WO2018221074A1 - 受光デバイスおよび受光デバイスの信号読み出し方法 - Google Patents

受光デバイスおよび受光デバイスの信号読み出し方法 Download PDF

Info

Publication number
WO2018221074A1
WO2018221074A1 PCT/JP2018/016450 JP2018016450W WO2018221074A1 WO 2018221074 A1 WO2018221074 A1 WO 2018221074A1 JP 2018016450 W JP2018016450 W JP 2018016450W WO 2018221074 A1 WO2018221074 A1 WO 2018221074A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitive element
light
light receiving
switch means
amount
Prior art date
Application number
PCT/JP2018/016450
Other languages
English (en)
French (fr)
Inventor
須川 成利
理人 黒田
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to CN201880035324.5A priority Critical patent/CN110679141B/zh
Priority to JP2019522024A priority patent/JP6671715B2/ja
Priority to KR1020197036478A priority patent/KR102276181B1/ko
Priority to US16/615,647 priority patent/US11343458B2/en
Publication of WO2018221074A1 publication Critical patent/WO2018221074A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/766Addressed sensors, e.g. MOS or CMOS sensors comprising control or output lines used for a plurality of functions, e.g. for pixel output, driving, reset or power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J1/46Electric circuits using a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/59Control of the dynamic range by controlling the amount of charge storable in the pixel, e.g. modification of the charge conversion ratio of the floating node capacitance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector
    • G01J2001/446Photodiode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Definitions

