WO2018220721A1 - 半導体パワーモジュール - Google Patents

半導体パワーモジュール Download PDF

Info

Publication number
WO2018220721A1
WO2018220721A1 PCT/JP2017/020124 JP2017020124W WO2018220721A1 WO 2018220721 A1 WO2018220721 A1 WO 2018220721A1 JP 2017020124 W JP2017020124 W JP 2017020124W WO 2018220721 A1 WO2018220721 A1 WO 2018220721A1
Authority
WO
WIPO (PCT)
Prior art keywords
main wiring
electrode
semiconductor
straight
extending
Prior art date
Application number
PCT/JP2017/020124
Other languages
English (en)
French (fr)
Inventor
昌和 谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019521577A priority Critical patent/JP6745991B2/ja
Priority to EP17912122.3A priority patent/EP3633722A4/en
Priority to PCT/JP2017/020124 priority patent/WO2018220721A1/ja
Priority to US16/607,177 priority patent/US11094610B2/en
Priority to CN201780091081.2A priority patent/CN110663110B/zh
Publication of WO2018220721A1 publication Critical patent/WO2018220721A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49568Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures

Definitions

  • the present invention relates to a semiconductor power module configured by arranging a plurality of element rows each including a plurality of semiconductor elements.
  • the temperature detection device described in Patent Document 1 is a diode provided in each semiconductor element, and includes a temperature detection diode connected in parallel to each other and a temperature detection diode connected in parallel to each other, for temperature detection. And a temperature detection circuit that detects the temperature of the semiconductor module based on the output voltage of the diodes connected in parallel.
  • a temperature sensor and a current sensor are mounted on a semiconductor element in order to prevent thermal destruction and overcurrent destruction of the semiconductor element.
  • a semiconductor element using a wide band gap semiconductor such as silicon carbide and gallium nitride.
  • the semiconductor elements constituting the semiconductor power module are required to have a configuration in which a plurality of semiconductor elements having a small element size are connected in parallel.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a semiconductor power module that contributes to the realization of a large output and a small size of a power converter.
  • the semiconductor power module includes a first electrode on which a plurality of element arrays each including a plurality of semiconductor elements arranged in the X direction are arranged in the Y direction perpendicular to the X direction, and the first electrode A semiconductor element that is least affected by the combined inductance of the first main wiring among the first main wiring connected to each mounted element array and the plurality of element arrays mounted on the first electrode A first sensor mounted on the first detection target element, a first control terminal disposed on the first electrode, and the first sensor connected to the first sensor via the first control terminal; And a control board for controlling the current flowing through the first detection target element based on the detection result of the first sensor acquired through the first control terminal.
  • FIG. 2 is a top view of FIG. 1.
  • FIG. 3 is a cross-sectional view taken along the line II in FIG. 2. It is a top view of the semiconductor power module in Embodiment 2 of this invention.
  • FIG. 5 is a cross-sectional view taken along the line II-II in FIG. 4. It is a top view of the semiconductor power module in Embodiment 3 of this invention.
  • FIG. 7 is a cross-sectional view taken along the line III-III in FIG. 6. It is a top view of the semiconductor power module in Embodiment 4 of this invention.
  • FIG. 10 is a cross-sectional view taken along the line IV-IV in FIG. 8.
  • FIG. 1 is a circuit diagram showing an inverter as an example of a power conversion device to which a semiconductor power module according to Embodiments 1 to 6 of the present invention is applied.
  • FIG. 1 is a circuit diagram showing an inverter as an example of a power conversion device to which a semiconductor power module according to Embodiments 1 to 6 of the present invention is applied.
  • the power conversion device has a switching circuit for converting power.
  • the power converter include an inverter for driving a motor mounted on an electric vehicle, a step-down converter that converts a voltage from a high voltage to a low voltage, and a charger that charges an in-vehicle battery by connecting to an external power supply facility. Electric power components.
  • FIG. 14 is a circuit diagram showing an inverter as an example of a power conversion device to which the semiconductor power module according to Embodiments 1 to 6 of the present invention is applied.
  • the inverter shown in FIG. 14 includes semiconductor power modules 301 to 306.
  • a DC power source is connected to the input side, and a motor having a U-phase winding, a V-phase winding, and a W-phase winding is connected to the output side. Is done.
  • the semiconductor power modules 301 to 306 are configured to include switching elements Q1 to Q6, respectively.
  • the switching elements Q1, Q3 and Q5 on the upper arm side are connected to the positive side (P side) of the DC power supply, and the switching elements Q2, Q4 and Q6 on the lower arm side are connected to the negative side (N side) of the DC power supply. Is done.
  • Switching elements Q1 and Q2 correspond to the U phase
  • switching elements Q3 and Q4 correspond to the V phase
  • switching elements Q5 and Q6 correspond to the W phase.
  • the semiconductor elements mounted on the semiconductor power modules 301 to 106 are, for example, semiconductor elements such as MOS-FETs, IGBTs, and diodes.
  • semiconductor elements such as MOS-FETs, IGBTs, and diodes.
  • As a wafer substrate for manufacturing the semiconductor elements in addition to silicon, a wide band is used. Gap semiconductors are used.
  • the semiconductor elements included in each semiconductor power module of the inverter have a configuration in which a plurality of semiconductor elements having a small element size are connected in parallel.
  • FIG. 1 is a perspective view of a semiconductor power module according to Embodiment 1 of the present invention.
  • FIG. 2 is a top view of FIG. 3 is a cross-sectional view taken along the line II in FIG.
  • illustration of the cooler 9 is abbreviate
  • the main wiring referred to in each of the following embodiments is constituted by, for example, a copper bus bar.
  • the semiconductor power module in the first embodiment corresponds to each of the semiconductor power modules 301 to 306 shown in FIG. That is, by preparing six semiconductor power modules shown in FIGS. 1 to 3, the inverter circuit shown in FIG. 14 can be configured.
  • the semiconductor power module includes a control terminal 1a, a plurality of semiconductor elements 2, a sensor 3a (first sensor), a main wiring 4 (first main wiring), a main wiring 5, and an electrode 6a (first first). Electrode), an insulating substrate 7, a heat sink 8, a cooler 9, and a control substrate (not shown).
