WO2016157713A1 - Silver plating material and method for producing same - Google Patents

Silver plating material and method for producing same Download PDF

Info

Publication number
WO2016157713A1
WO2016157713A1 PCT/JP2016/001038 JP2016001038W WO2016157713A1 WO 2016157713 A1 WO2016157713 A1 WO 2016157713A1 JP 2016001038 W JP2016001038 W JP 2016001038W WO 2016157713 A1 WO2016157713 A1 WO 2016157713A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
silver
nickel
plating layer
silver plating
Prior art date
Application number
PCT/JP2016/001038
Other languages
French (fr)
Japanese (ja)
Inventor
宏▲禎▼ 高橋
Original Assignee
オリエンタル鍍金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリエンタル鍍金株式会社 filed Critical オリエンタル鍍金株式会社
Priority to JP2017509209A priority Critical patent/JP6484844B2/en
Publication of WO2016157713A1 publication Critical patent/WO2016157713A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/64Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of silver
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated

Definitions

  • the present invention relates to a silver plating material in which a silver plating layer is formed on the surface of a metal base material and a method for producing the same, and more specifically, silver plating that can be suitably used for various contacts, terminals, connectors, switches, and the like.
  • the present invention relates to a material and a manufacturing method thereof.
  • Silver plating has excellent properties such as electrical conductivity, low contact resistance, and heat resistance, and is widely used for electrical and electronic parts such as various contacts, terminals, connectors, and switches (for example, Patent Document 1 No. 2001-3194)).
  • Patent Document 2 Japanese Patent Laid-Open No. 2014-198895
  • Patent Document 2 Japanese Patent Laid-Open No. 2014-198895
  • a method for producing a silver plating material in which a surface layer made of silver is formed on the surface of a material or the surface of an underlayer formed on the material 1 to 25 mg
  • an aging treatment is performed.
  • a method for producing a silver-plated material having an area fraction of ⁇ 200 ⁇ orientation of the surface layer of 15% or more is disclosed.
  • the bending workability of a silver plating material becomes so favorable that the area fraction of ⁇ 200 ⁇ direction of the surface layer of a silver plating material is high, and it uses it in a high temperature environment.
  • an increase in contact resistance can be suppressed.
  • Patent Document 3 Japanese Patent Laid-Open No. 2012-184468 discloses a plating film made of Au (100-xy) -Mx-Cy. Note that M is a metal element other than Au, and 1 ⁇ x ⁇ 22, 3 ⁇ y ⁇ 30, and 4 ⁇ (x + y) ⁇ 40.
  • a plating film having high hardness and low resistance can be provided by adding metal elements and carbon that contributes to an increase in hardness of the plating film.
  • Patent Documents 2 and 3 has a higher specific resistance than silver, and a higher content of the metal in the silver plating layer means that the conductivity of the silver plating layer is reduced. is doing.
  • the metal oxide has a particularly high specific resistance, the conductivity of the silver plating layer exposed to a high temperature is remarkably lowered and the contact resistance is remarkably increased.
  • the object of the present invention is to provide silver plating that has excellent conductivity and wear resistance, and can maintain the characteristics even after being left at room temperature for a long time or exposed to high temperature. It is in providing a material and its manufacturing method.
  • the present inventor has conducted extensive research on silver plating materials and methods for producing the same, and as a result, a plating bath to which a certain amount of metal element is added can be used to perform plating using a pulse power source.
  • the inventors have found that the present invention is extremely effective, and have reached the present invention.
  • the present invention A method for producing a silver plating material for forming a silver plating layer on the surface of a metal substrate, Using a cyan-based silver plating bath containing 2.5 to 25 ppm of additive metal element, Plating using a pulse power supply, The manufacturing method of the silver plating material characterized by these is provided.
  • the additive metal element By setting the additive metal element to the plating bath to 2.5 ppm or more, it is possible to impart excellent wear resistance to the silver plating layer and to maintain the wear resistance even after high temperature exposure. Moreover, the electroconductivity and contact resistance which were excellent in the silver plating layer can be maintained because an additional metal element shall be 25 ppm or less.
  • the additive metal element is preferably one or more metal elements selected from copper, tin, nickel, cobalt, selenium, antimony, tellurium and bismuth, More preferably, it is selenium.
  • the wear resistance can be improved without impairing the conductivity of the silver plating layer, and the decrease in conductivity and wear resistance due to high-temperature exposure can be effectively suppressed. it can.
  • a nickel plating treatment is performed on an arbitrary region of the surface of the metal substrate to form a nickel plating layer.
  • a nickel plating layer By forming the nickel plating layer, atomic diffusion and reaction between the metal substrate and the silver plating layer can be prevented, and deterioration of characteristics of the silver plating layer can be suppressed.
  • a silver strike is applied to an arbitrary region on the surface of the metal substrate and / or the nickel plating layer. It is preferable to apply one or more strike plating selected from the group of plating, copper strike plating, gold strike plating, and nickel strike plating. By performing the strike plating treatment, the adhesion between the metal substrate and the nickel plating layer and the adhesion between the nickel plating layer and the silver plating layer can be improved more reliably.
  • the present invention also provides: A silver plating layer is formed on at least a part of the metal substrate, The silver plating layer contains one or more metal elements selected from copper, tin, nickel, cobalt, selenium, antimony, tellurium and bismuth, The metal element content is 0.001 to 0.025%; A silver plating material characterized by the above is also provided.
  • the silver plating layer contains 0.001 to 0.025% of one or more metal elements selected from copper, tin, nickel, cobalt, selenium, antimony, tellurium and bismuth. Therefore, it has high hardness and can maintain the high hardness even after high temperature exposure.
  • the thickness of the silver plating layer is preferably 0.1 ⁇ m to 50 ⁇ m.
  • the thickness of the silver plating layer is preferably 0.1 ⁇ m to 50 ⁇ m.
  • the silver plating layer basically has a constant thickness, but may be partially thinned or thickened within a range not impairing the effects of the present invention.
  • the Vickers hardness of the silver plating layer is preferably 80 HV to 250 HV.
  • a nickel plating layer is formed between the base material and the silver plating layer.
  • the nickel plating layer can prevent the diffusion and reaction of atoms between the metal substrate and the silver plating layer, and can suppress the deterioration of the characteristics of the silver plating layer.
  • the nickel plating layer preferably has a continuous film shape, and the thickness of the nickel plating layer is preferably 0.05 ⁇ m to 10 ⁇ m. A more preferable nickel plating layer thickness is 0.5 ⁇ m to 2 ⁇ m. If it is less than 0.05 ⁇ m, the barrier effect is poor, and if it is 10 ⁇ m or more, cracks are likely to occur during bending.
  • the nickel plating layer may have a granular or island-like discontinuous film shape as long as the effects of the present invention are not impaired. In the latter case, the granular and island portions may be partially continuous.
  • silver strike plating copper strike plating, gold at the interface between the metal substrate and the nickel plating layer and / or the interface between the nickel plating layer and the silver plating layer. It is preferable that one or more strike platings selected from the group of strike plating and nickel strike plating are formed.
  • the strike plating layer realizes excellent adhesion between the metal substrate and the nickel plating layer and excellent adhesion between the nickel plating layer and the silver plating layer.
  • the thickness of the strike plating layer is preferably 0.01 ⁇ m to 0.5 ⁇ m. Moreover, even if the strike plating layer is a continuous film shape, it may be a granular or island-like discontinuous film shape as long as the effects of the present invention are not impaired. In the latter case, the granular and island portions may be partially continuous. In addition, when performing a silver strike plating process, a silver plating layer is formed on a silver strike plating layer by the silver plating process, and it is a single silver plating layer roughly.
  • the metal interface which comprises the silver plating material of this invention, the silver plating layer, the nickel plating layer, and various strike plating layers is metallurgically joined.
  • Metallurgical bonding means that the metals are directly bonded to each other, not mechanical bonding such as an anchor effect or different bonding layers such as an adhesive.
  • Metallurgical bonding is a concept that naturally includes bonding by crystallographic matching (epitaxy), and in the present invention, it is preferable that the plating layers achieve bonding by crystallographic matching (epitaxy).
  • the silver-plated material of the present invention and the method for producing the same, the silver-plated material having excellent conductivity and wear resistance, and capable of maintaining the characteristics even after being left at room temperature for a long time or exposed to high temperature, and the production thereof A method can be provided.
  • FIG. 1 is a process diagram of a method for producing a silver-plated material of the present invention.
  • the method for producing a silver-plated material of the present invention is a method in which a silver plating process (S04) is performed on the surface of a metal substrate to form a silver plating layer. If necessary, a strike plating process on a metal substrate is performed. (S01), nickel plating treatment (S02) on the metal substrate or strike plating layer, and strike plating treatment (S03) on the nickel plating layer.
  • the metal used for the metal substrate is not particularly limited as long as it has electrical conductivity, and examples thereof include aluminum and aluminum alloys, iron and iron alloys, titanium and titanium alloys, stainless steel, copper, and copper alloys. However, among these, copper and copper alloys are preferably used because they are excellent in electrical conductivity, thermal conductivity, and spreadability.
  • a silver plating material can be obtained through a cleaning process on the metal base material and the various processing steps (S01 to S04). Hereinafter, each process will be described in detail.
  • the cleaning process is an optional process, and is a process of cleaning the surface of the metal substrate, although not shown in FIG.
  • various conventionally known cleaning processing solutions and processing conditions can be used within a range not impairing the effects of the present invention.
  • a common immersion degreasing solution or electrolytic degreasing solution for non-ferrous metals can be used as the cleaning treatment solution.
  • a cleaning treatment solution having a pH of more than 2 and less than 11 is used. It is preferable to use, and it is preferable to avoid the use of a strong acid bath having a pH of 2 or less or a strong alkali bath having a pH of 11 or more.
  • cathode electrolytic degreasing may be performed at a cathode current density of 2 to 5 A / dm 2 using an insoluble anode such as stainless steel, a titanium platinum plate, and iridium oxide as the anode.
  • an acid cleaning solution a general acid cleaning solution in which an acid such as sulfuric acid or nitric acid is diluted to 3 to 50% can be used.
  • the metal substrate is preferably subjected to strike plating (S01).
  • strike plating S01
  • one or more strike plating selected from the group of silver strike plating, copper strike plating, gold strike plating and nickel strike plating, the adhesion of the nickel plating layer or the silver plating layer can be improved more reliably. it can.
  • Silver strike plating As a silver strike plating bath, what contains silver salts, such as silver cyanide and silver cyanide potassium, and electrically conductive salts, such as potassium cyanide and potassium pyrophosphate, can be used, for example.
  • silver salts such as silver cyanide and silver cyanide potassium
  • electrically conductive salts such as potassium cyanide and potassium pyrophosphate
  • the concentration of silver salt in the plating bath is lower than that of ordinary silver plating. It is preferable to increase the concentration of the conductive salt.
  • the silver strike plating bath that can be suitably used for the silver strike plating treatment is composed of a silver salt, an alkali cyanide salt, and a conductive salt, and a brightener may be added as necessary.
  • Preferred amounts of each component are silver salt: 1 to 10 g / L, alkali cyanide salt: 80 to 200 g / L, conductive salt: 0 to 100 g / L, brightener: ⁇ 1000 ppm.
  • Examples of the silver salt include silver cyanide, silver iodide, silver oxide, silver sulfate, silver nitrate, and silver chloride.
  • Examples of the conductive salt include potassium cyanide, sodium cyanide, potassium pyrophosphate, and potassium iodide. And sodium thiosulfate.
  • a metal brightener and / or an organic brightener can be used.
  • the metallic brightener include antimony (Sb), selenium (Se), tellurium (Te), and the like
  • examples of the organic brightener include aromatic sulfonic acid compounds such as benzenesulfonic acid, mercaptans, and the like. be able to.
  • Silver strike plating conditions such as the bath temperature, anode material, and current density of the silver strike plating bath can be appropriately set according to the plating bath used, the required plating thickness, and the like.
  • the anode material is preferably an insoluble anode such as stainless steel, a titanium platinum plate, and iridium oxide.
  • Suitable plating conditions include bath temperature: 15 to 50 ° C., current density: 0.5 to 5 A / dm 2 , and processing time: 5 to 60 seconds.
  • silver strike plating may be performed on the entire surface of the metal substrate, or may be performed only on a region where a nickel plating layer or a silver plating layer is to be formed.
  • Copper strike plating Either a acidic bath or an alkaline bath may be used for the copper strike plating bath.
  • the acidic bath is composed of a copper salt and an acid, and additives may be added.
  • copper sulfate and copper sulfamate can be used as the copper salt.
  • acid for example, sulfuric acid and sulfamic acid can be used.
  • additive for example, a sulfur compound (thiourea, disulfone salt, mercaptobenzothiazole, etc.), an organic compound (polyoxyethylene glycol ether, polyethylene glycol, etc.), a selenium compound and the like can be used.
  • Suitable amounts of each component of the acidic bath that can be suitably used for the copper strike plating treatment are copper salt: 60 to 200 g / L, acid: 30 to 200 g / L, and additive: 0 to 100 ppm.
  • a cyan bath can be used as the alkaline bath.
  • the cyan bath is composed of a copper salt, an alkali cyanide salt and a conductive salt, and an additive may be added thereto.
  • copper cyanide can be used as the copper salt.
  • potassium cyanide and sodium cyanide can be used as the alkali cyanide salt.
  • potassium carbonate and sodium carbonate can be used as the conductive salt.
  • Rochelle salt, potassium selenite, sodium selenite, potassium thiocyanate, lead acetate, lead tartrate and the like can be used.
  • Suitable amounts of each component of the cyan bath that can be suitably used for the copper strike plating treatment are: copper salt: 10 to 80 g / L, alkali cyanide acid: 20 to 50 g / L, conductive salt: 10 to 50 g / L, additive: 0 to 60 g / L.
  • the copper strike plating conditions such as bath temperature, anode material, and current density of the copper strike plating bath can be appropriately set according to the plating bath used, the required plating thickness, and the like.
  • the anode material it is preferable to use a soluble anode such as electrolytic copper and / or an insoluble anode such as stainless steel, a titanium platinum plate, and iridium oxide.