  • the present invention relates to a light receiving device and a signal reading method of the light receiving device.
  • Light receiving (sensor) devices typified by image sensors are widely used in various fields such as information equipment, medical care, crime prevention, in-vehicle, energy / environment, agriculture, infrastructure, space, and defense.
  • the light-receiving device includes life science, crime prevention, in-vehicle, energy / environment, medical, infrastructure, space, defense, agriculture, food, resource research, disaster prevention, etc.
  • it has been widely applied as an optical input device or a photodetection device as a component device such as an imaging / measurement / analysis apparatus, and its importance is rapidly increasing.
  • a light receiving device that can measure and measure a minute light amount change with high sensitivity and high speed and a method for reading out the signal.
  • a light receiving device capable of measuring and measuring a further minute change in the amount of light with higher sensitivity and higher speed and a signal reading method thereof are required.
  • the light receiving sensor technology for accurately measuring a minute light signal and a minute light amount change signal is one of the technologies that the market strongly demands, including the high degree of completion.
  • a light receiving sensor described in Patent Document 1 has been attracting attention.
  • the light receiving sensor described in Patent Document 1 is an excellent sensor because of its high sensitivity, high speed processing, wide dynamic range, and wide optical wavelength band.
  • the saturation charge amount is proportional to the capacitance (C FD ) of the floating diffusion (FD) that performs charge-voltage conversion in the light receiving pixel, and the conversion gain is inversely proportional to the capacitance (C FD ). Since there is a trade-off relationship between saturation charge and conversion gain, the advantages of high sensitivity, high-speed processing, wide dynamic range, and wide optical wavelength band are always utilized in the field of absorption spectrometry requiring high analytical accuracy. It was not something.
  • the present invention has been made intensively in view of the above points, and one of its purposes is to provide a light receiving device having both high saturation performance and high sensitivity performance. Another object of the present invention is to provide a signal readout method for a light receiving device that enables high accuracy and high sensitivity analysis while maintaining superiority of high sensitivity, high speed processing, wide dynamic range, and wide optical wavelength band. It is.
  • Still another object of the present invention is to provide a signal reading method for a light receiving device that can greatly contribute to the field of absorption spectrometry requiring high analysis accuracy.
  • One aspect of the present invention is: A light receiving element, a first capacitive element (1) for accumulating photocharge generated by light reception by the light receiving element, and a part of the amount of photocharge accumulated in the capacitive element (1) is transferred and accumulated.
  • the effective saturation capacity (1) of the light receiving device is 10 to 5000 times the effective saturation capacity (2) of the capacitive element (2).
  • Another aspect of the present invention is a light receiving element, a first capacitive element (1) for accumulating photocharge generated by light reception by the light receiving element, and an amount of photocharge accumulated in the capacitive element (1).
  • Second capacitive element (2) in which a part is transferred and stored, and switch means (S) for turning on and off the photocharge transfer operation from the capacitive element (1) to the capacitive element (2)
  • a light receiving pixel including a reset switch means (R), a pixel selection switch means (X), and a source follower switch means (SF) for resetting the capacitive element (1) and the capacitive element (2).
  • a signal reading method of a light receiving device wherein the effective saturation capacity (1) of the capacitive element (1) is 10 to 5000 times the effective saturated capacity (2) of the capacitive element (2), Reset the device if necessary Later, the light receiving element is irradiated with light having a light amount that can generate a photocharge amount necessary and sufficient to satisfy the effective saturation capacity of the capacitor element (1), and the capacitance is generated by the photocharge generated in the light receiving element.
  • the capacity of the element (1) is filled up to the effective saturation capacity, then the switch means (X) is turned on to select the light receiving pixel, and then the capacity element (1) of the switch means (S) A charge amount exceeding a potential barrier for the capacitive element (1) during transfer of photocharge to the element (2) is transferred from the capacitive element (1) to the capacitive element (2) and accumulated, and then the capacitive element A signal reading method for a light receiving device, characterized in that a voltage signal corresponding to the amount of charge accumulated in the element (2) is output from the light receiving pixel.
  • the present invention it is possible to perform high-accuracy and high-sensitivity analysis while maintaining the advantages of high-saturation performance and high-sensitivity compatible light-receiving devices and high sensitivity, high-speed processing, wide dynamic range, and wide optical wavelength band compatibility. For example, it is possible to greatly contribute to the field of absorption analysis requiring high analysis accuracy.
  • FIG. 1 is a circuit configuration explanatory diagram for explaining a pixel circuit unit 100 of a light receiving pixel disposed on a light receiving surface of a light receiving element according to the present invention.
  • FIG. 2A is a schematic explanatory diagram for explaining a signal reading principle of a light receiving element including the pixel circuit unit 100 shown in FIG.
  • FIG. 2B is a schematic explanatory diagram for explaining the signal reading principle following FIG. 2A.
  • FIG. 2C is a schematic explanatory diagram for explaining the signal reading principle following FIG. 2B.
  • FIG. 2D is a schematic explanatory diagram for explaining the signal reading principle following FIG. 2C.
  • FIG. 2E is a schematic explanatory diagram for explaining the signal reading principle following FIG. 2D.
  • FIG. 2A is a schematic explanatory diagram for explaining a signal reading principle of a light receiving element including the pixel circuit unit 100 shown in FIG.
  • FIG. 2B is a schematic explanatory diagram for explaining the signal reading principle following FIG. 2A.
  • FIG. 3A is a drawing for explaining one of the preferred embodiments, and is a timing chart for explaining the configuration.
  • FIG. 3B is a diagram for explaining one of the preferred embodiments, and is a timing chart for explaining the operation.
  • FIG. 4A is a timing chart for explaining the configuration of another example of the preferred embodiment.
  • FIG. 4B is a timing chart for explaining an operation for explaining another example of the preferred embodiment.
  • FIG. 5 shows a preferred example of the main part of the overall configuration of the image sensor according to the present invention.
  • FIG. 6 is a block diagram for explaining a configuration of an absorbance analysis system 600 including the image sensor 500.
  • FIG. 7 is a flowchart of an example of an analysis procedure when performing concentration body analysis of a substance to be detected using the absorbance analysis system 600.
  • FIG. 8 is a schematic schematic explanatory diagram in the case of measuring the blood glucose level in the blood of the human body using the scattered light imaging type absorption analysis system according to the present invention.
  • the pixel circuit unit 100 shown in FIG. 1 is configured by a so-called pixel source follower circuit. That is, it is composed of an electronic element group of one light receiving element PD such as a photodiode, four electronic switch means (S, R, SF, X) such as transistors, and two capacitive elements (C1, C2).
  • the electronic circuit is formed. Photoelectric charges generated in the light receiving element (PD) 101 by receiving light are temporarily stored in the capacitor element (C1) 102. Part or all of the photoelectric charge accumulated in the capacitor element (C1) 102 is transferred to the capacitor element (C2) 104 when the charge transfer switch means (S) 103 is turned on stepwise or asymptotically. Is done.
  • the capacitor (C2) 104 is used for charge-voltage conversion.
  • “VR” means a reset voltage
  • “VDD” means a power supply voltage.
  • FIG. 2A is a potential diagram schematically illustrating a state in which photoelectric charges generated in the light receiving element (PD) 101 due to light reception are accumulated in the capacitor element (C1) 102
  • FIG. 2B is a potential diagram illustrated in FIG. FIG.
  • FIG. 2C is a potential diagram for schematically explaining a state in which a part of the amount of photocharge is transferred to the capacitor (C2) 104 from a state where a sufficient amount of photocharge is accumulated as shown in FIG.
  • FIG. 6 is a potential diagram for schematically illustrating a state in which a part of the amount of photocharge is transferred to the capacitor (C2) 104.
  • the saturation capacity for charge accumulation of the capacitor element (C1) 102 is set to a sufficient capacity so as not to overflow even when a large amount of light is received.
  • the light receiving sensitivity and SN ratio of the capacitor and the light receiving element are appropriately selected and adopted.
  • the saturation capacity of charge storage of the capacitive element (C2) 104 is set to the minimum saturation capacity necessary according to the design concept capable of performing an absorption analysis with the target analysis performance. Is desirable. That is, in order to increase the conversion gain when converting the charge amount to voltage, it is desirable to reduce the charge storage saturation capacity of the capacitor (C2) 104 as much as possible.
  • the amount of light emitted from the light source used to detect the substance to be detected is the amount of photocharge generated when the light receiving element receives the amount of irradiated light, and the saturation capacity of the capacitor (C1) 102. Or the amount of light accumulated until it reaches a capacity that can be substantially approximated as the saturation capacity (hereinafter also referred to as “substantial saturation capacity”) within a range that meets the object of the present invention. is there.
  • the term “saturation capacity” is used to include the meaning of “substantial saturation capacity” in addition to the original technical meaning unless otherwise specified.
  • the term “saturated irradiation light amount” will be used hereinafter as the irradiation light amount necessary to generate a photocharge amount necessary and sufficient to satisfy the saturation capacity or the substantial saturation capacity.
  • the amount of light emitted from the light source is less than the saturation capacity in the amount of photocharge generated in blank irradiation (irradiation without a target substance) depending on the degree of detection accuracy that achieves the intended purpose.
  • the irradiation light amount necessary and sufficient to generate an amount of photocharge satisfying the capacity of the range may be used (hereinafter also referred to as “unsaturated irradiation light amount”).
  • unsaturated irradiation light amount is a light source irradiation light amount that is smaller than the saturation irradiation light amount. You can also.
  • the amount of unsaturated irradiation light in this case is preferably 15% reduction, more preferably 10% reduction, and even more preferably 5% reduction of the saturation capacity. desirable. However, from the viewpoint of downsizing the light receiving element, it is preferable to select an irradiation light amount as much as the saturated irradiation light amount as much as possible.