  • the electrodes 6a arranged on the insulating substrate 7 are mounted by arranging a plurality of element rows made of a plurality of semiconductor elements 2 arranged in the X direction at a constant pitch in the Y direction perpendicular to the X direction at a constant pitch. . More specifically, the plurality of semiconductor elements 2 are soldered to, for example, a copper pattern as the electrode 6a. This copper pattern is insulated by the insulating substrate 7. In the first embodiment, as a specific example, it is assumed that element rows each including three semiconductor elements 2 are arranged in three rows.
  • the insulating substrate 7 is mounted on a cooler 9 that cools the plurality of semiconductor elements 2 via a heat sink 8.
  • Examples of the cooling method of the cooler 9 include a water cooling method and an air cooling method.
  • the sensor 3a is mounted on a semiconductor element (first detection target element) that is least affected by the combined inductance of the main wiring 4 among a plurality of element rows mounted on the electrode 6a.
  • the semiconductor element 2 on which the sensor 3a is mounted is referred to as a semiconductor element 2a
  • the element row including the semiconductor element 2a is referred to as an element row A
  • other semiconductor elements included in the element row A 2 is expressed as semiconductor elements 2b and 2c.
  • the main wiring 4 is connected to each element row mounted on the electrode 6a. More specifically, the main wiring 4 is bonded to the source pad of the semiconductor element 2 in each element row.
  • the control source pad and gate pad of the semiconductor element 2 are connected to a control terminal (not shown) via, for example, an Al wire.
  • the main wiring 4 is connected to each element row mounted on the electrode 6a, and a straight line portion 41 (first straight line portion) extending in the X direction and a straight line portion 42 (first line) facing the straight line portion 41 and extending in the X direction. 2 straight portions) and a connection portion 43 that connects one end of the straight portion 41 and one end of the straight portion 42.
  • the other ends of the linear portions 42 of each element row are connected by a connection portion 44 extending in the Y direction.
  • An end portion 45 extending in the Z direction perpendicular to the X direction and the Y direction is connected to the element array A side of the connection portion 44.
  • the main wiring 5 is connected to the electrode 6a, faces the end 45 of the main wiring 4, and extends in the Z direction.
  • the control terminal 1a is arranged on the electrode 6a on the + X direction side of the plurality of element rows mounted on the electrode 6a. More specifically, the control terminal 1a is disposed on the element array A side of the electrode 6a so as to sandwich the element array A with the opposing main wiring 5, and extends in the Z direction.
  • the end 45 of the main wiring 4 and the end of the main wiring 5 are connected to electronic devices such as a capacitor (PN side), a motor (UVW side), a semiconductor power module, and the like.
  • electronic devices such as a capacitor (PN side), a motor (UVW side), a semiconductor power module, and the like.
  • PN side a capacitor
  • UVW side a motor
  • semiconductor power module a semiconductor power module
  • the ends of the main wiring 5 of the semiconductor power modules 301, 303, and 305 on the upper arm side are respectively connected to the P side.
  • the ends 45 of the main wiring 4 of the semiconductor power modules 301, 303, and 305 on the upper arm side are connected to the electrodes 6a of the semiconductor power modules 302, 304, and 306 on the lower arm side, respectively.
  • the ends 45 of the main wiring 4 of the semiconductor power modules 301, 303 and 305 on the upper arm side are connected to the U phase, V phase and W phase of the motor, respectively.
  • the ends of the main wiring 5 of the semiconductor power modules 302, 304 and 306 on the lower arm side are respectively connected to the N side.
  • the control board is connected to the sensor 3a via the control terminal 1a, and controls the current flowing through the semiconductor element 2a on which the sensor 3a is mounted based on the detection result of the sensor 3a acquired via the control terminal 1a.
  • the sensor 3a is, for example, a temperature sensor or a current sensor.
  • the combined inductance of the main wiring 4 will be described.
  • the semiconductor element 2 connected to the portion where the combined inductance of the main wiring 4 is small, the source potential changes without time delay compared to the semiconductor element 2 connected to the portion where the combined inductance is large. A lot flows.
  • the combined inductance of the wiring is determined by the difference between the self-inductance determined from the wiring length and the mutual inductance determined from the influence of the magnetic field caused by the surrounding wiring.
  • the semiconductor element 2a in the element row A has the shortest wiring length from the end portion 45 of the main wiring 4, so that the self-inductance of the main wiring 4 is reduced. ing. If the influence of the mutual inductance is uniform with respect to the plurality of semiconductor elements 2, a large amount of current flows through the semiconductor element 2a located at a location where the self-inductance is small, that is, the combined inductance is small. This is because the source potential of the semiconductor element 2a connected to the portion where the combined inductance of the main wiring 4 is small changes in source potential without time delay compared to the semiconductor element 2c connected to the portion where the combined inductance is large. This is because a large amount of current flows because an arbitrary voltage can be applied.
  • the semiconductor element 2a is least affected by the combined inductance of the main wiring 4 when compared with the other semiconductor elements 2, so that the maximum current flows. That is, the semiconductor element 2a is least affected by the combined inductance of the main wiring 4 because the wiring length to the end 45 of the main wiring 4 is the shortest among the three element arrays. As a result, among the plurality of semiconductor elements 2, the semiconductor element 2a has the largest loss, so that the thermal breakdown proceeds most.
  • a temperature sensor is mounted on the semiconductor element 2a as the sensor 3a, the temperature sensor and the control board are connected via the control terminal 1a, and the detection value of the temperature sensor is preset in the control board. Before the threshold value is exceeded, the current to the semiconductor element 2a is cut off or reduced. With this configuration, the semiconductor element 2a is prevented from being thermally destroyed.
  • the semiconductor power module when noise enters the control signal for controlling the semiconductor element 2 and a large current flows between the drain and the source, the semiconductor element 2a through which the maximum current flows is thermally destroyed.
  • a current sensor is mounted as the sensor 3a on the semiconductor element 2a, the current sensor and the control board are connected via the control terminal 1a, and the detection value of the current sensor is preset in the control board. Before the threshold value is exceeded, the current to the semiconductor element 2a is cut off or reduced. By constituting in this way, short circuit destruction of semiconductor element 2a is prevented.
  • the direction of the current flowing through the main wiring 4 is different between the straight portion 41 and the straight portion 42. Therefore, the magnetic field generated by the current flowing through the straight line portion 41 and the magnetic field generated by the current flowing through the straight line portion 42 cancel each other and increase the influence of the mutual inductance, thereby reducing the combined inductance. As a result, the surge voltage at the time of switching of the semiconductor element 2 can be suppressed.