  • Suitable plating conditions include bath temperature: 25 to 70 ° C., current density: 0.1 to 6.0 A / dm 2 , and processing time: 5 to 60 seconds.
  • copper strike plating may be performed on the entire surface of the metal base material, or may be performed only on a region where a nickel plating layer or a silver plating layer is to be formed.
  • (C) Gold strike plating As a gold strike plating bath, what contains a gold salt, a conductive salt, a chelating agent, and a crystal growth agent can be used, for example. Further, a brightener may be added to the gold strike plating bath.
  • the gold salt examples include gold cyanide, potassium gold cyanide, potassium gold cyanide, sodium gold sulfite, and sodium gold thiosulfate.
  • the conductive salt for example, potassium citrate, potassium phosphate, potassium pyrophosphate, potassium thiosulfate, or the like can be used.
  • ethylenediaminetetraacetic acid and methylenephosphonic acid can be used as the chelating agent.
  • the crystal growth agent examples include cobalt, nickel, thallium, silver, palladium, tin, zinc, copper, bismuth, indium, arsenic, and cadmium.
  • Suitable amounts of each component of the gold strike plating bath that can be suitably used for the gold strike plating treatment are: gold salt: 1 to 10 g / L, conductive salt: 0 to 200 g / L, chelating agent: 0 to 30 g / L, crystal growth agent: 0 to 30 g / L.
  • Gold strike plating conditions such as the bath temperature, anode material, and current density of the gold strike plating bath can be appropriately set according to the plating bath used, the required plating thickness, and the like.
  • the anode material is preferably a titanium platinum plate and an insoluble anode such as iridium oxide.
  • bath temperature 20 to 40 ° C.
  • current density 0.5 to 5.0 A / dm 2
  • treatment time 5 to 60 seconds
  • pH 0.5 to 7.0
  • the gold strike plating may be performed on the entire surface of the metal substrate, or may be performed only on a region where the nickel plating layer or the silver plating layer is to be formed.
  • Nickel strike plating As a nickel strike plating bath, what contains nickel salt, an anodic dissolution promoter, and a pH buffer can be used, for example. Further, an additive may be added to the nickel strike plating bath.
  • nickel salt for example, nickel sulfate, nickel sulfamate, nickel chloride and the like can be used.
  • anodic dissolution accelerator for example, nickel chloride and hydrochloric acid can be used.
  • pH buffering agent for example, boric acid, nickel acetate, citric acid and the like can be used.
  • additives include primary brighteners (saccharin, benzene, naphthalene (di, tri), sodium sulfonate, sulfonamide, sulfinic acid, etc.), secondary brighteners (organic compounds: butynediol, coumarin, allylaldehyde).
  • a sulfonic acid or the like, a metal salt: cobalt, lead, zinc or the like) and a pit inhibitor (such as sodium lauryl sulfate) can be used.
  • the preferred amount of each component of the nickel strike plating bath that can be suitably used for the nickel strike plating treatment is nickel salt: 200 to 600 g / L, anodic dissolution accelerator: 0 to 300 g / L, pH buffer: 0 to 50 g / L, additive: 0 to 20 g / L.
  • Nickel strike plating conditions such as bath temperature, anode material, and current density of the nickel strike plating bath can be appropriately set according to the plating bath used, the required plating thickness, and the like.
  • the anode material it is preferable to use a soluble anode such as electrolytic nickel, carbonized nickel, depolarized nickel, and sulfur nickel.
  • bath temperature 20 to 70 ° C.
  • current density 0.1 to 15.0 A / dm 2
  • treatment time 5 to 60 seconds
  • pH 0.5 to 4.5 can do.
  • the nickel strike plating may be performed on the entire surface of the metal substrate, or may be performed only on the region where the nickel plating layer or the silver plating layer is to be formed.
  • the above-described various strike plating may be performed only one kind, or a plurality of strike plating may be laminated. Further, when the adhesion state of the rough nickel plating is good without the strike plating process due to the surface state of the metal substrate, the strike plating process can be omitted.
  • Nickel plating treatment It is preferable to perform a nickel plating process (S02) on the metal substrate (a strike plating layer when the strike plating process is performed). By performing the nickel plating treatment, it is possible to prevent the diffusion and reaction of atoms between the metal substrate and the silver plating layer, and it is possible to suppress the deterioration of the characteristics of the silver plating layer.
  • the nickel plating bath for example, a bath containing a nickel salt, an anodic dissolution accelerator and a pH buffer can be used.
  • An additive may be added to the nickel plating bath.
  • nickel salt for example, nickel sulfate, nickel sulfamate, nickel chloride and the like can be used.
  • anodic dissolution accelerator for example, nickel chloride and hydrochloric acid can be used.
  • pH buffering agent for example, boric acid, nickel acetate, citric acid and the like can be used.
  • additives include primary brighteners (saccharin, benzene, naphthalene (di, tri) sodium sulfonate, sulfonamide, sulfinic acid, etc.), secondary brighteners (organic compounds: butynediol, coumarin, allylaldehyde sulfone). Acids, metal salts: cobalt, lead, zinc, etc.) and pit inhibitors (sodium lauryl sulfate, etc.) can be used.
  • the preferred amount of each component of the nickel plating bath that can be suitably used for the nickel plating treatment is nickel salt: 200 to 600 g / L, anodic dissolution accelerator: 0 to 300 g / L, pH buffer: 20 to 50 g / L, additive: 0 to 20 g / L.
  • Nickel plating conditions such as bath temperature, anode material, and current density of the nickel plating bath can be set as appropriate according to the plating bath used, the required plating thickness, and the like.
  • the anode material it is preferable to use a soluble anode such as electrolytic nickel, carbonized nickel, depolarized nickel, and sulfur nickel.
  • bath temperature 20 to 70 ° C.
  • current density 0.1 to 15.0 A / dm 2
  • treatment time 10 to 50000 seconds
  • pH 0.5 to 4.5
  • the nickel plating layer preferably has a continuous film shape, and the thickness of the nickel plating layer is preferably 0.05 ⁇ m to 10 ⁇ m. If it is less than 0.05 ⁇ m, the barrier effect is poor, and if it is 10 ⁇ m or more, cracks are likely to occur during bending.
  • the nickel plating layer may have a granular or island-like discontinuous film shape as long as the effects of the present invention are not impaired. In the latter case, the granular and island portions may be partially continuous.
  • the nickel plating layer is preferably subjected to strike plating treatment (S03).
  • strike plating treatment S03
  • strike plating treatment S03
  • the adhesion between the nickel plating layer and the silver plating layer can be improved more reliably. it can.
  • Each strike plating method is the same as the strike plating process (S01) on the metal substrate.
  • a silver plating process (S04) is a process for forming the silver plating layer which is the outermost surface of a silver plating material.
  • silver plating treatment various conventionally known silver plating methods can be used within a range not impairing the effects of the present invention, but the silver salt concentration in the plating bath is increased as compared with ordinary silver strike plating. It is preferable to reduce the concentration of the conductive salt.
  • a silver plating bath that can be suitably used for silver plating treatment is composed of a silver salt, an alkali cyanide salt, a conductive salt, and a metal additive, and an organic additive may be added as necessary.
  • the preferred amount of each component used is: silver salt: 40 to 150 g / L, alkali cyanide salt: 1 to 200 g / L, conductive salt: 10 to 250 g / L, metal additive: 2.5 to 25 ppm, organic Additive: 0 to 10 g / L.
  • Examples of the silver salt include silver cyanide and silver cyanide potassium, and examples of the alkali cyanide salt include potassium cyanide and sodium cyanide.
  • Examples of the conductive salt include potassium carbonate, potassium chloride, potassium pyrophosphate, and potassium thiosulfate.
  • Examples of the metal additive include copper, tin, nickel, cobalt, antimony, selenium, tellurium, bismuth and the like, but it is preferable to use selenium.
  • Examples of the organic additive include benzenesulfonic acid, mercaptans, and ethylenediaminetetraacetic acid.
  • an insoluble anode such as a soluble anode, stainless steel, a titanium platinum plate, and iridium oxide as the anode material.
  • the bath temperature is preferably 15 to 70 ° C. and the pH is preferably 7.0 to 10.0.
  • One of the features of the method for producing a silver plating material of the present invention is to use a pulse power supply device.
  • a pulse power supply device By performing plating using a pulse power source, a dense and uniform silver plating layer can be formed even when a plating bath to which a metal element is added is used.
  • Examples of the current density are 0.5 to 20.0 A / dm 2 , and the treatment time is 0.5 to 10,000 seconds.
  • FIG. 2 is a schematic cross-sectional view of one embodiment of the silver plating material of the present invention.
  • a silver plating layer 6 is formed on the surface of the metal base 2 via a nickel plating layer 4.
  • a strike plating layer 8 is preferably formed between the metal substrate 2 and the nickel plating layer 4 and between the nickel plating layer 4 and the silver plating layer 6.
  • the silver plating layer 6 contains one or more metal elements selected from copper, tin, nickel, cobalt, selenium, antimony, tellurium and bismuth, and the content of the metal elements is 0.001 to 0.025. %. Since the silver plating layer 6 contains one or more metal elements selected from 0.001% or more of copper, tin, nickel, cobalt, selenium, antimony, tellurium and bismuth, the silver plating layer 6 Excellent wear resistance can be imparted, and the wear resistance can be maintained even after high temperature exposure. Moreover, the electroconductivity and contact resistance which were excellent in the silver plating layer 6 can be maintained because an additive metal element shall be 0.025% or less.
  • a dense and uniform silver plating layer 6 is formed.
  • the thickness of the silver plating layer 6 is preferably 0.1 ⁇ m to 50 ⁇ m.
  • the characteristics of the silver plating layer 6 can be utilized when the silver plating material 1 is used for various contacts, terminals, connectors, switches, and the like.
  • the thickness By setting the thickness to 50 ⁇ m or less, defect formation and the like in the silver plating layer 6 can be suppressed, and efficient production becomes possible.
  • the metal of the metal substrate 2 is not particularly limited as long as it has electrical conductivity, and examples thereof include aluminum and aluminum alloys, iron and iron alloys, titanium and titanium alloys, stainless steel, copper, and copper alloys. However, among these, copper and copper alloys are preferably used because they are excellent in electrical conductivity, thermal conductivity, and spreadability.
  • the nickel plating layer 4 preferably has a continuous film shape, and the thickness of the nickel plating layer 4 is preferably 0.05 ⁇ m to 10 ⁇ m. A more preferable thickness of the nickel plating layer 4 is 0.5 ⁇ m to 2 ⁇ m.
  • the nickel plating layer 4 may be a granular or island-like discontinuous film shape as long as the effects of the present invention are not impaired. In the latter case, the granular and island portions may be partially continuous.
  • the strike plating layer 8 may be a continuous film shape or may be a granular or island-like discontinuous film shape as long as the effects of the present invention are not impaired. In the latter case, the granular and island portions may be partially continuous. Depending on the strike plating conditions, it may be difficult to identify the strike plating layer 8.
  • the thickness of the strike plating layer 8 is preferably 0.01 ⁇ m to 0.5 ⁇ m.
  • the strike plating layer 8 may be one or more strike plating layers selected from the group of silver strike plating, copper strike plating, gold strike plating, and nickel strike plating.
  • the silver plating layer 6 is formed on the surface of the strike plating layer 8.
  • the thickness of the silver plating layer 6 is preferably 0.1 ⁇ m to 50 ⁇ m, and the Vickers hardness is preferably 80 HV to 250 HV. If the thickness is less than 0.1 ⁇ m, the wear resistance of the silver plating layer 6 cannot be used.
  • the nickel plating layer 4 and the strike plating layer 8 are not essential constituent requirements of the silver plating material 1 of the present invention, but the nickel plating layer 4 causes atomic atoms between the metal substrate 2 and the silver plating layer 6 to be present. Diffusion and reaction can be prevented, and the characteristic deterioration of the silver plating layer 6 can be suppressed. Further, the strike plating layer 8 can more reliably improve the adhesion between the metal substrate 2 and the nickel plating layer 4 and the adhesion between the nickel plating layer 4 and the silver plating layer 6.
  • Metallurgical bonding means that the metals are directly bonded to each other, not mechanical bonding such as an anchor effect or different bonding layers such as an adhesive.
  • Metallurgical bonding is a concept that naturally includes bonding by crystallographic matching (epitaxy), and in the present invention, it is preferable that the plating layers achieve bonding by crystallographic matching (epitaxy).
  • the silver plating material 1 of this invention can be suitably manufactured with the manufacturing method of the silver plating material of this invention.
  • Example 1 A 30 ⁇ m silver plating layer was formed on a base material (material to be plated) made of a copper alloy by the following steps. First, as a pretreatment of the substrate surface, the material to be plated and the SUS plate were placed in an alkaline degreasing solution, and the material to be plated was used as a cathode, and the SUS plate was used as an anode, and electrolytic degreasing was performed at a voltage of 3 V for 30 seconds. After washing with water, acid washing was performed in 5% sulfuric acid for 15 seconds.
  • Ia and Ib indicate current density (A / dm 2 ), Ta and Tb indicate energization time (ms), and satisfy the following formulas (1) and (2).
  • in the equation (1) indicates an absolute value.
  • Example 2 A silver plating material was produced in the same manner as in Example 1 except that a silver plating bath composed of potassium selenocyanate equivalent to 5 ppm was used as selenium, and various evaluations were performed. The obtained results are shown in Table 1.
  • Example 3 A silver plating material was produced in the same manner as in Example 1 except that a silver plating bath composed of potassium selenocyanate equivalent to 10 ppm was used as selenium, and various evaluations were performed. The obtained results are shown in Table 1.
  • Example 4 A silver plating material was produced in the same manner as in Example 1 except that a silver plating bath composed of potassium selenocyanate equivalent to 15 ppm was used as selenium, and various evaluations were performed. The obtained results are shown in Table 1.
  • Example 5 A silver plating material was produced in the same manner as in Example 1 except that a silver plating bath composed of potassium selenocyanate equivalent to 25 ppm was used as selenium, and various evaluations were performed. The obtained results are shown in Table 1.
  • Example 3 A silver plating material was produced in the same manner as in Example 1 except that a silver plating bath made of potassium selenocyanate equivalent to 1 ppm was used as selenium, and various evaluations were performed. The obtained results are shown in Table 1.
  • Comparative Example 4 A silver plating material was produced in the same manner as in Example 1 except that a silver plating bath composed of potassium selenocyanate equivalent to 30 ppm was used as selenium, and various evaluations were performed. The obtained results are shown in Table 1.
  • the silver plating layer in the silver plating material of the present invention contains 0.001 to 0.025% selenium. Further, it can be seen that the silver plating layer has a high hardness of 100 HV or more, and the hardness is maintained even after boiling at 100 ° C. for 1 hour (Examples 1 to 5).