  • the capacity corresponding to the amount of photocharge generated by the unsaturated irradiation light amount accumulated in the capacitive element is hereinafter referred to as “unsaturated capacity”.
  • the technical meaning of “saturated irradiation light amount” in addition to the technical meaning of “saturated irradiation light amount”, the technical meaning of the substantially saturated irradiation light amount and the technical meaning of the unsaturated irradiation light amount are included. Is used. In the present invention, in addition to the technical meaning of “saturation capacity”, the technical meaning of “substantial saturation capacity” and “unsaturated capacity” is included. Use.
  • the charge accumulation state shown in FIG. 2A indicates that a slightly smaller amount of photocharge is accumulated in the capacitor (C1) 102 than the saturation capacitance.
  • the voltage decremented by this accumulated charge amount is indicated by VA .
  • the voltage at the saturation capacity of the capacitive element (C1) 102 is shown as V SI (corresponding to the saturation potential barrier voltage of the “switch means (S) 103”).
  • the charge accumulation state shown in FIG. 2B is a state in which a charge amount corresponding to a supernatant amount (hereinafter also referred to as “transfer charge amount”) from the charge accumulation state shown in FIG. 2A is transferred to the capacitor element (C2) 104. Show.
  • the charge transfer from the capacitive element (C1) 102 to the capacitive element (C2) 104 is performed by increasing the gate voltage of the switching means (S) 103 to increase the capacitive element (C1) of the switching means (S) 103.
  • the potential barrier voltage is set to a voltage V S lower than the voltage V A.
  • the transfer charge amount is a charge amount corresponding to the potential difference (V A ⁇ V S ).
  • the amount of charge transferred to the capacitor (C2) 104 can be set to a higher conversion gain if it is as small as possible according to the light receiving sensitivity and the SN ratio of the light receiving element.
  • blank irradiation irradiation in the case of no substance to be detected
  • saturation capacity (1) the saturation capacity of charge accumulation of the capacitor (C1) 102.
  • the detection accuracy is increased by increasing the amount of light absorbed by the substance to be detected, even if the amount is extremely small.
  • the saturation capacity (1) is large, it is possible to increase the amount of light absorbed by the substance to be detected by irradiating the substance to be detected with high illuminance light. As a result, highly sensitive absorption analysis is possible.
  • the effective irradiation light amount is set in advance as the light amount corresponding to the saturation charge accumulation amount of the capacitive element (C1) 102, before starting the absorption analysis, a blank sample (a sample that does not include the target substance) It is preferable that the saturated charge accumulation amount of the capacitor element (C1) 102 is confirmed by irradiating the light with the effective irradiation light amount because the substance to be detected can be measured more accurately and reliably.
  • FIG. 2C shows a state immediately after the transition from the state shown in FIG. 2B by increasing the gate voltage of the switch means 103 and reducing the potential barrier voltage for the capacitor (C1) 102 of the switch means 103 from V SI to V S. Is shown.
  • the gate voltage of the switch means 103 is set to be the potential barrier voltage V S with respect to the capacitor element (C1) 102 of the switch means 103, the charge amount Q A stored in the capacitor element (C1) 102 is reduced.
  • the supernatant charge amount (charge amount Q ⁇ ) is transferred to and stored in the capacitive element (C 2) 104.
  • the amount of charge Q ⁇ transferred to the capacitor (C2) 104 is given a voltage V ⁇ from the following equation (1).
  • V ⁇ (V A ⁇ V S ) ⁇ C 1 / C 2 (1)
  • FIG. 2D shows that when detecting a substance to be detected by irradiating the substance to be detected, the photocharge amount generated by the irradiation light amount reduced by the absorbed light amount of the substance to be detected is accumulated in the capacitor element (C2) 102, and then The gate voltage of the switch means 103 is set to the potential barrier voltage (V B ⁇ V S ) corresponding to the potential difference (charge) by setting the potential barrier voltage for the capacitive element (C1) 102 of the switch means 103 from V SI to V S.
  • the state immediately before the quantity Q ⁇ ) is transferred to the capacitive element (C 2 ) 104 is shown (corresponding to FIG. 2B).
  • the amount of charge Q ⁇ transferred to the capacitor (C2) 104 is given a voltage V ⁇ from the following equation (2).
  • V ⁇ (V B ⁇ V S ) ⁇ C 1 / C 2 (2)
  • FIG. 2E corresponds to FIG. 2C. That is, FIG. 2E shows that the gate voltage of the switch means 103 is changed from the state shown in FIG. 2B by changing the potential barrier voltage with respect to the capacitor (C1) 102 of the switch means 103 from V SI to V S. It shows the state immediately after the transition.
  • equation (2) By subtracting equation (2) from equation (1), the detection amount of the substance to be detected can be detected.
  • the detection amount of the substance to be detected can be detected as follows.
  • the blank sample (sample not containing the substance to be detected) is irradiated with light from the light source, and the amount of photocharge is applied to the capacitive element (C 1) 102. accumulate. Thereafter, the gate voltage of the switch means 102 is decreased gradually or stepwise to obtain the gate voltage (V1) immediately before the charge accumulated in the capacitor (C1) 102 starts to be transferred to the capacitor (C2) 104. Next, a voltage (V2) lower than V1 is applied to the gate of the switch means 102, and the amount of supernatant charge (Q1) among the amount of photocharge accumulated in the capacitor (C1) 102 is transferred to the capacitor (C2) 104. To do.
  • the amount of the supernatant charge (Q1) at this time is preferably as small as possible from the viewpoint of increasing the conversion gain in order to increase signal detection accuracy, but as large as possible from the viewpoint of expanding the detection concentration range of the substance to be detected. Since the conversion gain and the detection range of the substance to be detected are in a trade-off relationship, the optimum value of the supernatant charge amount (Q1) is appropriately determined according to the expected detection amount of the substance to be detected. Subsequent detection methods and detection procedures of the substance to be detected are the same as those described above in which the irradiation amount of the light source is set in advance.
  • FIGS. 3A to 5 The meanings of symbols written in English letters and Greek letters, which are described in FIGS. 2A to 5, are as follows.
  • Reset means drive pulse ⁇ X ... Pixel selection pulse ⁇ NS ... C2 reset level Pump ring pulsed .phi.SS ⁇ ⁇ ⁇ ⁇ ⁇ optical signal level sampling pulse .phi.RS ⁇ ⁇ ⁇ ⁇ sense amplifier reset pulse
  • the sensor main part 300 of the image sensor according to the present invention includes one of a plurality of light receiving pixels 100, a pixel column output signal line 107, and a column parallel circuit 301 arranged two-dimensionally. .
  • the same numbering as the numbering shown in FIG. 1 is used for the same numbering as shown in FIG. This also applies to the subsequent figure numbers.
  • a preferred example of the main part of the overall configuration of the image sensor including the sensor main part 300 is shown as 500 in FIG.
  • the image sensor 500 includes a pixel array 501 in which light receiving pixels 100 are arranged in a two-dimensional matrix in n rows and m columns, a row selection circuit 502, a column selection circuit 503, a column parallel circuit 504, an output buffer 505, and a signal output terminal 506. I have.
  • the column parallel circuit 301 includes a current source 302 for driving a source follower circuit, a pixel output line resetting unit 303, two sample-and-hold capacitance elements (C N ) 304N and a capacitance element (C S ) 304S, and two sample-hold circuits.
  • Two write selection switch means 305S and 305N for writing signals (accumulating charges) to each of the capacitive element (C N ) 304N and the capacitive element (C S ) 304S, and two sample and hold capacitive elements
  • Two read selection switch means 305S, 305N, 2 for reading signals from (C N ) 304N and capacitive elements (C S ) 304S (transferring accumulated charges to the downstream output side)
  • the output lines 306 ⁇ / b> S and 306 ⁇ / b> N and the column selection circuit output line 307 are provided.
  • the column parallel circuit 301 may be provided with an amplifier or an AD converter.
  • FIG. 3B is a timing chart of signal readout of the image sensor of FIG. 3A.
  • FIG. 5 shows a preferred example of the main part of the overall configuration of the image sensor according to the present invention.
  • An image sensor 500 shown in FIG. 5 includes a pixel array 501, a row selection circuit 502, a column selection circuit 503, a column parallel circuit array 504, an output buffer 505, and a signal output terminal 506. If the outline of the signal readout timing is described, first, the signal from the pixel 100 is read out to the pixel output line 107 for each row in column parallel, temporarily stored in the sample hold capacitor 305 in the column parallel circuit 301, and then temporarily stored. The held signals are sequentially read out for each column.
  • the reading procedure is as follows.
  • a row selection circuit 502 selects a row to be read.
  • each corresponding means for applying ⁇ VCLR, ⁇ NS, ⁇ SS is turned on to output the pixel
  • the line 107, the sample hold capacitor element (C N ) 304N, and the sample hold capacitor element (C S ) 304S are reset.
  • Capacitance element (C2) 104 Reset level reading: The pixel selection switch means (X) 105 and the writing means 305N are turned on, and the signal ⁇ X and signal ⁇ NS are applied to the corresponding means, and the pixel (SF ) The output of 100 is coupled to the pixel output line 107 and the capacitive element (C N ) 304N. Thereafter, the reset switch means 108 is turned ON to apply a signal pulse ⁇ R to reset the potential of the capacitive element (C2) 104 to VR. After that, the switch means 108 is turned off to make the potential of the capacitor (C2) 104 floating. At this time, thermal noise is taken into the potential of the capacitor (C2) 104.
  • this thermal noise can be removed by the following method.
  • a signal corresponding to the potential of C2 is read out to the pixel output line 107 and the capacitor (C N ) 304N. This is the reset level sampling in the interphase double sampling. Thereafter, the writing means (C N ) 304N is turned OFF to temporarily store the reset level signal of the capacitor (C 2) 104 in the capacitor (C N ) 305N.
  • the writing means 305S is turned ON to apply the signal pulse ⁇ SS, and the signal pulse ⁇ S applied to the switch means 103 is set to the supernatant charge transfer level.
  • the potential barrier (VS) with respect to the capacitive element (C1) 102 of the switch means (S) 103 during the supernatant charge transfer is set.
  • the excess charge amount is transferred to the capacitor (C2) 104.
  • the switch means (S) 103 is turned off to end the supernatant charge transfer.
  • a voltage corresponding to the amount of charge transferred to the capacitor (C2) 104 is read out to the pixel output line 107 and the capacitor (C S ) 304S. Thereafter, the writing unit 305S is turned OFF, and a signal having a level corresponding to the optical signal level (the amount of light received by the light receiving element 101) is temporarily stored in the capacitive element (C S ) 304S. This is the sampling of the optical signal level in the interphase double sampling.