  • the refrigerant in the cooler 9 flows from the semiconductor element 2c having a large influence of the combined inductance of the main wiring 4 to the semiconductor element 2a having a small influence. That is, the semiconductor element 2a on which the sensor 3a is mounted is disposed on the most downstream side of the refrigerant flow of the cooler 9 that flows in the X direction. By doing so, the refrigerant temperature rises due to heat received from the semiconductor elements 2b and 2c, and as a result, the refrigerant temperature immediately below the semiconductor element 2a becomes the highest.
  • the temperature of the semiconductor elements 2g in the element rows excluding the element rows at the end increases due to the influence of thermal interference between the semiconductor elements. Therefore, in this case, it is desirable to detect the temperature of the semiconductor element 2g by mounting a temperature sensor on the semiconductor element 2g of the element row excluding the element row at the end.
  • the temperature sensor mounted on the semiconductor element 2a for example, a form in which a diode is mounted inside the semiconductor element 2a, a form in which a thermistor is mounted on the source of the semiconductor element 2a, and an electrode 6a in the vicinity of the semiconductor element 2a.
  • the form mounted above is conceivable. However, considering the accuracy of temperature detection, it is desirable to select a mode in which the diode is mounted inside the semiconductor element 2a among the above modes.
  • the semiconductor element 2 having a small value is arranged at a location where the combined inductance of the main wiring 4 is small. The current deviation increases.
  • a wide band gap semiconductor wafer substrate includes a number of defects. Therefore, in order to increase the manufacturing yield of the semiconductor element 2 and realize cost reduction, the semiconductor element included in each semiconductor power module needs to have a configuration in which a plurality of semiconductor elements having a small element size are connected in parallel. is there.
  • the semiconductor power module including the control board can be reduced in size and cost.
  • the combined inductance of the main wiring connected to a plurality of semiconductor elements connected in parallel increases, and these semiconductor elements may be destroyed by a surge.
  • the straight line portion 41 and the straight line portion 42 of the main wiring 4 are in a state of facing each other, compared to the state of the single layer structure.
  • the combined inductance of the main wiring 4 can be greatly reduced. Therefore, when a switching element formed of a wide band gap semiconductor is switched at high speed, surge can be suppressed, and as a result, high-efficiency inverter driving can be realized.
  • control terminal 1a is preferably arranged as far as possible from the main wiring 4. By doing in this way, the electric noise which can be generated by the main wiring 4 in the control terminal 1a can be reduced.
  • the semiconductor power module according to the first embodiment includes the electrode 6a (first electrode) on which a plurality of element rows each including the plurality of semiconductor elements 2 arranged in the X direction are arranged in the Y direction.
  • the main wiring 4 first main wiring
  • the influence of the combined inductance of the main wiring 4 is the greatest.
  • a sensor 3a (first sensor) mounted on a semiconductor element 2a (first detection target element) that is not received, a control terminal 1a (first control terminal) disposed on the electrode 6a, and a control terminal 1a And a control board that controls the current flowing through the semiconductor element 2a based on the detection result of the sensor 3a obtained through the sensor 3a.
  • the temperature detection error can be further reduced. Therefore, the margin for the allowable temperature of the semiconductor power module can be reduced, and as a result, the output of the power converter can be increased.
  • the area necessary for mounting the sensor can be reduced, and as a result, cost reduction can be realized.
  • the space for providing the connection wiring can be reduced, and as a result, the power converter can be miniaturized.
  • the semiconductor element is formed by one sensor. It is possible to prevent overheating or overcurrent.
  • the semiconductor power module according to the first embodiment contributes to an increase in output and a reduction in size of the power conversion device.
  • FIG. 4 is a top view of the semiconductor power module according to Embodiment 2 of the present invention.
  • FIG. 5 is a cross-sectional view taken along the line II-II in FIG.
  • description of points that are the same as those of the first embodiment will be omitted, and points different from the first embodiment will be mainly described.
  • the semiconductor power module according to the second embodiment includes three sets of individual combinations of the upper arm side semiconductor power modules 301, 303, and 305 and the lower arm side semiconductor power modules 302, 304, and 306 shown in FIG. Corresponds to the pair. That is, by preparing three semiconductor power modules shown in FIGS. 4 and 5, the inverter circuit shown in FIG. 14 can be configured.
  • the semiconductor power module includes a control terminal 1a (first control terminal), a control terminal 1b (second control terminal), a plurality of semiconductor elements 2, a sensor 3a (first sensor), and a sensor 3b ( Second sensor), main wiring 10 (first main wiring), main wiring 11 (second main wiring), main wiring 12 (third main wiring), main wiring 13, and electrode 6a (first electrode). ), An electrode 6b (second electrode), an insulating substrate 7, two heat radiation plates 8, a cooler 9, and a control substrate (not shown).
  • the electrodes 6a arranged on the insulating substrate 7 are mounted by arranging a plurality of element rows composed of a plurality of semiconductor elements 2 arranged in the X direction at a constant pitch in the Y direction.
  • the electrodes 6b arranged on the insulating substrate 7 are mounted by arranging a plurality of element rows composed of a plurality of semiconductor elements 2 arranged in the X direction at a constant pitch in the Y direction.
  • the electrode 6a and the electrode 6b are divided and mounted on the insulating substrate 7, and a plurality of semiconductor elements 2 are mounted on each of the electrode 6a and the electrode 6b.
  • the sensor 3a is mounted on a semiconductor element (first detection target element) that is least affected by the combined inductance of the main wiring 10 among a plurality of element rows mounted on the electrode 6a.
  • the semiconductor element 2 on which the sensor 3a is mounted is referred to as a semiconductor element 2a
  • the element row including the semiconductor element 2a is referred to as an element row A
  • other semiconductor elements included in the element row A 2 is expressed as semiconductor elements 2b and 2c.
  • the sensor 3b is mounted on a semiconductor element (second detection target element) that is least affected by the combined inductance of the main wiring 11 among a plurality of element rows mounted on the electrode 6b.
  • the semiconductor element 2 on which the sensor 3b is mounted is denoted as a semiconductor element 2f
  • the element row including the semiconductor element 2f is denoted as an element row B
  • other semiconductor elements included in the element row B 2 is expressed as semiconductor elements 2d and 2e.