Abstract

Provided are: a silver plating material which has both excellent electrical conductivity and excellent wear resistance, and which is capable of maintaining the characteristics even after being left at room temperature for a long period of time or after being exposed to high temperatures; and a method for producing this silver plating material. A method for producing a silver plating material, in which a silver plating layer is formed on the surface of a metal base, and which is characterized in that plating is carried out using a cyanogen-based silver plating bath that contains 2.5-25 ppm of one or more metal elements selected from among copper, tin, nickel, cobalt, selenium, antimony, tellurium and bismuth, with use of a pulsed power supply.

Description

銀めっき材及びその製造方法Silver plating material and method for producing the same
 本発明は金属基材の表面に銀めっき層が形成された銀めっき材及びその製造方法に関し、より具体的には、各種接点、端子、コネクタ及びスイッチ等に好適に使用することができる銀めっき材及びその製造方法に関する。 The present invention relates to a silver plating material in which a silver plating layer is formed on the surface of a metal base material and a method for producing the same, and more specifically, silver plating that can be suitably used for various contacts, terminals, connectors, switches, and the like. The present invention relates to a material and a manufacturing method thereof.
 銀めっきは電導性、低接触抵抗性及び耐熱性等に優れた特性を有し、各種接点、端子、コネクタ、スイッチ等の電気・電子部品に広く利用されている(例えば、特許文献1(特開2001-3194号公報)参照)。 Silver plating has excellent properties such as electrical conductivity, low contact resistance, and heat resistance, and is widely used for electrical and electronic parts such as various contacts, terminals, connectors, and switches (for example, Patent Document 1 No. 2001-3194)).
 ここで、金属元素の添加によって銀めっき層の硬度を上昇させることができ、銀めっき層の耐摩耗特性が向上することが知られている。例えば、特許文献2(特開2014-198895号公報)では、素材の表面または素材上に形成された下地層の表面に、銀からなる表層を形成する銀めっき材の製造方法において、1~25mg/Lのセレンを含み且つフリーシアンに対する銀の質量比が0.9~1.8である銀めっき浴中において電気めっきを行うことによって、銀からなる表層を形成した後、時効処理を行って、表層の{200}方位の面積分率が15%以上である銀めっき材を製造する方法が開示されている。 Here, it is known that the addition of a metal element can increase the hardness of the silver plating layer and improve the wear resistance of the silver plating layer. For example, in Patent Document 2 (Japanese Patent Laid-Open No. 2014-198895), in a method for producing a silver plating material in which a surface layer made of silver is formed on the surface of a material or the surface of an underlayer formed on the material, 1 to 25 mg After forming a surface layer made of silver by performing electroplating in a silver plating bath containing / L of selenium and having a mass ratio of silver to free cyan of 0.9 to 1.8, an aging treatment is performed. A method for producing a silver-plated material having an area fraction of {200} orientation of the surface layer of 15% or more is disclosed.
 上記特許文献2の銀めっき材の製造方法においては、銀めっき材の表層の{200}方位の面積分率が高いほど、銀めっき材の曲げ加工性が良好になり、高温環境下で使用しても接触抵抗の上昇を抑制することができる、としている。 In the manufacturing method of the silver plating material of the said patent document 2, the bending workability of a silver plating material becomes so favorable that the area fraction of {200} direction of the surface layer of a silver plating material is high, and it uses it in a high temperature environment. However, an increase in contact resistance can be suppressed.
 また、金めっき材を対象としているが、特許文献3(特開2012-184468号公報)では、Au(100-x-y)-Mx-Cyからなるめっき膜が開示されている。なお、MはAu以外の金属元素であり、1≦x≦22、かつ、3≦y≦30、かつ、4≦(x+y)≦40である。 Further, although it is intended for a gold plating material, Patent Document 3 (Japanese Patent Laid-Open No. 2012-184468) discloses a plating film made of Au (100-xy) -Mx-Cy. Note that M is a metal element other than Au, and 1 ≦ x ≦ 22, 3 ≦ y ≦ 30, and 4 ≦ (x + y) ≦ 40.
 上記特許文献3のめっき膜においては、金属元素及びめっき膜の硬度上昇に寄与する炭素の添加により、高硬度かつ低抵抗のめっき膜を提供することができる、としている。 In the plating film disclosed in Patent Document 3, a plating film having high hardness and low resistance can be provided by adding metal elements and carbon that contributes to an increase in hardness of the plating film.
特開2001-3194号公報Japanese Patent Laid-Open No. 2001-3194 特開2014-198895号公報JP 2014-198895 A 特開2012-184468号公報JP 2012-184468 A
 しかしながら、上記特許文献2及び3で添加する金属は銀と比較して比抵抗が高く、銀めっき層において当該金属の含有率が高くなることは、銀めっき層の導電性が低下することを意味している。また、当該金属の酸化物は特に比抵抗が高いため、高温暴露された銀めっき層の導電性は著しく低下し、接触抵抗は著しく上昇する。 However, the metal added in Patent Documents 2 and 3 has a higher specific resistance than silver, and a higher content of the metal in the silver plating layer means that the conductivity of the silver plating layer is reduced. is doing. In addition, since the metal oxide has a particularly high specific resistance, the conductivity of the silver plating layer exposed to a high temperature is remarkably lowered and the contact resistance is remarkably increased.
 以上のような従来技術における問題点に鑑み、本発明の目的は、優れた導電性と耐摩耗性を兼ね備え、室温での長時間放置や高温暴露後も当該特性を維持することができる銀めっき材及びその製造方法を提供することにある。 In view of the problems in the prior art as described above, the object of the present invention is to provide silver plating that has excellent conductivity and wear resistance, and can maintain the characteristics even after being left at room temperature for a long time or exposed to high temperature. It is in providing a material and its manufacturing method.
 本発明者は上記目的を達成すべく、銀めっき材及びその製造方法について鋭意研究を重ねた結果、一定量の金属元素を添加しためっき浴を用い、パルス電源を用いてめっき処理を施すことが極めて有効であることを見出し、本発明に到達した。 In order to achieve the above object, the present inventor has conducted extensive research on silver plating materials and methods for producing the same, and as a result, a plating bath to which a certain amount of metal element is added can be used to perform plating using a pulse power source. The inventors have found that the present invention is extremely effective, and have reached the present invention.
 即ち、本発明は、
 金属基材の表面に銀めっき層を形成させる銀めっき材の製造方法であって、
 添加金属元素を2.5~25ppm含有するシアン系銀めっき浴を用い、
 パルス電源を用いてめっき処理を施すこと、
 を特徴とする銀めっき材の製造法を提供する。
That is, the present invention
A method for producing a silver plating material for forming a silver plating layer on the surface of a metal substrate,
Using a cyan-based silver plating bath containing 2.5 to 25 ppm of additive metal element,
Plating using a pulse power supply,
The manufacturing method of the silver plating material characterized by these is provided.
 めっき浴への添加金属元素を2.5ppm以上とすることで、銀めっき層に優れた耐摩耗性を付与することができると共に、高温暴露後も当該耐摩耗性を維持することができる。また、添加金属元素を25ppm以下とすることで、銀めっき層の優れた導電性及び接触抵抗を維持することができる。 By setting the additive metal element to the plating bath to 2.5 ppm or more, it is possible to impart excellent wear resistance to the silver plating layer and to maintain the wear resistance even after high temperature exposure. Moreover, the electroconductivity and contact resistance which were excellent in the silver plating layer can be maintained because an additional metal element shall be 25 ppm or less.
 また、パルス電源を用いてめっき処理を施すことで、金属元素が添加されためっき浴を用いる場合であっても、緻密かつ均一な銀めっき層を形成させることができる。 In addition, by performing a plating process using a pulse power source, a precise and uniform silver plating layer can be formed even when a plating bath to which a metal element is added is used.
 本発明の銀めっき材の製造方法においては、前記添加金属元素が銅、錫、ニッケル、コバルト、セレン、アンチモン、テルル及びビスマスから選択される1または2以上の金属元素であること、が好ましく、セレンとすることがより好ましい。これらの金属元素を添加することで、銀めっき層の導電性を損なうことなく耐摩耗性を向上させることができると共に、高温暴露による導電性及び耐摩耗性の低下を効率的に抑制することができる。 In the method for producing a silver-plated material of the present invention, the additive metal element is preferably one or more metal elements selected from copper, tin, nickel, cobalt, selenium, antimony, tellurium and bismuth, More preferably, it is selenium. By adding these metal elements, the wear resistance can be improved without impairing the conductivity of the silver plating layer, and the decrease in conductivity and wear resistance due to high-temperature exposure can be effectively suppressed. it can.
 また、本発明の銀めっき材の製造方法においては、前記めっき処理の予備めっき処理として、前記金属基材の表面の任意の領域にニッケルめっき処理を施して、ニッケルめっき層を形成させること、が好ましい。ニッケルめっき層を形成させることで、金属基材と銀めっき層との間における原子の拡散及び反応を防止することができ、銀めっき層の特性低下を抑制することができる。 Further, in the method for producing a silver-plated material of the present invention, as a preliminary plating treatment of the plating treatment, a nickel plating treatment is performed on an arbitrary region of the surface of the metal substrate to form a nickel plating layer. preferable. By forming the nickel plating layer, atomic diffusion and reaction between the metal substrate and the silver plating layer can be prevented, and deterioration of characteristics of the silver plating layer can be suppressed.
 また、本発明の銀めっき材の製造方法においては、前記めっき処理及び/又は前記ニッケルめっき処理の前処理として、前記金属基材及び/又は前記ニッケルめっき層の表面の任意の領域に、銀ストライクめっき、銅ストライクめっき、金ストライクめっき、ニッケルストライクめっきの群から選ばれる1または2以上のストライクめっきを施すこと、が好ましい。ストライクめっき処理を施すことで、金属基材とニッケルめっき層との密着性及びニッケルめっき層と銀めっき層との密着性をより確実に向上させることができる。 Further, in the method for producing a silver-plated material of the present invention, as a pretreatment for the plating treatment and / or the nickel plating treatment, a silver strike is applied to an arbitrary region on the surface of the metal substrate and / or the nickel plating layer. It is preferable to apply one or more strike plating selected from the group of plating, copper strike plating, gold strike plating, and nickel strike plating. By performing the strike plating treatment, the adhesion between the metal substrate and the nickel plating layer and the adhesion between the nickel plating layer and the silver plating layer can be improved more reliably.
 また、本発明は、
 金属基材の少なくとも一部に銀めっき層が形成され、
 前記銀めっき層は、銅、錫、ニッケル、コバルト、セレン、アンチモン、テルル及びビスマスから選択される1または2以上の金属元素を含有し、
 前記金属元素の含有量が0.001~0.025%であること、
 を特徴とする銀めっき材、も提供する。
The present invention also provides:
A silver plating layer is formed on at least a part of the metal substrate,
The silver plating layer contains one or more metal elements selected from copper, tin, nickel, cobalt, selenium, antimony, tellurium and bismuth,
The metal element content is 0.001 to 0.025%;
A silver plating material characterized by the above is also provided.
 本発明の銀めっき材は、銀めっき層に0.001~0.025%の銅、錫、ニッケル、コバルト、セレン、アンチモン、テルル及びビスマスから選択される1または2以上の金属元素が含まれているため、高硬度を有すると共に、高温暴露後も当該高硬度を維持することができる。 In the silver plating material of the present invention, the silver plating layer contains 0.001 to 0.025% of one or more metal elements selected from copper, tin, nickel, cobalt, selenium, antimony, tellurium and bismuth. Therefore, it has high hardness and can maintain the high hardness even after high temperature exposure.
 銀めっき層の厚さは、0.1μm~50μmであること、が好ましい。銀めっき層の厚さを0.1μm以上とすることで、銀めっき材を各種接点、端子、コネクタ及びスイッチ等に使用する際に、銀めっき層の特性を活用することができ、50μm以下とすることで、銀めっき層における欠陥形成等を抑制することができると共に、効率的な製造が可能となる。 The thickness of the silver plating layer is preferably 0.1 μm to 50 μm. By setting the thickness of the silver plating layer to 0.1 μm or more, the characteristics of the silver plating layer can be utilized when the silver plating material is used for various contacts, terminals, connectors, switches, and the like. By doing so, defect formation and the like in the silver plating layer can be suppressed, and efficient production becomes possible.
 銀めっき層は基本的に一定の厚さを有するが、本発明の効果を損なわない範囲で、部分的に薄くなっていたり厚くなっていたりしてもよい。また、銀めっき層のビッカース硬度は80HV~250HVであることが好ましい。 The silver plating layer basically has a constant thickness, but may be partially thinned or thickened within a range not impairing the effects of the present invention. The Vickers hardness of the silver plating layer is preferably 80 HV to 250 HV.
 本発明の銀めっき材においては、前記基材と前記銀めっき層の間にニッケルめっき層が形成されていること、が好ましい。ニッケルめっき層により、金属基材と銀めっき層との間における原子の拡散及び反応を防止することができ、銀めっき層の特性低下を抑制することができる。 In the silver plating material of the present invention, it is preferable that a nickel plating layer is formed between the base material and the silver plating layer. The nickel plating layer can prevent the diffusion and reaction of atoms between the metal substrate and the silver plating layer, and can suppress the deterioration of the characteristics of the silver plating layer.
 ここで、ニッケルめっき層は、連続する膜形状であることが好ましく、当該ニッケルめっき層の厚さは0.05μm~10μmであることが好ましい。また、より好ましいニッケルめっき層の厚さは0.5μm~2μmである。0.05μm未満であるとバリア効果に乏しく、10μm以上であると曲げ加工時にクラックが発生しやすくなる。なお、ニッケルめっき層は、本発明の効果を損なわない範囲で、粒状や島状の不連続な膜形状であってもよい。後者の場合、粒状及び島状部分が部分的に連続していてもよい。 Here, the nickel plating layer preferably has a continuous film shape, and the thickness of the nickel plating layer is preferably 0.05 μm to 10 μm. A more preferable nickel plating layer thickness is 0.5 μm to 2 μm. If it is less than 0.05 μm, the barrier effect is poor, and if it is 10 μm or more, cracks are likely to occur during bending. In addition, the nickel plating layer may have a granular or island-like discontinuous film shape as long as the effects of the present invention are not impaired. In the latter case, the granular and island portions may be partially continuous.
 また、本発明の銀めっき材においては、前記金属基材と前記ニッケルめっき層との界面、及び/又は前記ニッケルめっき層と前記銀めっき層との界面に、銀ストライクめっき、銅ストライクめっき、金ストライクめっき、ニッケルストライクめっきの群から選ばれる1または2以上のストライクめっきが形成されていること、が好ましい。ストライクめっき層により、金属基材とニッケルめっき層との優れた密着性及びニッケルめっき層と銀めっき層との優れた密着性が実現されている。 Further, in the silver plating material of the present invention, silver strike plating, copper strike plating, gold at the interface between the metal substrate and the nickel plating layer and / or the interface between the nickel plating layer and the silver plating layer. It is preferable that one or more strike platings selected from the group of strike plating and nickel strike plating are formed. The strike plating layer realizes excellent adhesion between the metal substrate and the nickel plating layer and excellent adhesion between the nickel plating layer and the silver plating layer.
 ストライクめっき層の厚さは0.01μm~0.5μmであることが好ましい。また、ストライクめっき層は、連続する膜形状であっても、本発明の効果を損なわない範囲で、粒状や島状の不連続な膜形状であってもよい。後者の場合、粒状及び島状部分が部分的に連続していてもよい。なお、銀ストライクめっき処理を施す場合、銀めっき処理によって、銀ストライクめっき層の上に銀めっき層が形成され、概略的には単一の銀めっき層となっている。 The thickness of the strike plating layer is preferably 0.01 μm to 0.5 μm. Moreover, even if the strike plating layer is a continuous film shape, it may be a granular or island-like discontinuous film shape as long as the effects of the present invention are not impaired. In the latter case, the granular and island portions may be partially continuous. In addition, when performing a silver strike plating process, a silver plating layer is formed on a silver strike plating layer by the silver plating process, and it is a single silver plating layer roughly.