  • the switch means (S) 103 and the switch means (R) 108 are turned on to reset the light receiving element (PD) 101, the capacitive element (C1) 102, and the capacitive element (C2) 104. Thereafter, the switch means (S) 103 and the switch means (R) 108 are turned OFF and the next accumulation operation is started.
  • the switch means (X) 105 is turned off to electrically disconnect the pixel 100 and the pixel output line 107.
  • a signal temporarily stored in the capacitive element (C N ) 304N and the capacitive element (C S ) 304S in the column parallel circuit 301 is sequentially selected and output to the outside of the image sensor main part 300 via the output buffer. read out.
  • the readout signal is AD converted by a circuit outside the image sensor main part 300.
  • the signal reading of one frame of the image sensor is completed by repeating the operations (1-1) to (1-7) for a predetermined number of rows.
  • the capacitive element (C2) 104 is obtained by interphase double sampling. An optical signal based on the accumulated amount of photocharge can be read with high accuracy.
  • FIG. 4A and 4B are diagrams for explaining another example of the preferred embodiment.
  • FIG. 4A is a configuration thereof
  • FIG. 4B is a timing chart for explaining the operation thereof.
  • the sensor main part 400 of the image sensor according to the present invention includes one of a plurality of light receiving pixels 100 arranged two-dimensionally, a pixel column output signal line 107, and a column parallel circuit 401.
  • a suitable example of the main part of the overall configuration of the image sensor including the sensor main part 400 is shown as 500 in FIG.
  • the sensor main part 400 shown in FIG. 4A includes a plurality of pixels 100, a pixel output line 107, and a column parallel circuit 401.
  • the column parallel circuit 401 includes a current source 402 for driving a source follower circuit, a pixel output line reset unit 403, a coupling capacitor element (CC) 404, a sense amplifier 405, and a switch (reset) unit (RS) for resetting the sense amplifier.
  • CC pixel output line reset unit
  • RS switch (reset) unit
  • the column parallel circuit 401 is configured to AD-convert pixel signals in a column parallel with a simple circuit configuration.
  • a slope-type voltage synchronized with the counter signal is applied to the charge transfer switch means 103 to slightly transfer the photocharge from the light receiving element (PD) 101 to the capacitive element (C1) 102.
  • the time when the voltage drop of the pixel column output signal line 107 caused by this exceeds a predetermined value is recorded as a digital value.
  • This is a method in which a signal corresponding to a reference slope signal in a general single-slope A / D converter (Analog-to-Digital Converter) is directly applied to the circuit portion of the light receiving pixel.
  • FIG. 4B is a timing chart of signal readout when the column parallel circuit 401 shown in FIG. 4A is assembled.
  • the signal reading of the image sensor shown in FIG. 4A is performed in the following procedure as shown in the timing chart of FIG. 4B.
  • the row selection circuit 502 selects a row to be read.
  • Reading the reset level of the capacitive element (C2) 104 The switch means (X) 105 for pixel selection is turned on (the pixel selection pulse ⁇ X is applied), and the source follower switch means (SF) 106 Are electrically coupled to the pixel output line 107 and the coupling capacitor element (CC) 404. Thereafter, the reset switch means (R) 108 is turned on (the reset means drive pulse ⁇ R is applied) to reset the potential of the capacitive element (C2) 104 to VR. Thereafter, the switch means (R) 108 is turned OFF to make the potential of the capacitor element (C2) 104 floating. At this time, thermal noise is taken into the potential of the capacitor (C2) 104.
  • this thermal noise can be removed by the following method.
  • a signal corresponding to the potential of the capacitor (C2) 104 is read out to the pixel output line 107 by the operation of the pixel source follower circuit (circuit unit 100). Thereafter, ⁇ RS that was in the ON state is turned OFF, whereby the input voltage of the sense amplifier 405 is clamped to an intermediate potential.
  • thermal noise taken in when the capacitor element (C2) 104 is reset and variations in the threshold value of the source follower switch means (SF) 106 are removed, and the capacitor element (C2) 104 in the next operation is removed.
  • a change in voltage of the capacitor (C2) 104 due to the transferred photocharge can be detected with high accuracy.
  • the level of ⁇ S is changed in a slope shape with time to gradually change the potential barrier for C1 of the switch means (S).
  • a counter clock synchronized with the ⁇ S level that changes with time is input to the latch 407 of the column parallel circuit 401 through the counter signal line 408.
  • the potential of C2 is lowered and the pixel output is lowered.
  • the important point here is that the time at which the pixel output starts to decrease changes according to the amount of photocharge accumulated in PD and C1.
  • the decrease in the potential of the pixel output line 107 is transmitted to the input level of the sense amplifier 405 via the coupling capacitor (CC), and when a change in the sense amplifier input level exceeding the threshold value of the sense amplifier 405 occurs. Output goes high.
  • the time when this High state is reached corresponds to the amount of photocharge accumulated in PD and C1.
  • the latch 407 holds a digital counter signal at the time when the output of the sense amplifier 405 becomes a high state.
  • the row selection circuit 502 selects the next row to be read. By repeating the above operations (2-1) to (2-7) for a predetermined number of lines, the signal reading of one frame of the image sensor is completed.
  • the magnitude of the “effective saturation capacity” of the capacitive element (C1) 102 and the magnitude of the “effective saturation capacity” of the capacitive element (C2) 104 depend on the performance required for the designed light receiving device. It is decided appropriately. In particular, in the present invention, the ratio of the “effective saturation capacity” of the capacitive element (C1) 102 and the “effective saturation capacity” of the capacitive element (C2) 104 is determined by the measurement resolution and accuracy of the light receiving device. Dependent. In the present invention, the “effective saturation capacity” of the capacitor (C1) 102 is preferably 10 to 5000 times, more preferably 100 to 1000 times the “effective saturation capacity” of the capacitor (C2) 104. desirable. In the present invention, the charge storage saturation capacity of the capacitor (C2) 104 is preferably 1/100 to 1/1000 with respect to the charge storage saturation capacity of the capacitor (C1) 102. The saturation capacity for charge storage is preferably 1/100 to 1/1000.
  • FIG. 6 is a block diagram for explaining the configuration of an absorption analysis system 600 provided with the image sensor 500.
  • the absorbance analysis system 600 includes an image sensor 500, a light source 601, a signal storage / processing unit 603, a display unit 604, a control unit 605, and an operation unit 606.
  • a subject 602 to be subjected to absorption analysis is disposed on the optical axis between the light source 601 and the image sensor 500.
  • the absorbance analysis system 600 operates by controlling the image sensor 500, the light source 601, the signal storage / processing unit 603, and the display unit 604 by the control unit 605 by operating the operation unit 606 according to the procedure.
  • FIG. 7 shows a flow chart of an example of an analysis procedure when the concentration analysis of the substance to be detected is performed using the absorbance analysis system 600.
  • the subject 602 is set at a predetermined position in the system 600, and the system 600 is turned on (step 701).
  • the system 600 first determines whether or not the subject 602 is a new subject (step 702). If the subject 602 is not a new subject, the process proceeds to step 705 for starting measurement. If the subject 602 is a new subject, the process proceeds to the light source wavelength selection step 703. In step 703, an analysis appropriate light source wavelength is selected, and the process proceeds to the next step 704. In step 704, a calibration curve is acquired. When the calibration curve is acquired, the process proceeds to step 705 for starting concentration measurement.
  • step 706 the light from the light source 601 of the subject 602 is irradiated, the amount of light irradiated through the subject 602 is received by the image sensor 500, and an optical signal based on the amount of irradiated light is obtained.
  • the amount of irradiation light that passes through the subject 602 may be any of the transmitted light amount, the reflected light amount, and the scattered light amount. If the output signal output from the image sensor 500 based on the optical signal measured in step 706 is within the range of the calibration curve acquired in step 704, the calibration curve is used to within the subject 602 in the measurement target region.
  • the concentration of the substance to be detected is derived by a method such as calculation / comparison (step 708). If the output signal output from the image sensor 500 based on the optical signal measured in step 706 is outside the range of the calibration curve acquired in step 704, the process returns to step 705 and the calibration curve is acquired again. The process proceeds to step 707. After deriving the concentration of the substance to be detected, the process proceeds to step 709 and the measurement is terminated.
  • FIG. 8 is a schematic schematic explanatory diagram in the case of measuring the blood glucose level in the blood of the human body using the scattered light imaging type absorption analysis system according to the present invention.
  • a light beam 805 having a predetermined wavelength is irradiated from a light source 802 to a predetermined position of a subject (finger) 801 at a predetermined angle (preferably 40 to 50 degrees, more preferably 45 degrees), and through the subject (finger) 801 by the irradiation.
  • the incoming scattered light 806 is condensed by the lens 803 and received by the image sensor 804.
  • the blood sugar level in the blood is derived based on the output signal output from the image sensor 804 in response to this light reception.
  • DESCRIPTION OF SYMBOLS 100 Circuit part 101 of light reception pixel ... Light receiving element 102 ... Capacitance element 103 ... Charge transfer switch means 104 ... Capacitance element 105 ... Pixel selection switch means 106 ... Source follower switch means 107 ... pixel column output signal line 108 ... reset switch means 300 ... image sensor main part 301 ... column parallel circuit 302 ... current source 303 ... pixel output line reset Means 304S, 304N... Sample hold capacitor elements 305S, 305N. Sample hold capacitor element write selection means 306S, 306N... Sample hold capacitor element read selection means 307S, 307N. ⁇ Output line 308... Column selection circuit output line 400... Image sensor main part 401.
  • Circuit 402 ... Current source 403 ... Pixel output line reset means 404 ... Coupling capacitor element 405 ... Sense amplifier 406 ... Sense amplifier reset means 407 ... Latch 408 ... Counter signal line 409 ... Output line 410 ... Column selection circuit output line 500 ... Image sensor 501 ... Pixel array 502 ... Row selection circuit 503 ... Column selection circuit 504 ... Column parallel circuit array 505 ... Output buffer 506 ... Signal output terminal 600 ... Absorption analysis system 601 ... Light source 602 ... Subject 603 ... Signal storage / processing unit 604 ... Display unit 605 ... Control Unit 606 ... Operation units 701 to 709 ... Step 801 ... Subject 802 ... Light source 803 ... Lens 804 ... Image sensor Sa 805 ... irradiation light 806 ... scattered light

