WO2018220735A1 - 電流遮断素子、およびオゾン発生装置 - Google Patents

電流遮断素子、およびオゾン発生装置 Download PDF

Info

Publication number
WO2018220735A1
WO2018220735A1 PCT/JP2017/020206 JP2017020206W WO2018220735A1 WO 2018220735 A1 WO2018220735 A1 WO 2018220735A1 JP 2017020206 W JP2017020206 W JP 2017020206W WO 2018220735 A1 WO2018220735 A1 WO 2018220735A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
fixed
dielectric
ozone generator
tube
Prior art date
Application number
PCT/JP2017/020206
Other languages
English (en)
French (fr)
Inventor
中谷 元
永山 貴久
大輔 高内
佳明 尾台
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=64456427&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018220735(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780091147.8A priority Critical patent/CN110678953B/zh
Priority to PCT/JP2017/020206 priority patent/WO2018220735A1/ja
Priority to EP17912067.0A priority patent/EP3633708B1/en
Priority to JP2019521588A priority patent/JP6783389B2/ja
Publication of WO2018220735A1 publication Critical patent/WO2018220735A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/0013Means for preventing damage, e.g. by ambient influences to the fuse
    • H01H85/0017Means for preventing damage, e.g. by ambient influences to the fuse due to vibration or other mechanical forces, e.g. centrifugal forces
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H23/00Tumbler or rocker switches, i.e. switches characterised by being operated by rocking an operating member in the form of a rocker button
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/48Protective devices wherein the fuse is carried or held directly by the base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/0013Means for preventing damage, e.g. by ambient influences to the fuse
    • H01H85/0021Means for preventing damage, e.g. by ambient influences to the fuse water or dustproof devices
    • H01H85/0026Means for preventing damage, e.g. by ambient influences to the fuse water or dustproof devices casings for the fuse and its base contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/20Bases for supporting the fuse; Separate parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge

Definitions

  • the present invention relates to an ozone generator that ozonizes a gas containing oxygen by discharge, and more particularly to a current interruption element provided for operation protection.
  • each discharge tube is provided with a fuse (see, for example, Patent Document 1).
  • FIG. 11 is a cross-sectional view showing a general configuration of a fuse used for high voltage.
  • the fuse element 30 is passed through the porcelain tube 31 and both ends thereof are electrically connected and fixed to caps 14 a and 14 b attached to both ends of the porcelain tube 31.
  • caps 14 a and 14 b attached to both ends of the porcelain tube 31.
  • the fuse element 30 melts and evaporates, and arc discharge occurs in a path through which the short-circuit large current flows.
  • silica sand 32 is filled around the fuse element, the heat of the arc is absorbed by the silica sand to reduce the arc plasma density, and the voltage applied between the caps is increased to increase the arc. It has disappeared.
  • Patent Document 2 proposes a current interrupting element suitable for an ozone generator, which is used instead of a general fuse.
  • FIG. 12 is an example of a current interrupting element disclosed in Patent Document 2.
  • Four fuse conductors 36 are electrically connected between the three fuse connection plates 35 and the electrodes 33 and 34 at both ends to constitute a current interrupting element. Since the fuse conductor generates heat due to a current flowing during normal operation, a fuse connection plate 35 having a surface area that can be air-cooled is connected to both sides of the fuse conductor 36, and the heat generated in the fuse conductor 36 is transferred from the fuse connection plate 35 to the surrounding gas atmosphere. It escapes and the temperature rise of the fuse conductor 36 is suppressed.
  • the fuse conductor is not filled with silica sand, so that arc discharge is extinguished when used at a high voltage or when a short-circuit current of 10 A or more flows. It is difficult. Therefore, the dielectric breakdown of the dielectric tube is detected by detecting a decrease in power supply voltage or a current increase when the dielectric tube breaks down, and the arc is extinguished by reducing or stopping the output of the power supply.
  • the current interrupting element described in Patent Document 2 is disposed in a dielectric tube (glass tube) away from the glass tube. Further, by using a stainless material as the material of the fuse conductor, a stable current interrupting element is configured even in a highly oxidizing atmosphere inside the ozone generator.
  • the size of the fuse was large.
  • a typical voltage applied to the ozone generator is 3 to 7 kV, and a current is 0.2 to 1 A. Since the voltage is high, it is necessary to use a power fuse, and the fuse size has a problem that the outer diameter is 20 to 40 mm, and the length is 110 to 200 mm.
  • the outer diameter of the glass tube is reduced, the glass tube loading density in the ozone generator main body container can be increased, so that the ozone generator main body container in the case of generating the same ozone generation amount can be reduced.
  • the area of the fuse connection plate 35 is reduced in order to dissipate the heat generated by the fuse conductor efficiently into the surrounding atmosphere gas. It was necessary to enlarge. If the area of the fuse connection plate is increased, it becomes heavier and force is applied to the thin fuse conductor. For this reason, there has been a problem that the fuse conductor easily breaks due to vibration during transportation of the apparatus. In addition, the fuse conductor repeatedly heats up and cools down as the device is turned on and off, so the fuse conductor is subject to thermal stress, and the fuse conductor is easily damaged by the mechanical stress that is always applied to the thin fuse conductor from the fuse connection plate. There was a problem that the lifetime of the current interruption element was short.
  • the life of the current interrupting element is short, the number of discharge tubes that can be operated in the ozone generator decreases, and the amount of ozone generated decreases. While the decrease in ozone generation is small, increasing the electric power injected from the power source into the discharge tube increases the ozone generation amount. However, if there is not enough room for the power supply, the rated ozone generation amount cannot be produced. It is necessary to inspect and open the electrode tube. Thus, when the current interruption element lifetime is short, there is a problem that the open inspection period of the generator is shortened and the maintenance cost is increased.
  • the present invention has been made in order to solve the above-described problems, and an ozone generator equipped with a reliable current interrupting element that can use a thin discharge tube and can reduce the size of an ozone generator.
  • the purpose is to provide.
  • plate-like fixed electrodes are connected to both sides of the fusing element to which fuse conductors that melt when overcurrent flows are connected to both sides of the intermediate conductor, respectively.
  • the plate surface is fixed to the surface of the dielectric base by a fixing material.
  • the ozone generator according to the present invention includes a plurality of discharge tubes having a discharge gap between a voltage application electrode and a ground metal electrode via a dielectric, and a gas containing oxygen flows through the discharge gap and the voltage application electrode.
  • An ozone generator configured to discharge an oxygen-containing gas into an ozonized gas by applying an AC voltage from an AC power source between the AC power source and the ground metal electrode.
  • plate-like fixed electrodes are connected to both sides of the fusing element to which fuse conductors that melt by overcurrent flow are connected to both sides of the intermediate conductor, respectively.
  • a current interrupting element in which the plate surface of the fixed electrode is fixed to the surface of the dielectric base by a fixing material is connected.
  • an ozone generator including a current interruption element that can suppress the occurrence of disconnection of a fuse conductor due to mechanical stress and can use a thin discharge tube.
  • FIG. 10 is a cross-sectional view for explaining the operation of the current interrupt device described in Patent Document 2.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an ozone generator according to Embodiment 1 of the present invention.
  • a cylindrical dielectric tube 1 and a ground metal electrode 11 are paired in an ozone generator main body container 12 to constitute one discharge tube.
  • FIG. 1 Although only two discharge tubes are shown in FIG. 1 for explaining the details of the discharge tube, several hundreds of discharge tubes are installed inside one ozone generator main body container 12 in a large-capacity ozone generator.
  • the dielectric tube 1 is formed of a cylindrical glass tube
  • the ground metal electrode 11 is formed of a stainless steel pipe
  • the dielectric tube 1 and the ground metal electrode 11 are concentric via a spacer (not shown).
  • a narrow discharge gap 25 is formed between the dielectric tube 1 and the ground metal electrode 11.
  • One end (right end) of the dielectric tube 1 is sealed, and the other end (left end) has an opening shape.
  • a voltage application electrode 2 is disposed inside the dielectric tube 1.
  • the voltage application electrode 2 is composed of a metal film formed on the inner surface of the dielectric tube 1 by vapor deposition or the like.
  • the dielectric tube 1 having the voltage application electrode 2 formed on the inner surface and the ground metal electrode 11 constitute a discharge tube.
  • the voltage application electrode 2 is connected to the output terminal of the AC voltage generator 21 in the AC power supply 16 via the electrical connection member 9, the current interrupting element 7, the power supply member 8, and the power supply lead wire 14.
  • the other end of the AC voltage generator 21 is grounded, and the ozone generator body container 12 is also grounded. A portion where the power supply lead wire 14 penetrates the ozone generator main body container 12 having the ground potential is insulated by a bushing 15.
  • the AC voltage generated by the AC voltage generator 21 of the AC power supply 16 is a high voltage that only causes discharge in the discharge gap 25, and the AC frequency is discharged via a dielectric, that is, generates silent discharge. It is a frequency that can be.
  • the AC voltage generator 21 generates a high-frequency AC voltage such as a voltage of 3 to 7 kV and a frequency of 0.5 to 5 kHz.
  • the voltage application electrode is not limited to the metal film formed on the inner surface of the dielectric, and is disposed inside the dielectric tube 1. Any metal body may be used.
  • the voltage is applied between the voltage application electrode and the ground metal electrode 11 via a dielectric, and the discharge gap is provided at any position between the voltage application electrode and the ground electrode. Any configuration capable of generating silent discharge may be used.
  • a power source control unit 22 and an output voltage drop detection unit 23 are provided in the AC power source 16.
  • the output voltage drop detection unit 23 is connected between the power feed lead 14 and the ground, detects a drop in the output voltage based on the signal from the output voltage drop detection unit 23, and detects the detected signal. This is sent to the power control unit 22.
  • the power supply control unit 22 performs device operation / stop control, AC power supply monitoring control, and the like.
  • the ozone generator main body container 12 and the AC power supply 16 constitute an ozone generator.
  • the pipe-like ground metal electrode 11 made of stainless steel is joined to the end plates 13 on both sides by welding or the like, and the end plates 13 are joined to the ozone generator body container 12 by welding or the like.
  • the end plate 13 divides the ozone generator main body container 12 into three rooms.
  • the left and right sides are filled with a gas space, and the middle is filled with cooling water 24.
  • the cooling water is configured to flow from the cooling water inlet 19 toward the cooling water outlet 20.
  • a source gas containing oxygen is introduced from the source gas inlet 17 and the gas ozonized by the discharge while passing through the discharge gap 25 is discharged from the ozone-containing gas outlet 18 and used for ozone treatment or the like.
  • FIG. 2 is an enlarged cross-sectional view for illustrating the configuration of the current interrupting element 7
  • FIG. 2A is a longitudinal cross-sectional view of the dielectric tube 1 on the power feeding portion side
  • FIG. 2B is a cross-sectional view.
  • the fuse conductor 5a and the fuse conductor 5c are connected to both sides of the intermediate conductor 5b, and the fuse element 5a, the intermediate conductor 5b, and the fuse conductor 5c constitute the fusing element 5.
  • the fixed electrode 3 on the power feeding side is connected to the side of the fuse conductor 5a opposite to the side to which the intermediate conductor 5b is connected.
  • the fixed electrode 4 on the voltage application electrode side is connected to the side of the fuse conductor 5c opposite to the side to which the intermediate conductor 5b is connected.
  • the fixed electrode 3 on the power supply side and the fixed electrode 4 on the voltage application electrode side are both plate-shaped. As will be described later, the thickness of the plate may be a very thin foil such as 0.02 mm.
  • the plate surface of the fixed electrode 3 on the power supply side is fixed to the inner surface of the dielectric tube 1 by the fixing material 3a
  • the fixed electrode 4 on the voltage application electrode side is fixed to the inner surface of the dielectric tube 1 by the fixing material 4a.
  • the fixing material 3a and the fixing material 4a are made of an adhesive having good thermal conductivity, an epoxy-based high thermal conductive adhesive, a conductive adhesive, an inorganic adhesive, and the like.
  • An electrical connection member 9 is connected to the fixed electrode 4 on the voltage application electrode side, and a power supply member 8 is connected to the fixed electrode 3 on the power supply side.
  • the dielectric tube 1 is installed in the horizontal direction, and the current interruption element 7 is disposed on the upper side inside the dielectric tube 1 as shown in FIG. 2B.
  • the current interrupting element 7 includes the fusing element 5 in which the fuse conductor 5a and the fuse conductor 5c are connected to both sides of the intermediate conductor 5b, and the intermediate conductor 5b of the fuse conductor 5a and the fuse conductor 5c on both sides of the fusing element 5.
  • the plate-like fixed electrode 3 and the fixed electrode 4 are connected to the opposite side to the side connected to the electrode, and the plate surface of each fixed electrode is fixed to the inner surface of the dielectric tube 1 by a fixing material.
  • a portion of the dielectric tube 1 that constitutes the current interruption element 7 is also referred to as a base. Note that the dimensions of the fixed electrode, the intermediate conductor, the fuse conductor, and the fixing material in FIGS. 2A and 2B are different from the actual dimensional ratio with respect to other members in each cross section, and the arrangement of each member is understood. The dimensions are enlarged for easy illustration, and each member is highlighted.
  • the power supply control unit 22 of the AC power supply 16 sends an operation command to the AC voltage generation unit 21, the high-frequency AC voltage output from the AC voltage generation unit 21 is supplied with the power supply lead 14, the power supply member 8, the current interrupting element 7, The voltage is applied to the voltage application electrode 2 through the connection member 9.
  • a high-frequency AC voltage is applied to the narrow discharge gap 25 formed between the voltage application electrode 2 and the ground metal electrode 11, discharge occurs in the discharge gap 25.
  • the discharge gap is set to 0.6 mm or less.
  • the gas passes through the discharge gap 25, and the gas is ozonized by the action of discharge to become an ozone-containing gas and is led to the outside from the ozone-containing gas outlet 18.
  • a raw material gas component a small amount of nitrogen gas is added to dry air or oxygen gas.
  • the source gas needs to contain at least oxygen. Since the temperature of the voltage application electrode 2 and the ground metal electrode 11 rises due to heat generated by the discharge, cooling is performed by flowing the cooling water 24 through the cooling water inlet 19 and the cooling water outlet 20.
  • the dielectric tube 1 breaks down and opens a hole, the voltage application electrode 2 and the ground metal electrode 11 are electrically connected. As a result, the output side of the AC power supply 16 is short-circuited, and a short-circuit large current instantaneously flows through the dielectric breakdown location of the dielectric tube 1.
