 1 to 1440 seconds, pH: 3.0 to 7.0 are exemplified. can do.

ここで、金めっき層14は、高炭素クロム軸受鋼(SUJ2)に対する動摩擦係数が0.2未満となっている。また、金めっき層14のビッカース硬度は150HV〜250HVであること、が好ましい。これに対し、例えば、金めっき層14のコバルト濃度を0.1質量%〜1質量%とすることで、ビッカース硬度及び動摩擦係数を当該数値範囲とすることができる。  Here, the gold plating layer 14 has a dynamic friction coefficient of less than 0.2 with respect to the high carbon chromium bearing steel (SUJ2). The Vickers hardness of the gold plating layer 14 is preferably 150HV to 250HV. On the other hand, for example, by setting the cobalt concentration of the gold plating layer 14 to 0.1% by mass to 1% by mass, the Vickers hardness and the dynamic friction coefficient can be set within the numerical range.

以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。  The representative embodiments of the present invention have been described above, but the present invention is not limited to these, and various design changes are possible, and all the design changes are included in the technical scope of the present invention. Be done.

≪実施例≫
略四角柱形状の雄端子を複数有する櫛歯状のPCB端子の形状とした銅製の金属基材を前処理として、被めっき材とSUS板をアルカリ脱脂液に入れ、被めっき材を陰極とし、SUS板を陽極として、電圧3Vで30秒間電解脱脂を行い、洗浄した後、30g/Lの青化第一銅、20g/Lの遊離青化カリ、15g/Lの苛性カリを含む銅ストライクめっき浴を用い、陽極材料を電気銅板、陰極材料を洗浄処理後の金属基板として、浴温:35℃、電流密度:1A/dmの条件で10秒間、銅ストライクめっき処理(下地ストライクめっき処理)を施した。
<<Example>>
As a pretreatment, a copper-made metal base material in the shape of a comb-teeth-shaped PCB terminal having a plurality of substantially square-pillar-shaped male terminals is put into an alkaline degreasing liquid with a material to be plated and a SUS plate, and a material to be plated is used as a cathode. Using a SUS plate as an anode, electrolytic degreasing is performed at a voltage of 3 V for 30 seconds, and after washing, a copper strike plating bath containing 30 g/L cuprous blue bromide, 20 g/L free potassium bromide, and 15 g/L caustic potash. By using an electrolytic copper plate as the anode material and a metal substrate after the cleaning treatment as the cathode material, and performing a copper strike plating process (base strike plating process) for 10 seconds under conditions of bath temperature: 35° C., current density: 1 A/dm 2. gave.

その後、300g/Lのスルファミン酸ニッケル、5g/Lの塩化ニッケル・6水和物、10g/Lのホウ酸、及び0.2g/Lのラウリル硫酸ナトリウムを含むニッケルめっき浴を用い、陽極材料をサルファニッケル板、陰極材料を銅ストライクめっき後の金属基板として、浴温:50℃、電流密度:2A/dmの条件で200秒間、ニッケルめっき処理を施し、端子の全面に厚さ約1μmのニッケルめっき層を形成させた(第一工程)。Then, using a nickel plating bath containing 300 g/L nickel sulfamate, 5 g/L nickel chloride hexahydrate, 10 g/L boric acid, and 0.2 g/L sodium lauryl sulfate, the anode material was formed. A sulfa nickel plate and a cathode material are used as a metal substrate after copper strike plating, and nickel plating is applied for 200 seconds under conditions of bath temperature: 50° C. and current density: 2 A/dm 2 , and the entire surface of the terminal is about 1 μm thick. A nickel plating layer was formed (first step).

その後、10/Lのシアン化金カリウム、50g/Lのクエン酸カリウム、10g/Lの水酸化カリウム、2g/Lの硫酸コバルトを含む金めっき浴を用い、陽極材料をチタン白金板、陰極材料をニッケルめっき後の金属基板として、浴温:40℃、電流密度:0.5A/dmの条件で2秒間、金めっきフラッシュ処理を施し、ニッケルめっき層の全面に厚さ0.1μmの金めっきフラッシュ層を形成させた。次に、乾燥機を用いて被めっき金属基材を乾燥させた後、雄端子の表面及び裏面にマスキングテープを用いてマスキングを行った(第二工程)。Then, using a gold plating bath containing 10/L potassium gold cyanide, 50 g/L potassium citrate, 10 g/L potassium hydroxide, 2 g/L cobalt sulfate, the anode material was a titanium platinum plate, and the cathode material was a cathode material. As a metal substrate after nickel plating is subjected to gold plating flash treatment for 2 seconds at a bath temperature of 40° C. and a current density of 0.5 A/dm 2 , and a gold layer having a thickness of 0.1 μm is formed on the entire surface of the nickel plating layer. A plating flash layer was formed. Next, after the metal base material to be plated was dried using a dryer, the front surface and the back surface of the male terminal were masked with a masking tape (second step).