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】高飽和性能と高感度性能が両立した受光デバイスを提供する。 【解決手段】受光素子、該受光素子の受光により発生する光電荷を蓄積する第一の容量素子(1)、該容量素子(1)に蓄積されている光電荷の量の一部が転送されて蓄積される第二の容量素子(2)、前記容量素子(1)から前記容量素子(2)への光電荷転送動作のON-OFFを行うためのスイッチ手段(S)、前記容量素子(1)と前記容量素子(2)をリセットするためのリセット用スイッチ手段(R)、画素選択用スイッチ手段(X)、ソースフォロワースイッチ手段(SF)、を備えた受光画素を有し、前記容量素子(1)の実効飽和容量(1)が前記容量素子(2)の実効飽和容量(2)の10~5000倍である、ことを特徴とする。

Description

受光デバイスおよび受光デバイスの信号読み出し方法
 本発明は、受光デバイスおよび受光デバイスの信号読み出し方法に関するものである。
 イメージセンサに代表される受光(センサ)デバイスは、情報機器、医療、防犯、車載、エネルギー・環境、農業、インフラ、宇宙、防衛等、様々な分野で広く利用されている。
 受光デバイスは、画像による情報伝達が主力になるにつれて一般の写真撮影の他、ライフサイエンス、防犯、車載、エネルギー・環境、医用、インフラ、宇宙、防衛、農業、食品、資源調査、防災分野等の様々な分野で撮像・計測・分析の装置などの構成デバイスとしての光入力デバイスや光検出デバイスとして広く応用されて来ており、その重要性は急速に増している。
 その中で、計量・計測・分析などの分野においては、微小な光量変化を高感度・高速に計測・計量できる受光デバイスやその信号読み出し方法が求められている。そして、その用途の拡大と事業展開をより一層加速するためには、より一層微小な光量変化をより高感度・より高速に計測・計量できる受光デバイスやその信号読み出し方法が必要である。
 特に、微小光信号や微小光量変化信号を的確に計測する受光センサ技術は、完成度の高さも含めて市場が強く求めている技術の一つである。
 その中で、例えば、特許文献1などに記載された受光センサが注目されてきている。特許文献1に記載の受光センサは、確かに、高感度・高速処理・広ダイナミックレンジ・広光波長帯域対応ということで優れたセンサである。
 極微量の被検出物質を吸光分析により精度よく分析するには、極微量の被検出物質を含む被検体に照射する光量を多くすることが考えられるが、そのためには、電荷を電圧に変換する際のコンバージョンゲインをある程度大きくするとともに受光センサの飽和電荷量をも大きくする必要がある。
国際公開公報WO2016/080337号
 しかしながら、従来の受光センサにおいては、飽和電荷量が受光画素内で電荷電圧変換を行うフローティングディフュージョン(FD)の容量(CFD)に比例し,コンバージョンゲインが容量(CFD)に反比例するため,飽和電荷量とコンバージョンゲインとの間にトレードオフ関係があるので、高分析精度を要求する吸光分析の分野などにおいては高感度・高速処理・広ダイナミックレンジ・広光波長帯域対応という優位性を必ずしも活かせるものではなかった。
 本発明は、上記点に鑑み鋭意なされたものであって、その目的の一つは、高飽和性能と高感度性能が両立した受光デバイスを提供することである。
 本発明のもう一つの目的は、高感度・高速処理・広ダイナミックレンジ・広光波長帯域対応という優位性を維持しながら高精度・高感度分析を可能とする受光デバイスの信号読み出し方法を提供することである。
 本発明の更にもう一つの目的は、高分析精度を要求する吸光分析の分野などに大いに貢献することが出来る受光デバイスの信号読み出し方法を提供することである。
 本発明の一つの側面は、
受光素子、該受光素子の受光により発生する光電荷を蓄積する第一の容量素子(1)、該容量素子(1)に蓄積されている光電荷の量の一部が転送されて蓄積される第二の容量素子(2)、前記容量素子(1)から前記容量素子(2)への光電荷転送動作のON-OFFを行うためのスイッチ手段(S)、前記容量素子(1)と前記容量素子(2)をリセットするためのリセット用スイッチ手段(R)、画素選択用スイッチ手段(X)、ソースフォロワースイッチ手段(SF)、を備えた受光画素を有し、前記容量素子(1)の実効飽和容量(1)が前記容量素子(2)の実効飽和容量(2)の10~5000倍である、ことを特徴とする受光デバイスである。
 本発明のもう一つの側面は、受光素子、該受光素子の受光により発生する光電荷を蓄積する第一の容量素子(1)、該容量素子(1)に蓄積されている光電荷の量の一部が転送されて蓄積される第二の容量素子(2)、前記容量素子(1)から前記容量素子(2)への光電荷転送動作のON-OFFを行うためのスイッチ手段(S)、前記容量素子(1)と前記容量素子(2)をリセットするためのリセット用スイッチ手段(R)、画素選択用スイッチ手段(X)、ソースフォロワースイッチ手段(SF)、を備えた受光画素を有し、前記容量素子(1)の実効飽和容量(1)が前記容量素子(2)の実効飽和容量(2)の10~5000倍である、受光デバイスの信号読み出し方法であって、前記受光デバイスを必要に応じてリセットした後に、前記容量素子(1)の実効飽和容量を満たすのに必要十分な光電荷量を発生し得る光量の光を前記受光素子に照射して、該受光素子内で発生した光電荷で前記容量素子(1)の容量を実効飽和容量まで満たし、次いで、前記スイッチ手段(X)をONにして前記受光画素を選択し、次いで、前記スイッチ手段(S)の前記容量素子(1)から前記容量素子(2)への光電荷の転送時の前記容量素子(1)に対するポテンシャル障壁を超える電荷量を前記容量素子(1)から前記容量素子(2)へ転送して蓄積し、次いで、前記容量素子(2)に蓄積された電荷量に応じた電圧信号を前記受光画素より出力することを特徴とする受光デバイスの信号読み出し方法にある。
 本発明に依れば、高飽和性能と高感度性能が両立した受光デバイス並びに高感度・高速処理・広ダイナミックレンジ・広光波長帯域対応という優位性を維持しながら高精度・高感度分析を可能とする受光デバイスの信号読み出し方法を提供することが出来、例えば、高分析精度を要求する吸光分析の分野などに大いに貢献出来る。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるだろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
図1は、本発明に関わる受光素子の受光面に配設されている受光画素の画素回路部100を説明するための回路構成説明図である。 図2Aは図1に示す画素回路部100を備えた受光素子の信号読み出し原理を説明するための模式的説明図である。 図2Bは図2Aに続く信号読み出し原理を説明するための模式的説明図である。 図2Cは図2Bに続く信号読み出し原理を説明するための模式的説明図である。 図2Dは図2Cに続く信号読み出し原理を説明するための模式的説明図である。 図2Eは図2Dに続く信号読み出し原理を説明するための模式的説明図である。 図3Aは、好適な実施態様の一つを説明するための図面であって、構成を説明するためのタイミングチャートである。 図3Bは、好適な実施態様の一つを説明するための図面であって、動作を説明するためのタイミングチャートである。 図4Aは、好適な実施態様のもう一つ別の例の構成を説明するためのタイミングチャートである。 図4Bは、好適な実施態様のもう一つ別の例を説明するための動作を説明するためのタイミングチャートである。 図5は、本発明に係るイメージセンサの全体構成の主要部の好適な一例を示すものである。 図6は、イメージセンサ500を備えた吸光分析システム600の構成を説明するためのブロック図である。 図7は、吸光分析システム600を用いて被検出物質の濃度体分析する際の分析手順の一例のフロー図である。 図8は、本発明に係る散乱光撮像型吸光分析システムを用いて人体の血液中の血糖値を測定する場合の模式的概略説明図である。
 図1に示す画素回路部100は、所謂、画素ソースフォロワ回路で構成されている。即ち、フォトダイオードなどの受光素子PDの一つと、トランジスタなどの4つの電子スイッチ手段(S,R,SF,X)と、2つの容量素子(C1,C2)との電子素子群で構成され図示の電子回路を形成している。
 受光することで受光素子(PD)101内に発生した光電荷は、容量素子(C1)102に一旦蓄積される。容量素子(C1)102に蓄積され光電荷の一部若しくは全部は、電荷転送用のスイッチ手段(S)103が段階的ないし漸近的にON状態になることで、容量素子(C2)104に転送される。容量素子(C2)104は、電荷電圧変換を行うために利用される。
 図1に於いて、「VR」はリセット電圧、「VDD」は電源電圧を意味する。
画素選択スイッチ手段(X)105がONされると、ソースフォロア・スイッチ手段(SF)106を介して容量素子(C2)104に転送された電荷量に相当する大きさの電圧信号が画素列出力信号線107に出力される。
 次に、図2A乃至図2Cにより、本発明の信号読み出し方法の原理を説明する。以下、本発明の特徴の一つを説明するのに適切な典型例の一つ、即ちごく微量の物質を検出する吸光分析の場合の例で説明する。
 図2Aは、受光によって受光素子(PD)101内に発生した光電荷が容量素子(C1)102に蓄積されている状態を説明するために模式的に示したポテンシャル図、図2Bは、図2Aに示すように十分量の光電荷が蓄積された状態から、一部の電荷量の光電荷を容量素子(C2)104に転送する様子を模式的に説明するためのポテンシャル図、図2Cは、一部の電荷量の光電荷が容量素子(C2)104に転送された様子を模式的に説明するためのポテンシャル図である。
 この例においては、極微量の被検出物質を検出するために、大光量の光を被検体セルの所定位置に照射する。被検体セルに照射された光は、被検体セル中を透過してくる透過光、被検体セル中で反射される反射光、散乱されてくる散乱光、のいずれかの光を受光素子(または受光デバイス)で受光する。
 本発明においては、容量素子(C1)102の電荷蓄積の飽和容量は、大きな光量の光を受光してもオーバーフローしないように十分な容量とされる。実効的には、極微量の被検出物質が確実に検出できる検出精度と高い受光感度を得るための設計思想に基づいて被検出物質への照射光量と容量素子(C1)102の電荷蓄積の飽和容量および受光素子(あるいは受光デバイス、以後「受光デバイス」も含めて「受光素子」ということがある)の受光感度・SN比が適宜選択されて採用される。
 容量素子(C1)102の電荷蓄積容量に比して容量素子(C2)104の電荷蓄積の飽和容量は、目的の分析性能で吸光分析ができる設計思想に従い必要最小限の飽和容量とされるのが望ましい。即ち、電荷量を電圧に変換する際のコンバージョンゲインを大きくとるために、容量素子(C2)104の電荷蓄積の飽和容量は出来る限り小さくするのが望ましい。
 本発明においては、被検出物質を検出するのに使用される光源からの照射光量は、該照射光量を受光素子が受光することで生成される光電荷量が容量素子(C1)102の飽和容量か該飽和容量より少ないが、本発明の目的に適う範囲において該飽和容量として実質的に近似してもよい容量(以後、「実質飽和容量」ということもある)になるまで蓄積される光量である。
 尚、本発明においては、以後、「飽和容量」の用語は、特に断ることがない場合は、本来の技術的意味の他に前記の「実質飽和容量」の意味も含むものとして用いる。
 又、前記飽和容量或いは前記実質飽和容量を満たすのに必要十分な光電荷量を発生させるのに必要な照射光量として以後、「飽和照射光量」の用語を用いる。
 更には、光源からの照射光量は、所期の目的を達成する検出精度の程度に応じて、ブランク照射(被検出物質なしでの照射)において生成される光電荷量が前記飽和容量に満たない範囲の容量(以後、「未飽和容量」と記す)を満たす量の光電荷を発生させるに必要十分な照射光量(以後、「未飽和照射光量」ということもある)とされてもいい。特に、受光素子の物理寸法が十分大きくとれて容量素子(C1)102の飽和容量も十分大きくとれる場合には、未飽和照射光量として、前記飽和照射光量よりもそれなりに少な目の光源照射光量とすることもできる。
 例えば、この場合の未飽和照射光量としては、ブランク照射において生成される光電荷量が前記飽和容量の好ましくは15%減、より好ましくは10%減、より一層好ましくは5%減とするのが望ましい。しかしながら、受光素子のコンパクト化の視点からでは、出来る限り前記飽和照射光量程度の照射光量を選択するのが好ましい。