  • a large short-circuit current flows through the current interrupting element 7 attached to the dielectric tube 1 that has undergone dielectric breakdown. Since the fuse conductor 5a and the fuse conductor 5c constituting the current interruption element 7 have a small cross-sectional structure and a high resistance value, if an overcurrent such as a short-circuit large current flows instantaneously in this portion, the temperature suddenly rises and melts. ⁇ Evaporate. The melted and evaporated fuse conductor becomes a high-temperature plasma state, and arc discharge occurs.
  • FIG. 3 shows the command value of the power supply control unit 22 in the operation state and the dielectric breakdown state, and the voltage / current waveform of each unit.
  • the power supply controller 22 sends an operation command
  • the AC power supply 16 is in an operating state and a high frequency high voltage is output.
  • the dielectric tube 1 is dielectrically broken, the load side of the AC power supply 16 is short-circuited, so that the power supply output voltage is reduced to near zero voltage, and at the same time, a short-circuit large current flows through the dielectric tube 1 and the current interrupting element 7 that are broken down.
  • the output voltage drop detection unit 23 detects the output voltage drop and sends the result to the power supply control unit 22.
  • the power supply control unit 22 determines that a short circuit has occurred on the power supply output side because the output voltage has dropped below a preset threshold value in spite of the power supply operation state (short circuit detection), and sends an operation stop command to the AC The voltage is sent to the voltage generator 21.
  • the AC power supply 16 stops outputting, the power supply output voltage decreases to zero, and the short-circuit large current flowing through the dielectric breakdown electrode decreases to zero.
  • the arc discharge generated in the fuse conductor 5a and the fuse conductor 5c disappears with a decrease in the short-circuit large current.
  • the fuse conductor 5a and the fuse conductor 5c shown in FIG. 2A disappear due to melting, and as a result, the intermediate conductor 5b is not supported on both sides, and falls to the bottom inside the dielectric tube 1 as shown in FIG.
  • An insulation distance shown in FIG. 4 is formed between the fixed electrode 3 on the power supply side and the voltage application electrode 2.
  • the effective value of the applied voltage is often 7.5 kV or less, and the gas pressure inside the ozone generator main body container 12 is often operated at 0.07 MPa or more.
  • the insulation distance is desirably 14 mm or more, which is more than twice the above.
  • the current interruption element size can be further reduced by setting the insulation distance to 4 mm or more.
  • the power supply controller 22 sends an operation restart command to the AC voltage generator 21 as shown in FIG. 3 immediately after issuing the operation stop command, and the AC power supply 16 outputs the high frequency high voltage again.
  • the time from the operation stop command to the operation restart command is set in advance. What is necessary is just to set this time as time more than the duration of the arc discharge which generate
  • the preset time is, for example, about 1 to 10 seconds. Since the fuse conductor 5a and the fuse conductor 5c are melted and evaporated and the intermediate conductor 5b falls to the bottom of the dielectric tube 1 and is electrically disconnected from the dielectric breakdown electrode, no current flows.
  • a high frequency high voltage is applied to the normal electrode, a current flows and discharges in the discharge gap 25, and ozone generation starts again. If the number of dielectric tubes 1 arranged in the ozone generator main body container 12 is N, the amount of ozone generation is reduced to approximately [(N ⁇ 1) / N]. In the case of an ozone generator having a large number N, such as several hundreds, the output reduction rate is small.
  • the voltage drop due to the dielectric breakdown of the dielectric tube 1 is detected, the AC power supply 16 is stopped, the short-circuit large current is reduced to zero, and the dielectric tube 1 that has undergone dielectric breakdown is electrically And the operation of the ozone generator can be continued by restarting the AC power supply 16. In this way, protection (short-circuit protection) when a short circuit occurs on the load side of the AC power supply 16 can be performed.
  • the current value during normal operation (current value per dielectric tube) flowing through the current interrupting element 7 is 0.2 to 1 A for a typical voltage of 3 to 7 kV applied to the ozone generator.
  • the current value of the overcurrent (short-circuit current) when the dielectric tube 1 breaks down is approximately 10 to 1000 times the current value during operation, although it varies depending on the impedance of the AC power supply. It is the dimensions and materials of the fuse conductor 5a and the fuse conductor 5c that dominate the resistance value between the terminals of the current interrupting element 7.
  • stainless steel (SUS304 or SUS316) is used as the material of the current interrupting element 7, and the cross-sectional dimensions of the fuse conductor 5a and the fuse conductor 5c are 0.01 to 0.05 mm in thickness and 0.05 to 0.30 mm in width.
  • the heat generated by is easily transmitted to the fixed electrode 3 on the power supply side and the fixed electrode 4 on the voltage application electrode side, and the temperature of the fuse conductor is lowered.
  • the surface of the fixed electrode 3 and the fixed electrode 4 is fixed to the inner surface of the dielectric tube 1 through the fixing material 3a and the fixing material 4a, thereby fixing the heat generated by the fuse conductor during normal operation.
  • One feature is that heat is radiated from the electrode 3 and the fixed electrode 4 through the dielectric tube 1.
  • the length of the fuse conductor is 1 mm. If the length is extremely short, for example, less than 0.1 mm, the heat from the fuse conductor to the fixed electrode on the power supply side and the fixed electrode on the voltage application electrode side will escape excessively. There is a problem that the melted material is fixed again after the current becomes zero and the fuse conductor portion is electrically connected.
  • the optimum length of the fuse conductor is 0.1 to 2 mm when SUS304 or SUS316 is used.
  • a short-circuit current was passed using a fuse conductor having a length of 0.1 to 2 mm, it was blown in 5 to 0.15 ms when the short-circuit current was 10 A, and was blown in 50 to 1.5 ⁇ s at 100 A.
  • the fixed electrode 3 and the fixed electrode 4 have plate surfaces fixed to the inner surface of the dielectric tube 1 via fixing members 3a and 4a, respectively, and are fixed to the dielectric tube 1 from the fixed electrode 3 and the fixed electrode 4 Heat is dissipated by heat conduction across the entire surface. Since the heat is dissipated on the surface, the heat dissipation amount can be increased. Furthermore, in order not to disturb the heat radiation from the fixed electrode 3 and the fixed electrode 4 to the dielectric tube 1 as much as possible, an adhesive having a good thermal conductivity was used as the fixing material 3a and the fixing material 4a. Specifically, an epoxy-based high heat conductive adhesive or conductive adhesive may be used.
  • heat conduction is improved by applying a thin thickness even with an inorganic adhesive or a normal adhesive.
  • a current during normal operation flows through the current interrupting element 7, the heat generated in the fuse conductor 5a is quickly transferred to the dielectric tube 1 through the fixed electrode 3 and the fixing material 3a on the power supply side.
  • the heat transmitted to the dielectric tube 1 spreads over a wide area of the dielectric tube 1 and dissipates heat into the surrounding gas by heat transfer.
  • a glass tube is used as the dielectric tube 1, if the thickness is about 1 to 3 mm, heat conduction in the dielectric body is fast, and heat is quickly transferred to a wide area of the dielectric tube 1.
  • this configuration can suppress an increase in temperature of the fuse conductor 5a. As a result, material deterioration due to temperature rise can be suppressed, so that disconnection due to deterioration of the fuse conductor 5a can be suppressed, and a highly reliable current interrupting element 7 can be provided.
  • the heat generated in the fuse conductor 5c is quickly transferred to the dielectric tube 1 through the fixed electrode 4 and the fixing material 4a on the voltage application electrode side, and can be dissipated. Note that heat to the dielectric tube 1 is more easily transmitted when the thickness of the adhesive used as the fixing material 3a and the fixing material 4a is reduced.
  • the fixed electrode 3 on the power supply side and the fixed electrode 4 on the voltage application electrode side are intended to efficiently transfer the heat generated by the fuse conductors 5a and 5c to the surface of the dielectric tube 1 and thus have a size. If it is too small, the temperature rises, but it is not necessary to make it too large. This is because the heat generated by the fuse conductor can be efficiently transmitted to the dielectric tube 1 by the action of the fixing material 3a and the fixing material 4a having good thermal conductivity even when the area of the surface fixed to the dielectric tube 1 is small.
  • the fixed electrode 3 on the power supply side and the fixed electrode 4 on the voltage application electrode side have a thickness of 0.01 to 0.05 mm, a width of 1.5 to 6 mm, and a length of 2 to 16 mm.
  • These fixed electrodes have a surface formed with a width of 1.5 to 6 mm and a length of 2 to 16 mm, and are fixed to the inner surface of the dielectric tube 1 constituting the base of the current interrupting element by a fixing material.
  • the cross-sectional area of the intermediate conductor 5b needs to be larger than that of the fuse conductor 5a and the fuse conductor 5c to suppress Joule heat generation with respect to the normal operation current.
  • the cross-sectional area is too large, the weight of the intermediate conductor 5b is applied to the fuse conductor 5a and the fuse conductor 5c on both sides, the mechanical stress applied to the fuse conductor is increased, and the disconnection of the fuse conductor due to the mechanical stress is likely to occur.
  • the cross-sectional dimensions of the intermediate conductor 5b are set to a thickness of 0.01 to 0.05 mm and a width of 0.5 to 5 mm.
  • the length of the intermediate conductor 5b was set to 4 to 8 mm in order to ensure the insulation dimension.
  • the thickness 0.01 ⁇ 0.5 mm of the fixing member 3a and the fixing member 4a, and the L 4 size 1 ⁇ 5 mm in FIG. With this configuration, the insulation dimensions shown in FIG. 4 are as follows in this embodiment.
  • ⁇ 2 (Inner diameter of dielectric tube 1) x 2- (0.04-0.2mm)
  • the insulation dimensions (a) to (c) are all the required insulation dimensions of 4 mm or more, and insulation can be secured. Heat generation in the intermediate conductor 5b can be suppressed by making the length of the intermediate conductor 5b as short as possible so as to satisfy the above.
  • the structure shown in FIG. 13A is obtained before the operation of the current interruption element, and the structure shown in FIG.
  • the insulation distance is ensured by (L 1 + L 2 ) after the operation of the current interrupting element.
  • the electrodes 33 and 34 are arranged at the center of the dielectric tube 1. Therefore, in the case of the same glass tube diameter, the drop distance is halved and the insulation distance (L 1 + L 2 ) is shortened. Therefore, in order to secure a necessary insulation distance, it is necessary to increase the distance between the electrodes 33 and 34.
  • heat generation is improved by suppressing the heat generation of the fuse conductor and fixing the plate surface of the plate-like fixed electrode to the inner surface of the dielectric tube, so that the fuse conductor, intermediate conductor, The temperature rise of the fixed electrode is reduced, and as a result, the thermal stress applied to the fuse conductor is reduced, and the disconnection of the fuse conductor due to the thermal stress during normal operation is eliminated.
  • the intermediate conductor 5b falls to the bottom of the dielectric tube 1 when the fuse conductor is melted, it is easy to secure the insulation distance.
  • the intermediate conductor 5b drops due to gravity, and the fixed electrode is fixed at a position where the distance from the fixed electrode becomes larger than before the drop. What is necessary is just to attach the electric current interruption element 7.
  • FIG. When the dielectric tube 1, that is, the tube axis direction of the discharge tube is installed in a horizontal direction, in order for the intermediate conductor 5 b to fall to the bottom of the dielectric tube 1, the current interrupting element 7 has a fixed electrode.
  • the fixed electrode can be made small, and the intermediate conductor 5b falls to the bottom of the dielectric tube 1 when the fuse conductor is blown, so that an insulation distance is secured. Becomes easy. Therefore, even if the glass tube diameter is reduced, the temperature rise of the fuse conductor during normal operation can be suppressed, and the insulation function after the fuse conductor is blown can be ensured. As a result, the tube diameter of the dielectric tube 1 can be reduced, and the dielectric tube 1 can be loaded into the ozone generator body container at a high density, and a compact and inexpensive ozone generator can be provided.
  • the heat generation of the fuse conductor during normal operation is reduced, the loss of the electric circuit when ozone is generated is reduced and the ozone generation efficiency is improved. Further, since the heat generation of the fuse conductor is reduced, the increase in gas temperature until the source gas is introduced from the source gas inlet 17 and enters the discharge gap 25 is reduced, so that the temperature rise at the inlet portion of the discharge gap portion is suppressed. , Ozone generation efficiency is improved.
  • connection member 9 connects between the fixed electrode 4 on the voltage application electrode side and the voltage application electrode 2
  • the electrical connection member 9 is omitted and the voltage application is performed on the fixed electrode 4 on the voltage application electrode side.
  • a direct electrical connection may be made on the electrode 2.
  • the current interrupting element 7 is attached to the upper half position of the dielectric tube 1, but if it is attached to the lower half position, the insulation distance after the fuse conductor is melted and evaporated is shortened.
  • the heat generated in the fuse conductor is transferred from the fixed electrode 3 on the power supply side fixed to the dielectric tube 1 and the fixed electrode 4 on the voltage application electrode side to the surrounding gas by heat transfer from the wide surface of the dielectric tube 1.