  • the main wiring 10 is connected to each element row mounted on the electrode 6a. More specifically, the main wiring 10 is joined to the source pad of the semiconductor element 2 of each element row mounted on the electrode 6a.
  • the main wiring 10 is connected to each element row mounted on the electrode 6a, and has a linear portion 101 extending in the X direction.
  • An end 102 of the main wiring 10 extends in the Z direction and is connected to an electronic device (for example, a capacitor). Taking FIG. 14 as an example, the end portion 102 of the main wiring 10 is connected to the N side.
  • the main wiring 11 is connected to each element row mounted on the electrode 6b. More specifically, the main wiring 11 is joined to the source pad of the semiconductor element 2 of each element row mounted on the electrode 6b.
  • the main wiring 11 has a straight portion 111 extending in the X direction.
  • the end 112 of the main wiring 11 extends in the Z direction and is connected to the electrode 6a.
  • the main wiring 12 is mounted on the electrode 6b and a recess 121 (first recess) disposed opposite to the semiconductor element 2 positioned in the most + X direction in each element array mounted on the electrode 6a.
  • a concave portion 122 (second concave portion) disposed opposite to the semiconductor element 2 positioned in the most ⁇ X direction in each element row is connected to one end of the concave portion 121 and one end of the concave portion 122, and the linear portion 101.
  • a straight portion 123 facing the straight portion 111 and extending in the X direction.
  • One end 124 of the main wiring 12 extends in the Z direction and is connected to the electrode 6b.
  • the other end 125 of the main wiring 12 is connected to an electronic device. Taking FIG. 14 as an example, the end portion 125 of the main wiring 12 is connected to the P side.
  • the interval between the concave portion 121 and the linear portion 101 is narrower than the interval between the linear portion 123 and the linear portion 101. Further, the interval between the recess 122 and the straight portion 111 is narrower than the interval between the straight portion 123 and the straight portion 111.
  • the main wiring 13 is connected to the electrode 6a and extends in the Z direction. Taking FIG. 14 as an example, the end of the main wiring 13 is connected to the UVW side.
  • the control terminal 1a is disposed on the electrode 6a on the + X direction side of the plurality of element rows mounted on the electrode 6a and extends in the Z direction.
  • the control terminal 1b is disposed on the electrode 6b on the ⁇ X direction side with respect to the plurality of element rows mounted on the electrode 6b, and extends in the Z direction.
  • the control board is connected to the sensor 3a via the control terminal 1a, and controls the current flowing through the semiconductor element 2a on which the sensor 3a is mounted based on the detection result of the sensor 3a acquired via the control terminal 1a.
  • the control board is connected to the sensor 3b through the control terminal 1b, and controls the current flowing through the semiconductor element 2f on which the sensor 3b is mounted based on the detection result of the sensor 3b acquired through the control terminal 1b.
  • the sensors 3a and 3b are temperature sensors or current sensors as in the first embodiment.
  • the combined inductance of the main wiring 10 that affects the semiconductor element 2a is greatly influenced by the mutual inductance because the main wiring 10 and the main wiring 12 immediately above it are close to each other at the position of the semiconductor element 2a. Therefore, the combined inductance of the main wiring 10 is smaller in the semiconductor element 2a than in the other semiconductor elements 2 mounted on the electrode 6a.
  • the combined inductance of the main wiring 11 affecting the semiconductor element 2f is greatly affected by the mutual inductance because the main wiring 11 and the main wiring 12 immediately above the semiconductor element 2f are close to each other. Therefore, the semiconductor element 2f has a smaller combined inductance of the main wiring 11 than the other semiconductor elements 2 mounted on the electrode 6b.
  • the semiconductor element 2a is least affected by the combined inductance of the main wiring 10 when compared with the other semiconductor elements 2 mounted on the electrode 6a, the maximum current flows.
  • the semiconductor element 2f is least affected by the combined inductance of the main wiring 11 when compared with the other semiconductor elements 2 mounted on the electrode 6b, so that the maximum current flows.
  • a temperature sensor or a current sensor is mounted on the semiconductor elements 2a and 2f as the sensors 3a and 3b, respectively, and before the detected value of the sensor exceeds a preset threshold value, the semiconductor elements 2a and 2f are transferred to the semiconductor elements 2a and 2f. It is configured to cut off or reduce the current.
  • the current sensor is preferably mounted on both of the semiconductor elements 2a and 2f through which the current flows most.
  • the temperature sensor is preferably mounted on the semiconductor element 2f disposed on the most downstream side of the refrigerant flow of the cooler 9 flowing in the X direction.
  • the semiconductor module according to the second embodiment is mounted in the configuration of the first embodiment by arranging a plurality of element rows each including a plurality of semiconductor elements 2 arranged in the X direction in the Y direction.
  • Electrode 6b (second electrode), main wiring 11 (second main wiring) connected to each element row mounted on electrode 6b, and a plurality of element rows mounted on electrode 6b
  • the sensor 3b (second sensor) mounted on the semiconductor element 2f (second detection target element) that is least affected by the inductance of the main wiring 11, and the control terminal 1b (second sensor) disposed on the electrode 6b And a control terminal).
  • control board is configured to further control the current flowing through the semiconductor element 2f based on the detection result of the sensor 3b acquired via the control terminal 1b. Even in such a configuration, the same effect as in the first embodiment can be obtained.
  • FIG. 6 is a top view of the semiconductor power module according to Embodiment 3 of the present invention.
  • FIG. 7 is a cross-sectional view taken along the line III-III in FIG.
  • description of points that are the same as in the first and second embodiments will be omitted, and a description will be given focusing on differences from the first and second embodiments.
  • the semiconductor power module according to Embodiment 3 includes a control terminal 1a (first control terminal), a control terminal 1b (second control terminal), a plurality of semiconductor elements 2, a sensor 3a (first sensor), and a sensor 3b ( 2nd sensor), main wiring 14 (first main wiring), main wiring 15 (second main wiring), main wiring 16, main wiring 17, electrode 6a (first electrode), electrode 6b (second Electrode), an insulating substrate 7, two heat sinks, a cooler 9 (not shown), and a control board (not shown).
  • the electrode 6a and the electrode 6b are divided and mounted on the insulating substrate 7, and a plurality of semiconductor elements 2 are mounted on each of the electrode 6a and the electrode 6b.