 本発明においては、以後、容量素子に蓄積される前記未飽和照射光量により発生する光電荷量分の容量を「未飽和容量」という。
 尚、本発明においては、「飽和照射光量」の技術的意味の他に前記実質飽和照射光量の技術的意味および前記未飽和照射光量の技術的意味をも含んで、以後、「実効飽和照射光量」という用語を用いる。
 又、本発明においては、「飽和容量」の技術的意味の他に前記「実質飽和容量」および前記「未飽和容量」の技術的意味をも含んで、以後、「実効飽和容量」という用語を用いる。
 図2Aに示す電荷蓄積状態は、容量素子(C1)102には、飽和容量よりやや少なめの光電荷量が蓄積されていることを示している。この蓄積されている電荷量により齎される電圧はVAで示されている。因みに、容量素子(C1)102の飽和容量での電圧は、VSI(「スイッチ手段(S)103」の飽和ポテンシャル障壁電圧に相当する)として図示してある。
 図2Bに示す電荷蓄積状態は、図2Aに示す電荷蓄積状態から蓄積電荷量の上澄み量(以後「転送電荷量」ということもある)に当たる電荷量を容量素子(C2)104に転送する状態を示す。容量素子(C1)102から容量素子(C2)104への電荷の転送は、スイッチ手段(S)103のゲート電圧を高くして、高くして、スイッチ手段(S)103の容量素子(C1)に対するポテンシャル障壁電圧を電圧VAより低い電圧VSとすることでなされる。転送電荷量は電位差(VA―VS)に対応する電荷量である。
 容量素子(C2)104に転送する電荷量は、受光素子の受光感度とSN比に応じて出来るだけ少ない方がコンバージョンゲインをより大きくとることが出来る。
 本発明においては、容量素子(C1)102の電荷蓄積の飽和容量(以後「飽和容量(1)」ということもある)を大きくすることで、ブランク照射(被検出物質なしの場合での照射)の光量を大きくし、極微量であったとしても被検出物質による照射光の吸収光量を大きくすることで検出精度を高めるものである。
 更に、飽和容量(1)が大きいと高照度光を被検出物質に照射して被検出物質の吸収光量を稼ぐことができ、結果的に高感度吸収分析が可能となる。
 上記のように、容量素子(C1)102の飽和電荷蓄積量に見合った光量として実効照射光量が予め設定されている場合でも、吸収分析開始前に、ブランクサンプル(被検出物質を含まないサンプル)に前記実効照射光量の光を照射して容量素子(C1)102の飽和電荷蓄積量を確認しておくことは被検出物質をより精度良く確実に測定できるということで好ましいことである。
 図2Cは、スイッチ手段103のゲート電圧を高くして、スイッチ手段103の容量素子(C1)102に対するポテンシャル障壁電圧をVSIからVSに低減することで図2Bに示す状態からの移行直後状態を示すものである。
 スイッチ手段103のゲート電圧が、スイッチ手段103の容量素子(C1)102に対するポテンシャル障壁電圧VSになるようにセットされると、容量素子(C1)102に蓄積されている電荷量QAの中、上澄み電荷量(電荷量Qα)が容量素子(C2)104に転送されて蓄積される。容量素子(C2)104に転送された電荷量Qαは、下記式(1)より電圧Vαが与えられる。
     Vα=(VA―VS)×C1/C2・・・・・・(1)
 図2Dは、被検出物質に照射して被検出物質を検出する場合に被検出物質の吸収光量分だけ減量された照射光量によって発生した光電荷量が容量素子(C2)102に蓄積され、その後スイッチ手段103のゲート電圧が、スイッチ手段103の容量素子(C1)102に対するポテンシャル障壁電圧がVSIからVSにセットされることで電位差(VB―VS)に対応する上澄み電荷量(電荷量Qβ)が容量素子(C2)104に転送される直前の状態が示される(図2Bに対応)。容量素子(C2)104に転送された電荷量Qβは、下記式(2)より電圧Vβが与えられる。
     Vβ=(VB―VS)×C1/C2・・・・・・(2)
 図2Eは、図2Cに対応する。即ち、図2Eは、スイッチ手段103のゲート電圧を、スイッチ手段103の容量素子(C1)102に対するポテンシャル障壁電圧がVSIからVSに低減するように変化させることで図2Bに示す状態からの移行直後状態を示すものである。式(1)から式(2)を引くことで、被検出物質の検出量を検出することが出来る。
 上記の説明例においては、光源の実効照射光量が予め設定されている場合について詳述したが、光源の照射光量が予め設定されていない場合であっても、その照射光量が前記実効照射光量未満であれば、以下のようにして被検出物質の検出量を検出することが出来る。
 先ず、スイッチ手段102のゲートに電圧VS1を印加した状態でブランクサンプル(被検出物質を含まないサンプル)に光源からの光をブランクサンプルに照射して容量素子(C1)102に光電荷量を蓄積する。
 その後、スイッチ手段102のゲート電圧を漸次或いは段階的に減少させて容量素子(C1)102に蓄積されている電荷が容量素子(C2)104に転送され始める直前のゲート電圧(V1)を求める。
 次いで、V1より低い電圧(V2)をスイッチ手段102のゲートに印加し容量素子(C1)102に蓄積されている光電荷量の中、上澄み電荷量(Q1)を容量素子(C2)104に転送する。この際の上澄み電荷量(Q1)は、信号検出精度を高めるためにコンバージョンゲインをより大きくとるという視点からは少ない量程好ましいが、被検出物質の検出濃度範囲を広げるという視点からは多い量程好ましい。コンバージョンゲインと被検出物質の検出範囲はトレードオフの関係にあるため、上澄み電荷量(Q1)は被検出物質の検出見込み量に応じて最適値が適宜決められる。
 その後の被検出物質の検出法と検出手順は、光源の照射量が予め設定されている先に記述した場合と同様である。
 次に、図3A乃至図5を参考に本発明に係る好適な実施態様について説明する。図2A乃至図5中に記載されてある、英文字・ギリシャ文字記載の記号の意味は、以下の通りである。
PD・・・・フォトダイオードなどの受光素子
C1・・・・(光電荷蓄積を行う)容量素子
C2・・・・(電荷電圧変換を行う)容量素子
VR・・・・リセット電圧
VDD・・・電源電圧
S・・・・・スイッチ手段
R・・・・・リセット手段
SF・・・・ソース・フォロアスイッチ手段
X・・・・・画素選択手段
VSI・・・蓄積期間中のスイッチ手段(S)のC1に対する飽和ポテンシャル障壁
VS・・・・上澄み電荷転送時のスイッチ手段(S)のC1に対するポテンシャル障壁
QA・・・・ブランク照射においてC1に蓄積される光電荷量
VA・・・・ブランク照射においてC1で発生する電圧
Qα・・・・ブランク照射における転送電荷量
Vα・・・・ブランク照射における転送電荷によってC2で発生する信号電圧
QB・・・・被検体物質による吸光がある光照射においてC1に蓄積される光電荷量
VB・・・・被検体物質による吸光がある光照射においてC1で発生する電圧
Qβ・・・・被検体物質による吸光がある光照射における転送電荷量
Vβ・・・・被検体物質による吸光がある光照射における転送電荷によってC2で発生する信号電圧
VVCLR・・・画素出力線リセット電圧
CN・・・・・・C2リセットレベルサンプルホールド容量
CS・・・・・・光信号レベルサンプルホールド容量
CC・・・・・・カップリング容量
RS・・・・・・センスアンプリセット手段
φVCLR・・画素出力線リセットパルス
φS・・・・・・スイッチ手段駆動信号
φR・・・・・・リセット手段駆動パルス
φX・・・・・・画素選択パルス
φNS・・・・・C2リセットレベルサンプリングパルス
φSS・・・・・光信号レベルサンプリングパルス
φRS・・・・・センスアンプリセットパルス
 図3A及び図3Bは、好適な実施態様の一つを説明するための図面であって、図3Aはその構成を、図3Bはその動作を説明するためのタイミングチャートである。
 図3Aには、本発明に係るイメージセンサのセンサ要部300は、2次元に配された複数の受光用の画素100の一つと、画素列出力信号線107、列並列回路301を備えている。
 図1で示した付番のものと同じものは、図1で示した付番と同じ付番を用いてある。この点は、以後の図番においても同じである。
 センサ要部300を備えたイメージセンサの全体構成の主要部の好適な一例が図5に500として示してある。イメージセンサ500は、受光画素100がn行m列に2次元マトリックス状に配された画素アレイ501、行選択回路502、列選択回路503、列並列回路504、出力バッファ505、信号出力端子506を備えている。
 列並列回路301はソースフォロワ回路駆動のための電流源302、画素出力線リセット手段303、2つのサンプルホールド用の容量素子(CN)304Nおよび容量素子(CS)304S,2つのサンプルホールド用の容量素子(CN)304Nおよび容量素子(CS)304S、の夫々へ信号を書込む(電荷蓄積する)ための2つの書き込み選択用スイッチ手段305S,305N、2つのサンプルホールド用の容量素子(CN)304Nおよび容量素子(CS)304S、の夫々から信号を読み出す(蓄積されている電荷を下流の出力側に転送する)ための2つの読出し選択用のスイッチ手段305S,305N,2本の出力ライン306S,306N、列選択回路出力ライン307を備えている。
 列並列回路301には増幅器やAD変換器を設けてもよい。
 次に、図3A,図3B,図5を用いてイメージセンサの信号読出し動作について説明する。図3Bは図3Aのイメージセンサの信号読出しのタイミングチャートを示す図面である。
 図5は、本発明に係るイメージセンサの全体構成の主要部の好適な一例を示すものである。図5に示すイメージセンサ500は、画素アレイ501、行選択回路502、列選択回路503、列並列回路アレイ504、出力バッファ505、信号出力端子506を備えている。信号読出しのタイミングの概略を記せば、まず画素100からの信号は、画素出力線107へ行毎に列並列で読み出され、列並列回路301におけるサンプルホールド容量305で一時保存され、その後、一時保持された信号が列毎に順次読み出される。
 その読出し手順は、以下の通りである。
 (1-1)行選択回路502で読出し対象の行を選択する。
 (1-2)画素出力線107、サンプルホールド容量素子(CN)304N、サンプルホールド容量素子(CS)304Sのリセット動作:φVCLR、φNS、φSSを印加する各対応手段をONさせて画素出力線107とサンプルホールド容量素子(CN)304N、サンプルホールド容量素子(CS)304Sをリセットする。
 (1-3)容量素子(C2)104リセットレベルの読出し:画素選択用スイッチ手段(X)105、書き込み手段305NをONさせて、対応の手段に信号φX、信号φNSを印加し、画素(SF)100の出力と画素出力線107および容量素子(CN)304Nとを結合させる。その後、リセット用スイッチ手段108をONにして信号パルスφRを印加し容量素子(C2)104の電位をVRにリセットする。その後、スイッチ手段108をOFFとして容量素子(C2)104の電位をフローティングにする。このときに容量素子(C2)104の電位には熱ノイズが取り込まれるが、本発明においては、以下の方法でこの熱ノイズを除去することが出来る。画素ソースフォロワ回路の動作によって、C2の電位に応じた信号が画素出力線107及び容量素子(CN)304Nに読み出される。これが相間二重サンプリングにおけるリセットレベルのサンプリングとなる。その後、書き込み手段(CN)304NをOFFさせることで、容量素子(CN)305Nに容量素子(C2)104のリセットレベルの信号を一時保存する。
 (1-4)書き込み手段305SをONにして信号パルスφSSを印加すると共に、スイッチ手段103に印加する信号パルスφSを上澄み電荷転送レベルとする。ここで、受光素子(PD)101および容量素子102(C1)に蓄積された光電荷の中、上澄み電荷転送時のスイッチ手段(S)103の容量素子(C1)102に対するポテンシャル障壁(VS)を超える電荷量が容量素子(C2)104に転送される。スイッチ手段(S)103をOFFとして上澄み電荷転送を終了する。
 画素出力線107及び容量素子(CS)304Sには、容量素子(C2)104に転送された電荷量に応じた電圧が読み出される。その後、書き込み手段305SをOFFさせることで、容量素子(CS)304Sに光信号レベル(受光素子101が受光した受光量)に応じたレベルの信号を一時保存する。これが相間二重サンプリングにおける光信号レベルのサンプリングとなる。
 (1-5)スイッチ手段(S)103、スイッチ手段(R)108をONさせて、受光素子(PD)101、容量素子(C1)102、容量素子(C2)104をリセットする。その後スイッチ手段(S)103、スイッチ手段(R)108をOFFさせて次の蓄積動作に入る。スイッチ手段(X)105をOFFさせて画素100と画素出力線107を電気的に切り離す。