  • FIG. FIG. 5 is a cross-sectional view showing a main part of dielectric tube 1 of an ozone generator according to Embodiment 2 of the present invention.
  • Embodiment 1 although the case where only one fusing element 5 was used was shown, if two fusing elements are used for one current interruption element 7, the reliability of the apparatus can be improved.
  • a fuse conductor 51a and a fuse conductor 51c are connected to both sides of the intermediate conductor 51b to form a fusing element 51, and a fuse conductor 52a and a fuse conductor 52c are connected to both sides of the intermediate conductor 52b.
  • the fusing element 52 is configured by connection.
  • An intermediate fixed electrode 6 is disposed between the fixed electrode 3 on the power supply side and the fixed electrode 4 on the voltage application electrode side, and a fusing element 51 is connected between the fixed electrode 3 on the power supply side and the intermediate fixed electrode 6, A fusing element 52 is connected between the fixed electrode 4 on the application electrode side and the intermediate fixed electrode 6.
  • the intermediate fixed electrode 6 is fixed to the dielectric tube 1 by a fixing material 6a having good thermal conductivity.
  • the current interruption element 7 is configured by the following.
  • the heat generated in the fuse conductor 51a due to the current flowing in the dielectric tube 1 is transmitted to the dielectric tube 1 through the fixed electrode 3 and the fixing material 3a on the power supply side, and the heat generated in the fuse conductor 51c and the fuse conductor 52a is intermediate.
  • the heat generated in the fuse conductor 52c is transmitted to the dielectric tube 1 through the fixed electrode 6 and the fixing material 4a, and the heat generated in the fuse conductor 52c is transmitted to the dielectric tube 1 through the fixed electrode 4 and the fixing material 4a on the voltage application electrode side. Heat is efficiently dissipated to the surrounding gas by heat transfer.
  • the fusing element Since the fusing element sometimes operates abnormally as described below, the reliability is improved if the fusing element is composed of two pieces. (1) Since the width of the fuse conductor is small, the fuse conductor may not be blown when the short-circuit current is small due to manufacturing size variation. (2) When the fuse conductor or the intermediate conductor is partially melted at the time of fusing and is close to the dielectric, it may be welded to the dielectric. In this case, since the intermediate conductor does not fall down, the insulation distance is short, and when the voltage is applied again, it is short-circuited again. In order to operate normally even when one of the two fusing elements does not operate, the specifications of the fusing element 51 and the fusing element 52 are preferably matched to the specifications of the fusing element 5 of the first embodiment.
  • FIG. 6A shows a state where both the fusing element 51 and the fusing element 52 are dropped.
  • the insulation distance becomes 1.5 to 2 times longer than that of the first embodiment, so that the insulation function is sufficient. Fulfill.
  • FIG. 6B shows a state where the fusing element 51 does not operate normally, only the fusing element 52 operates normally, and only the fusing element 52 falls.
  • the insulation distance in this case is the same as that of the first embodiment.
  • the specifications of the fusing element 51 and the fusing element 52 are preferably matched to the specifications of the fusing element 5 of the first embodiment, but it is necessary for the insulation distance due to dropping of a plurality of fusing elements. Even if it is designed to satisfy a long insulation distance (4 mm or more), the same effect as in the first embodiment can be obtained.
  • the specific design is such that all of the following (a), (b), and (c) are 4 mm or more for L 1 , L 2 , L 3 , L 4 , L 5 , and L 6 in FIG. 6A. That's fine.
  • FIG. 7 is a cross-sectional view showing a main part of dielectric tube 1 of an ozone generator according to Embodiment 3 of the present invention.
  • the end of the dielectric tube 1 on the side fed by the power feeding member 8 is in an open state, but a metal cap 29 is attached to the opening of the dielectric tube 1 as shown in FIG.
  • the power supply side fixed electrode 3 and the cap 29 are electrically connected by the connection conductor 26, and the power supply member 8 is electrically connected to the cap 29.
  • the fuse conductors 5a and 5c When a short-circuit current flows through the current interrupting element 7, the fuse conductors 5a and 5c are melted and scattered, and the intermediate conductor 5b is scattered by arc discharge and jumps out from the opening of the dielectric tube 1, and these are discharged to other dielectrics. It may adhere to the surface of the body and keep electrical insulation. By attaching the cap 29, the fuse conductors 5a and 5c and the intermediate conductor 5b are not scattered outside the dielectric, so that the reliability of the ozone generator can be improved.
  • the cap 29 may be fixed to the dielectric tube 1 by any method such as caulking of the cap 29 or application of an inorganic adhesive inside the cap.
  • FIG. FIG. 8 is an enlarged cross-sectional view showing a configuration of a current interrupt device provided in an ozone generator according to Embodiment 4 of the present invention.
  • the fusing element is attached to the inner surface of the dielectric tube 1 .
  • the fusing element 5 is attached to the upper side of the inner surface of another cylindrical dielectric member 27.
  • the metal caps 29a and 29b are attached to the openings on both sides of the dielectric member 27, the power supply side fixed electrode 3 and the cap 29a are electrically connected by the connection conductor 26a, and the voltage application electrode side fixed electrode 4 and the cap 29b are connected.
  • the current interrupting element 7 may be configured independently of the dielectric tube 1.
  • a part of the cylindrical dielectric member 27 constitutes the base of the current interrupting element 7.
  • the dielectric member 27 constituting the base of the current interrupting element 7 is a dielectric. It may be arranged inside the tube 1. One or both of the caps on both sides can be omitted.
  • the dielectric member 27 has a cylindrical shape, but may have a different shape.
  • the dielectric member 27 is a dielectric plate made of, for example, glass or ceramics. Even if the current interrupting element 7 is configured as a base, the same effect can be obtained. Further, even if this structure is attached to the inside of the dielectric tube 1, the same effect can be obtained.
  • FIG. 9 is an enlarged cross-sectional view showing a configuration of a current interrupt device provided in an ozone generator according to Embodiment 5 of the present invention.
  • the current interrupting element 7 configured with a plate-like dielectric member 27 as a base may be arranged inside another cylindrical second dielectric member 28.
  • the dielectric member 27 constituting the base of the current interrupting element 7 is fixed to the second dielectric member 28 by a method not shown.
  • Metal caps 29a and 29b are attached to the openings on both sides of the second dielectric member 28, the fixed electrode 3 on the power supply side and the cap 29a are electrically connected by a connection conductor 26a, and the fixed electrode 4 on the voltage application electrode side and the cap 29b are connected.
  • connection conductor 26b They are electrically connected by a connection conductor 26b.
  • the heat generated in the fuse conductors 5a and 5b is dissipated from the dielectric member 27 via the fixed electrode 3 on the power supply side and the fixed electrode 4 on the voltage application electrode side, and once inside the cylindrical second dielectric member 28.
  • the gas is raised and radiated by heat transfer from the surface of the second dielectric member 28 into the external gas.
  • the manufacturing process is separate from the dielectric tube 1, the voltage application electrode 2, and the cylindrical second dielectric member 28. Since the current interrupt device 7 can be manufactured, there is an advantage that the manufacturing process of the fuse can be simplified and the manufacturing cost can be reduced.
  • the method of installing the second dielectric member 28 outside the dielectric tube 1 has been shown, but it may be arranged inside the dielectric tube 1.
  • One or both of the caps on both sides can be omitted.
  • the fuse conductor is made of a material other than stainless steel (SUS304), the same effect can be obtained if the dimensions are designed and manufactured. However, when a chemical reaction is likely to occur with oxygen gas or NOx gas generated by discharge and deterioration is considered in the long term, the same effect can be obtained by attaching the cap 29.
  • the current interrupting element configured based on a dielectric different from the dielectric configuring the discharge tube shown in FIGS. 8 and 9 described in the fourth and fifth embodiments is used. It can be applied, and the same effects as in the fourth and fifth embodiments can be obtained.
  • a discharge tube configuration in which a dielectric is coated on the inner surface of the ground metal electrode tube, and a metal voltage application electrode is disposed by providing a discharge gap inside the dielectric coating.
  • a blocking element can be applied, and effects similar to those of the fourth and fifth embodiments can be obtained.
  • the current interrupting element shown in FIGS. 8 and 9 is applied, as a discharge tube, a silent discharge is performed via a dielectric by applying a high-frequency AC voltage between the voltage application electrode and the ground metal electrode. Any structure may be used as long as the configuration generates the same, and the same effects as those of the fourth and fifth embodiments can be obtained.
  • FIG. 10A and 10B show the configuration of metal member 100 through which current flows, excluding the dielectric base and the fixing member, of current blocking element 7 of the ozone generator according to Embodiment 6 of the present invention. It is a top view.
  • This metal member 100 can be applied to the metal member of the current interruption element in the first to fifth embodiments.
  • the entire metal member through which a current flows can be manufactured integrally by etching a thin metal plate, that is, a metal foil, by etching. By manufacturing the entire metal member in one piece by etching in this way, the cost of the current interrupting device can be greatly reduced, and the small cross-sectional shape of the fuse conductor can be precisely processed.
  • FIG. 10A is a plan view showing a configuration in which one fusing element 5 is provided, the fixed electrode 3 on the power supply side, the fusing element 5 (fuse conductor 5a, intermediate conductor 5b, fuse conductor 5c), and fixed electrode on the voltage application electrode side.
  • 4 shows a configuration in which the entire metal members connected in the order of 4 are integrally manufactured by etching.
  • 10B is a plan view showing a configuration with two fusing elements, including a fixed electrode 3 on the power supply side, a fusing element 51 (fuse conductor 51a, intermediate conductor 51b, fuse conductor 51c), intermediate fixed electrode 6,
  • the structure is shown in which the entire metal member connected in the order of the fusing element 52 (the fuse conductor 52a, the intermediate conductor 52b, the fuse conductor 52c) and the fixed electrode 4 on the voltage application electrode side is integrally manufactured by etching.
  • the material cost is relatively low, and handling at the time of manufacturing is possible even with a thin thickness of about 0.15 mm.
  • the fusing performance is determined by the cross-sectional area of the fuse conductor, the thinner the material is, the wider the width required for the fuse conductor is.
  • the fuse conductor is designed with the same thickness of 0.02 mm, the fuse conductor width is 0.006 mm, which cannot be processed accurately by etching. Therefore, the machining cost is greatly increased.
  • a metal material having a resistivity close to that of stainless steel 70 ⁇ ⁇ cm is suitable for producing a current interrupting element for an ozone generator by etching processing at a low production cost. Since the temperature of the fuse conductor portion is increased by energization and is oxidized and deteriorated by oxygen gas, a material that is unlikely to deteriorate, such as stainless steel, is preferable for increasing the reliability of the current interrupting element.
  • the dimensions of the fixed electrode 3 on the power supply side, the fixed electrode 4 on the voltage application electrode side, and the intermediate fixed electrode 6 are, for example, a width of 1.5. It is ⁇ 6mm and length is 2 ⁇ 16mm.
  • the dimensions of the intermediate conductor 5b, the intermediate conductor 51b, and the intermediate conductor 52b are, for example, a width of 0.5 to 5 mm and a length of 3 to 8 mm.
  • the surface of the fixed electrode formed of a stainless steel foil processed to the above dimensions by etching and having a width of 1.5 to 6 mm and a length of 2 to 16 mm is fixed to the dielectric base with a fixing material.
  • a current interruption element is configured. By using a metal member fabricated by etching a stainless steel foil in this manner, a current interrupting device with small performance variation and high reliability can be provided.
  • Embodiment 7 FIG.
  • the intermediate conductor 5b falls to the bottom inside the second dielectric member 28 when the current interrupting element 7 operates. Can be visually confirmed.
  • the fuse part of the second dielectric member 28 is visually inspected, and the intermediate conductor falls to the bottom. It can be confirmed that the current interrupting element 7 is activated. If the inside of the second dielectric member 28 is not visible, for example, it is necessary to check whether the current interrupting element 7 is activated by measuring the resistance value between the cap 29a and the cap 29b.
  • the dielectric tube 1 in the first embodiment, the second embodiment, and the third embodiment, and the fourth embodiment also in other embodiments. Since the dielectric member 27 is made of a transparent glass tube, the fall of the intermediate conductor can be visually confirmed, and it goes without saying that the same effect is produced.
  • Embodiment 8 FIG. In the first to seventh embodiments, the case where the discharge tube is installed in the horizontal direction has been described. However, when the discharge tube is installed vertically, that is, when the tube axis direction of the discharge tube is in the direction of gravity, current interruption is performed. What is necessary is just to attach the element 7 so that it may face a perpendicular direction. In addition, when the discharge tube is formed of a dielectric tube having one side open as shown in FIG. 1, an opening is arranged on the upper side in the vertical direction of the dielectric tube, and a current interrupting element is attached in the vicinity of the opening. Good.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Fuses (AREA)