 なお、本発明の銀めっき材を構成する金属基材、銀めっき層、ニッケルめっき層及び各種ストライクめっき層の接触界面は、冶金的に接合されている。冶金的な接合とは、アンカー効果等の機械的接合や接着剤等の異種接合層を介して接合されているのではなく、お互いの金属同士が直接接合されていることを意味する。冶金的な接合とは結晶学的整合(エピタキシー)による接合を当然に含む概念であり、本発明において、各めっき層は互いに結晶学的整合(エピタキシー)による接合が達成されていることが好ましい。 In addition, the metal interface which comprises the silver plating material of this invention, the silver plating layer, the nickel plating layer, and various strike plating layers is metallurgically joined. Metallurgical bonding means that the metals are directly bonded to each other, not mechanical bonding such as an anchor effect or different bonding layers such as an adhesive. Metallurgical bonding is a concept that naturally includes bonding by crystallographic matching (epitaxy), and in the present invention, it is preferable that the plating layers achieve bonding by crystallographic matching (epitaxy).
 本発明の銀めっき材及びその製造方法によれば、優れた導電性と耐摩耗性を兼ね備え、室温での長時間放置や高温暴露後も当該特性を維持することができる銀めっき材及びその製造方法を提供することができる。 According to the silver-plated material of the present invention and the method for producing the same, the silver-plated material having excellent conductivity and wear resistance, and capable of maintaining the characteristics even after being left at room temperature for a long time or exposed to high temperature, and the production thereof A method can be provided.
本発明の銀めっき材の製造方法の工程図である。It is process drawing of the manufacturing method of the silver plating material of this invention. 本発明の銀めっき材の概略断面図である。It is a schematic sectional drawing of the silver plating material of this invention.
 以下、図面を参照しながら本発明の銀めっき材及びその製造方法の代表的な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する場合がある。また、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。 Hereinafter, typical embodiments of a silver plating material and a method for producing the same of the present invention will be described in detail with reference to the drawings, but the present invention is not limited to these. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description may be omitted. Further, since the drawings are for conceptually explaining the present invention, the dimensions and ratios of the components shown may be different from the actual ones.
≪銀めっき材の製造方法≫
 図1は、本発明の銀めっき材の製造方法の工程図である。本発明の銀めっき材の製造方法は、金属基材の表面に銀めっき処理(S04)を施して、銀めっき層を形成させる方法であり、必要に応じて、金属基材へのストライクめっき処理(S01)、金属基材又はストライクめっき層へのニッケルめっき処理(S02)、ニッケルめっき層へのストライクめっき処理(S03)を施すものである。
≪Silver plating material manufacturing method≫
FIG. 1 is a process diagram of a method for producing a silver-plated material of the present invention. The method for producing a silver-plated material of the present invention is a method in which a silver plating process (S04) is performed on the surface of a metal substrate to form a silver plating layer. If necessary, a strike plating process on a metal substrate is performed. (S01), nickel plating treatment (S02) on the metal substrate or strike plating layer, and strike plating treatment (S03) on the nickel plating layer.
 金属基材に用いる金属は、電導性を有している限り特に限定されず、例えば、アルミニウム及びアルミニウム合金、鉄及び鉄合金、チタン及びチタン合金、ステンレス、銅及び銅合金等を挙げることができるが、なかでも、電導性・熱伝導性・展延性に優れているという理由から、銅及び銅合金を用いることが好ましい。 The metal used for the metal substrate is not particularly limited as long as it has electrical conductivity, and examples thereof include aluminum and aluminum alloys, iron and iron alloys, titanium and titanium alloys, stainless steel, copper, and copper alloys. However, among these, copper and copper alloys are preferably used because they are excellent in electrical conductivity, thermal conductivity, and spreadability.
 金属基材に洗浄処理を行い、上記種々の処理工程(S01~S04)を経て、銀めっき材を得ることができる。以下、各処理について詳細に説明する。 A silver plating material can be obtained through a cleaning process on the metal base material and the various processing steps (S01 to S04). Hereinafter, each process will be described in detail.
(1)洗浄処理
 洗浄工程は、任意の工程であり、図1には示していないが、金属基材の表面を洗浄する工程である。ここでは、本発明の効果を損なわない範囲で従来公知の種々の洗浄処理液及び処理条件を用いることができる。
(1) Cleaning process The cleaning process is an optional process, and is a process of cleaning the surface of the metal substrate, although not shown in FIG. Here, various conventionally known cleaning processing solutions and processing conditions can be used within a range not impairing the effects of the present invention.
 洗浄処理液には一般的な非鉄金属用の浸漬脱脂溶液や電解脱脂溶液を使用することができるが、両性金属である錫の腐食を防止するため、pHが2超11未満の洗浄処理溶液を使用することが好ましく、pHが2以下の強酸浴やpHが11以上の強アルカリ浴の使用は避けることが好ましい。 A common immersion degreasing solution or electrolytic degreasing solution for non-ferrous metals can be used as the cleaning treatment solution. In order to prevent corrosion of tin which is an amphoteric metal, a cleaning treatment solution having a pH of more than 2 and less than 11 is used. It is preferable to use, and it is preferable to avoid the use of a strong acid bath having a pH of 2 or less or a strong alkali bath having a pH of 11 or more.
 具体的には、第三リン酸ナトリウム、炭酸ナトリウム、メタケイ酸ナトリウムまたはオルトケイ酸ナトリウム等10~50g/Lを水溶した弱アルカリ性の浴に界面活性剤0.1~10g/Lを加えた浴で浴温20~70℃、10~60秒間浸漬する。または陽極にステンレス鋼、チタン白金板、及び酸化イリジウム等の不溶性陽極を用いて、陰極電流密度2~5A/dm2で陰極電解脱脂を行ってもよい。なお、酸洗浄液を用いる場合は、硫酸又は硝酸等の酸を3~50%に希釈した一般的な酸洗浄液を使用することができる。 Specifically, it is a bath obtained by adding 0.1 to 10 g / L of a surfactant to a weakly alkaline bath in which 10 to 50 g / L such as sodium triphosphate, sodium carbonate, sodium metasilicate, or sodium orthosilicate is dissolved in water. Immerse in bath temperature 20-70 ° C. for 10-60 seconds. Alternatively, cathode electrolytic degreasing may be performed at a cathode current density of 2 to 5 A / dm 2 using an insoluble anode such as stainless steel, a titanium platinum plate, and iridium oxide as the anode. When an acid cleaning solution is used, a general acid cleaning solution in which an acid such as sulfuric acid or nitric acid is diluted to 3 to 50% can be used.
(2)金属基材へのストライクめっき処理(S01)
 金属基材には、ストライクめっき処理(S01)を施すことが好ましい。銀ストライクめっき、銅ストライクめっき、金ストライクめっき、ニッケルストライクめっきの群から選ばれる1または2以上のストライクめっきを施すことで、ニッケルめっき層又は銀めっき層の密着性をより確実に向上させることができる。
(2) Strike plating treatment on metal substrate (S01)
The metal substrate is preferably subjected to strike plating (S01). By applying one or more strike plating selected from the group of silver strike plating, copper strike plating, gold strike plating and nickel strike plating, the adhesion of the nickel plating layer or the silver plating layer can be improved more reliably. it can.
(A)銀ストライクめっき
 銀ストライクめっき浴としては、例えば、シアン化銀及びシアン化銀カリウム等の銀塩と、シアン化カリウム及びピロリン酸カリウム等の電導塩と、を含むものを用いることができる。
(A) Silver strike plating As a silver strike plating bath, what contains silver salts, such as silver cyanide and silver cyanide potassium, and electrically conductive salts, such as potassium cyanide and potassium pyrophosphate, can be used, for example.
 銀ストライクめっき処理には、本発明の効果を損なわない範囲で従来公知の種々の銀めっき手法を用いることができるが、通常の銀めっきと比較して、めっき浴中の銀塩の濃度を低く、電導塩の濃度を高くすることが好ましい。 For the silver strike plating treatment, various conventionally known silver plating techniques can be used within a range that does not impair the effects of the present invention, but the concentration of silver salt in the plating bath is lower than that of ordinary silver plating. It is preferable to increase the concentration of the conductive salt.
 銀ストライクめっき処理に好適に用いることができる銀ストライクめっき浴は、銀塩と、シアン化アルカリ塩と、電導塩と、により構成され、必要に応じて光沢剤が添加されていてもよい。各構成要素の好適な使用量は、銀塩:1~10g/L、シアン化アルカリ塩:80~200g/L、電導塩:0~100g/L、光沢剤:~1000ppmである。 The silver strike plating bath that can be suitably used for the silver strike plating treatment is composed of a silver salt, an alkali cyanide salt, and a conductive salt, and a brightener may be added as necessary. Preferred amounts of each component are silver salt: 1 to 10 g / L, alkali cyanide salt: 80 to 200 g / L, conductive salt: 0 to 100 g / L, brightener: ˜1000 ppm.
 銀塩としては、例えば、シアン化銀、ヨウ化銀、酸化銀、硫酸銀、硝酸銀、塩化銀等が挙げられ、電導塩としては、例えば、シアン化カリウム、シアン化ナトリウム、ピロリン酸カリウム、ヨウ化カリウム、チオ硫酸ナトリウム等が挙げられる。 Examples of the silver salt include silver cyanide, silver iodide, silver oxide, silver sulfate, silver nitrate, and silver chloride. Examples of the conductive salt include potassium cyanide, sodium cyanide, potassium pyrophosphate, and potassium iodide. And sodium thiosulfate.
 光沢剤としては金属光沢剤及び/又は有機光沢剤を用いることができる。また、金属光沢剤としては、アンチモン(Sb)、セレン(Se)、テルル(Te)等を例示でき、有機光沢剤としては、ベンゼンスルホン酸等の芳香族スルホン酸化合物、メルカプタン類等を例示することができる。 As the brightener, a metal brightener and / or an organic brightener can be used. Examples of the metallic brightener include antimony (Sb), selenium (Se), tellurium (Te), and the like, and examples of the organic brightener include aromatic sulfonic acid compounds such as benzenesulfonic acid, mercaptans, and the like. be able to.
 銀ストライクめっき浴の浴温度、陽極材料、電流密度等の銀ストライクめっき条件は、用いるめっき浴及び必要とするめっき厚さ等に応じて適宜設定することができる。例えば、陽極材料には、ステンレス鋼、チタン白金板、及び酸化イリジウム等の不溶性陽極を用いることが好ましい。また、好適なめっき条件としては、浴温:15~50℃、電流密度:0.5~5A/dm2、処理時間:5~60秒を例示することができる。 Silver strike plating conditions such as the bath temperature, anode material, and current density of the silver strike plating bath can be appropriately set according to the plating bath used, the required plating thickness, and the like. For example, the anode material is preferably an insoluble anode such as stainless steel, a titanium platinum plate, and iridium oxide. Suitable plating conditions include bath temperature: 15 to 50 ° C., current density: 0.5 to 5 A / dm 2 , and processing time: 5 to 60 seconds.
 なお、銀ストライクめっきは金属基材の全面に施してもよく、ニッケルめっき層又は銀めっき層を形成させたい領域のみに施してもよい。 In addition, silver strike plating may be performed on the entire surface of the metal substrate, or may be performed only on a region where a nickel plating layer or a silver plating layer is to be formed.
(B)銅ストライクめっき
 銅ストライクめっき浴には、酸性浴とアルカリ性浴のどちらを用いてもよい。
(B) Copper strike plating Either a acidic bath or an alkaline bath may be used for the copper strike plating bath.
 酸性浴は銅塩及び酸により構成され、添加剤が添加されてもよい。銅塩には、例えば、硫酸銅及びスルファミン酸銅等を用いることができる。酸には、例えば、硫酸及びスルファミン酸等を用いることができる。添加剤には、例えば、硫黄化合物(チオ尿素、ジスルホン塩、メルカプトベンゾチアゾール等)、有機化合物(ポリオキシエチレングリコールエーテル、ポリエチレングリコール等)、及びセレン化合物等を用いることができる。 The acidic bath is composed of a copper salt and an acid, and additives may be added. For example, copper sulfate and copper sulfamate can be used as the copper salt. As the acid, for example, sulfuric acid and sulfamic acid can be used. As the additive, for example, a sulfur compound (thiourea, disulfone salt, mercaptobenzothiazole, etc.), an organic compound (polyoxyethylene glycol ether, polyethylene glycol, etc.), a selenium compound and the like can be used.
 銅ストライクめっき処理に好適に用いることができる酸性浴の各構成要素の好適な使用量は、銅塩:60~200g/L、酸:30~200g/L、添加剤:0~100ppmである。 Suitable amounts of each component of the acidic bath that can be suitably used for the copper strike plating treatment are copper salt: 60 to 200 g / L, acid: 30 to 200 g / L, and additive: 0 to 100 ppm.
 アルカリ性浴にはシアン系浴を用いることができ、シアン系浴は銅塩、シアン化アルカリ塩及び電導塩により構成され、添加剤が添加されてもよい。銅塩には、例えば、シアン化銅等を用いることができる。シアン化アルカリ塩には、例えば、シアン化カリウム及びシアン化ナトリウム等を用いることができる。      電導塩には、例えば、炭酸カリウム及び炭酸ナトリウム等を用いることができる。添加剤には、例えば、ロッシェル塩、亜セレン酸カリウム、亜セレン酸ナトリウム、チオシアン酸カリウム、酢酸鉛、酒石酸鉛等を用いることができる。 As the alkaline bath, a cyan bath can be used. The cyan bath is composed of a copper salt, an alkali cyanide salt and a conductive salt, and an additive may be added thereto. For example, copper cyanide can be used as the copper salt. For example, potassium cyanide and sodium cyanide can be used as the alkali cyanide salt. For example, potassium carbonate and sodium carbonate can be used as the conductive salt. As the additive, for example, Rochelle salt, potassium selenite, sodium selenite, potassium thiocyanate, lead acetate, lead tartrate and the like can be used.
 銅ストライクめっき処理に好適に用いることができるシアン系浴の各構成要素の好適な使用量は、銅塩:10~80g/L、シアン化アルカリ酸:20~50g/L、電導塩:10~50g/L、添加剤:0~60g/Lである。 Suitable amounts of each component of the cyan bath that can be suitably used for the copper strike plating treatment are: copper salt: 10 to 80 g / L, alkali cyanide acid: 20 to 50 g / L, conductive salt: 10 to 50 g / L, additive: 0 to 60 g / L.
 銅ストライクめっき浴の浴温度、陽極材料、電流密度等の銅ストライクめっき条件は、用いるめっき浴及び必要とするめっき厚さ等に応じて適宜設定することができる。例えば、陽極材料には、電解銅等の可溶性陽極、及び/又は、ステンレス鋼、チタン白金板、酸化イリジウム等の不溶性陽極等を用いることが好ましい。また、好適なめっき条件としては、浴温:25~70℃、電流密度:0.1~6.0A/dm2、処理時間:5~60秒を例示することができる。 The copper strike plating conditions such as bath temperature, anode material, and current density of the copper strike plating bath can be appropriately set according to the plating bath used, the required plating thickness, and the like. For example, as the anode material, it is preferable to use a soluble anode such as electrolytic copper and / or an insoluble anode such as stainless steel, a titanium platinum plate, and iridium oxide. Suitable plating conditions include bath temperature: 25 to 70 ° C., current density: 0.1 to 6.0 A / dm 2 , and processing time: 5 to 60 seconds.
 なお、銅ストライクめっきは金属基材の全面に施してもよく、ニッケルめっき層又は銀めっき層を形成させたい領域のみに施してもよい。 In addition, copper strike plating may be performed on the entire surface of the metal base material, or may be performed only on a region where a nickel plating layer or a silver plating layer is to be formed.
(C)金ストライクめっき
 金ストライクめっき浴としては、例えば、金塩、電導塩、キレート剤及び結晶成長剤を含むものを用いることができる。また、金ストライクめっき浴には光沢剤が添加されていてもよい。
(C) Gold strike plating As a gold strike plating bath, what contains a gold salt, a conductive salt, a chelating agent, and a crystal growth agent can be used, for example. Further, a brightener may be added to the gold strike plating bath.
 金塩には、例えば、シアン化金、シアン化第一金カリウム、シアン化第二金カリウム、亜硫酸金ナトリウム及びチオ硫酸金ナトリウム等を用いることができる。電導塩には、例えば、クエン酸カリウム、リン酸カリウム、ピロリン酸カリウム及びチオ硫酸カリウム等を用いることができる。キレート剤には、例えば、エチレンジアミン四酢酸及びメチレンホスホン酸等を用いることができる。結晶成長剤には、例えば、コバルト、ニッケル、タリウム、銀、パラジウム、錫、亜鉛、銅、ビスマス、インジウム、ヒ素及びカドミウム等を用いることができる。なお、pH調整剤として、例えば、ポリリン酸、クエン酸、酒石酸、水酸化カリウム及び塩酸等を添加してもよい。 Examples of the gold salt include gold cyanide, potassium gold cyanide, potassium gold cyanide, sodium gold sulfite, and sodium gold thiosulfate. As the conductive salt, for example, potassium citrate, potassium phosphate, potassium pyrophosphate, potassium thiosulfate, or the like can be used. For example, ethylenediaminetetraacetic acid and methylenephosphonic acid can be used as the chelating agent. Examples of the crystal growth agent that can be used include cobalt, nickel, thallium, silver, palladium, tin, zinc, copper, bismuth, indium, arsenic, and cadmium. In addition, as a pH adjuster, you may add polyphosphoric acid, a citric acid, tartaric acid, potassium hydroxide, hydrochloric acid etc., for example.