 (1-6)列並列回路301中の容量素子(CN)304N、容量素子(CS)304Sに一時保存された信号を順次選択して出力バッファを介してイメージセンサ要部300の外部に読み出す。本実施例ではイメージセンサ要部300の外部にある回路で読出し信号をAD変換する。容量素子(CS)304Sの信号から容量素子(CN)304Nの信号を引き算することで、容量素子(C2)104をリセットする際に取り込まれる熱ノイズやスイッチ手段(SF)106のしきい値ばらつきが取り除かれ、光信号を高精度に読み出すことが出来る。
(1-7)行選択回路で次の読出し対象の行を選択する。
 以上、(1-1)乃至(1-7)の動作を所定行繰り返すことでイメージセンサの1フレームの信号読出しを完了する。
 上記に図3A,図3B,図5を用いて説明したイメージセンサの信号読出し動作においては、容量素子(C2)104の飽和容量を小さくしても相間二重サンプリングによって容量素子(C2)104に蓄積されている光電荷量に基づいた光信号を高精度に読み出すことが出来る。
 図4A及び図4Bは、好適な実施態様のもう一つ別の例を説明するための図面であって、図4Aはその構成を、図4Bはその動作を説明するためのタイミングチャートである。
 本発明に係るイメージセンサのセンサ要部400は、2次元に配された複数の受光用の画素100の一つと、画素列出力信号線107、列並列回路401を備えている。センサ要部400を備えたイメージセンサの全体構成の主要部の好適な一例は、センサ要部300と同様に図5に500として示してある。
 次に、図4A、図4B、図5を用いて、図3A、図3B、図5の場合と同様にその読出し動作について説明する。図4Aに示すセンサ要部400は、複数の画素100と画素出力線107と列並列回路401を備えている。列並列回路401は、ソースフォロワ回路駆動のための電流源402、画素出力線リセット手段403、カップリング容量素子(CC)404、センスアンプ405、センスアンプのリセット用のスイッチ(リセット)手段(RS)406、ラッチ407、カウンタ信号ライン408、出力バッファライン409、列選択回路出力ライン410、を備えている。列並列回路401は簡便な回路構成で列並列に画素信号をAD変換するための構成である。
 図4Aに示す回路構成によれば、電荷転送用スイッチ手段103にカウンタ信号と同期したスロープ型の電圧を印加し、受光素子(PD)101から容量素子(C1)102へ光電荷がわずかに転送されることによって生じる画素列出力信号線107の電圧降下分が所定の値を超えた時刻をデジタル値として記録する。
 これは、一般的なシングルスロープ型のA/D変換器(Analog-to-Digital Converter)における参照スロープ信号に相当する信号を直接受光用画素の回路 部に印可する方式であり、従来の列に並列してシングルスロープ型A/D変換器を有するCMOS受光センサにおいて用いられている画素列出力信号線の電圧値を参照値であるスロープ信号と比較する方式と比べて回路規模を縮小すると共に高速化することが出来る。
 図4Bは図4Aに示す列並列回路401を組みわせた場合の信号読出しのタイミングチャートを示す図面である。図4Aに示すイメージセンサの信号読出しは図4Bのタイミングチャートに示すように以下の手順で行われる。
(2-1)行選択回路502で読出し対象の行を選択する。
(2-2)画素出力線107のリセット動作:リセット手段403をONさせて(画素出力線リセットオアルス信号φVCLRを印加して)画素出力線107をリセットする。
(2-3)容量素子(C2)104のリセットレベルの読出し:画素選択用のスイッチ手段(X)105をONさせて(画素選択パルスφXを印加して)、ソースフォロワースイッチ手段(SF)106の出力と画素出力線107およびカップリング容量素子(CC)404とを電気的に結合させる。その後、リセット用スイッチ手段(R)108をONさせて(リセット手段駆動パルスφRを印加して)容量素子(C2)104の電位をVRにリセットする。
 その後、スイッチ手段(R)108をOFFとして容量素子(C2)104の電位をフローティングにする。このときに容量素子(C2)104の電位には熱ノイズが取り込まれるが、本発明においては、以下の方法でこの熱ノイズを除去することが出来る。
 画素ソースフォロワ回路(回路部100)の動作によって、容量素子(C2)104の電位に応じた信号が画素出力線107に読み出される。
 その後、ON状態だったφRSをOFFさせることで、センスアンプ405の入力電圧を中間電位にクランプする。この動作によって、容量素子(C2)104をリセットする際に取り込まれる熱ノイズやソースフォロア・スイッチ手段(SF)106のしきい値ばらつきが取り除かれ、次の動作における、容量素子(C2)104に転送される光電荷による容量素子(C2)104の電圧変化を高精度に検知することが出来る。
(2-4)φSのレベルを時間的にスロープ状に変化させてスイッチ手段(S)のC1に対するポテンシャル障壁を徐々に変化させる。列並列回路401のラッチ407には、時間的に変化するφSのレベルに同期したカウンタクロックを、カウンタ信号ライン408を通じて入力する。ここで、ポテンシャル障壁を超えてPDおよびC1に蓄積された光電荷がC2へ転送され始めるとC2の電位が低下し、画素出力が低下する。ここで重要な点は、PDおよびC1に蓄積された光電荷の量に応じて画素出力が低下し始める時刻が変化することである。画素出力線107の電位の低下はカップリング容量(CC)を介してセンスアンプ405の入力レベルに伝わり、センスアンプ入力レベルにセンスアンプ405のしきい値を超えた変化が生じるとセンスアンプ405の出力がHigh状態となる。このHigh状態となる時刻がPDおよびC1に蓄積されていた光電荷量と対応する。ラッチ407では、センスアンプ405の出力がHigh状態になった時刻のデジタルカウンタ信号を保持する。
 以上の動作により、光信号レベルを簡便な回路構成でデジタル変換・保持することが出来る。その後φSをOFFとして上澄み電荷転送を終了する。ここで、φSの時間変化及び変化量を調整することで、AD変換の階調値、蓄積電荷の読出し範囲すなわち読出し光量範囲を調整することが出来る。
(2-5)φR、φSをONさせて、PD、C1、C2をリセットする。その後φR、φSをOFFさせて次の蓄積動作に入る。その後、φXをOFFさせて画素と画素出力線107を電気的に切り離す。
 (2-6)列並列回路401のラッチ407に保持されたデジタル信号を列選択回路503で順次選択して出力バッファを介して読み出す。
 (2-7)行選択回路502で次の読出し対象の行を選択する。
 以上の(2-1)乃至(2-7)の動作を所定行繰り返すことでイメージセンサの1フレームの信号読出しを完了する。
 本発明においては、容量素子(C1)102の「実効飽和容量」の大きさと容量素子(C2)104の「実効飽和容量」の大きさは、設計される受光デバイスに要求される性能に応じて適宜決められる。特に、本発明においては、容量素子(C1)102の「実効飽和容量」と容量素子(C2)104の「実効飽和容量」との大きさの比は、受光デバイスの測定の分解能とその精度に依存する。
 本発明においては、容量素子(C1)102の「実効飽和容量」は、容量素子(C2)104の「実効飽和容量」の好ましくは10~5000倍、より好ましくは100~1000倍であるのが望ましい。
 本発明においては、容量素子(C1)102の電荷蓄積の飽和容量に対して容量素子(C2)104の電荷蓄積の飽和容量は、好ましくは、1/100~1/1000とするのが望ましい。電荷蓄積の飽和容量は、好ましくは、1/100~1/1000とするのが望ましい。
 図6は、イメージセンサ500を備えた吸光分析システム600の構成を説明するためのブロック図である。吸光分析システム600は、イメージセンサ500、光源601、信号格納/処理部603、表示部604、制御部605、操作部606を有する。吸光分析される被検体602は、光源601とイメージセンサ500の間であって光軸上に配設される。吸光分析システム600は、手順に従って操作部606を操作することによって制御部605により、イメージセンサ500、光源601、信号格納/処理部603、表示部604のそれぞれが制御されることで稼働する。
 図7に、吸光分析システム600を用いて被検出物質の濃度体分析する際の分析手順の一例のフロー図が示される。
 先ず、被検体602がシステム600の所定の位置にセットされてシステム600の電源がONとされる(ステップ701)。システム600は、先ず、被検体602が新規被検体か否かを判断する(ステップ702)。被検体602が新規被検体でなければ、測定開始のステップ705に進む。被検体602が新規被検体であれば、光源波長の選択ステップ703に進む。ステップ703において、分析適正光源波長が選択されて、次のステップ704に進む。ステップ704において、検量線の取得がなされる。
 検量線の取得が済むと、濃度測定開始のステップ705に進む。測定開始でない場合は、終了のステップ709に進む。測定開始がYESの場合は、ステップ706に進む。ステップ706では、被検体602の光源601よりの光を照射し、被検体602を介してくる照射光量をイメージセンサ500で受光し前記照射光量に基づく光信号を得る。被検体602を介してくる照射光量は、透過光量、反射光量、散乱光量の何れでもよい。
 ステップ706で測定した光信号に基づいてイメージセンサ500から出力される出力信号がステップ704で取得した検量線の範囲内であれば、該検量線を用いて測定対象領域での被検体602内の被検出物質の濃度を演算・比較などの手法で導出する(ステップ708)。
 ステップ706で測定した光信号に基づいてイメージセンサ500から出力される出力信号がステップ704で取得した検量線の範囲外であれば、ステップ705に戻って検量線の取得を再度行った後、次のステップ707に進む。被検出物質の濃度を導出し終えると次にステップ709に進み、測定を終了する。
 図8は、本発明に係る散乱光撮像型吸光分析システムを用いて人体の血液中の血糖値を測定する場合の模式的概略説明図である。
 被検体(指)801の所定位置に所定角度(好ましくは40~50度、より好ましくは45度)で光源802から所定波長の光805を照射し、該照射によって被検体(指)801を介してくる散乱光806をレンズ803で集光してイメージセンサ804で受光する。この受光に応じてイメージセンサ804から出力される出力信号に基づいて血液中の血糖値を導出する。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。又、添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明を説明するために用いられる。
従って、本発明の権利範囲を公にするために、以下の請求項を添付する。
100・・・受光用画素の回路部
101・・・受光素子
102・・・容量素子
103・・・電荷転送用スイッチ手段
104・・・容量素子
105・・・画素選択用スイッチ手段
106・・・ソースフォロワースイッチ手段
107・・・画素列出力信号線
108・・・リセット用スイッチ手段
300・・・イメージセンサ要部
301・・・列並列回路
302・・・電流源
303・・・画素出力線リセット手段
304S、304N・・・サンプルホールド用の容量素子
305S、305N・・・サンプルホールド用の容量素子の書き込み選択手段
306S、306N・・・サンプルホールド用の容量素子の読出し選択手段
307S、307N・・・出力ライン
308・・・列選択回路出力ライン
400・・・イメージセンサ要部
401・・・列並列回路
402・・・電流源
403・・・画素出力線リセット手段
404・・・カップリング容量素子
405・・・センスアンプ
406・・・センスアンプリセット手段
407・・・ラッチ
408・・・カウンタ信号ライン
409・・・出力ライン
410・・・列選択回路出力ライン
500・・・イメージセンサ
501・・・画素アレイ
502・・・行選択回路
503・・・列選択回路
504・・・列並列回路アレイ
505・・・出力バッファ
506・・・信号出力端子
600・・・吸光分析システム
601・・・光源
602・・・被検体
603・・・信号格納/処理部
604・・・表示部
605・・・制御部
606・・・操作部
701~709・・・ステップ
801・・・被検体
802・・・光源
803・・・レンズ
804・・・イメージセンサ
805・・・照射光
806・・・散乱光