次に、ネガ型電着レジスを使用して、浴温35℃、定電圧30Vにて、30秒間レジストを塗布した。その後、マスキングテープを剥離し、UVライト(水銀ランプ)にて100秒間露光してレジストを硬化させた(第三工程)。なお、レジスト露光時の発熱は風冷にて速やかに抜熱した。  Next, using a negative electrodeposition resist, a resist was applied for 30 seconds at a bath temperature of 35° C. and a constant voltage of 30V. After that, the masking tape was peeled off, and the resist was cured by exposing with a UV light (mercury lamp) for 100 seconds (third step). The heat generated during resist exposure was quickly removed by air cooling.

その後、レジストの剥離を防止するため、電解処理ではなく浸漬処理を用いて洗浄処理を施した。当該洗浄処理の後、3g/Lのシアン化金カリウム、120g/Lのクエン酸カリウム、50g/Lの水酸化カリウム、100ppmの硫酸コバルトを含む金めっき浴を用い、陽極材料をチタン白金板、陰極材料をレジスト処理後の被めっき材として、浴温:40℃、電流密度:1A/dmの条件で30秒間の条件で金めっき処理を施し、剥離液を用いてレジストを剥離することで端子の表面及び裏面のみに厚さ0.5μmの金めっき層を形成させ(第四工程)、本発明の実施例であるPCB端子を得た。Then, in order to prevent the resist from peeling off, a cleaning process was performed using an immersion process instead of an electrolytic process. After the cleaning treatment, a gold plating bath containing 3 g/L of potassium gold cyanide, 120 g/L of potassium citrate, 50 g/L of potassium hydroxide and 100 ppm of cobalt sulfate was used, and the anode material was a titanium platinum plate. By subjecting the cathode material as a material to be plated after resist treatment, gold plating treatment is performed under conditions of bath temperature: 40° C. and current density: 1 A/dm 2 for 30 seconds, and the resist is stripped using a stripping solution. A gold plating layer having a thickness of 0.5 μm was formed only on the front and back surfaces of the terminal (fourth step) to obtain a PCB terminal which is an example of the present invention.

[評価]
(1)密着性評価
上記のようにして作製しためっき積層体について密着性の評価を行った。セロハンテープ(ニチバン株式会社製の#405)を指圧にて金めっき層に押し付け、当該セロハンテープを引き剥がした後に金めっき層の剥がれや膨れが発生しなかった場合は○、発生した場合は×とし、得られた結果を表1に示した。
[Evaluation]
(1) Evaluation of Adhesion Adhesion was evaluated for the plated laminate manufactured as described above. Cellophane tape (#405 manufactured by Nichiban Co., Ltd.) was pressed against the gold-plated layer by finger pressure, and after peeling off the cellophane tape, the gold-plated layer did not peel or swell. The obtained results are shown in Table 1.

(2)クロスカット密着性評価
1mmのカット間隔で碁盤目状にカットを行った後(クロスカット試験)、セロハンテープ(ニチバン株式会社製の#405)を指圧にて金めっき層に押し付け、当該セロハンテープを引き剥がした後に金めっき層の剥がれや膨れが発生しなかった場合は○、発生した場合は×とし、得られた結果を表1に示した。
(2) Evaluation of cross-cut adhesiveness After cutting in a grid pattern at a cut interval of 1 mm (cross-cut test), cellophane tape (#405 manufactured by Nichiban Co., Ltd.) was pressed against the gold plating layer with finger pressure, and The results obtained are shown in Table 1 when the peeling or swelling of the gold plating layer did not occur after the cellophane tape was peeled off, and when the gold plating layer did not swell.