Abstract

電圧印加電極と接地金属電極の間に誘電体を介して放電ギャップを有する放電管を複数備え、放電ギャップを酸素を含むガスが流れるとともに、電圧印加電極と接地金属電極との間に交流電源からの交流電圧が印加されることにより、酸素を含むガスが放電してオゾン化ガスとなるよう構成されたオゾン発生装置において、交流電源から複数の放電管のそれぞれの電圧印加電極に給電する途中に、中間導体の両側に、過電流が流れることにより溶融するヒューズ導体がそれぞれ接続された溶断エレメントの両側に板状の固定電極がそれぞれ接続され、それぞれの固定電極の板面が誘電体の基台の面に固定材により固定された電流遮断素子が接続されるようにした。

Description

電流遮断素子、およびオゾン発生装置
 この発明は、酸素を含むガスを放電によりオゾン化するオゾン発生装置に関し、特に運転保護のために備えられる電流遮断素子に関するものである。
 大容量のオゾン発生装置では、電源に接続される負荷として放電管が100本以上用いられている。このようなオゾン発生装置において、放電管のばらつきにより、1本の放電管に短絡放電が生じてその放電管でアーク放電が生じた場合でも、その放電管のみ電源から切り離して、装置全体の運転を継続できるように、各放電管にヒューズを備えるものが提案されている(例えば、特許文献1参照)。
 装置運転中に、ある放電管を構成する誘電体管が絶縁破壊し、誘電体管に穴が開き、高電圧電極から穴を通じて接地金属電極との間にアーク放電が発生すると、その結果、高電圧電極と接地金属電極の間に大電流の短絡電流が流れる。短絡電流が流れ続けると、接地金属電極に穴が開き、冷却水漏れが発生する場合がある。これを防ぐために、特許文献1では、高電圧電極の入口にヒューズを取り付け、短絡大電流が流れた際にはヒューズが大電流を遮断し、絶縁破壊した放電管を電源から切り離す。絶縁破壊した放電管以外の放電管には電力が供給されるので、放電が発生しオゾン発生を続けることができる。特許文献1に示されるオゾン発生装置においては、ガラスで構成した誘電体管の内部の給電部にガラス管から離してヒューズを配置していた。
 図11は、高電圧用に使用されるヒューズの一般的な構成を示す断面図である。磁器管31の中にヒューズエレメント30を通し、その両端は磁器管31の両端につけられたキャップ14a、14bに電気的に接続固定されている。短絡大電流が流れるとヒューズエレメント30が溶融・蒸発し、短絡大電流の流れる経路にアーク放電が発生する。アーク放電を強制的に消すため、ヒューズエレメントの周囲にけい砂32を充填し、けい砂によりアークの熱を吸収しアークプラズマ密度を薄くし、キャップ間にかかる電圧を上昇させることにより、アークを消滅させている。アークが消滅すると、ヒューズ両端には高電圧が印加されるが、キャップ14a、14b間の距離を十分離しているので高電圧に対して絶縁を保ち、再度ヒューズ内に電流が流れることはない。このようにして、絶縁破壊した電極はヒューズにより電源から電気的に切り離される。
 特許文献2では、一般的なヒューズの代わりに用いる、オゾン発生装置に適した電流遮断素子が提案されている。図12は、特許文献2に示された電流遮断素子の一例である。3つのヒューズ接続板35と両端の電極33、34の間に、4つのヒューズ導体36を電気接続して電流遮断素子を構成している。正常運転時に流れる電流でヒューズ導体が発熱するので、ヒューズ導体36の両側に空冷可能な表面積を持つヒューズ接続板35を接続し、ヒューズ導体36での発熱をヒューズ接続板35から周囲のガス雰囲気に逃がし、ヒューズ導体36の温度上昇を抑制している。短絡大電流が流れると、4つのヒューズ導体36が溶融するので、3つのヒューズ接続板35は落下する。この構成の場合は、図11のヒューズとは異なりヒューズ導体の周囲にはけい砂を充填していないため、高電圧で使用する場合や、10A以上の短絡電流が流れる場合にアーク放電を消滅させることが難しい。そこで、誘電体管が絶縁破壊したときの電源電圧の低下、もしくは電流上昇を検出することで誘電体管の絶縁破壊を検出し、電源の出力を低下もしくは停止することでアークを消滅させる。アーク消滅後は、電極33と電極34間は十分大きな絶縁距離を確保できるため、絶縁破壊した電極は電気的に切り離すことができる。特許文献2に記載された電流遮断素子は、誘電体管(ガラス管)の内部にガラス管から離して配置されている。また、ヒューズ導体の材料としてステンレス材料を使用することで、オゾン発生器内部の高酸化雰囲気中でも安定した電流遮断素子を構成している。
国際公開2016/084181号 特開2011-243484号公報
 従来のオゾン発生装置において、図11に示すヒューズを使用する場合は、ヒューズの寸法が大きかった。オゾン発生器に印加される代表的な電圧は3~7kV、電流は0.2~1Aである。電圧が高いため電力用ヒューズを適用する必要があり、ヒューズ寸法は外径が20~40mm、長さ110~200mmとサイズが大きくなるという課題があった。一方、ガラス管外径を小さくするとオゾン発生器本体容器内へのガラス管装填密度を高くできるので、同一のオゾン発生量を発生する場合のオゾン発生器本体容器を小さくできる。このため、コスト低減の観点から、オゾン発生器本体容器を小さくするために、ガラス管径を小さくしたいという要求があった。しかしヒューズを使用する場合は、ヒューズ外径が大きいのでガラス管外径を小さくできないため、オゾン発生器本体容器内へのガラス管装填密度を高くできず、結果としてオゾン発生器本体容器を小さくしてコスト低減できないという問題点があった。
 また、図12に示すような、特許文献2に記載されている電流遮断素子を使用する場合は、ヒューズ導体の発熱を効率よく周囲の雰囲気ガス中に放散するにはヒューズ接続板35の面積を大きくする必要があった。ヒューズ接続板の面積を大きくすると重くなり、細いヒューズ導体に力がかかる。このため装置を輸送する際の振動によりヒューズ導体が断線しやすくなるという問題があった。またヒューズ導体は装置の運転ON・OFF動作により温度上昇と冷却を繰り返すのでヒューズ導体には熱応力がかかり、細いヒューズ導体にヒューズ接続板から常時かかる機械応力とあいまって、ヒューズ導体が破損しやすく電流遮断素子の寿命が短いという問題があった。また、オゾン発生器のように高電圧を電極に印加する場合には、電流遮断素子が溶断した後の絶縁距離を確保するためにはヒューズ導体の長さを長くする必要があり、この結果、正常運転時の通電電流でヒューズ導体の発熱が大きく、ヒューズ導体の温度が上昇するため、電流遮断素子の寿命が短いという問題があった。
 電流遮断素子の寿命が短いと、オゾン発生器の中で運転可能な放電管の本数が減り、オゾン発生量が低下する。オゾン発生量の低下が少ない間は電源から放電管に注入する電力を増やせばオゾン発生量が増えるが、電源の余裕がなくなると定格のオゾン発生量を出せなくなるため、この場合はオゾン発生器本体を開放点検し電極管を交換する必要がある。このように電流遮断素子寿命が短いと、発生器の開放点検周期が短くなりメンテナンスコストがアップするという問題がある。
 この発明は、上記のような問題点を解決するためになされたものであり、細い放電管を使用でき、オゾン発生器を小型化できる、信頼性の高い電流遮断素子を備えたオゾン発生装置を提供することを目的とする。
 この発明に係る電流遮断素子は、中間導体の両側に、過電流が流れることにより溶融するヒューズ導体がそれぞれ接続された溶断エレメントの両側に板状の固定電極がそれぞれ接続され、それぞれの固定電極の板面が誘電体の基台の面に固定材により固定されているものである。
 また、この発明に係るオゾン発生装置は、電圧印加電極と接地金属電極の間に誘電体を介して放電ギャップを有する放電管を複数備え、放電ギャップを酸素を含むガスが流れるとともに、電圧印加電極と接地金属電極との間に交流電源からの交流電圧が印加されることにより、酸素を含むガスが放電してオゾン化ガスとなるよう構成されたオゾン発生装置において、交流電源から複数の放電管のそれぞれの電圧印加電極に給電する途中に、中間導体の両側に、過電流が流れることにより溶融するヒューズ導体がそれぞれ接続された溶断エレメントの両側に板状の固定電極がそれぞれ接続され、それぞれの固定電極の板面が誘電体の基台の面に固定材により固定された電流遮断素子が接続されているものである。
 この発明によれば、機械応力によるヒューズ導体の断線発生が抑制されるとともに、細い放電管を使用することができる電流遮断素子を備えたオゾン発生装置を提供できる。
この発明の実施の形態1によるオゾン発生装置の概略構成を示す断面図である。 この発明の実施の形態1によるオゾン発生装置の、電流遮断素子を備えた誘電体管の要部を示す拡大断面図である。 この発明の実施の形態1によるオゾン発生装置の動作を説明するための線図である。 この発明の実施の形態1によるオゾン発生装置に備えられた電流遮断素子のヒューズ導体が溶融して消滅した状態を示す断面図である。 この発明の実施の形態2によるオゾン発生装置の、電流遮断素子を備えた誘電体管の要部を示す拡大断面図である。 この発明の実施の形態2によるオゾン発生装置に備えられた電流遮断素子のヒューズ導体が溶融して消滅した状態を示す断面図である。 この発明の実施の形態3によるオゾン発生装置の、電流遮断素子を備えた誘電体管の要部を示す拡大断面図である。 この発明の実施の形態4によるオゾン発生装置に備えられた電流遮断素子の構成を示す拡大断面図である。 この発明の実施の形態5によるオゾン発生装置に備えられた電流遮断素子の構成を示す拡大断面図である。 この発明の実施の形態6による電流遮断素子の構成部材を示す平面図である。 従来のヒューズの構成を示す断面図である。 特許文献2に記載された電流遮断素子の構成の一例を示す図である。 特許文献2に記載された電流遮断素子の動作を説明するための断面図である。
実施の形態1.
 図1はこの発明の実施の形態1によるオゾン発生装置の概略構成を示す断面図である。図1において、オゾン発生器本体容器12の内部に、円筒形状の誘電体管1と接地金属電極11が対となって1本の放電管を構成している。図1では放電管の詳細を説明するため、放電管は2本のみ図示されているが、大容量のオゾン発生装置では一つのオゾン発生器本体容器12の内部に数百本の放電管が設置されている。例えば、誘電体管1は円筒形状のガラス管で構成され、接地金属電極11はステンレスからなるパイプで構成され、図示していないスペーサを介して、誘電体管1と接地金属電極11は同心状に配置され、誘電体管1と接地金属電極11の間には狭い放電ギャップ25が形成されている。誘電体管1の片端(右端)は封じられ、他端(左端)は開口形状となっている。誘電体管1の内部に電圧印加電極2が配置されている。ここでは、電圧印加電極2は誘電体管1の内面に蒸着などで形成された金属膜により構成されている。内面に電圧印加電極2が形成された誘電体管1と接地金属電極11で放電管を構成する。電圧印加電極2は、電気接続部材9、電流遮断素子7、給電部材8、給電リード線14を経由して交流電源16内の交流電圧発生部21の出力端に接続されている。交流電圧発生部21の他端は接地され、オゾン発生器本体容器12も接地されている。給電リード線14が接地電位であるオゾン発生器本体容器12を貫通する部分は、ブッシング15により絶縁されている。交流電源16の交流電圧発生部21が発生する交流電圧は、放電ギャップ25において放電が生じるだけの高電圧であり、交流の周波数は、誘電体を介して放電させる、すなわち無声放電を発生させることができる周波数である。交流電圧発生部21は、例えば、電圧3~7kV、周波数0.5~5kHzといった高周波の交流電圧を発生する。
 ここでは電圧印加電極として誘電体の内面に形成された金属膜の例を示すが、電圧印加電極は、誘電体の内面に形成された金属膜に限らず、誘電体管1の内部に配置された金属体であればよい。この電圧印加電極と接地金属電極11の間に誘電体を介して電圧が印加される構成で、電圧印加電極と接地電極の間のいずれかの位置に放電ギャップを有する構成で、放電ギャップにおいていわゆる無声放電を発生できる構成であればよい。
 交流電源16内には、電源制御部22と出力電圧低下検出部23を備える。この実施の形態では、出力電圧低下検出部23は給電リード線14と接地との間に接続され、出力電圧低下検出部23の信号をもとに出力電圧の低下を検出し、検出した信号を電源制御部22に送る。電源制御部22は、装置の運転・停止制御、交流電源の監視制御などを行う。オゾン発生器本体容器12と交流電源16でオゾン発生装置を構成する。
 ステンレスから成るパイプ状の接地金属電極11は両側の端板13と溶接等により接合され、端板13はオゾン発生器本体容器12と溶接等により接合されている。端板13はオゾン発生器本体容器12を3つの部屋に分割していて、左右はガス空間、真ん中は冷却水24が満たされている。冷却水は、冷却水入口19から冷却水出口20に向けて流すように構成している。酸素を含む原料ガスが原料ガス入口17から導入され、放電ギャップ25を通過する間に放電によりオゾン化されたガスはオゾン含有ガス出口18から排出され、オゾン処理などに利用される。
 図2は電流遮断素子7の構成を示すための拡大断面図であり、図2Aは誘電体管1の給電部側の長手方向断面図、図2Bは横断面図である。中間導体5bの両側にヒューズ導体5aおよびヒューズ導体5cが接続され、ヒューズ導体5a、中間導体5b、ヒューズ導体5cで溶断エレメント5を構成する。ヒューズ導体5aの中間導体5bが接続された側とは反対側に給電側の固定電極3が接続されている。また、ヒューズ導体5cの中間導体5bが接続された側とは反対側に電圧印加電極側の固定電極4が接続されている。給電側の固定電極3および電圧印加電極側の固定電極4はいずれも板状である。後述するが、板の厚みは、例えば0.02mmのようにごく薄い箔のような厚みであっても良い。給電側の固定電極3は板面が固定材3aにより、電圧印加電極側の固定電極4は板面が固定材4aにより、それぞれ誘電体管1の内面に固定されている。固定材3aおよび固定材4aは、熱伝導性の良い接着剤、エポキシ系の高熱伝導接着剤、導電性接着剤、無機系の接着剤などで構成されている。電圧印加電極側の固定電極4には電気接続部材9が接続されており、給電側の固定電極3には給電部材8が接続されている。この実施の形態では、誘電体管1は水平方向に設置されており、図2Bに示すように、電流遮断素子7は誘電体管1の内部の上側に配置されている。
 このように、電流遮断素子7は、中間導体5bの両側にヒューズ導体5aおよびヒューズ導体5cが接続された溶断エレメント5と、溶断エレメント5の両側のヒューズ導体5aおよびヒューズ導体5cの、中間導体5bに接続された側とは反対側に接続されたそれぞれ板状の固定電極3および固定電極4とを備え、それぞれの固定電極の板面が誘電体管1の内面に固定材により固定されて構成されている。誘電体管1の、電流遮断素子7を構成する部分を基台とも称する。なお、図2A、図2Bにおける固定電極、中間導体、ヒューズ導体、固定材の寸法は、各断面における他の部材に対する実際の寸法比とは異なって図示されており、各部材の配置が理解され易いように寸法を拡大、また各部材が強調されて図示されている。
 次に動作について説明する。交流電源16の電源制御部22が運転指令を交流電圧発生部21に送ると、交流電圧発生部21から出力された高周波の交流電圧は給電リード線14、給電部材8、電流遮断素子7、電気接続部材9を通じて電圧印加電極2に印加される。電圧印加電極2と接地金属電極11の間に形成された狭い放電ギャップ25に高周波の交流電圧が印加されると、放電ギャップ25で放電が発生する。放電ギャップは0.6mm以下に設定される場合が多い。原料ガス入口17から酸素を含むガスを導入すると、ガスは放電ギャップ25を通り、放電の作用でガスがオゾン化してオゾン含有ガスとなりオゾン含有ガス出口18から外部に導かれる。原料ガス成分は乾燥空気、もしくは酸素ガスに微量の窒素ガスを添加する。原料ガスは少なくとも酸素を含んでいる必要がある。放電による発熱で電圧印加電極2と接地金属電極11の温度が上昇するので、冷却水入口19、冷却水出口20を通じて冷却水24を流し冷却を行う。