 金ストライクめっき処理に好適に用いることができる金ストライクめっき浴の各構成要素の好適な使用量は、金塩:1~10g/L、電導塩:0~200g/L、キレート剤:0~30g/L、結晶成長剤:0~30g/Lである。 Suitable amounts of each component of the gold strike plating bath that can be suitably used for the gold strike plating treatment are: gold salt: 1 to 10 g / L, conductive salt: 0 to 200 g / L, chelating agent: 0 to 30 g / L, crystal growth agent: 0 to 30 g / L.
 金ストライクめっき浴の浴温度、陽極材料、電流密度等の金ストライクめっき条件は、用いるめっき浴及び必要とするめっき厚さ等に応じて適宜設定することができる。例えば、陽極材料には、チタン白金板及び酸化イリジウム等の不溶性陽極等を用いることが好ましい。また、好適なめっき条件としては、浴温:20~40℃、電流密度:0.5~5.0A/dm2、処理時間:5~60秒、pH:0.5~7.0を例示することができる。 Gold strike plating conditions such as the bath temperature, anode material, and current density of the gold strike plating bath can be appropriately set according to the plating bath used, the required plating thickness, and the like. For example, the anode material is preferably a titanium platinum plate and an insoluble anode such as iridium oxide. Further, as preferable plating conditions, bath temperature: 20 to 40 ° C., current density: 0.5 to 5.0 A / dm 2 , treatment time: 5 to 60 seconds, pH: 0.5 to 7.0 are exemplified. can do.
 なお、金ストライクめっきは金属基材の全面に施してもよく、ニッケルめっき層又は銀めっき層を形成させたい領域のみに施してもよい。 Note that the gold strike plating may be performed on the entire surface of the metal substrate, or may be performed only on a region where the nickel plating layer or the silver plating layer is to be formed.
(D)ニッケルストライクめっき
 ニッケルストライクめっき浴としては、例えば、ニッケル塩、陽極溶解促進剤及びpH緩衝剤を含むものを用いることができる。また、ニッケルストライクめっき浴には添加剤が添加されていてもよい。
(D) Nickel strike plating As a nickel strike plating bath, what contains nickel salt, an anodic dissolution promoter, and a pH buffer can be used, for example. Further, an additive may be added to the nickel strike plating bath.
 ニッケル塩には、例えば、硫酸ニッケル、スルファミン酸ニッケル及び塩化ニッケル等を用いることができる。陽極溶解促進剤には、例えば、塩化ニッケル及び塩酸等を用いることができる。pH緩衝剤には、例えば、ホウ酸、酢酸ニッケル及びクエン酸等を用いることができる。添加剤には、例えば、1次光沢剤(サッカリン、ベンゼン、ナフタレン(ジ、トリ)、スルホン酸ナトリウム、スルホンアミド、スルフィン酸等)、2次光沢剤(有機化合物:ブチンジオール、クマリン、アリルアルデヒドスルホン酸等、金属塩:コバルト、鉛、亜鉛等)及びピット防止剤(ラウリル硫酸ナトリウム等)等を用いることができる。 As the nickel salt, for example, nickel sulfate, nickel sulfamate, nickel chloride and the like can be used. As the anodic dissolution accelerator, for example, nickel chloride and hydrochloric acid can be used. As the pH buffering agent, for example, boric acid, nickel acetate, citric acid and the like can be used. Examples of additives include primary brighteners (saccharin, benzene, naphthalene (di, tri), sodium sulfonate, sulfonamide, sulfinic acid, etc.), secondary brighteners (organic compounds: butynediol, coumarin, allylaldehyde). A sulfonic acid or the like, a metal salt: cobalt, lead, zinc or the like) and a pit inhibitor (such as sodium lauryl sulfate) can be used.
 ニッケルストライクめっき処理に好適に用いることができるニッケルストライクめっき浴の各構成要素の好適な使用量は、ニッケル塩:200~600g/L、陽極溶解促進剤:0~300g/L、pH緩衝剤:0~50g/L、添加剤:0~20g/Lである。 The preferred amount of each component of the nickel strike plating bath that can be suitably used for the nickel strike plating treatment is nickel salt: 200 to 600 g / L, anodic dissolution accelerator: 0 to 300 g / L, pH buffer: 0 to 50 g / L, additive: 0 to 20 g / L.
 ニッケルストライクめっき浴の浴温度、陽極材料、電流密度等のニッケルストライクめっき条件は、用いるめっき浴及び必要とするめっき厚さ等に応じて適宜設定することができる。例えば、陽極材料には、電解ニッケル、カーボナイズドニッケル、デポライズドニッケル、サルファニッケル等の可溶性陽極等を用いることが好ましい。また、好適なめっき条件としては、浴温:20~70℃、電流密度:0.1~15.0A/dm2、処理時間:5~60秒、pH:0.5~4.5を例示することができる。 Nickel strike plating conditions such as bath temperature, anode material, and current density of the nickel strike plating bath can be appropriately set according to the plating bath used, the required plating thickness, and the like. For example, as the anode material, it is preferable to use a soluble anode such as electrolytic nickel, carbonized nickel, depolarized nickel, and sulfur nickel. Further, as preferable plating conditions, bath temperature: 20 to 70 ° C., current density: 0.1 to 15.0 A / dm 2 , treatment time: 5 to 60 seconds, pH: 0.5 to 4.5 can do.
 なお、ニッケルストライクめっきは金属基材の全面に施してもよく、ニッケルめっき層又は銀めっき層を形成させたい領域のみに施してもよい。 The nickel strike plating may be performed on the entire surface of the metal substrate, or may be performed only on the region where the nickel plating layer or the silver plating layer is to be formed.
 上記各種ストライクめっきは1種類のみを施しても、複数のストライクめっきを積層させてもよい。また、金属基材の表面状態により、ストライクめっき処理なしでも粗状ニッケルめっきの密着状況が良好となる場合は、当該ストライクめっき処理を省略することができる。 The above-described various strike plating may be performed only one kind, or a plurality of strike plating may be laminated. Further, when the adhesion state of the rough nickel plating is good without the strike plating process due to the surface state of the metal substrate, the strike plating process can be omitted.
(3)ニッケルめっき処理(S02)
 金属基材(ストライクめっき処理を施した場合はストライクめっき層)には、ニッケルめっき処理(S02)を施すことが好ましい。ニッケルめっき処理を施すことで、金属基材と銀めっき層との間における原子の拡散及び反応を防止することができ、銀めっき層の特性低下を抑制することができる。
(3) Nickel plating treatment (S02)
It is preferable to perform a nickel plating process (S02) on the metal substrate (a strike plating layer when the strike plating process is performed). By performing the nickel plating treatment, it is possible to prevent the diffusion and reaction of atoms between the metal substrate and the silver plating layer, and it is possible to suppress the deterioration of the characteristics of the silver plating layer.
 ニッケルめっき浴としては、例えば、ニッケル塩、陽極溶解促進剤及びpH緩衝剤を含むものを用いることができる。また、ニッケルめっき浴には添加剤が添加されていてもよい。 As the nickel plating bath, for example, a bath containing a nickel salt, an anodic dissolution accelerator and a pH buffer can be used. An additive may be added to the nickel plating bath.
 ニッケル塩には、例えば、硫酸ニッケル、スルファミン酸ニッケル及び塩化ニッケル等を用いることができる。陽極溶解促進剤には、例えば、塩化ニッケル及び塩酸等を用いることができる。pH緩衝剤には、例えば、ホウ酸、酢酸ニッケル及びクエン酸等を用いることができる。添加剤には、例えば、1次光沢剤(サッカリン、ベンゼン、ナフタレン(ジ、トリ)スルホン酸ナトリウム、スルホンアミド、スルフィン酸等)、2次光沢剤(有機化合物:ブチンジオール、クマリン、アリルアルデヒドスルホン酸等、金属塩:コバルト、鉛、亜鉛等)、及びピット防止剤(ラウリル硫酸ナトリウム等)等を用いることができる。 As the nickel salt, for example, nickel sulfate, nickel sulfamate, nickel chloride and the like can be used. As the anodic dissolution accelerator, for example, nickel chloride and hydrochloric acid can be used. As the pH buffering agent, for example, boric acid, nickel acetate, citric acid and the like can be used. Examples of additives include primary brighteners (saccharin, benzene, naphthalene (di, tri) sodium sulfonate, sulfonamide, sulfinic acid, etc.), secondary brighteners (organic compounds: butynediol, coumarin, allylaldehyde sulfone). Acids, metal salts: cobalt, lead, zinc, etc.) and pit inhibitors (sodium lauryl sulfate, etc.) can be used.
 ニッケルめっき処理に好適に用いることができるニッケルめっき浴の各構成要素の好適な使用量は、ニッケル塩:200~600g/L、陽極溶解促進剤:0~300g/L、pH緩衝剤:20~50g/L、添加剤:0~20g/Lである。 The preferred amount of each component of the nickel plating bath that can be suitably used for the nickel plating treatment is nickel salt: 200 to 600 g / L, anodic dissolution accelerator: 0 to 300 g / L, pH buffer: 20 to 50 g / L, additive: 0 to 20 g / L.
 ニッケルめっき浴の浴温度、陽極材料、電流密度等のニッケルめっき条件は、用いるめっき浴及び必要とするめっき厚さ等に応じて適宜設定することができる。例えば、陽極材料には、電解ニッケル、カーボナイズドニッケル、デポライズドニッケル、サルファニッケル等の可溶性陽極等を用いることが好ましい。また、好適なめっき条件としては、浴温:20~70℃、電流密度:0.1~15.0A/dm2、処理時間:10~50000秒、pH:0.5~4.5を例示することができる。 Nickel plating conditions such as bath temperature, anode material, and current density of the nickel plating bath can be set as appropriate according to the plating bath used, the required plating thickness, and the like. For example, as the anode material, it is preferable to use a soluble anode such as electrolytic nickel, carbonized nickel, depolarized nickel, and sulfur nickel. Further, as preferable plating conditions, bath temperature: 20 to 70 ° C., current density: 0.1 to 15.0 A / dm 2 , treatment time: 10 to 50000 seconds, pH: 0.5 to 4.5 can do.
 なお、ニッケルめっき層は、連続する膜形状であることが好ましく、当該ニッケルめっき層の厚さは0.05μm~10μmであることが好ましい。0.05μm未満であるとバリア効果に乏しく、10μm以上であると曲げ加工時にクラックが発生しやすくなる。なお、ニッケルめっき層は、本発明の効果を損なわない範囲で、粒状や島状の不連続な膜形状であってもよい。後者の場合、粒状及び島状部分が部分的に連続していてもよい。 The nickel plating layer preferably has a continuous film shape, and the thickness of the nickel plating layer is preferably 0.05 μm to 10 μm. If it is less than 0.05 μm, the barrier effect is poor, and if it is 10 μm or more, cracks are likely to occur during bending. In addition, the nickel plating layer may have a granular or island-like discontinuous film shape as long as the effects of the present invention are not impaired. In the latter case, the granular and island portions may be partially continuous.
(4)ニッケルめっき層への銀ストライクめっき処理(S03)
 ニッケルめっき層には、ストライクめっき処理(S03)を施すことが好ましい。銀ストライクめっき、銅ストライクめっき、金ストライクめっき、ニッケルストライクめっきの群から選ばれる1または2以上のストライクめっきを施すことで、ニッケルめっき層と銀めっき層の密着性をより確実に向上させることができる。なお、各ストライクめっき方法は、金属基材へのストライクめっき処理(S01)と同様である。
(4) Silver strike plating treatment on nickel plating layer (S03)
The nickel plating layer is preferably subjected to strike plating treatment (S03). By applying one or more strike platings selected from the group of silver strike plating, copper strike plating, gold strike plating and nickel strike plating, the adhesion between the nickel plating layer and the silver plating layer can be improved more reliably. it can. Each strike plating method is the same as the strike plating process (S01) on the metal substrate.
(5)銀めっき処理(S04)
 銀めっき処理(S04)は、銀めっき材の最表面である銀めっき層を形成させるための処理である。
(5) Silver plating treatment (S04)
A silver plating process (S04) is a process for forming the silver plating layer which is the outermost surface of a silver plating material.
 銀めっき処理には、本発明の効果を損なわない範囲で従来公知の種々の銀めっき手法を用いることができるが、通常の銀ストライクめっきと比較して、めっき浴中の銀塩の濃度を高く、電導塩の濃度を低くすることが好ましい。 For the silver plating treatment, various conventionally known silver plating methods can be used within a range not impairing the effects of the present invention, but the silver salt concentration in the plating bath is increased as compared with ordinary silver strike plating. It is preferable to reduce the concentration of the conductive salt.
 銀めっき処理に好適に用いることができる銀めっき浴は、銀塩と、シアン化アルカリ塩と、電導塩と、金属添加剤により構成され、必要に応じて有機添加剤が添加されていてもよい。各構成要素の好適な使用量は、銀塩:40~150g/L、シアン化アルカリ塩:1~200g/L、電導塩:10~250g/L、金属添加材:2.5~25ppm、有機添加剤:0~10g/Lである。 A silver plating bath that can be suitably used for silver plating treatment is composed of a silver salt, an alkali cyanide salt, a conductive salt, and a metal additive, and an organic additive may be added as necessary. . The preferred amount of each component used is: silver salt: 40 to 150 g / L, alkali cyanide salt: 1 to 200 g / L, conductive salt: 10 to 250 g / L, metal additive: 2.5 to 25 ppm, organic Additive: 0 to 10 g / L.
 銀塩としては、例えば、シアン化銀及びシアン化銀カリウム等が挙げられ、シアン化アルカリ塩としては、例えば、シアン化カリウム及びシアン化ナトリウム等が挙げられる。また、導電塩としては、例えば、炭酸カリウム、塩化カリウム、ピロリン酸カリウム及びチオ硫酸カリウム等が挙げられる。 Examples of the silver salt include silver cyanide and silver cyanide potassium, and examples of the alkali cyanide salt include potassium cyanide and sodium cyanide. Examples of the conductive salt include potassium carbonate, potassium chloride, potassium pyrophosphate, and potassium thiosulfate.
 金属添加剤としては、例えば、銅、錫、ニッケル、コバルト、アンチモン、セレン、テルル、ビスマス等を挙げることができるが、セレンを用いることが好ましい。また、有機添加剤としては、例えば、ベンゼンスルホン酸、メルカプタン類及びエチレンジアミン四酢酸等を挙げることができる。 Examples of the metal additive include copper, tin, nickel, cobalt, antimony, selenium, tellurium, bismuth and the like, but it is preferable to use selenium. Examples of the organic additive include benzenesulfonic acid, mercaptans, and ethylenediaminetetraacetic acid.
 陽極材料には、可溶性陽極、ステンレス鋼、チタン白金板、及び酸化イリジウム等の不溶性陽極を用いることが好ましい。また、浴温は15~70℃とし、pHを7.0~10.0とすることが好ましい。 It is preferable to use an insoluble anode such as a soluble anode, stainless steel, a titanium platinum plate, and iridium oxide as the anode material. The bath temperature is preferably 15 to 70 ° C. and the pH is preferably 7.0 to 10.0.
 本発明の銀めっき材の製造方法の特徴の一つは、パルス電源装置を使用することである。パルス電源を用いてめっき処理を施すことで、金属元素が添加されためっき浴を用いる場合であっても、緻密かつ均一な銀めっき層を形成させることができる。電流密度は0.5~20.0A/dm2、処理時間は0.5~10000秒を例示することができる。 One of the features of the method for producing a silver plating material of the present invention is to use a pulse power supply device. By performing plating using a pulse power source, a dense and uniform silver plating layer can be formed even when a plating bath to which a metal element is added is used. Examples of the current density are 0.5 to 20.0 A / dm 2 , and the treatment time is 0.5 to 10,000 seconds.
≪銀めっき材≫
 図2は、本発明の銀めっき材の一実施形態における概略断面図である。銀めっき材1は、金属基材2の表面にニッケルめっき層4を介して銀めっき層6が形成されている。また、金属基材2とニッケルめっき層4の間、及びニッケルめっき層4と銀めっき層6の間には、ストライクめっき層8が形成されていることが好ましい。
≪Silver plating material≫
FIG. 2 is a schematic cross-sectional view of one embodiment of the silver plating material of the present invention. In the silver plating material 1, a silver plating layer 6 is formed on the surface of the metal base 2 via a nickel plating layer 4. Further, a strike plating layer 8 is preferably formed between the metal substrate 2 and the nickel plating layer 4 and between the nickel plating layer 4 and the silver plating layer 6.
 銀めっき層6は、銅、錫、ニッケル、コバルト、セレン、アンチモン、テルル及びビスマスから選択される1または2以上の金属元素を含有し、当該金属元素の含有量は0.001~0.025%となっている。銀めっき層6に0.001%以上の銅、錫、ニッケル、コバルト、セレン、アンチモン、テルル及びビスマスから選択される1または2以上の金属元素が含有していることで、銀めっき層6に優れた耐摩耗性を付与することができると共に、高温暴露後も当該耐摩耗性を維持することができる。また、添加金属元素を0.025%以下とすることで、銀めっき層6の優れた導電性及び接触抵抗を維持することができる。 The silver plating layer 6 contains one or more metal elements selected from copper, tin, nickel, cobalt, selenium, antimony, tellurium and bismuth, and the content of the metal elements is 0.001 to 0.025. %. Since the silver plating layer 6 contains one or more metal elements selected from 0.001% or more of copper, tin, nickel, cobalt, selenium, antimony, tellurium and bismuth, the silver plating layer 6 Excellent wear resistance can be imparted, and the wear resistance can be maintained even after high temperature exposure. Moreover, the electroconductivity and contact resistance which were excellent in the silver plating layer 6 can be maintained because an additive metal element shall be 0.025% or less.