(3)金めっき層の硬度測定
上記のようにして作製しためっき材について、マイクロビッカース硬度計を用いて最表面の金めっき層の硬度を測定した。得られた結果を表1に示した。
(3) Measurement of Hardness of Gold Plating Layer With respect to the plated material produced as described above, the hardness of the gold plating layer on the outermost surface was measured using a micro Vickers hardness meter. The obtained results are shown in Table 1.

(4)金めっき層の動摩擦係数測定
上記のようにして作成しためっき材について、新東科学株式会社製のHEIDON−14を用いて動摩擦係数を測定した。測定条件は、垂直荷重:100gf,移動距離:5mm,移動速度:60mm/分,サンプリング周波数:500Hz,相手材(鋼球):3/8インチSUJ2とした。得られた結果を表2に示した。
(4) Measurement of dynamic friction coefficient of gold plating layer The dynamic friction coefficient of the plated material prepared as described above was measured using HEIDON-14 manufactured by Shinto Scientific Co., Ltd. The measurement conditions were vertical load: 100 gf, moving distance: 5 mm, moving speed: 60 mm/min, sampling frequency: 500 Hz, mating material (steel ball): 3/8 inch SUJ2. The obtained results are shown in Table 2.

(5)摩耗深さ及び摩耗幅の測定
(4)における測定後のサンプルに関し、鋼球の摺動によって基材(めっき材)側に形成された摩耗傷の深さ及び幅を測定した。なお、当該測定にはレーザー顕微鏡を使用した。得られた結果を表2に示した。
(5) Measurement of wear depth and wear width With respect to the sample after measurement in (4), the depth and width of wear scratches formed on the base material (plating material) side by sliding of the steel balls were measured. A laser microscope was used for the measurement. The obtained results are shown in Table 2.

(6)金めっき層のコバルト濃度測定
上記のようにして作製しためっき積層体について、金めっき層のコバルト濃度(共析率)を測定した。なお、測定にはセイコーインスツル株式会社製の高周波プラズマ発光分析装置(SPS5000)を用いた。得られた結果を表2に示した。
(6) Measurement of Cobalt Concentration of Gold Plating Layer The cobalt concentration (eutectoid rate) of the gold plating layer was measured for the plated laminate produced as described above. A high-frequency plasma emission spectrometer (SPS5000) manufactured by Seiko Instruments Inc. was used for the measurement. The obtained results are shown in Table 2.

≪実施例2≫
第四工程における金めっき処理の電流密度を3A/dmとしたこと以外は、実施例1と同様にしてPCB端子を作製し、各種評価を行った。得られた結果を表1及び表2に示した。
<<Example 2>>
A PCB terminal was prepared and various evaluations were performed in the same manner as in Example 1 except that the current density of the gold plating treatment in the fourth step was 3 A/dm 2 . The obtained results are shown in Tables 1 and 2.

≪実施例3≫
第四工程における金めっき処理に用いるシアン化金カリウムを6g/Lとしたこと以外は、実施例1と同様にしてPCB端子を作製し、各種評価を行った。得られた結果を表1及び表2に示した。
<<Example 3>>
A PCB terminal was prepared and various evaluations were performed in the same manner as in Example 1 except that the amount of potassium gold cyanide used for the gold plating treatment in the fourth step was 6 g/L. The obtained results are shown in Tables 1 and 2.

≪実施例4≫
第四工程における金めっき処理に150ppmの硫酸コバルトを用いたこと以外は、実施例1と同様にしてPCB端子を作製し、各種評価を行った。得られた結果を表1及び表2に示した。
<<Example 4>>
A PCB terminal was prepared and various evaluations were performed in the same manner as in Example 1 except that 150 ppm of cobalt sulfate was used for the gold plating treatment in the fourth step. The obtained results are shown in Tables 1 and 2.

≪比較例1≫
第四工程における金めっき処理のコバルト濃度を0ppmとしたこと以外は、実施例1と同様にしてPCB端子を作製し、各種評価を行った。得られた結果を表1及び表2に示した。
<<Comparative Example 1>>
A PCB terminal was prepared in the same manner as in Example 1 except that the cobalt concentration in the gold plating treatment in the fourth step was set to 0 ppm, and various evaluations were performed. The obtained results are shown in Tables 1 and 2.