  • the main wiring 14 is connected to each element row mounted on the electrode 6a. More specifically, the main wiring 14 is joined to the source pad of the semiconductor element 2 of each element row mounted on the electrode 6a.
  • the main wiring 14 is connected to each element row mounted on the electrode 6a, and has a linear portion 141 extending in the X direction. An end 142 of the main wiring 14 extends in the Z direction and is connected to the electrode 6b.
  • the main wiring 15 is connected to each element row mounted on the electrode 6b. More specifically, the main wiring 15 is joined to the source pad of the semiconductor element 2 of each element row mounted on the electrode 6b.
  • the main wiring 15 is connected to each element row mounted on the electrode 6b, and is a straight line 151 (first straight part) extending in the X direction, a straight line facing the straight part 151 and the straight part 141, and extending in the X direction.
  • Part 152 second straight part
  • a connection part 153 connecting one end of the straight part 151 and one end of the straight part 152, and the other end of the straight part 152, and each element row mounted on the electrode 6a
  • a recess 154 disposed opposite to the semiconductor element 2 positioned in the + X direction.
  • An end 155 of the main wiring 15 is connected to an electronic device. Taking FIG. 14 as an example, the end portion 155 of the main wiring 15 is connected to the N side.
  • the interval between the concave portion 154 and the linear portion 141 is narrower than the interval between the linear portion 152 and the linear portion 141.
  • the main wiring 16 is connected to the electrode 6a and extends in the Z direction, and the main wiring 17 is connected to the electrode 6b and extends in the Z direction. An end portion of the main wiring 16 is connected to an electronic device. Taking FIG. 14 as an example, the end of the main wiring 17 is connected to the UVW side, and the end of the main wiring 16 is connected to the P side.
  • the semiconductor element 2f has the shortest wiring length from the end 155 of the main wiring 15, so that the self-inductance of the main wiring 15 is small. Therefore, among the plurality of semiconductor elements 2 mounted on the electrode 6b, the semiconductor element 2f has the largest flowing current and the largest loss.
  • the main wiring 14 and the main wiring 15 immediately above it are close to each other at the position of the semiconductor element 2a. Therefore, the combined inductance of the main wiring 14 is smaller in the semiconductor element 2a than in the other semiconductor elements 2 mounted on the electrode 6a. Therefore, among the plurality of semiconductor elements 2 mounted on the electrode 6a, the semiconductor element 2a has the largest flowing current and the largest loss.
  • temperature sensors or current sensors are mounted as the sensors 3a and 3b in the semiconductor elements 2a and 2f, respectively, and before the detection value of the sensor exceeds a preset threshold value, the semiconductor elements 2a and 2f are transferred to the semiconductor elements 2a and 2f. It is configured to cut off or reduce the current.
  • the main wiring 14 and the main wiring 15 are configured as follows with respect to the configuration of the second embodiment. That is, the main wiring 14 (first main wiring) is connected to each element row mounted on the electrode 6a (first electrode) and is configured to have a linear portion 141 extending in the X direction.
  • the main wiring 15 (second main wiring) is connected to each element row mounted on the electrode 6b (second electrode), and extends in the X direction with a straight portion 151 (first straight portion) and a straight portion 151.
  • a straight portion 152 (second straight portion) facing the straight portion 141 and extending in the X direction, a connecting portion 153 connecting one end of the straight portion 151 and one end of the straight portion 152, and the other end of the straight portion 152 And a recess 154 that is connected and disposed on the semiconductor element 2a (first detection target element) mounted on the electrode 6a. Even in such a configuration, the same effect as in the first embodiment can be obtained.
  • FIG. 8 is a top view of the semiconductor power module according to Embodiment 4 of the present invention.
  • FIG. 9 is a cross-sectional view taken along line IV-IV in FIG.
  • description of points that are the same as in the first to third embodiments will be omitted, and differences from the first to third embodiments will be mainly described.
  • the semiconductor power module includes a control terminal 1a (first control terminal), a control terminal 1b (second control terminal), a plurality of semiconductor elements 2, a sensor 3a (first sensor), and a sensor 3b ( 2nd sensor), main wiring 18 (first main wiring), main wiring 19 (second main wiring), main wiring 20, main wiring 21, electrode 6a (first electrode), electrode 6b (second Electrode), an insulating substrate 7, two heat radiating plates 8, a cooler 9 (not shown), and a control board (not shown).
  • the electrode 6a and the electrode 6b are divided and mounted on the insulating substrate 7, and a plurality of semiconductor elements 2 are mounted on each of the electrode 6a and the electrode 6b.
  • the main wiring 18 is connected to each element row mounted on the electrode 6a. More specifically, the main wiring 18 is joined to the source pad of the semiconductor element 2 of each element row mounted on the electrode 6a.
  • the main wiring 18 is connected to each element row mounted on the electrode 6a, and a linear portion 181 (first linear portion) extending in the X direction and a linear portion 182 (first linear portion) facing the linear portion 181 and extending in the X direction. 2 straight portions), and a connecting portion 183 that connects one end of the straight portion 181 and one end of the straight portion 182.
  • An end 184 of the main wiring 18 is connected to an electronic device. Taking FIG. 14 as an example, the end 184 of the main wiring 18 is connected to the N side.
  • the main wiring 19 is connected to each element row mounted on the electrode 6b. More specifically, the main wiring 19 is joined to the source pad of the semiconductor element 2 of each element row mounted on the electrode 6b.
  • the main wiring 19 is connected to each element row mounted on the electrode 6b, and a straight line portion 191 (first straight line portion) extending in the X direction and a straight line portion 192 (first line) facing the straight line portion 191 and extending in the X direction. 2 straight portions), and a connecting portion 193 that connects one end of the straight portion 191 and one end of the straight portion 192.
  • An end 194 of the main wiring 19 extends in the Z direction and is connected to the electrode 6a.
  • the main wiring 20 is connected to the electrode 6a, extends in the Z direction, and has an end connected to the electronic device.
  • the main wiring 21 is connected to the electrode 6b, extends in the Z direction, and has an end connected to the electronic device. Taking FIG. 14 as an example, the end of the main wiring 20 is connected to the UVW side, and the end of the main wiring 21 is connected to the P side.