 また、本発明の銀めっき材1においては、銀めっき層6に金属元素が添加されていることに加え、緻密かつ均一な銀めっき層6が形成されている。銀めっき層6の厚さは、0.1μm~50μmであること、が好ましい。銀めっき層6の厚さを0.1μm以上とすることで、銀めっき材1を各種接点、端子、コネクタ及びスイッチ等に使用する際に、銀めっき層6の特性を活用することができ、50μm以下とすることで、銀めっき層6における欠陥形成等を抑制することができると共に、効率的な製造が可能となる。 Moreover, in the silver plating material 1 of the present invention, in addition to the addition of a metal element to the silver plating layer 6, a dense and uniform silver plating layer 6 is formed. The thickness of the silver plating layer 6 is preferably 0.1 μm to 50 μm. By setting the thickness of the silver plating layer 6 to 0.1 μm or more, the characteristics of the silver plating layer 6 can be utilized when the silver plating material 1 is used for various contacts, terminals, connectors, switches, and the like. By setting the thickness to 50 μm or less, defect formation and the like in the silver plating layer 6 can be suppressed, and efficient production becomes possible.
 金属基材2の金属は、電導性を有している限り特に限定されず、例えば、アルミニウム及びアルミニウム合金、鉄及び鉄合金、チタン及びチタン合金、ステンレス、銅及び銅合金等を挙げることができるが、なかでも、電導性・熱伝導性・展延性に優れているという理由から、銅及び銅合金を用いることが好ましい。 The metal of the metal substrate 2 is not particularly limited as long as it has electrical conductivity, and examples thereof include aluminum and aluminum alloys, iron and iron alloys, titanium and titanium alloys, stainless steel, copper, and copper alloys. However, among these, copper and copper alloys are preferably used because they are excellent in electrical conductivity, thermal conductivity, and spreadability.
 ニッケルめっき層4は、連続する膜形状であることが好ましく、ニッケルめっき層4の厚さは0.05μm~10μmであることが好ましい。また、より好ましいニッケルめっき層4の厚さは0.5μm~2μmである。なお、ニッケルめっき層4は、本発明の効果を損なわない範囲で、粒状や島状の不連続な膜形状であってもよい。後者の場合、粒状及び島状部分が部分的に連続していてもよい。 The nickel plating layer 4 preferably has a continuous film shape, and the thickness of the nickel plating layer 4 is preferably 0.05 μm to 10 μm. A more preferable thickness of the nickel plating layer 4 is 0.5 μm to 2 μm. In addition, the nickel plating layer 4 may be a granular or island-like discontinuous film shape as long as the effects of the present invention are not impaired. In the latter case, the granular and island portions may be partially continuous.
 また、ストライクめっき層8は連続する膜形状であっても、本発明の効果を損なわない範囲で、粒状や島状の不連続な膜形状であってもよい。後者の場合、粒状及び島状部分が部分的に連続していてもよい。なお、ストライクめっき条件によっては、ストライクめっき層8の識別が困難な場合も存在する。ストライクめっき層8の厚さは0.01μm~0.5μmであることが好ましい。ここで、ストライクめっき層8は、銀ストライクめっき、銅ストライクめっき、金ストライクめっき、ニッケルストライクめっきの群から選ばれる1または2以上のストライクめっき層とすることができる。 The strike plating layer 8 may be a continuous film shape or may be a granular or island-like discontinuous film shape as long as the effects of the present invention are not impaired. In the latter case, the granular and island portions may be partially continuous. Depending on the strike plating conditions, it may be difficult to identify the strike plating layer 8. The thickness of the strike plating layer 8 is preferably 0.01 μm to 0.5 μm. Here, the strike plating layer 8 may be one or more strike plating layers selected from the group of silver strike plating, copper strike plating, gold strike plating, and nickel strike plating.
 ストライクめっき層8の表面には、銀めっき層6が形成されている。銀めっき層6の厚さは0.1μm~50μmであることが好ましく、ビッカース硬度は80HV~250HVであることが好ましい。0.1μm未満では銀めっき層6の耐摩耗性を利用することができず、50μmより厚い場合は銀の使用量が増加するため経済的でない。 The silver plating layer 6 is formed on the surface of the strike plating layer 8. The thickness of the silver plating layer 6 is preferably 0.1 μm to 50 μm, and the Vickers hardness is preferably 80 HV to 250 HV. If the thickness is less than 0.1 μm, the wear resistance of the silver plating layer 6 cannot be used.
 なお、ニッケルめっき層4及びストライクめっき層8は、本発明の銀めっき材1の必須の構成要件ではないが、ニッケルめっき層4によって、金属基材2と銀めっき層6との間における原子の拡散及び反応を防止することができ、銀めっき層6の特性低下を抑制することができる。また、ストライクめっき層8によって、金属基材2とニッケルめっき層4との密着性及びニッケルめっき層4と銀めっき層6との密着性をより確実に向上させることができる。 The nickel plating layer 4 and the strike plating layer 8 are not essential constituent requirements of the silver plating material 1 of the present invention, but the nickel plating layer 4 causes atomic atoms between the metal substrate 2 and the silver plating layer 6 to be present. Diffusion and reaction can be prevented, and the characteristic deterioration of the silver plating layer 6 can be suppressed. Further, the strike plating layer 8 can more reliably improve the adhesion between the metal substrate 2 and the nickel plating layer 4 and the adhesion between the nickel plating layer 4 and the silver plating layer 6.
 銀めっき材1を構成する金属基材2、銀めっき層6、ニッケルめっき層4及びストライクめっき層8の接触界面は、冶金的に接合されている。冶金的な接合とは、アンカー効果等の機械的接合や接着剤等の異種接合層を介して接合されているのではなく、お互いの金属同士が直接接合されていることを意味する。冶金的な接合とは結晶学的整合(エピタキシー)による接合を当然に含む概念であり、本発明において、各めっき層は互いに結晶学的整合(エピタキシー)による接合が達成されていることが好ましい。 The contact interface of the metal substrate 2, the silver plating layer 6, the nickel plating layer 4 and the strike plating layer 8 constituting the silver plating material 1 is metallurgically joined. Metallurgical bonding means that the metals are directly bonded to each other, not mechanical bonding such as an anchor effect or different bonding layers such as an adhesive. Metallurgical bonding is a concept that naturally includes bonding by crystallographic matching (epitaxy), and in the present invention, it is preferable that the plating layers achieve bonding by crystallographic matching (epitaxy).
 なお、本発明の銀めっき材1は、本発明の銀めっき材の製造方法によって好適に製造することができる。 In addition, the silver plating material 1 of this invention can be suitably manufactured with the manufacturing method of the silver plating material of this invention.
 以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。 As mentioned above, although typical embodiment of this invention was described, this invention is not limited only to these, Various design changes are possible and these design changes are all contained in the technical scope of this invention. It is.
≪実施例1≫
 銅合金からなる基材(被めっき材)に、以下の工程で30μmの銀めっき層を形成させた。まず、基材表面の前処理として、被めっき材とSUS板をアルカリ脱脂液に入れ、被めっき材を陰極とし、SUS板を陽極として、電圧3Vで30秒間電解脱脂を行った。水洗後、5%硫酸中で15秒間酸洗浄を行った。
Example 1
A 30 μm silver plating layer was formed on a base material (material to be plated) made of a copper alloy by the following steps. First, as a pretreatment of the substrate surface, the material to be plated and the SUS plate were placed in an alkaline degreasing solution, and the material to be plated was used as a cathode, and the SUS plate was used as an anode, and electrolytic degreasing was performed at a voltage of 3 V for 30 seconds. After washing with water, acid washing was performed in 5% sulfuric acid for 15 seconds.
 次に、90g/Lのシアン化銀カリウムと3g/Lのシアン化カリウムと、セレンとして2.5ppm相当のセレノシアン酸カリウムからなる銀めっき浴を用い、陽極材料をチタン白金等の不溶性陽極、陰極材料を前処理後の被めっき材として、浴温35℃のめっき液を用い、電流条件については、パルス電源を用い、電流密度Ia=30A/dm2,Ib=10A/dm2,通電時間Ta=10ms,Tb=90msにて、30μmの銀めっき層を形成させた。 Next, a silver plating bath composed of 90 g / L of potassium potassium cyanide, 3 g / L of potassium cyanide and 2.5 ppm equivalent of potassium selenocyanate as selenium was used, the anode material was an insoluble anode such as titanium platinum, and the cathode material was A plating solution having a bath temperature of 35 ° C. is used as a material to be plated after the pretreatment, the current conditions are a pulse power source, current density Ia = 30 A / dm 2 , Ib = 10 A / dm 2 , energization time Ta = 10 ms. , Tb = 90 ms, a 30 μm silver plating layer was formed.
 ただし、Ia,Ibは電流密度(A/dm2)、Ta,Tbは通電時間(ms)を示し、以下の式(1),(2)を満たす。
|Ia|>|Ib|  (1)
Ta<Tb      (2)
ここで、(1)式中の||は絶対値を示す。
However, Ia and Ib indicate current density (A / dm 2 ), Ta and Tb indicate energization time (ms), and satisfy the following formulas (1) and (2).
| Ia |> | Ib | (1)
Ta <Tb (2)
Here, || in the equation (1) indicates an absolute value.
[評価]
(1)銀めっき層の硬度測定
 上記のようにして製造した銀めっき材の銀めっき層について、マイクロビッカース微小硬度計を用いて硬度を測定し、得られた値を表1に示した。
[Evaluation]
(1) Hardness measurement of a silver plating layer About the silver plating layer of the silver plating material manufactured as mentioned above, hardness was measured using the micro Vickers micro hardness meter, and the obtained value was shown in Table 1.
(2)100℃で1時間煮沸後の硬度測定
 100℃に沸騰した純水中に、上記のようにして製造した銀めっき材を1時間保持し、煮沸試験を行った後、マイクロビッカース微小硬度計を用いて、銀めっき層の硬度を測定した。得られた値を表1に示した。なお、100℃で1時間の煮沸試験後の結晶状態は、室温放置におけるめっき層の再結晶化の飽和状態に相当するとされている。
(2) Hardness measurement after boiling at 100 ° C. for 1 hour The silver plating material produced as described above was held in pure water boiled at 100 ° C. for 1 hour, and after boiling test, micro Vickers micro hardness The hardness of the silver plating layer was measured using a meter. The obtained values are shown in Table 1. The crystal state after the boiling test at 100 ° C. for 1 hour corresponds to the saturated state of recrystallization of the plating layer at room temperature.
(3)銀めっき層のセレン含有率測定
 上記のようにして製造した銀めっき材について、銀めっき層のみを引き剥がして、硝酸に溶かし、原子吸光光度計にてセレン含有率を測定した。得られた値を表1に示した。
(3) Selenium content measurement of silver plating layer About the silver plating material manufactured as mentioned above, only the silver plating layer was peeled off, it was made to melt | dissolve in nitric acid, and the selenium content rate was measured with the atomic absorption photometer. The obtained values are shown in Table 1.
(4)電気接触抵抗測定
 上記のようにして製造した銀めっき材について、接触抵抗を測定した。測定条件は、使用プローブ:SK材+ニッケル下地金めっき、測定荷重:0.5N、測定回数:10回である。得られた値を表1に示した。
(4) Electrical contact resistance measurement Contact resistance was measured about the silver plating material manufactured as mentioned above. The measurement conditions are: probe used: SK material + nickel base gold plating, measurement load: 0.5 N, measurement count: 10 times. The obtained values are shown in Table 1.
≪実施例2≫
 セレンとして5ppm相当のセレノシアン酸カリウムからなる銀めっき浴を用いたこと以外は、実施例1と同様にして銀めっき材を製造し、各種評価を行った。得られた結果を表1に示した。
<< Example 2 >>
A silver plating material was produced in the same manner as in Example 1 except that a silver plating bath composed of potassium selenocyanate equivalent to 5 ppm was used as selenium, and various evaluations were performed. The obtained results are shown in Table 1.
≪実施例3≫
 セレンとして10ppm相当のセレノシアン酸カリウムからなる銀めっき浴を用いたこと以外は、実施例1と同様にして銀めっき材を製造し、各種評価を行った。得られた結果を表1に示した。
Example 3
A silver plating material was produced in the same manner as in Example 1 except that a silver plating bath composed of potassium selenocyanate equivalent to 10 ppm was used as selenium, and various evaluations were performed. The obtained results are shown in Table 1.
≪実施例4≫
 セレンとして15ppm相当のセレノシアン酸カリウムからなる銀めっき浴を用いたこと以外は、実施例1と同様にして銀めっき材を製造し、各種評価を行った。得られた結果を表1に示した。
Example 4
A silver plating material was produced in the same manner as in Example 1 except that a silver plating bath composed of potassium selenocyanate equivalent to 15 ppm was used as selenium, and various evaluations were performed. The obtained results are shown in Table 1.
≪実施例5≫
 セレンとして25ppm相当のセレノシアン酸カリウムからなる銀めっき浴を用いたこと以外は、実施例1と同様にして銀めっき材を製造し、各種評価を行った。得られた結果を表1に示した。
Example 5
A silver plating material was produced in the same manner as in Example 1 except that a silver plating bath composed of potassium selenocyanate equivalent to 25 ppm was used as selenium, and various evaluations were performed. The obtained results are shown in Table 1.
≪比較例1≫
 電流条件について、直流電源I=12A/dm2を用いた(パルス不使用)以外は、実施例1と同様にして銀めっき材を製造し、各種評価を行った。得られた結果を表1に示した。
≪Comparative example 1≫
Regarding the current conditions, a silver plating material was produced in the same manner as in Example 1 except that the DC power source I = 12 A / dm 2 was used (no pulse was used), and various evaluations were performed. The obtained results are shown in Table 1.
≪比較例2≫
 セレンを含まないめっき液を用いたこと以外は、実施例1と同様にして銀めっき材を製造し、各種評価を行った。得られた結果を表1に示した。
≪Comparative example 2≫
A silver plating material was produced in the same manner as in Example 1 except that a plating solution containing no selenium was used, and various evaluations were performed. The obtained results are shown in Table 1.
≪比較例3≫
 セレンとして1ppm相当のセレノシアン酸カリウムからなる銀めっき浴を用いたこと以外は、実施例1と同様にして銀めっき材を製造し、各種評価を行った。得られた結果を表1に示した。
«Comparative Example 3»
A silver plating material was produced in the same manner as in Example 1 except that a silver plating bath made of potassium selenocyanate equivalent to 1 ppm was used as selenium, and various evaluations were performed. The obtained results are shown in Table 1.
≪比較例4≫
 セレンとして30ppm相当のセレノシアン酸カリウムからなる銀めっき浴を用いたこと以外は、実施例1と同様にして銀めっき材を製造し、各種評価を行った。得られた結果を表1に示した。
<< Comparative Example 4 >>
A silver plating material was produced in the same manner as in Example 1 except that a silver plating bath composed of potassium selenocyanate equivalent to 30 ppm was used as selenium, and various evaluations were performed. The obtained results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、本発明の銀めっき材における銀めっき層は、0.001~0.025%のセレンを含有していることが確認される。また、当該銀めっき層は100HV以上の高硬度を有しており、100℃で1時間の煮沸後も当該硬度が維持されていることが分かる(実施例1~実施例5)。 From the results shown in Table 1, it is confirmed that the silver plating layer in the silver plating material of the present invention contains 0.001 to 0.025% selenium. Further, it can be seen that the silver plating layer has a high hardness of 100 HV or more, and the hardness is maintained even after boiling at 100 ° C. for 1 hour (Examples 1 to 5).
 パルス電源を用いない場合、セレンを含有する銀めっき浴を用いても銀めっき層にセレンが取り込まれず、100℃で1時間の煮沸によって大幅に硬度が低下している(比較例1)。また、パルス電源を用いた場合であっても、銀めっき層にセレンが含まれていない場合は、100℃で1時間の煮沸によって大幅に硬度が低下している(比較例2~3)。 When a pulse power source is not used, selenium is not taken into the silver plating layer even when a silver plating bath containing selenium is used, and the hardness is greatly reduced by boiling at 100 ° C. for 1 hour (Comparative Example 1). Even when a pulse power supply is used, if the selenium is not contained in the silver plating layer, the hardness is significantly reduced by boiling at 100 ° C. for 1 hour (Comparative Examples 2 to 3).
 めっき液中のセレンが過剰に添加されている場合、100℃で1時間の煮沸による大幅な硬度低下は抑制されているが、電気接触抵抗が大幅に増加し、導電性が低下している(比較例4)。 When selenium in the plating solution is excessively added, a significant decrease in hardness due to boiling at 100 ° C. for 1 hour is suppressed, but the electrical contact resistance is greatly increased and the conductivity is decreased ( Comparative Example 4).
 この結果より、銀めっき浴にセレン等の特定の金属元素を含有させると共に、パルス電源を用いてめっき処理を施すことで、優れた導電性と耐摩耗性を兼ね備え、室温での長時間放置や高温暴露後も当該特性を維持することができる銀めっき材を製造できることが分かる。 From this result, while containing a specific metal element such as selenium in the silver plating bath and performing plating using a pulse power source, it has excellent conductivity and wear resistance, and can be left at room temperature for a long time. It turns out that the silver plating material which can maintain the said characteristic after high temperature exposure can be manufactured.
1・・・銀めっき材、
2・・・金属基材、
4・・・ニッケルめっき層、
6・・・銀めっき層、
8・・・ストライクめっき層。
1 ... Silver plating material,
2 ... Metal substrate,
4 ... Nickel plating layer,
6 ... Silver plating layer,
8: Strike plating layer.