表1に示す結果から、実施例1〜実施例4で得られた全てのPCB端子に関し、金めっき層は優れた密着性を有していることが分かる。また、金めっき層のビッカース硬度は150HV〜250HVの範囲となっており、適当な硬度を有している。これに対し、比較例1で得られたPCB端子は、金めっき処理以外は実施例と同じ製造条件を用いているため、金めっき層の密着性に関しては問題ないが、ビッカース硬度が106.7HVと低い値となっている。ここで、表2に示す結果から、実施例の金めっき層のコバルト濃度は0.1質量%〜1質量%の範囲に入っていることが分かる。  From the results shown in Table 1, it can be seen that the gold plating layer has excellent adhesion to all the PCB terminals obtained in Examples 1 to 4. Further, the Vickers hardness of the gold plating layer is in the range of 150 HV to 250 HV, and has an appropriate hardness. On the other hand, the PCB terminal obtained in Comparative Example 1 uses the same manufacturing conditions as those of the Example except for the gold plating treatment, so that there is no problem with respect to the adhesion of the gold plating layer, but the Vickers hardness is 106.7 HV. And low value. Here, from the results shown in Table 2, it is understood that the cobalt concentration of the gold plating layer of the example is within the range of 0.1% by mass to 1% by mass.

また、表2に示す結果から、実施例1〜実施例4で得られた全てのPCB端子に関し、高炭素クロム軸受鋼(SUJ2)に対する金めっき層の動摩擦係数が0.2未満となっている。これに対し、比較例1で得られたPCB端子の動摩擦係数は1.37であり、実施例で得られたPCB端子と比較して約10倍高い値となっている。  Further, from the results shown in Table 2, for all the PCB terminals obtained in Examples 1 to 4, the dynamic friction coefficient of the gold plating layer with respect to the high carbon chromium bearing steel (SUJ2) is less than 0.2. .. On the other hand, the dynamic friction coefficient of the PCB terminal obtained in Comparative Example 1 is 1.37, which is about 10 times higher than that of the PCB terminal obtained in the Example.

加えて、金めっき層の硬度及び動摩擦係数の差異により、実施例で得られたPCB端子と比較例で得られたPCB端子とでは摩耗深さ及び摩耗幅が大きく異なっている。具体的には、表2に示されているとおり、実施例で得られたPCB端子の摩耗傷は極めて浅く、幅も小さくなっている。これらの結果より、実施例では優れた耐摩耗特性、摺動性及び低摩擦性を有し、かつ、十分な耐久性を有するPCB端子が得られていることが確認できる。  In addition, due to the difference in hardness and dynamic friction coefficient of the gold plating layer, the PCB terminal obtained in the example and the PCB terminal obtained in the comparative example are greatly different in wear depth and width. Specifically, as shown in Table 2, the abrasion damage of the PCB terminal obtained in the example is extremely shallow and the width thereof is also small. From these results, it can be confirmed that in the example, the PCB terminal having excellent wear resistance, slidability and low friction, and having sufficient durability was obtained.

1・・・PCB端子、
2・・・金属基材、
4・・・雄端子、
12・・・ニッケルめっき層、
14・・・金めっき層。
1... PCB terminal,
2... Metal substrate
4... Male terminal,
12... Nickel plating layer,
14... Gold plating layer.

Claims (7)