 誘電体管1が絶縁破壊して穴が開いた場合、電圧印加電極2と接地金属電極11の間が導通する。この結果、交流電源16の出力側が短絡状態となり、瞬時に短絡大電流が誘電体管1の絶縁破壊箇所を通じて流れる。絶縁破壊した誘電体管1に取付けられた電流遮断素子7には短絡大電流が流れる。電流遮断素子7を構成するヒューズ導体5aおよびヒューズ導体5cは断面積の小さな構造で抵抗値が高いので、この部分に瞬時に短絡大電流のような過電流が流れると温度が急に上昇し溶融・蒸発する。溶融・蒸発したヒューズ導体は高温のプラズマ状態となり、アーク放電が発生する。
 次に、運転状態、絶縁破壊状態での電源制御部22の指令値、各部の電圧・電流波形を図3に示す。電源制御部22が運転指令を送ると交流電源16は運転状態となり高周波高電圧が出力される。誘電体管1が絶縁破壊すると交流電源16の負荷側が短絡状態となるので、電源出力電圧はゼロ電圧近くまで低下すると同時に絶縁破壊した誘電体管1および電流遮断素子7に短絡大電流が流れる。一方、正常電極に印加される電圧がゼロ付近まで低下するため、正常電極に流れる電流はゼロ付近まで低下し、放電ギャップ25で発生していた放電が停止し、オゾン発生が停止する。交流電源16の出力電圧が予め設定された閾値以下に低下すると、出力電圧低下検出部23は出力電圧低下を検出し、結果を電源制御部22に送る。電源制御部22は、電源運転状態であるにも拘わらず予め設定された閾値以下に出力電圧が低下したことから電源出力側で短絡が発生したと判断し(短絡検出)、運転停止指令を交流電圧発生部21に送る。その結果、交流電源16は出力を停止し、電源出力電圧がゼロに低下して、絶縁破壊した電極に流れていた短絡大電流がゼロに低下する。ヒューズ導体5aおよびヒューズ導体5c部で発生していたアーク放電は、短絡大電流の低下とともに消滅する。図2Aに示すヒューズ導体5aおよびヒューズ導体5cは溶融により消滅し、その結果中間導体5bは、両側の支持がなくなるので、図4に示すように誘電体管1の内部の底部に落下する。給電側の固定電極3と電圧印加電極2の間には、図4に示す絶縁距離ができる。
 (a)給電側の固定電極3と電圧印加電極側の固定電極4間の絶縁距離=L
 (b)給電側の固定電極3と電圧印加電極側の固定電極4間の中間導体5bを介した絶縁距離=L+L
 (c)給電側の固定電極3と電圧印加電極2間の中間導体5bを介した絶縁距離=L+L
絶縁距離は、(a)、(b)、(c)のいずれも十分確保しているため、再度高周波高電圧が給電側の固定電極3に印加されても、上記の絶縁距離を示した部分でアーク放電が発生することはない。通常のオゾン発生器においては、印加電圧実効値は7.5kV以下である場合が多く、またオゾン発生器本体容器12内部のガス圧力を0.07MPa以上で動作させる場合が多い。この場合は絶縁距離=7mm以上とすることで電圧再印加時にアーク放電は発生しない。但し、長期間使用すると誘電体管1の内面が汚損し、絶縁性能が劣化している場合があるので、できれば絶縁距離は上記の2倍以上の14mm以上とすることが望ましい。また、オゾン発生器の運転電圧が低く、例えば4kVの場合には絶縁距離は4mm以上とすることで、電流遮断素子サイズを更に小さくできる。
 電源制御部22は、運転停止指令を出した後、すぐに図3に示すように運転再開指令を交流電圧発生部21に送り、交流電源16は高周波高電圧を再度出力する。運転停止指令から運転再開指令までの時間は、予め設定しておく。この時間は、ヒューズ導体5aおよびヒューズ導体5c部で発生するアーク放電の継続時間以上の時間として設定すればよい。この予め設定する時間は、例えば1~10秒程度である。絶縁破壊した電極はヒューズ導体5aおよびヒューズ導体5cが溶融・蒸発し、中間導体5bが誘電体管1の底に落下し電気的に切り離されているので電流は流れない。正常電極には高周波高電圧が印加され、電流が流れて放電ギャップ25で放電し、再度オゾン発生を開始する。オゾン発生器本体容器12内に配置される誘電体管1の本数をN本とすると、オゾン発生量は概略[(N-1)/N]に低下する。本数Nが例えば数百のように多いオゾン発生器では出力低下割合は少なくなる。
 上記で説明したように、誘電体管1の絶縁破壊による電圧低下を検出して交流電源16を停止して短絡大電流をゼロに下げ、絶縁破壊した誘電体管1を電流遮断素子7により電気的に切り離し、交流電源16を再起動することによりオゾン発生装置の運転を継続することができる。このようにして交流電源16の負荷側で短絡した場合の保護(短絡保護)を行うことができる。
 なお、上記では、誘電体管の絶縁破壊、すなわち放電管の絶縁破壊を検出する方法として、交流電源内に設けた出力電圧低下検出部23で出力電圧の低下を測定して検出する場合を説明したが、その他の方法、例えば、出力電流の増加を検出する方法、複数の放電管を2つに分割し電源の出力を2つに分割して供給し電流値の差分で検出する方法、発生器本体容器内部のアーク放電から出る光を測定する方法などを用いて放電管の絶縁破壊を検出し、交流電源16の出力を制御しても同様の効果を奏する。
 次に本実施の形態1での電流遮断素子7での発熱と冷却について説明する。電流遮断素子7に流れる正常運転時の電流値(誘電体管1本当りの電流値)は、オゾン発生器に印加される代表的な電圧3~7kVの場合、0.2~1Aである。これに対し、誘電体管1が絶縁破壊したときの過電流(短絡電流)の電流値は、交流電源のインピーダンスによって異なるが、運転時の電流値の概略10倍~1000倍である。電流遮断素子7の端子間抵抗値を支配しているのは、ヒューズ導体5aおよびヒューズ導体5cの寸法と材料であり、断面積S、長さL、抵抗率ρとすると、ヒューズ導体1個の抵抗値:R=ρ×(L/S)となる。電流遮断素子7が動作するには、過電流が流れることによりヒューズ導体5aおよびヒューズ導体5cが溶融する温度以上に温度上昇する必要がある。短絡電流は瞬間的に流れるため、ヒューズ導体で発生したジュール熱は周囲にほとんど逃げることなくヒューズ導体を加熱する。このため、ヒューズ導体が溶融するかどうかは、ヒューズ導体の材料によって決まる溶融温度、比重、比熱、抵抗率ρ、断面積Sにより決まる。
 本実施の形態においては、電流遮断素子7の材料としてステンレス(SUS304やSUS316)を使用し、ヒューズ導体5aおよびヒューズ導体5cの断面寸法は、厚み0.01~0.05mm、幅0.05~0.30mmとした。ヒューズ導体5aおよびヒューズ導体5cの長さは短いほど抵抗値Rが小さくなり運転時の電流による発熱が小さくなって、また長さが短いほどヒューズ導体5aおよびヒューズ導体5cで生じた運転時の電流による発熱が給電側の固定電極3、電圧印加電極側の固定電極4に伝わりやすくなり、ヒューズ導体の温度が下がる。実施の形態1では、固定電極3および固定電極4の面を固定材3aおよび固定材4aを介して誘電体管1の内面に固定することにより、正常運転時にヒューズ導体で発生する熱を、固定電極3および固定電極4から誘電体管1を通じて放熱することを特徴の一つとしている。この実施の形態では、ヒューズ導体の長さは1mmとした。長さを例えば0.1mm未満のように極端に短くすると、ヒューズ導体から給電側の固定電極や電圧印加電極側の固定電極への熱が過剰に逃げるため、短絡電流により溶融しにくくなるとともに、短絡電流がゼロになった後で溶融したものが再固着してヒューズ導体部が電気的に繋がるという不具合が発生する。一方、ヒューズ導体の長さを長くするとヒューズ導体での発熱が多くなり、回路ロスが増えてオゾン発生効率が低下する。またヒューズ導体の運転時の温度が高くなり、長期間運転すると材料劣化によりヒューズ導体部の断線が発生しやすくなる。従って、ヒューズ導体の長さは、SUS304やSUS316を使用した場合は、0.1~2mmが最適である。0.1~2mmの長さのヒューズ導体を使用して短絡電流を流したところ、短絡電流10Aの時は5~0.15msで溶断し、100Aの時は50~1.5μsで溶断した。
 固定電極3および固定電極4は、それぞれ板面が固定材3aおよび4aを介して誘電体管1の内面に固定されており、固定電極3および固定電極4から誘電体管1へ、固定されている面全体での熱伝導により放熱される。面的に放熱されるため放熱量を多くできる。さらに、固定電極3および固定電極4から誘電体管1への放熱をできるだけ妨げないため、固定材3aおよび固定材4aとして熱伝導性の良い接着剤を使用した。具体的にはエポキシ系の高熱伝導接着剤、導電性接着剤を使用すればよい。また、無機系の接着剤や、通常の接着剤でも厚みを薄く塗布することで熱伝導がアップする。電流遮断素子7に正常運転時の電流が流れると、ヒューズ導体5aで発生した熱は給電側の固定電極3と固定材3aを通じて速やかに誘電体管1に伝わる。誘電体管1に伝わった熱は、誘電体管1の広い面積に広がり、熱伝達で周囲のガス中に熱を放散する。誘電体管1としてガラス管を使用する場合、厚みが1~3mm程度であれは誘電体内での熱伝導は早く、熱が誘電体管1の広い面積に速やかに伝わる。熱伝達は表面積が大きいほど熱を伝える能力が高いので、この構成にすることにより、ヒューズ導体5aの温度上昇を抑制できる。結果として温度上昇による材料劣化を抑えることができるので、ヒューズ導体5aの劣化による断線を抑えることができ、高信頼性の電流遮断素子7を提供できる。ヒューズ導体5cで発生した熱も、同様に、電圧印加電極側の固定電極4と固定材4aを通じて速やかに誘電体管1に誘電体管1に伝わり放熱できる。なお、固定材3aおよび固定材4aとして使用する接着剤の厚みは薄くする方が誘電体管1への熱が伝わりやすい。
 また、給電側の固定電極3と電圧印加電極側の固定電極4は、ヒューズ導体5a、5cでの発熱を面で固定して効率よく誘電体管1に伝えるのが目的であるため、サイズが小さすぎると温度上昇を招くが、大きくしすぎる必要はない。特に誘電体管1に固定する面の面積が小さくとも熱伝導性の良い固定材3aおよび固定材4aの働きで、ヒューズ導体の発熱を効率よく誘電体管1に伝えることができるためである。本実施の形態では、給電側の固定電極3と電圧印加電極側の固定電極4のサイズは、厚み0.01~0.05mm、幅1.5~6mm、長さ2~16mmとした。これらの固定電極は、幅1.5~6mm、長さ2~16mmとして形成された面が、固定材により電流遮断素子の基台を構成する誘電体管1の内面に固定される。
 中間導体5bの断面積は、ヒューズ導体5aおよびヒューズ導体5cよりも大きくして、正常時運転電流に対するジュール発熱を抑える必要がある。一方、断面積を大きくしすぎると、中間導体5bの重量が両側のヒューズ導体5aおよびヒューズ導体5cにかかり、ヒューズ導体にかかる機械応力が大きくなり、機械応力によるヒューズ導体の断線が発生しやすくなる。上記の観点から、中間導体5bの断面寸法は、厚み0.01~0.05mm、幅0.5~5mmとした。中間導体5bの長さは、絶縁寸法を確保するために4~8mmとした。また、固定材3aおよび固定材4aの厚み0.01~0.5mm、図3のL寸法=1~5mmとした。このように構成することで、図4に示す絶縁寸法は本実施例では以下のようになる。
 (a)L=(4~8mm)+2×(0.1~2mm)=4.2~12mm
 (b)L+L=((誘電体管1の内径)-(0.01~0.05mm)-(0.01~0.05mm))×2
        =(誘電体管1の内径)×2-(0.04~0.2mm)
 (c)L+L=(誘電体管1の内径)-(0.01~0.05mm)-(0.01~0.05mm)+(1~5mm)
        =(誘電体管1の内径)+(1~4.9mm)
 誘電体管1を構成するガラス管の内径が4mm以上の場合、上記(a)~(c)の絶縁寸法は、いずれも必要絶縁寸法の4mm以上となり、絶縁を確保できる。中間導体5bの長さは上記を満足するようにできるだけ短くする方が中間導体5bでの発熱を抑制できる。
 ところで、図12に示す従来例にてヒューズ導体が2個の場合について電流遮断素子を設計すると、電流遮断素子動作前は図13Aの構造となり、電流遮断素子動作後は図13Bの構造となる。電流遮断素子動作後に絶縁距離を(L+L)にて確保しているが、本実施の形態の図4と比較すると、従来例では誘電体管1の中央に電極33、34を配置しているので、同一ガラス管径の場合は落下距離が半分になり絶縁距離(L+L)が短くなる。従って必要な絶縁距離を確保するには電極33、34の間の距離を離す必要がある。また、図13Aと図13Bの位置関係から判るように、2個のヒューズ導体36の長さの和が絶縁距離(L+L)を決めている支配的寸法である。従って、絶縁距離7mm以上を確保するためには、ヒューズ導体36の長さは其々3.5mm以上確保する必要があり、本実施の形態のヒューズ導体長さ1mmに比べると3.5倍長い。この結果、本実施の形態ではヒューズ導体の抵抗値が1/3.5=28.6%に低下し、ヒューズ導体発熱も28.6%に低下する。
 上記のように、ヒューズ導体の発熱を抑制し、かつ板状の固定電極の板面を誘電体管の内面に固定することで熱放散を良くしたので、正常運転時のヒューズ導体、中間導体、固定電極の温度上昇が小さくなり、その結果ヒューズ導体にかかる熱応力が小さくなり、正常運転時における熱応力によるヒューズ導体の断線発生がなくなる。
 さらに、中間導体5bがヒューズ導体溶融時に誘電体管1の底に落下する構成としたので絶縁距離確保が容易となる。絶縁距離を確保するためには、ヒューズ導体が溶融した場合に、中間導体5bが重力により落下して固定電極との距離が、落下する前よりも大きくなる位置に固定電極が固定されるように電流遮断素子7が取り付けられていればよい。誘電体管1、すなわち放電管の管軸方向が水平方向になるよう設置されている場合、中間導体5bが誘電体管1の底に落下するためには、電流遮断素子7が、固定電極が固定されている誘電体管1の面の少なくとも一部の面から固定電極が固定されている側へ向く法線ベクトルが、重力方向の成分を有するように設置すれば良い。また、誘電体管1が円筒形状で管軸方向が水平方向になるよう設置されている場合、この条件は、固定電極が誘電体管の内面の上側半分のいずれかの位置に固定されている、という条件になる。
 正常運転時のヒューズ導体の発熱を抑制し、かつ熱放散を良くしたので固定電極を小さくでき、またヒューズ導体溶断時に中間導体5bが誘電体管1の底に落下する構成としたので絶縁距離確保が容易となる。よって、ガラス管径を小さくしても、正常運転時におけるヒューズ導体の温度上昇を抑制でき、かつヒューズ導体溶断後の絶縁機能確保が可能である。結果として誘電体管1の管径を小さくすることができ、オゾン発生器本体容器内への高密度での誘電体管1の装填が可能となり、コンパクトで安価なオゾン発生装置を提供できる。
 また、正常運転時のヒューズ導体の発熱を低減したので、オゾン発生時の電気回路のロスが少なくなり、オゾン発生効率が向上する。また、ヒューズ導体の発熱を低減したので、原料ガスが原料ガス入口17から導入され放電ギャップ25に入るまでのガス温度上昇が小さくなるので、放電ギャップ部の入口部の温度上昇が抑制されるため、オゾン発生効率が良くなる。
 上記では、電流遮断素子7を誘電体内部の概略上に取付ける場合を示したが、誘電体内側の上半分の位置に取付けるようにすれば、中間導体が落下して絶縁距離が大きくでき効果を奏する。
 また、電圧印加電極側の固定電極4と電圧印加電極2の間を電気接続部材9で接続する場合を示したが、電気接続部材9を省略し、電圧印加電極側の固定電極4を電圧印加電極2の上に直接電気接続してもよい。
 なお、上記では、電流遮断素子7を誘電体管1の上半分の位置に取り付けるようにしたが、下半分の位置に取付けると、ヒューズ導体が溶融・蒸発した後の絶縁距離が短くなるものの、正常運転時においてヒューズ導体の発熱を、誘電体管1に固定されている給電側の固定電極3および電圧印加電極側の固定電極4から誘電体管1の広い表面から熱伝達により周囲のガスに放散させるという効果を保有している。従って、オゾン発生器の運転電圧が低く、絶縁距離が短くても良い場合には冷却の優れた電流遮断素子7を実現できる。