Claims (8)

  1.  金属基材の表面に銀めっき層を形成させる銀めっき材の製造方法であって、
     添加金属元素を2.5~25ppm含有するシアン系銀めっき浴を用い、
     パルス電源を用いてめっき処理を施すこと、
     を特徴とする銀めっき材の製造法。
    A method for producing a silver plating material for forming a silver plating layer on the surface of a metal substrate,
    Using a cyan-based silver plating bath containing 2.5 to 25 ppm of additive metal element,
    Plating using a pulse power supply,
    A method for producing a silver plating material characterized by
  2.  前記添加金属元素が銅、錫、ニッケル、コバルト、セレン、アンチモン、テルル及びビスマスから選択される1または2以上の金属元素であること、
     を特徴とする請求項1に記載の銀めっき材の製造方法。
    The additive metal element is one or more metal elements selected from copper, tin, nickel, cobalt, selenium, antimony, tellurium and bismuth;
    The method for producing a silver-plated material according to claim 1.
  3.  前記添加金属元素がセレンであること、
     を特徴とする請求項1又は2に記載の銀めっき材の製造方法。
    The additive metal element is selenium;
    The manufacturing method of the silver plating material of Claim 1 or 2 characterized by these.
  4.  前記めっき処理の予備めっき処理として、
     前記金属基材の表面の任意の領域にニッケルめっき処理を施して、ニッケルめっき層を形成させること、
     を特徴とする請求項1~3のいずれかに記載の銀めっき材の製造方法。
    As a preliminary plating treatment of the plating treatment,
    Applying a nickel plating process to an arbitrary region of the surface of the metal substrate to form a nickel plating layer;
    The method for producing a silver plating material according to any one of claims 1 to 3, wherein:
  5.  前記めっき処理及び/又は前記ニッケルめっき処理の前処理として、
     前記金属基材及び/又は前記ニッケルめっき層の表面の任意の領域に、銀ストライクめっき、銅ストライクめっき、金ストライクめっき、ニッケルストライクめっきの群から選ばれる1または2以上のストライクめっきを施すこと、
     を特徴とする請求項1~4のいずれかに記載の銀めっき材の製造方法。
    As a pretreatment of the plating treatment and / or the nickel plating treatment,
    Applying any one or more strike plating selected from the group of silver strike plating, copper strike plating, gold strike plating, nickel strike plating to any region of the surface of the metal substrate and / or the nickel plating layer;
    The method for producing a silver-plated material according to any one of claims 1 to 4, wherein:
  6.  金属基材の少なくとも一部に銀めっき層が形成され、
     前記銀めっき層は、銅、錫、ニッケル、コバルト、セレン、アンチモン、テルル及びビスマスから選択される1または2以上の金属元素を含有し、
     前記金属元素の含有量が0.001~0.025%であること、
     を特徴とする銀めっき材。
    A silver plating layer is formed on at least a part of the metal substrate,
    The silver plating layer contains one or more metal elements selected from copper, tin, nickel, cobalt, selenium, antimony, tellurium and bismuth,
    The metal element content is 0.001 to 0.025%;
    Silver plating material characterized by
  7.  前記基材と前記銀めっき層の間にニッケルめっき層が形成されていること、
     を特徴とする請求項6に記載の銀めっき材。
    A nickel plating layer is formed between the substrate and the silver plating layer;
    The silver-plated material according to claim 6.
  8.  前記金属基材と前記ニッケルめっき層との界面、及び/又は前記ニッケルめっき層と前記銀めっき層との界面に、銀ストライクめっき、銅ストライクめっき、金ストライクめっき、ニッケルストライクめっきの群から選ばれる1または2以上のストライクめっきが形成されていること、
     を特徴とする請求項6又は請求項7に記載の銀めっき材。