  • the main wiring 18 and the main wiring 19 are configured as follows with respect to the configuration of the second embodiment. That is, the main wiring 18 (first main wiring) is connected to each element row mounted on the electrode 6a (first electrode), and extends in the X direction to a straight line 181 (first straight line) and a straight line.
  • the straight portion 182 (second straight portion) that faces the portion 181 and extends in the X direction, and a connection portion 183 that connects one end of the straight portion 181 and one end of the straight portion 182 are configured.
  • the main wiring 19 (second main wiring) is connected to each element row mounted on the electrode 6b (second electrode), and extends in the X direction, a linear portion 191 (first linear portion), and a linear portion 191. And a connecting portion 193 that connects one end of the straight portion 191 and one end of the straight portion 192.
  • the straight portion 192 (second straight portion) extends in the X direction. Even in such a configuration, the same effect as in the first embodiment can be obtained.
  • FIG. 10 is a top view of the semiconductor power module according to Embodiment 5 of the present invention.
  • 11 is a cross-sectional view taken along line VV in FIG.
  • description of points that are the same as in the first to fourth embodiments will be omitted, and differences from the first to fourth embodiments will be mainly described.
  • the semiconductor power module in the fifth embodiment includes a control terminal 1a (first control terminal), a control terminal 1b (second control terminal), a plurality of semiconductor elements 2, a sensor 3a (first sensor), and a sensor 3b ( 2nd sensor), main wiring 22 (first main wiring), main wiring 23 (second main wiring), main wiring 24, main wiring 25, electrode 6a (first electrode), electrode 6b (second Electrode), an insulating substrate 7, two heat radiating plates 8, a cooler 9 (not shown), and a control board (not shown).
  • the electrode 6a and the electrode 6b are divided and mounted on the insulating substrate 7, and a plurality of semiconductor elements 2 are mounted on each of the electrode 6a and the electrode 6b.
  • the main wiring 22 is connected to each element row mounted on the electrode 6a. More specifically, the main wiring 22 is joined to the source pad of the semiconductor element 2 of each element row mounted on the electrode 6a.
  • the main wiring 22 is connected to each element row mounted on the electrode 6a and faces a straight line portion 221 (first straight line portion) extending in the X direction, a straight line portion 231 and a straight line portion 221 described later, and extends in the X direction. It has a linear part 222 (second linear part) that extends, and a connection part 223 that connects one end of the linear part 221 and one end of the linear part 222. An end 224 of the main wiring 22 extends in the Z direction and is connected to the electrode 6b.
  • the main wiring 23 is connected to each element row mounted on the electrode 6b. More specifically, the main wiring 23 is joined to the source pad of the semiconductor element 2 of each element row mounted on the electrode 6b.
  • the main wiring 23 is connected to each element row mounted on the electrode 6b and has a linear portion 231 extending in the X direction.
  • An end 232 of the main wiring 23 extends in the Z direction and is connected to the first electronic device. Taking FIG. 14 as an example, the end 232 of the main wiring 23 is connected to the N side.
  • the main wiring 24 is connected to the electrode 6a, extends in the Z direction, and has an end connected to the first electronic device.
  • the main wiring 25 is connected to the electrode 6b, extends in the Z direction, and has an end connected to the second electronic device. Taking FIG. 14 as an example, the end of the main wiring 25 is connected to the UVW side, and the end of the main wiring 24 is connected to the P side.
  • the main wiring 22 and the main wiring 23 are configured as follows with respect to the configuration of the second embodiment. That is, the main wiring 23 (second main wiring) is connected to each element row mounted on the electrode 6b (second electrode) and is configured to have a linear portion 231 extending in the X direction.
  • the main wiring 22 (first main wiring) is connected to each element row mounted on the electrode 6a (first electrode), and extends in the X direction, a linear portion 221 (first linear portion), and a linear portion 231.
  • FIG. 12 is a bottom view of the semiconductor power module according to Embodiment 6 of the present invention.
  • 13 is a cross-sectional view taken along line VI-VI in FIG.
  • description of points that are the same as in the first to fifth embodiments will be omitted, and differences from the first to fifth embodiments will be mainly described.
  • the semiconductor power module includes a control terminal 1a (first control terminal), a control terminal 1b (second control terminal), a plurality of semiconductor elements 2, a sensor 3a (first sensor), and a sensor 3b ( 2nd sensor), main wiring 26 (first main wiring), main wiring 27 (second main wiring), main wiring 28, main wiring 29, electrode 6a (first electrode), electrode 6b (second Electrode), two insulating substrates 7, two heat sinks 8, a cooler 9, and a control substrate (not shown).
  • an electrode 6a on which a plurality of semiconductor elements 2 are mounted, an insulating substrate 7 on which the electrode 6a is mounted, and a heat dissipation plate 8 on which the insulating substrate 7 is placed are arranged on the upper surface of the cooler 9, an electrode 6b on which a plurality of semiconductor elements 2 are mounted, an insulating substrate 7 on which the electrode 6b is mounted, and a heat dissipation plate 8 on which the insulating substrate 7 is placed are arranged.
  • the electrode 6 a is disposed on the upper surface side of the cooler 9, and the electrode 6 b is disposed on the lower surface side of the cooler 9.
  • the main wiring 26 is connected to each element row mounted on the electrode 6a.
  • the main wiring 26 is connected to each element array mounted on the electrode 6a, and extends in the X direction to a straight line portion 261 (first straight line portion).
  • the straight line portion 261 faces the straight line portion 261 and extends in the X direction. 2 straight portions), and a connection portion 263 that connects one end of the straight portion 261 and one end of the straight portion 262.
  • the other end of the straight portion 262 of the main wiring 26 is connected to the first electronic device. Taking FIG. 14 as an example, the other end of the straight line portion 262 of the main wiring 26 is connected to the N side.
  • the main wiring 27 is connected to each element row mounted on the electrode 6b.
  • the main wiring 27 is connected to each element row mounted on the electrode 6b, and extends in the X direction to a straight line portion 271 (first straight line portion). 2 straight portions), and a connecting portion 273 that connects one end of the straight portion 271 and one end of the straight portion 272.
  • the other end of the linear portion 272 of the main wiring 27 is connected to the electrode 6a.
  • the main wiring 28 is connected to the electrode 6a, extends in the X direction, and has an end connected to the second electronic device.
  • the main wiring 29 is connected to the electrode 6b, extends in the X direction, and has an end connected to the first electronic device. Taking FIG. 14 as an example, the end of the main wiring 28 is connected to the UVW side, and the end of the main wiring 29 is connected to the P side.