実施の形態2.
 図5は、この発明の実施の形態2によるオゾン発生装置の誘電体管1の要部を示す断面図である。実施の形態1では、溶断エレメント5を1つだけ使用する場合を示したが、一つの電流遮断素子7に対して2つの溶断エレメントを使用すると装置の信頼性をアップできる。具体的には、図5に示すように、中間導体51bの両側にヒューズ導体51aおよびヒューズ導体51cを接続し、溶断エレメント51を構成し、中間導体52bの両側にヒューズ導体52aおよびヒューズ導体52cを接続して溶断エレメント52を構成する。給電側の固定電極3と電圧印加電極側の固定電極4の間に中間の固定電極6を配置し、給電側の固定電極3と中間の固定電極6の間に溶断エレメント51を接続し、電圧印加電極側の固定電極4と中間の固定電極6の間に溶断エレメント52を接続する。中間の固定電極6は、熱伝導性の良い固定材6aにより誘電体管1に固定されている。給電側の固定電極3、溶断エレメント51、中間の固定電極6、溶断エレメント52、電圧印加電極側の固定電極4、およびこれらの固定電極が固定されている部分の誘電体管1による基台、で電流遮断素子7を構成する。
 誘電体管1に運転時に流れる電流によりヒューズ導体51aで発生する熱は給電側の固定電極3と固定材3aを通じて誘電体管1に伝わり、ヒューズ導体51cおよびヒューズ導体52aで発生する熱は中間の固定電極6と固定材6aを通じて誘電体管1に伝わり、ヒューズ導体52cで発生する熱は電圧印加電極側の固定電極4と固定材4aを通じて誘電体管1に伝わり、誘電体管1の広い表面から熱伝達により周囲のガスに効率よく熱が放散される。
 電流遮断素子7に短絡電流が流れるとヒューズ導体51a、51c、52a、52cが溶断し、図6に示すように、中間導体51b、52bが誘電体管1の内部の底に落下する。
 溶断エレメントは以下のように異常動作する場合がたまにあるため、溶断エレメントを2個で構成すれば信頼性は向上する。
(1)ヒューズ導体の幅が小さいので、製造寸法バラツキにより、短絡電流が小さい場合はヒューズ導体が溶断しない場合がある。
(2)溶断時にヒューズ導体や中間導体の一部が溶けて、誘電体に近い場合は誘電体に溶着する場合がある。この場合は中間導体は下に落ちないので絶縁距離が短く、電圧を再度印加した場合に再度短絡してしまう。溶断エレメント2個のうちの1個が動作しない場合にも正常に動作させるには、溶断エレメント51および溶断エレメント52の仕様は、実施の形態1の溶断エレメント5の仕様に合わせるのが良い。
 図6Aに両方の溶断エレメント51および溶断エレメント52が落下した場合の状態を示す。絶縁距離は以下のようになる。
 (a)給電側の固定電極3と電圧印加電極側の固定電極4間の絶縁距離=L+L
 (b)給電側の固定電極3と電圧印加電極側の固定電極4間の中間導体51b、52bを介した絶縁距離=L+L+L
 (c)給電側の固定電極3と電圧印加電極2間の中間導体51b、52bを介した絶縁距離=L+L+L
 溶断エレメント51および溶断エレメント52の仕様を、実施の形態1の溶断エレメント5の仕様に合わせると、絶縁距離は実施の形態1の場合の1.5~2倍に長くなるため、十分に絶縁機能を果たす。
 溶断エレメント51が正常に動作せず、溶断エレメント52のみが正常に動作し、溶断エレメント52のみが落下した場合の状態を図6Bに示す。溶断エレメント51および溶断エレメント52の仕様を、実施の形態1の溶断エレメント5の仕様に合わせると、この場合の絶縁距離は実施の形態1と同じ距離となる。このように構成することで、短絡電流が流れた場合に、片方の溶断エレメント51が正常動作しなくとも、他方の溶断エレメント52が正常に動作するので、片側の溶断エレメントだけで絶縁距離を確保できるので、短絡保護機能の信頼性をアップすることができる。上記では、溶断エレメント2個の場合を示したが、更に個数を増やすと更に短絡保護機能の信頼性がアップする。
 なお、上記実施例では溶断エレメント51および溶断エレメント52の仕様は、実施の形態1の溶断エレメント5の仕様に合わせるのが良いとしたが、複数の溶断エレメントが落下することによる絶縁距離で、必要な絶縁距離(4mm以上)を満足するように設計しても実施の形態1と同様の効果を奏する。具体的な設計は、図6AにおけるL、L、L、L、L、Lについて、以下の(a)、(b)、(c)すべてが4mm以上となるようにすればよい。
 (a)給電側の固定電極3と電圧印加電極側の固定電極4間の絶縁距離=L+L
 (b)給電側の固定電極3と電圧印加電極側の固定電極4間の中間導体51b、52bを介した絶縁距離=L+L+L
 (c)給電側の固定電極3と電圧印加電極2間の中間導体51b、52bを介した絶縁距離=L+L+L
実施の形態3.
 図7は、この発明の実施の形態3によるオゾン発生装置の誘電体管1の要部を示す断面図である。実施の形態1では、給電部材8により給電する側の誘電体管1の端部は開放状態であったが、図7に示すように誘電体管1の開口部に金属製のキャップ29を取付け、給電側の固定電極3とキャップ29の間を接続導体26で電気接続し、キャップ29に給電部材8を電気接続する。電流遮断素子7に短絡電流が流れるとヒューズ導体5a、5cが溶融して飛散し、またアーク放電により中間導体5bが飛散して誘電体管1の開口部から外に飛び出し、これらが他の誘電体の表面に付着し、電気絶縁を保てなくなる場合がある。キャップ29を取付けることにより、ヒューズ導体5a、5c、および中間導体5bが誘電体外部に飛散することがないので、オゾン発生器の信頼性をアップできる。キャップ29の誘電体管1への固定は、キャップ29のカシメ加工や、キャップ内部への無機接着剤塗布など、どのような方法を用いても良い。
実施の形態4.
 図8は、この発明の実施の形態4によるオゾン発生装置に備えられた電流遮断素子の構成を示す拡大断面図である。実施の形態1では、溶断エレメントは誘電体管1の内面に取付ける場合を示したが、図8に示すように、別の円筒形状の誘電体部材27の内面の概略上側に溶断エレメント5を取り付け、誘電体部材27の両側の開口に金属製キャップ29a、29bを取り付け、給電側の固定電極3とキャップ29a間を接続導体26aで電気接続し、電圧印加電極側の固定電極4とキャップ29b間を接続導体26bで電気接続し、誘電体管1から独立して電流遮断素子7を構成しても良い。この場合、円筒形状の誘電体部材27の一部が電流遮断素子7の基台を構成する。実施の形態4による電流遮断素子によれば、誘電体管1、電圧印加電極2とは別の製造工程で電流遮断素子7を製造できるので、ヒューズ製造工程を簡易にでき製造コストを下げることができるというメリットがある。
 上記では、電流遮断素子7の基台を構成する誘電体部材27を誘電体管1の外部に設置する方法を示したが、電流遮断素子7の基台を構成する誘電体部材27を誘電体管1の内部に配置しても良い。また両側のキャップのうちの片方又は両方を省略することもできる。
 また、図8では誘電体部材27は円筒形状としたが、別の形状でもよく、誘電体部材27を、例えば、ガラスやセラミックスからなる誘電体の板とし、この板状の誘電体部材27を基台として電流遮断素子7を構成しても同様の効果を奏する。さらに、この構造体を誘電体管1の内部に取付けても同様の効果を奏する。
実施の形態5.
 図9は、この発明の実施の形態5によるオゾン発生装置に備えられた電流遮断素子の構成を示す拡大断面図である。図9に示すように、板状の誘電体部材27を基台として構成された電流遮断素子7を、別の筒形状の第二誘電体部材28の内部に配置しても良い。電流遮断素子7の基台を構成する誘電体部材27は、図示していない方法で第二誘電体部材28に固定されている。第二誘電体部材28の両側の開口に金属製キャップ29a、29bを取り付け、給電側の固定電極3とキャップ29a間を接続導体26aで電気接続し、電圧印加電極側の固定電極4とキャップ29b間を接続導体26bで電気接続している。ヒューズ導体5a、5bで発生した熱は、給電側の固定電極3、電圧印加電極側の固定電極4を経由して誘電体部材27から放散され、いったん筒状の第二誘電体部材28の内部のガスを上昇させ、第二誘電体部材28の表面から外部のガス中に熱伝達で放熱される。間接的な放熱のため、実施の形態1~4に比べると放熱効率は少し悪くなるものの、誘電体管1、電圧印加電極2、筒形状の第二誘電体部材28とは別の製造工程で電流遮断素子7を製造できるので、ヒューズ製造工程を簡易にできて製造コストを下げることができるというメリットがある。
 上記の実施の形態では、第二誘電体部材28を誘電体管1の外部に設置する方法を示したが、誘電体管1の内部に配置しても良い。また両側のキャップのうちの片方又は両方を省略することもできる。
 また、ヒューズ導体の材質はステンレス(SUS304)以外の別の材料でも寸法を設計し製作すれば同様の効果を奏する。但し、酸素ガスや、放電で生成されるNOxガスと化学反応を発生しやすく長期的に劣化が考えられる場合には、キャップ29を取付けると同様の効果を奏する。
 上記の実施の形態1~5において、誘電体管1の内部に電圧印加電極2を配置する電極構成の放電管を備えたオゾン発生装置の説明をしたが、無声放電によるオゾン発生装置の放電管としては、金属製の電圧印加電極の周囲にホーローからなる誘電体をかぶせた電極構成の放電管も存在する。この電極構成の場合、実施の形態4および実施の形態5で説明した、図8および図9に示す、放電管を構成する誘電体とは別の誘電体を基台として構成する電流遮断素子を適用することができ、実施の形態4および実施の形態5と同様の効果を奏する。
 また、接地金属電極管の内面に誘電体をコーティングし、誘電体コーティングの内側に放電ギャップを設けて金属製の電圧印加電極を配置する放電管の構成も存在する。この放電管の構成の場合も、実施の形態4および実施の形態5で説明した、図8、図9に示す、放電管を構成する誘電体とは別の誘電体を基台として構成する電流遮断素子を適用することができ、実施の形態4および実施の形態5と同様の効果を奏する。このように、図8および図9に示す電流遮断素子を適用する場合、放電管としては、電圧印加電極と接地金属電極間に高周波の交流電圧を印加することにより、誘電体を介して無声放電を発生させる構成となっていれば、どのような構造であっても良く、実施の形態4および実施の形態5と同様の効果を奏する。
実施の形態6.
 図10Aおよび図10Bは、この発明の実施の形態6によるオゾン発生装置の電流遮断素子7のうち、誘電体の基台および固定材を除いた、電流が通流する金属部材100の構成を示す平面図である。この金属部材100は実施の形態1~5における、電流遮断素子の金属部材に適用できる。実施の形態1~5において、電流が通流する金属部材全体を、厚みの薄い金属の板材、すなわち金属箔をエッチングにより形状加工して、一体として製作することができる。このように金属部材全体をエッチングにより一体として製作することで、電流遮断素子のコストを大幅に下げ、またヒューズ導体の小さい断面形状を精密に加工できるので、電流遮断素子の性能バラツキを抑え、信頼性の高いオゾン発生装置を提供できる。図10Aは、溶断エレメント5が1個の構成を示す平面図であり、給電側の固定電極3、溶断エレメント5(ヒューズ導体5a、中間導体5b、ヒューズ導体5c)、電圧印加電極側の固定電極4の順に接続された金属部材全体を、エッチングにより一体として製作した構成を示している。また、図10Bは、溶断エレメントが2個の構成を示す平面図であり、給電側の固定電極3、溶断エレメント51(ヒューズ導体51a、中間導体51b、ヒューズ導体51c)、中間の固定電極6、溶断エレメント52(ヒューズ導体52a、中間導体52b、ヒューズ導体52c)、電圧印加電極側の固定電極4の順に接続された金属部材全体を、エッチングにより一体として製作した構成を示している。
 特に材料としてステンレス(SUS304など)を使用すると、材料費が比較的安く、また0.15mm程度の薄い厚みでも製造時のハンドリングが可能である。ヒューズ導体の断面積で溶断性能が決まるため、材料の厚みが薄いほどヒューズ導体に必要な幅が広くなるので加工を精度良く行える。例えば、厚み0.02mmのSUS304材の場合のヒューズ導体幅=0.15mmであり、エッチング加工により導体幅を精度良く加工できる。ヒューズで良く使われる銀材料を使用すると銀の抵抗率が低いため、同一の厚み0.02mmでヒューズ導体を設計すると、ヒューズ導体幅は0.006mmとなりエッチングでは精度よく加工できず、半導体用の微細加工を適用する必要があるため加工コストが大幅にアップする。この観点から、製造コストの安いエッチング加工でオゾン発生装置用の電流遮断素子を製造する場合、ステンレスの抵抗率(70μΩ・cm)に近い抵抗率を持った金属材料が適している。ヒューズ導体の部分は通電により温度が上昇し、酸素ガスで酸化して劣化するので、ステンレスのように劣化しにくい材料が電流遮断素子の信頼性アップのために好ましい。
 図10Aおよび図10Bにおいて、例えば、厚み0.02mmステンレス(SUS304など)を用いた場合、給電側の固定電極3、電圧印加電極側の固定電極4、中間の固定電極6の寸法は、例えば幅1.5~6mm、長さ2~16mmである。また、中間導体5b、中間導体51b、中間導体52bの寸法は、例えば、幅0.5~5mm、長さ3~8mmである。エッチングにより以上のような寸法に加工したステンレス製箔による金属部材の、幅1.5~6mm、長さ2~16mmとして形成された固定電極の面を、固定材により誘電体の基台に固定して電流遮断素子を構成する。このようにステンレス製箔をエッチングすることにより加工して作製した金属部材を用いることにより、性能バラツキが小さく、信頼性の高い電流遮断素子を提供できる。
実施の形態7.
 実施の形態5において、第二誘電体部材28として透明なガラスで構成することで、電流遮断素子7が動作した場合に、中間導体5bが第二誘電体部材28内部の底に落下しているのを目視確認できる。オゾン発生装置を長期間使用した後にオゾン発生器本体容器12を開放して内部点検を行った際に、第二誘電体部材28のヒューズ部を目視点検し、中間導体が底に落ちていれば電流遮断素子7が作動したことを確認できる。第二誘電体部材28の内部が見えないと、例えばキャップ29aとキャップ29bの間の抵抗値を測定して電流遮断素子7が作動したかどうかを確認する必要があるが、第二誘電体部材28を透明なガラスで構成すると目視で判別できるので作業が容易となる。作動したヒューズの取付けられている誘電体管1は絶縁破壊しているのでメンテナンス時に交換する必要があるため、誘電体管1、電圧印加電極2、電流遮断素子7を取り出し、新しい部品と交換する。このように本実施形態7の電流遮断素子を使用することで、オゾン発生装置のメンテナンスを容易に行えるという効果がある。
 なお、実施の形態5における第二誘電体部材28だけではなく、他の実施の形態においても、実施の形態1、実施の形態2および実施の形態3における誘電体管1、実施の形態4における誘電体部材27を透明なガラス管で構成することで、中間導体の落下が目視確認できるため、同様の効果を奏するのは言うまでもない。
実施の形態8.
 実施の形態1~7では、放電管を水平方向に設置する場合を説明したが、放電管が鉛直に、すなわち放電管の管軸方向が重力方向となるように設置される場合は、電流遮断素子7も鉛直方向に向くように取付ければよい。また、放電管が、図1に示すような片側が開放された誘電体管で構成される場合、誘電体管の鉛直方向上側に開口部を配置し、開口部付近に電流遮断素子を取り付ければよい。
 なお、本発明は、その発明の範囲内において、各実施の形態を組み合わせたり、実施の形態を適宜、変形、省略することが可能である。
1 誘電体管、2 電圧印加電極、3 給電側の固定電極、4 電圧印加電極側の固定電極、3a、4a、6a 固定材、5、51、52 溶断エレメント、5a、5c、51a、51c、52a、52c ヒューズ導体、5b、51b、52b 中間導体、6 中間の固定電極、7 電流遮断素子、11 接地金属電極、16 交流電源、100 金属部材