略四角柱形状の雄端子を複数有する櫛歯状のPCB端子であって、
前記雄端子の全面にニッケルめっき層を有し、
前記ニッケルめっき層の表面に、厚さが0.2μm〜1.0μmの金めっき層を有し、
高炭素クロム軸受鋼(SUJ2)に対する前記金めっき層の動摩擦係数が0.2未満であること、
を特徴とするPCB端子。
A comb-teeth-shaped PCB terminal having a plurality of substantially square-pillar-shaped male terminals,
Having a nickel plating layer on the entire surface of the male terminal,
The surface of the nickel plating layer has a gold plating layer having a thickness of 0.2 μm to 1.0 μm,
The dynamic friction coefficient of the gold plating layer with respect to high carbon chromium bearing steel (SUJ2) is less than 0.2;
PCB terminal characterized by.
前記金めっき層のビッカース硬度が150HV〜250HVであること、
を特徴とする請求項1に記載のPCB端子。
Vickers hardness of the gold plating layer is 150 HV to 250 HV,
The PCB terminal according to claim 1, wherein:
前記金めっき層のコバルト濃度が0.1質量%〜1質量%であること、
を特徴とする請求項1又は2に記載のPCB端子。
The cobalt concentration of the gold plating layer is 0.1% by mass to 1% by mass,
The PCB terminal according to claim 1 or 2, wherein.
厚さが0超0.1μm以下の金フラッシュめっき層を介して、前記金めっき層が前記ニッケルめっき層の表面に形成されていること、
を特徴とする請求項1〜3のうちのいずれかに記載のPCB端子。
The gold plating layer is formed on the surface of the nickel plating layer via a gold flash plating layer having a thickness of more than 0 and 0.1 μm or less,
The PCB terminal according to any one of claims 1 to 3, characterized in that:
前記ニッケルめっき層の厚さが0.3μm〜4.0μmであること、
を特徴とする請求項1〜4のうちのいずれかに記載のPCB端子。
The thickness of the nickel plating layer is 0.3 μm to 4.0 μm,
The PCB terminal according to any one of claims 1 to 4, characterized in that:
前記ニッケルめっき層が下地ストライクめっき層を介して前記雄端子の表面に形成されており、
前記下地ストライクめっき層として、銅ストライクめっき層又はニッケルストライクめっき層のうちの少なくとも一つが形成されていること、
を特徴とする請求項1〜5のうちのいずれかに記載のPCB端子。
The nickel plating layer is formed on the surface of the male terminal through a base strike plating layer,
As the underlying strike plating layer, at least one of a copper strike plating layer or a nickel strike plating layer is formed,
The PCB terminal according to any one of claims 1 to 5, characterized in that:
前記金めっき層が、前記雄端子の表面側及び裏面側にのみ形成されていること、
を特徴とする請求項1〜6のうちのいずれかに記載のPCB端子。
The gold plating layer is formed only on the front surface side and the back surface side of the male terminal,
The PCB terminal according to any one of claims 1 to 6, characterized in that:
JP2019522031A 2017-05-30 2018-04-25 PCB terminal Active JP7117784B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017106303 2017-05-30
JP2017106303 2017-05-30
PCT/JP2018/016712 WO2018221087A1 (en) 2017-05-30 2018-04-25 Pcb terminal

Publications (2)

Publication Number Publication Date
JPWO2018221087A1 true JPWO2018221087A1 (en) 2020-05-28
JP7117784B2 JP7117784B2 (en) 2022-08-15

Family

ID=64455767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019522031A Active JP7117784B2 (en) 2017-05-30 2018-04-25 PCB terminal

Country Status (2)

Country Link
JP (1) JP7117784B2 (en)
WO (1) WO2018221087A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7334485B2 (en) * 2019-06-07 2023-08-29 富士電機株式会社 External connection part of semiconductor module, method for manufacturing external connection part of semiconductor module, semiconductor module, vehicle, and method for connecting external connection part and bus bar
CN110565133A (en) * 2019-08-27 2019-12-13 东莞康源电子有限公司 method for manufacturing low-roughness electroplated nickel and gold
JP7226210B2 (en) * 2019-09-19 2023-02-21 株式会社オートネットワーク技術研究所 Pin terminals, connectors, wire harnesses with connectors, and control units
JP7223332B2 (en) * 2019-09-19 2023-02-16 株式会社オートネットワーク技術研究所 Pin terminals, connectors, wire harnesses with connectors, and control units
JP7226209B2 (en) * 2019-09-19 2023-02-21 株式会社オートネットワーク技術研究所 Pin terminals, connectors, wire harnesses with connectors, and control units
JP7382027B2 (en) * 2020-03-26 2023-11-16 株式会社オートネットワーク技術研究所 PCB terminals, connectors, wire harnesses with connectors, and board units