  • the electrode 6a (first electrode) is arranged on the upper surface side of the cooler 9 with respect to the configuration of the second embodiment, and the electrode 6b (second electrode). Is arranged on the lower surface side of the cooler 9.
  • the main wiring 26 (first main wiring) is connected to each element row mounted on the electrode 6a, and is opposed to the straight portion 261 (first straight portion) extending in the X direction and the straight portion 261, and in the X direction.
  • a connecting portion 263 that connects one end of the linear portion 261 and one end of the linear portion 262.
  • the main wiring 27 (second main wiring) is connected to each element row mounted on the electrode 6b, and is opposed to the straight portion 271 (first straight portion) extending in the X direction and the straight portion 271, and in the X direction. And a connecting portion 273 connecting one end of the linear portion 271 and one end of the linear portion 272. Even in such a configuration, the same effect as in the first embodiment can be obtained.

Abstract

半導体パワーモジュールは、X方向に配置される複数の半導体素子からなる素子列がY方向に複数列配列して実装される第1の電極と、第1の電極に実装される各素子列に接続される第1の主配線と、第1の電極に実装される複数列の素子列の中で、第1の主配線の合成インダクタンスの影響を最も受けない半導体素子である第1の検出対象素子に実装される第1のセンサと、第1の電極上に配置される第1の制御端子と、第1の制御端子を介して取得した第1のセンサの検出結果に基づいて、第1の検出対象素子に流れる電流を制御する制御基板と、を備えて構成されている。

Description

半導体パワーモジュール
 本発明は、複数の半導体素子からなる素子列が複数列配列して構成される半導体パワーモジュールに関する。
 従来において、複数の半導体素子によって構成される半導体モジュールの温度を検出する温度検出装置が提案されている(例えば、特許文献1参照)。特許文献1に記載の温度検出装置は、各半導体素子に設けられたダイオードであって、互いに並列に接続された温度検出用ダイオードと、並列接続された温度検出用ダイオードが接続され、温度検出用ダイオードの並列接続状態の出力電圧に基づいて半導体モジュールの温度検出を行う温度検出回路とを備えて構成されている。
特許第3194353号公報
 半導体パワーモジュールにおいては、半導体素子の熱破壊および過電流破壊を防止するために、温度センサおよび電流センサが半導体素子に実装されている。また、半導体パワーモジュールの大容量化を実現するために、シリコンカーバイドおよび窒化ガリウムといったワイドバンドギャップ半導体によって半導体素子を形成することが考えられる。
 しかしながら、ワイドバンドギャップ半導体のウェハ基板の欠陥密度が大きいため、半導体素子の製造歩留りが低下し、その結果、半導体素子の素子サイズが大きくすることが困難である。したがって、半導体パワーモジュールを構成する半導体素子は、素子サイズが小さい複数の半導体素子を並列に接続した構成とすることが求められる。
 ここで、特許文献1に記載の従来技術では、複数の温度検出用ダイオードの並列接続状態の出力電圧に基づいて温度検出するように構成されているので、例えば、3個の温度検出用ダイオードを並列接続した場合には温度の検出誤差が14℃となり、温度の検出誤差が大きい。したがって、半導体パワーモジュールの許容温度に対する余裕度が過大に必要となり、その結果、半導体パワーモジュールを搭載した電力変換装置の大出力化が困難である。
 また、特許文献1に記載の従来技術では、半導体モジュールを構成するすべての半導体素子に温度検出用ダイオードを実装する必要があるので、製造コストが増大する。また、これらの温度検出用ダイオードを温度検出回路に電気的に接続する必要があるので、接続配線を設けるスペースが増大し、その結果、半導体パワーモジュールを搭載した電力変換装置が大型化する。
 本発明は、上記のような課題を解決するためになされたものであり、電力変換装置の大出力化および小型化の実現に寄与する半導体パワーモジュールを得ることを目的とする。
 本発明における半導体パワーモジュールは、X方向に配置される複数の半導体素子からなる素子列がX方向に垂直のY方向に複数列配列して実装される第1の電極と、第1の電極に実装される各素子列に接続される第1の主配線と、第1の電極に実装される複数列の素子列の中で、第1の主配線の合成インダクタンスの影響を最も受けない半導体素子である第1の検出対象素子に実装される第1のセンサと、第1の電極上に配置される第1の制御端子と、第1の制御端子を介して第1のセンサに接続され、第1の制御端子を介して取得した第1のセンサの検出結果に基づいて、第1の検出対象素子に流れる電流を制御する制御基板と、を備えたものである。
 本発明によれば、電力変換装置の大出力化および小型化の実現に寄与する半導体パワーモジュールを得ることができる。
本発明の実施の形態1における半導体パワーモジュールの斜視図である。 図1の上面図である。 図2のI-I線に沿った矢視断面図である。 本発明の実施の形態2における半導体パワーモジュールの上面図である。 図4のII-II線に沿った矢視断面図である。 本発明の実施の形態3における半導体パワーモジュールの上面図である。 図6のIII-III線に沿った矢視断面図である。 本発明の実施の形態4における半導体パワーモジュールの上面図である。 図8のIV-IV線に沿った矢視断面図である。 本発明の実施の形態5における半導体パワーモジュールの上面図である。 図10のV-V線に沿った矢視断面図である。 本発明の実施の形態6における半導体パワーモジュールの下面図である。 図12のVI-VI線に沿った矢視断面図である。 本発明の実施の形態1~6における半導体パワーモジュールが適用される電力変換装置の一例であるインバータを示す回路図である。
 以下、本発明による半導体パワーモジュールを、好適な実施の形態にしたがって図面を用いて説明する。なお、図面の説明においては、同一部分または相当部分には同一符号を付し、重複する説明を省略する。また、本発明は、例えば、プラグインハイブリッド車、電気自動車等に搭載される電力変換装置に適用される。
 はじめに、本発明が適用される電力変換装置について説明する。電力変換装置は、電力を変換するためのスイッチング回路を有するものである。電力変換装置の具体例としては、電動車両に搭載されているモータ駆動用のインバータ、電圧を高電圧から低電圧に変換する降圧コンバータおよび外部電源設備に接続して車載電池を充電する充電器といった電動パワーコンポーネントが挙げられる。
 以下、電力変換装置の一例として挙げられるインバータについて、図14を参照しながら説明する。図14は、本発明の実施の形態1~6における半導体パワーモジュールが適用される電力変換装置の一例であるインバータを示す回路図である。
 図14に示すインバータは、半導体パワーモジュール301~306によって構成され、例えば、入力側に直流電源が接続され、出力側にU相巻線、V相巻線およびW相巻線を有するモータが接続される。
 半導体パワーモジュール301~306は、それぞれ、スイッチング素子Q1~Q6を含んで構成される。上アーム側のスイッチング素子Q1、Q3およびQ5は、直流電源の正側(P側)に接続され、下アーム側のスイッチング素子Q2、Q4およびQ6は、直流電源の負側(N側)に接続される。
 スイッチング素子Q1およびQ2がU相に対応し、スイッチング素子Q3およびQ4がV相に対応し、スイッチング素子Q5およびQ6がW相に対応する。
 半導体パワーモジュール301~106に実装されている半導体素子は、例えば、MOS-FET、IGBT、ダイオード等の半導体素子であり、半導体素子を製造するためのウェハ基板としては、シリコンの他に、ワイドバンドギャップ半導体が使用されている。
 ここで、例えば、車両の電動化が進むと、モータ駆動用のインバータの大容量化が求められる。また、インバータの大容量化を実現するために、ウェハ基板としてワイドバンドギャップ半導体を使用し、さらに、半導体素子の素子サイズが大きくすることが考えられる。しかしながら、このような場合、ウェハ基板の欠陥密度が大きいため、半導体素子の製造歩留りが低下し、結果として、インバータの製造コストが高くなる。そこで、インバータの各半導体パワーモジュールに含まれる半導体素子は、素子サイズが小さい複数の半導体素子を並列に接続した構成となっている。
 実施の形態1.