Claims (16)

  1.  中間導体の両側に、過電流が流れることにより溶融するヒューズ導体がそれぞれ接続された溶断エレメントの両側に板状の固定電極がそれぞれ接続され、それぞれの前記固定電極の板面が誘電体の基台の面に固定材により固定されていることを特徴とする電流遮断素子。
  2.  前記固定電極を3個以上有し、隣り合う前記固定電極の間にそれぞれ前記溶断エレメントが接続されていることを特徴とする請求項1に記載の電流遮断素子。
  3.  前記基台は筒状であり、前記固定電極は、前記筒状の前記基台の内面に固定されていることを特徴とする請求項1または2に記載の電流遮断素子。
  4.  前記溶断エレメントを有する前記基台が、筒状の誘電体の内部に設置されたことを特徴とする請求項1または2に記載の電流遮断素子。
  5.  前記固定電極と前記溶断エレメントとの接続体である金属部材を一枚の金属板により形成したことを特徴とする請求項1から4のいずれか1項に記載の電流遮断素子。
  6.  電圧印加電極と接地金属電極の間に誘電体を介して放電ギャップを有する放電管を複数備え、前記放電ギャップを酸素を含むガスが流れるとともに、前記電圧印加電極と前記接地金属電極との間に交流電源からの交流電圧が印加されることにより、前記酸素を含むガスが放電してオゾン化ガスとなるよう構成されたオゾン発生装置において、
    前記交流電源から複数の前記放電管のそれぞれの前記電圧印加電極に給電する途中に請求項1から5のいずれか1項に記載の電流遮断素子がそれぞれ接続されていることを特徴とするオゾン発生装置。
  7.  前記ヒューズ導体が溶融した場合、前記中間導体が重力により落下して前記固定電極との距離が、落下する前よりも大きくなる位置に前記固定電極が固定されるように、前記電流遮断素子が取り付けられていることを特徴とする請求項6に記載のオゾン発生装置。
  8.  前記電流遮断素子は、前記固定電極が固定されている前記基台の少なくとも一部の面から当該固定電極が固定されている側に向く法線ベクトルが、重力方向の成分を有するように設置されていることを特徴とする請求項7に記載のオゾン発生装置。
  9.  内部に電圧印加電極が配置された誘電体管と、内面が前記誘電体管の外面と放電ギャップを有するように配置された接地金属電極とで構成された放電管を複数備え、前記放電ギャップに酸素を含むガスが流れるとともに、前記電圧印加電極と前記接地金属電極との間に交流電源からの交流電圧が印加されることにより、前記酸素を含むガスが放電してオゾン化ガスとなるよう構成されたオゾン発生装置において、
    複数の前記放電管は、前記交流電源から複数の前記放電管のそれぞれの前記電圧印加電極に給電する途中に請求項3に記載の電流遮断素子がそれぞれ接続されており、
    それぞれの前記電流遮断素子は、前記誘電体管が前記基台を構成し、前記固定電極が、前記誘電体管の内面であって前記電圧印加電極が配置されない部分に固定されていることを特徴とするオゾン発生装置。
  10.  前記電流遮断素子における前記固定電極と前記溶断エレメントとの接続体である金属部材を一枚の金属板により形成したことを特徴とする請求項9に記載のオゾン発生装置。
  11.  前記ヒューズ導体が溶融した場合、前記中間導体が重力により落下して前記固定電極との距離が、落下する前よりも大きくなる位置に前記固定電極が固定されるように、前記電流遮断素子が取り付けられていることを特徴とする請求項9または10に記載のオゾン発生装置。
  12.  前記誘電体管は前記誘電体管の管軸方向が水平方向となるよう設置されており、前記電流遮断素子は、前記固定電極が固定されている前記誘電体管の内面の少なくとも一部の面から当該固定電極が固定されている側に向く法線ベクトルが、重力方向の成分を有するように設置されていることを特徴とする請求項11に記載のオゾン発生装置。
  13.  前記誘電体管は円筒形状であり、管軸方向が水平方向となるよう設置されており、前記固定電極は、前記誘電体管の内面の上側半分のいずれかの位置に固定されていることを特徴とする請求項11に記載のオゾン発生装置。
  14.  前記放電管の管軸方向が重力方向となるよう、前記放電管が設置されていることを特徴とする請求項11に記載のオゾン発生装置。
  15.  前記交流電源は、運転中に前記放電管が絶縁破壊したことを検出した場合、予め設定した時間の間出力を停止した後、再び出力を開始するように制御することを特徴とする請求項6から14のいずれか1項に記載のオゾン発生装置。
  16.  前記交流電源は、出力電圧が予め設定した閾値以下に低下したことを検出した場合に、前記放電管が絶縁破壊したと判断することを特徴とする請求項15に記載のオゾン発生装置。
PCT/JP2017/020206 2017-05-31 2017-05-31 電流遮断素子、およびオゾン発生装置 WO2018220735A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780091147.8A CN110678953B (zh) 2017-05-31 2017-05-31 臭氧产生装置
PCT/JP2017/020206 WO2018220735A1 (ja) 2017-05-31 2017-05-31 電流遮断素子、およびオゾン発生装置
EP17912067.0A EP3633708B1 (en) 2017-05-31 2017-05-31 Ozone generation device
JP2019521588A JP6783389B2 (ja) 2017-05-31 2017-05-31 電流遮断素子、およびオゾン発生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/020206 WO2018220735A1 (ja) 2017-05-31 2017-05-31 電流遮断素子、およびオゾン発生装置

Publications (1)

Publication Number Publication Date
WO2018220735A1 true WO2018220735A1 (ja) 2018-12-06

Family

ID=64456427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020206 WO2018220735A1 (ja) 2017-05-31 2017-05-31 電流遮断素子、およびオゾン発生装置

Country Status (4)

Country Link
EP (1) EP3633708B1 (ja)
JP (1) JP6783389B2 (ja)
CN (1) CN110678953B (ja)
WO (1) WO2018220735A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6935014B2 (ja) * 2018-05-30 2021-09-15 三菱電機株式会社 オゾン発生装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2471176A (en) * 1947-10-28 1949-05-24 Gen Electric Time lag fuse link
GB954513A (en) * 1961-09-06 1964-04-08 Parmiter Hope & Sugden Ltd Improvements in or relating to electric fuses
FR2092811A1 (ja) * 1970-06-22 1972-01-28 Ferraz & Cie Lucien
JPS5792732U (ja) * 1980-11-21 1982-06-08
JPH11353993A (ja) * 1998-06-09 1999-12-24 Daifuku Co Ltd 端子台
WO2008004181A2 (en) 2006-07-06 2008-01-10 Koninklijke Philips Electronics N.V. Methods and devices for managing a play-list of digital content
JP2009252541A (ja) * 2008-04-07 2009-10-29 Mitsubishi Electric Corp 電力用半導体装置
JP2010269949A (ja) * 2009-05-19 2010-12-02 Mitsubishi Electric Corp オゾン発生装置
JP2011243484A (ja) 2010-05-20 2011-12-01 Mitsubishi Electric Corp 電流遮断素子および電流遮断素子を用いた高電圧装置
WO2016084181A1 (ja) * 2014-11-27 2016-06-02 三菱電機株式会社 オゾン発生装置
JP2016162522A (ja) * 2015-02-27 2016-09-05 Koa株式会社 電流検出用抵抗器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357234A (en) * 1993-04-23 1994-10-18 Gould Electronics Inc. Current limiting fuse
US11075047B2 (en) * 2014-05-28 2021-07-27 Eaton Intelligent Power Limited Compact high voltage power fuse and methods of manufacture
CN205367728U (zh) * 2015-12-30 2016-07-06 青岛国林环保科技股份有限公司 高压放电保护装置及臭氧发生器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2471176A (en) * 1947-10-28 1949-05-24 Gen Electric Time lag fuse link
GB954513A (en) * 1961-09-06 1964-04-08 Parmiter Hope & Sugden Ltd Improvements in or relating to electric fuses
FR2092811A1 (ja) * 1970-06-22 1972-01-28 Ferraz & Cie Lucien
JPS5792732U (ja) * 1980-11-21 1982-06-08
JPH11353993A (ja) * 1998-06-09 1999-12-24 Daifuku Co Ltd 端子台
WO2008004181A2 (en) 2006-07-06 2008-01-10 Koninklijke Philips Electronics N.V. Methods and devices for managing a play-list of digital content
JP2009252541A (ja) * 2008-04-07 2009-10-29 Mitsubishi Electric Corp 電力用半導体装置
JP2010269949A (ja) * 2009-05-19 2010-12-02 Mitsubishi Electric Corp オゾン発生装置
JP2011243484A (ja) 2010-05-20 2011-12-01 Mitsubishi Electric Corp 電流遮断素子および電流遮断素子を用いた高電圧装置
WO2016084181A1 (ja) * 2014-11-27 2016-06-02 三菱電機株式会社 オゾン発生装置
JP2016162522A (ja) * 2015-02-27 2016-09-05 Koa株式会社 電流検出用抵抗器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633708A4

Also Published As

Publication number Publication date
EP3633708A1 (en) 2020-04-08
JP6783389B2 (ja) 2020-11-11
CN110678953A (zh) 2020-01-10
EP3633708B1 (en) 2022-10-05
EP3633708A4 (en) 2020-06-03
JPWO2018220735A1 (ja) 2019-12-26
CN110678953B (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
JP4510882B2 (ja) 無声放電式プラズマ装置
JP2014049300A (ja) 導通遮断装置
JP6186144B2 (ja) 直流電流遮断装置
JP2007035535A (ja) 温度ヒューズを用いた保護装置
JP4875120B2 (ja) オゾン発生装置
WO2018220735A1 (ja) 電流遮断素子、およびオゾン発生装置
US9490096B2 (en) Medium voltage controllable fuse
WO2019229865A1 (ja) オゾン発生装置
JP2011504282A (ja) 熱的過負荷保護を備えるサージアレスタ
KR20110114479A (ko) 플라즈마 발생 장치
KR101877420B1 (ko) 세라믹단락수단이 구비된 전류단락휴즈
JP5243485B2 (ja) 電流遮断素子および電流遮断素子を用いた高電圧装置
JP2009032567A (ja) ヒューズ
CN215377360U (zh) 熔断器用复合熔体及熔断器
WO1997002919A1 (fr) Torche a plasma
US20210280382A1 (en) High-voltage direct-current thermal fuse
CN213305836U (zh) 一种等离子炬
JP5091801B2 (ja) 複合トーチ型プラズマ発生装置
CN215377359U (zh) 熔断器用复合熔丝及熔断器
JP2019109978A (ja) 回路分離素子および半導体装置
JP2018098107A (ja) 感熱型電気回路遮断部品
JP2011192605A (ja) ヒューズ
JPWO2017122442A1 (ja) 電力機器
CN106206203A (zh) 一种具有封堵凹口的喷射熔断器
JP2010182455A (ja) 放電リアクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521588

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017912067

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017912067

Country of ref document: EP

Effective date: 20200102