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292298A (en) * 1996-02-29 1997-11-11 Matsushita Electric Works Ltd Manufacture of pressure sensor
JP2005241420A (en) * 2004-02-26 2005-09-08 Totoku Electric Co Ltd Probe needle and its manufacturing method
JP2005246424A (en) * 2004-03-03 2005-09-15 Murata:Kk Apparatus and method for forming solder wicking prevention zone and connector member
JP2008045194A (en) * 2006-08-21 2008-02-28 Rohm & Haas Electronic Materials Llc Hard gold alloy plating liquid
JP2008287942A (en) * 2007-05-15 2008-11-27 Dowa Metaltech Kk Male terminal for printed circuit board connectors, and manufacturing method thereof
WO2009150915A1 (en) * 2008-06-11 2009-12-17 日本高純度化学株式会社 Electrolytic gold plating solution and gold film obtained using same
JP2010262861A (en) * 2009-05-08 2010-11-18 Kobe Steel Ltd Press-fit terminal
JP2013011016A (en) * 2011-06-03 2013-01-17 Panasonic Corp Electric contact component
JP2014191998A (en) * 2013-03-27 2014-10-06 Furukawa Electric Co Ltd:The Partially plated flat conductor, manufacturing device of partially plated flat conductor, and manufacturing device for partially plated flat conductor
WO2015092979A1 (en) * 2013-12-20 2015-06-25 オリエンタル鍍金株式会社 Silver-plated member, and production method therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286574A (en) * 2005-04-05 2006-10-19 D D K Ltd Electric contact
WO2014199837A1 (en) * 2013-06-11 2014-12-18 株式会社Kanzacc Contact terminal structure

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292298A (en) * 1996-02-29 1997-11-11 Matsushita Electric Works Ltd Manufacture of pressure sensor
JP2005241420A (en) * 2004-02-26 2005-09-08 Totoku Electric Co Ltd Probe needle and its manufacturing method
JP2005246424A (en) * 2004-03-03 2005-09-15 Murata:Kk Apparatus and method for forming solder wicking prevention zone and connector member
JP2008045194A (en) * 2006-08-21 2008-02-28 Rohm & Haas Electronic Materials Llc Hard gold alloy plating liquid
JP2008287942A (en) * 2007-05-15 2008-11-27 Dowa Metaltech Kk Male terminal for printed circuit board connectors, and manufacturing method thereof
WO2009150915A1 (en) * 2008-06-11 2009-12-17 日本高純度化学株式会社 Electrolytic gold plating solution and gold film obtained using same
JP2010262861A (en) * 2009-05-08 2010-11-18 Kobe Steel Ltd Press-fit terminal
JP2013011016A (en) * 2011-06-03 2013-01-17 Panasonic Corp Electric contact component
JP2014191998A (en) * 2013-03-27 2014-10-06 Furukawa Electric Co Ltd:The Partially plated flat conductor, manufacturing device of partially plated flat conductor, and manufacturing device for partially plated flat conductor
WO2015092979A1 (en) * 2013-12-20 2015-06-25 オリエンタル鍍金株式会社 Silver-plated member, and production method therefor

Also Published As

Publication number Publication date
WO2018221087A1 (en) 2018-12-06
JP7117784B2 (en) 2022-08-15

Similar Documents

Publication Publication Date Title
JP7117784B2 (en) PCB terminal
JP6259437B2 (en) Plating laminate
JP6046406B2 (en) High temperature resistant silver coated substrate
JP5667152B2 (en) Surface treatment plating material, method for producing the same, and electronic component
WO2014207975A1 (en) Method for producing plated material, and plated material
JP2004339605A (en) Improved tin-plating method
WO2016157713A1 (en) Silver plating material and method for producing same
US20140287262A1 (en) Tin-plated copper-alloy material for terminal having excellent insertion/extraction performance
JP4368931B2 (en) Male terminal and manufacturing method thereof
JP2015187303A (en) Conductive member for connecting component and method for producing the same
KR101270770B1 (en) Electroplating method for printed circuit board
KR20180004762A (en) Sn plating material and manufacturing method thereof
WO2015092978A1 (en) Silver-plated member, and production method therefor
TWI658135B (en) Method of selectively treating copper in the presence of further metal
JP6651852B2 (en) Silver plated member and method of manufacturing the same
JP5185759B2 (en) Conductive material and manufacturing method thereof
JP6182757B2 (en) Plating material manufacturing method and plating material
JP2022082619A (en) PCB terminal manufacturing method and PCB terminal
JP6086531B2 (en) Silver plating material
JP2014139345A (en) Surface treatment plated material and production method of the same, and electronic component
JP2008133533A (en) Gold-silver alloy plating liquid
JP7040544B2 (en) Terminal material for connectors
JP7302364B2 (en) Connector terminal materials and connector terminals
JP7162341B2 (en) Method for manufacturing plated laminate and plated laminate
JP7302248B2 (en) Connector terminal materials and connector terminals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220726

R150 Certificate of patent or registration of utility model

Ref document number: 7117784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150