     
    The interface between the metal substrate and the nickel plating layer and / or the interface between the nickel plating layer and the silver plating layer is selected from the group of silver strike plating, copper strike plating, gold strike plating, and nickel strike plating. One or more strike platings are formed,
    The silver-plated material according to claim 6 or 7, wherein:

PCT/JP2016/001038 2015-03-27 2016-02-26 Silver plating material and method for producing same WO2016157713A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017509209A JP6484844B2 (en) 2015-03-27 2016-02-26 Silver plating material and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015067533 2015-03-27
JP2015-067533 2015-03-27

Publications (1)

Publication Number Publication Date
WO2016157713A1 true WO2016157713A1 (en) 2016-10-06

Family

ID=57004887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001038 WO2016157713A1 (en) 2015-03-27 2016-02-26 Silver plating material and method for producing same

Country Status (2)

Country Link
JP (1) JP6484844B2 (en)
WO (1) WO2016157713A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181399A1 (en) * 2017-03-31 2018-10-04 古河電気工業株式会社 Plated wire rod material, method for producing same, and cable, electric wire, coil and spring member, each of which is formed using same
JP2018168423A (en) * 2017-03-30 2018-11-01 株式会社Kanzacc Silver-plated copper substrate and method for manufacturing the same
JPWO2018181190A1 (en) * 2017-03-31 2020-02-06 メタローテクノロジーズジャパン株式会社 Electrolytic silver plating solution
WO2020153396A1 (en) * 2019-01-24 2020-07-30 三菱マテリアル株式会社 Connector terminal material and connector terminal
JP6822618B1 (en) * 2019-08-09 2021-01-27 三菱マテリアル株式会社 Terminal material for connectors
WO2021029254A1 (en) * 2019-08-09 2021-02-18 三菱マテリアル株式会社 Terminal material for connectors
JP2021130856A (en) * 2020-02-20 2021-09-09 三菱マテリアル株式会社 Connector terminal material
WO2022018896A1 (en) * 2020-07-22 2022-01-27 三菱マテリアル株式会社 Terminal material for connectors
JP2022022071A (en) * 2020-07-22 2022-02-03 三菱マテリアル株式会社 Terminal material for connectors
CN114758817A (en) * 2022-03-14 2022-07-15 鼎辉光电通信(江苏)有限公司 High-temperature-resistant low-noise semisteel cable

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186494A (en) * 1985-02-13 1986-08-20 Matsushita Electric Ind Co Ltd Method for silver plating
JPH06158385A (en) * 1992-11-27 1994-06-07 Furukawa Saakitsuto Foil Kk Conductive roll
JP2013249514A (en) * 2012-05-31 2013-12-12 Nichia Corp Electrolytic silver plating solution for optical semiconductor
JP2014080672A (en) * 2012-09-27 2014-05-08 Dowa Metaltech Kk Silver plated material and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186494A (en) * 1985-02-13 1986-08-20 Matsushita Electric Ind Co Ltd Method for silver plating
JPH06158385A (en) * 1992-11-27 1994-06-07 Furukawa Saakitsuto Foil Kk Conductive roll
JP2013249514A (en) * 2012-05-31 2013-12-12 Nichia Corp Electrolytic silver plating solution for optical semiconductor
JP2014080672A (en) * 2012-09-27 2014-05-08 Dowa Metaltech Kk Silver plated material and method for producing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018168423A (en) * 2017-03-30 2018-11-01 株式会社Kanzacc Silver-plated copper substrate and method for manufacturing the same
JP6452912B1 (en) * 2017-03-31 2019-01-16 古河電気工業株式会社 Plated wire rod and its manufacturing method, and cable, electric wire, coil and spring member formed using the same
JPWO2018181190A1 (en) * 2017-03-31 2020-02-06 メタローテクノロジーズジャパン株式会社 Electrolytic silver plating solution
WO2018181399A1 (en) * 2017-03-31 2018-10-04 古河電気工業株式会社 Plated wire rod material, method for producing same, and cable, electric wire, coil and spring member, each of which is formed using same
WO2020153396A1 (en) * 2019-01-24 2020-07-30 三菱マテリアル株式会社 Connector terminal material and connector terminal
JP6743998B1 (en) * 2019-01-24 2020-08-19 三菱マテリアル株式会社 Connector terminal material and connector terminal
US20220294140A1 (en) 2019-08-09 2022-09-15 Mitsubishi Materials Corporation Terminal material for connectors
JP6822618B1 (en) * 2019-08-09 2021-01-27 三菱マテリアル株式会社 Terminal material for connectors
WO2021029254A1 (en) * 2019-08-09 2021-02-18 三菱マテリアル株式会社 Terminal material for connectors
US11901659B2 (en) 2019-08-09 2024-02-13 Mitsubishi Materials Corporation Terminal material for connectors
JP2021130856A (en) * 2020-02-20 2021-09-09 三菱マテリアル株式会社 Connector terminal material
JP7040544B2 (en) 2020-02-20 2022-03-23 三菱マテリアル株式会社 Terminal material for connectors
JP7119267B2 (en) 2020-07-22 2022-08-17 三菱マテリアル株式会社 Terminal materials for connectors
JP2022022071A (en) * 2020-07-22 2022-02-03 三菱マテリアル株式会社 Terminal material for connectors
WO2022018896A1 (en) * 2020-07-22 2022-01-27 三菱マテリアル株式会社 Terminal material for connectors
CN114758817A (en) * 2022-03-14 2022-07-15 鼎辉光电通信(江苏)有限公司 High-temperature-resistant low-noise semisteel cable

Also Published As

Publication number Publication date
JPWO2016157713A1 (en) 2018-01-18
JP6484844B2 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
JP6484844B2 (en) Silver plating material and method for producing the same
JP6259437B2 (en) Plating laminate
JP6466837B2 (en) Plating material manufacturing method and plating material
JP6665387B2 (en) Silver plated member and method of manufacturing the same
JP2007070730A (en) Metal duplex and method
JP2015187303A (en) Conductive member for connecting component and method for producing the same
JPWO2018221087A1 (en) PCB terminal
JP2006009039A (en) Tin based plating film in which growth of whisker is suppressed and forming method therefor
JP6651852B2 (en) Silver plated member and method of manufacturing the same
JPH10212591A (en) Nickel electroplating bath or nickel alloy electroplating bath and plating method using the bath
JP6182757B2 (en) Plating material manufacturing method and plating material
JP2017197788A (en) Manufacturing method of electronic component contact member and electronic component contact member
JP6086531B2 (en) Silver plating material
JP6268408B2 (en) Plating material manufacturing method and plating material
JP7162341B2 (en) Method for manufacturing plated laminate and plated laminate
JP2022082619A (en) PCB terminal manufacturing method and PCB terminal
JP2017218663A (en) Method of manufacturing plated laminate and plated laminate
JP7270968B2 (en) Method for manufacturing plated laminate and plated laminate
JP7213390B1 (en) Silver-plated film and electrical contact provided with said silver-plated film
US11686007B2 (en) Tin-indium alloy electroplating solution
TW201341598A (en) Silver-electroplating electrolyte and electroplating method thereof
JP5978439B2 (en) Conductive member
WO2020079904A1 (en) Electroconductive material, molded article, and electronic component
JP2013144835A (en) ELECTROLESS Ni-P-Sn PLATING SOLUTION
JP2020063493A (en) Electroconductive material, molded article, and electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509209

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771607

Country of ref document: EP

Kind code of ref document: A1