Claims (2)

  1. 受光素子、
    該受光素子の受光により発生する光電荷を蓄積する第一の容量素子(1)、
    該容量素子(1)に蓄積されている光電荷の量の一部が転送されて蓄積される第二の容量素子(2)、
    前記容量素子(1)から前記容量素子(2)への光電荷転送動作のON-OFFを行うためのスイッチ手段(S)、
    前記容量素子(1)と前記容量素子(2)をリセットするためのリセット用スイッチ手段(R)、
    画素選択用スイッチ手段(X)、
    ソースフォロワースイッチ手段(SF)、
    を備えた受光画素を有し、
    前記容量素子(1)の実効飽和容量(1)が前記容量素子(2)の実効飽和容量(2)の10~5000倍である、
    ことを特徴とする受光デバイス。
  2. 受光素子、
    該受光素子の受光により発生する光電荷を蓄積する第一の容量素子(1)、
    該容量素子(1)に蓄積されている光電荷の量の一部が転送されて蓄積される第二の容量素子(2)、
    前記容量素子(1)から前記容量素子(2)への光電荷転送動作のON-OFFを行うためのスイッチ手段(S)、
    前記容量素子(1)と前記容量素子(2)をリセットするためのリセット用スイッチ手段(R)、
    画素選択用スイッチ手段(X)、
    ソースフォロワースイッチ手段(SF)、
    を備えた受光画素を有し、
    前記容量素子(1)の実効飽和容量(1)が前記容量素子(2)の実効飽和容量(2)の10~5000倍である、
    受光デバイスの信号読み出し方法であって、
    前記受光デバイスを必要に応じてリセットした後に、
    前記容量素子(1)の実効飽和容量を満たすのに必要十分な光電荷量を発生し得る光量の光を前記受光素子に照射して、該受光素子内で発生した光電荷で前記容量素子(1)の容量を実効飽和容量まで満たし、
    次いで、前記スイッチ手段(X)をONにして前記受光画素を選択し、次いで、前記スイッチ手段(S)の前記容量素子(1)から前記容量素子(2)への光電荷の転送時の前記容量素子(1)に対するポテンシャル障壁を超える電荷量を前記容量素子(1)から前記容量素子(2)へ転送して蓄積し、次いで、前記スイッチ手段(X)をONにして前記容量素子(2)に蓄積された電荷量に応じた電圧信号を前記受光画素より出力することを特徴とする受光デバイスの信号読み出し方法。
PCT/JP2018/016450 2017-05-28 2018-04-23 受光デバイスおよび受光デバイスの信号読み出し方法 WO2018221074A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880035324.5A CN110679141B (zh) 2017-05-28 2018-04-23 受光设备和受光设备的信号读出方法
JP2019522024A JP6671715B2 (ja) 2017-05-28 2018-04-23 受光デバイスおよび受光デバイスの信号読み出し方法
KR1020197036478A KR102276181B1 (ko) 2017-05-28 2018-04-23 수광 디바이스 및 수광 디바이스의 신호 판독 방법
US16/615,647 US11343458B2 (en) 2017-05-28 2018-04-23 Light-receiving device and method for reading out signal of light-receiving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-105134 2017-05-28
JP2017105134 2017-05-28

Publications (1)

Publication Number Publication Date
WO2018221074A1 true WO2018221074A1 (ja) 2018-12-06

Family

ID=64455343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016450 WO2018221074A1 (ja) 2017-05-28 2018-04-23 受光デバイスおよび受光デバイスの信号読み出し方法

Country Status (6)

Country Link
US (1) US11343458B2 (ja)
JP (1) JP6671715B2 (ja)
KR (1) KR102276181B1 (ja)
CN (1) CN110679141B (ja)
TW (1) TWI718371B (ja)
WO (1) WO2018221074A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7520498B2 (ja) * 2019-12-02 2024-07-23 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
US11863567B2 (en) * 2020-02-04 2024-01-02 Fastly, Inc. Management of bot detection in a content delivery network
CN112071277A (zh) * 2020-09-03 2020-12-11 深圳市华星光电半导体显示技术有限公司 一种驱动电路及其驱动方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005328493A (ja) * 2004-04-12 2005-11-24 Shigetoshi Sugawa 固体撮像装置、光センサおよび固体撮像装置の動作方法
JP2006060569A (ja) * 2004-08-20 2006-03-02 Pentax Corp 撮像装置
JP2007324984A (ja) * 2006-06-01 2007-12-13 Matsushita Electric Ind Co Ltd 固体撮像装置
JP2008258885A (ja) * 2007-04-04 2008-10-23 Texas Instr Japan Ltd 撮像装置および撮像装置の駆動方法
JP2010003995A (ja) * 2008-05-20 2010-01-07 Texas Instr Japan Ltd 固体撮像装置
JP2010226679A (ja) * 2009-03-25 2010-10-07 Toshiba Corp 固体撮像装置
WO2016080337A1 (ja) * 2014-11-17 2016-05-26 国立大学法人東北大学 光センサ及びその信号読み出し方法並びに固体撮像装置及びその信号読み出し方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098971A (ja) * 2006-10-12 2008-04-24 Matsushita Electric Ind Co Ltd 固体撮像装置
JP2008164796A (ja) * 2006-12-27 2008-07-17 Sony Corp 画素回路および表示装置とその駆動方法
JP2008205638A (ja) * 2007-02-16 2008-09-04 Texas Instr Japan Ltd 固体撮像装置及びその動作方法
JP4935486B2 (ja) * 2007-04-23 2012-05-23 ソニー株式会社 固体撮像装置、固体撮像装置の駆動方法、固体撮像装置の信号処理方法および撮像装置
JP2008300898A (ja) * 2007-05-29 2008-12-11 Olympus Corp 固体撮像装置とそれを用いた撮像システム
US8294077B2 (en) * 2010-12-17 2012-10-23 Omnivision Technologies, Inc. Image sensor having supplemental capacitive coupling node
JP5795893B2 (ja) * 2011-07-07 2015-10-14 株式会社Joled 表示装置、表示素子、及び、電子機器
TWI612321B (zh) * 2013-02-27 2018-01-21 半導體能源研究所股份有限公司 成像裝置
US9184911B2 (en) 2014-04-08 2015-11-10 Cloudflare, Inc. Secure session capability using public-key cryptography without access to the private key
CN103929600B (zh) * 2014-04-30 2017-03-15 北京思比科微电子技术股份有限公司 高灵敏度cmos图像传感器共享型像素结构
US10373991B2 (en) * 2015-08-19 2019-08-06 Semiconductor Energy Laboratory Co., Ltd. Imaging device, operating method thereof, and electronic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005328493A (ja) * 2004-04-12 2005-11-24 Shigetoshi Sugawa 固体撮像装置、光センサおよび固体撮像装置の動作方法
JP2006060569A (ja) * 2004-08-20 2006-03-02 Pentax Corp 撮像装置
JP2007324984A (ja) * 2006-06-01 2007-12-13 Matsushita Electric Ind Co Ltd 固体撮像装置
JP2008258885A (ja) * 2007-04-04 2008-10-23 Texas Instr Japan Ltd 撮像装置および撮像装置の駆動方法
JP2010003995A (ja) * 2008-05-20 2010-01-07 Texas Instr Japan Ltd 固体撮像装置
JP2010226679A (ja) * 2009-03-25 2010-10-07 Toshiba Corp 固体撮像装置
WO2016080337A1 (ja) * 2014-11-17 2016-05-26 国立大学法人東北大学 光センサ及びその信号読み出し方法並びに固体撮像装置及びその信号読み出し方法

Also Published As

Publication number Publication date
TWI718371B (zh) 2021-02-11
JPWO2018221074A1 (ja) 2020-02-06
TW201904046A (zh) 2019-01-16
JP6671715B2 (ja) 2020-03-25
KR20200007870A (ko) 2020-01-22
US11343458B2 (en) 2022-05-24
US20200177831A1 (en) 2020-06-04
KR102276181B1 (ko) 2021-07-12
CN110679141A (zh) 2020-01-10
CN110679141B (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
JP6911128B2 (ja) 拡張されたダイナミックレンジを備えたイメージングアレイ
KR102212100B1 (ko) 분할-게이트 조건부-재설정 이미지 센서
TWI424742B (zh) 用於像素單元之高動態運作之方法及裝置
US6642503B2 (en) Time domain sensing technique and system architecture for image sensor
EP2966856A1 (en) A high dynamic range pixel and a method for operating it
US8059173B2 (en) Correlated double sampling pixel and method
JP4315032B2 (ja) 固体撮像装置および固体撮像装置の駆動方法
US9386240B1 (en) Compensation for dual conversion gain high dynamic range sensor
US20100271517A1 (en) In-pixel correlated double sampling pixel
US20200169675A1 (en) Bdi based pixel for synchronous frame-based & asynchronous event-driven readouts
EP2770731A1 (en) Image pickup device and camera system
US9006630B2 (en) Quality of optically black reference pixels in CMOS iSoCs
US10200644B2 (en) Global shutter scheme that reduces the effects of dark current
WO2018221074A1 (ja) 受光デバイスおよび受光デバイスの信号読み出し方法
US8446495B2 (en) Image pickup apparatus and image pickup system
TWI763583B (zh) 高動態範圍高速互補式金氧半導體(cmos)影像感測器設計
WO2016027572A1 (ja) 半導体光検出装置、放射線計数装置、および、半導体光検出装置の制御方法
US10051216B2 (en) Imaging apparatus and imaging method thereof using correlated double sampling
CN107343159B (zh) 成像装置和放射线照相成像系统
JP7163416B2 (ja) ローリングサブフレームパルスバイアスマイクロボロメータインテグレーション
EP3222034B1 (en) A circuit controller for controlling a pixel circuit and a method of controlling a pixel circuit
CN111273311A (zh) 一种激光三维焦平面阵列成像系统
WO2015078780A1 (en) Active pixel sensor and analytical device using the same
Cai et al. FLAMES-High Speed Flash-LiDAR CMOS Imager for Landing Missions Check for updates
TW201532438A (zh) 主動像素感測器及使用該主動像素感測器的分析裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810563

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019522024

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197036478

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18810563

Country of ref document: EP

Kind code of ref document: A1