 次に、本実施の形態1における半導体パワーモジュールについて、図1~図3を参照しながら説明する。図1は、本発明の実施の形態1における半導体パワーモジュールの斜視図である。図2は、図1の上面図である。図3は、図2のI-I線に沿った矢視断面図である。なお、図1では、冷却器9の図示を省略している。また、以下の各実施の形態で言及する主配線は、例えば、銅素材のバスバによって構成される。
 実施の形態1における半導体パワーモジュールは、先の図14に示す半導体パワーモジュール301~306のそれぞれに対応している。つまり、図1~図3に示す半導体パワーモジュールを6つ用意することで、図14に示すインバータ回路を構成可能となる。
 実施の形態1における半導体パワーモジュールは、制御端子1a、複数の半導体素子2、センサ3a(第1のセンサ)、主配線4(第1の主配線)、主配線5、電極6a(第1の電極)、絶縁基板7、放熱板8、冷却器9および制御基板(図示せず)を備える。
 絶縁基板7上に配置される電極6aは、一定ピッチでX方向に配置される複数の半導体素子2からなる素子列が一定ピッチでX方向に垂直のY方向に複数列配列して実装される。より具体的には、複数の半導体素子2は、電極6aとしての例えば銅パターンにはんだ付けされている。この銅パターンは、絶縁基板7によって絶縁されている。なお、実施の形態1では、具体例として、1列が3つの半導体素子2からなる素子列が3列に配列しているものとする。
 絶縁基板7は、放熱板8を介して、複数の半導体素子2を冷却する冷却器9に搭載されている。冷却器9の冷却方式としては、例えば、水冷方式および空冷方式が挙げられる。
 センサ3aは、電極6aに実装される複数列の素子列の中で、主配線4の合成インダクタンスの影響を最も受けない半導体素子(第1の検出対象素子)に実装される。なお、実施の形態1では、センサ3aが実装される半導体素子2を半導体素子2aと表記し、半導体素子2aを含む素子列を素子列Aと表記し、素子列Aに含まれる他の半導体素子2を半導体素子2b,2cと表記する。
 主配線4は、電極6aに実装される各素子列に接続される。より具体的には、各素子列の半導体素子2のソースパッドには、主配線4が接合されている。半導体素子2の制御用ソースパッドおよびゲートパッドは、例えばAlワイヤを介して制御端子(図示せず)と接続されている。
 主配線4は、電極6aに実装される各素子列に接続され、X方向に延びる直線部41(第1の直線部)と、直線部41に対向し、X方向に延びる直線部42(第2の直線部)と、直線部41の一端と直線部42の一端を接続する接続部43とを有する。主配線4では、各素子列の直線部42の他端同士が、Y方向に延びる接続部44によって接続される。接続部44の素子列A側には、X方向およびY方向に垂直のZ方向に延びる端部45が接続される。主配線5は、電極6aに接続されており、主配線4の端部45に対向し、Z方向に延びる。
 制御端子1aは、電極6aに実装される複数列の素子列よりも+X方向側に電極6a上に配置される。より具体的には、制御端子1aは、対向する主配線5とで素子列Aを挟むように電極6aの素子列A側に配置され、Z方向延びる。
 主配線4の端部45および主配線5の端部は、コンデンサ(PN側)、モータ(UVW側)、半導体パワーモジュール等といった電子機器に接続されている。例えば、先の図14を例に挙げて、主配線4の端部45および主配線5の端部のそれぞれの接続先について説明すると以下のとおりである。
 すなわち、上アーム側の半導体パワーモジュール301、303および305の主配線5の端部は、それぞれ、P側に接続される。上アーム側の半導体パワーモジュール301、303および305の主配線4の端部45は、それぞれ、下アーム側の半導体パワーモジュール302、304および306の電極6aに接続される。
 上アーム側の半導体パワーモジュール301、303および305の主配線4の端部45は、それぞれ、モータのU相、V相およびW相に接続される。下アーム側の半導体パワーモジュール302、304および306の主配線5の端部は、それぞれ、N側に接続される。
 制御基板は、制御端子1aを介してセンサ3aに接続され、制御端子1aを介して取得したセンサ3aの検出結果に基づいて、センサ3aが実装される半導体素子2aに流れる電流を制御する。センサ3aは、後述するとおり、例えば、温度センサまたは電流センサである。
 続いて、主配線4の合成インダクタンスについて説明する。ここで、主配線4の合成インダクタンスが小さい箇所に接続される半導体素子2は、その合成インダクタンスが大きい箇所に接続される半導体素子2と比べて、時間遅れがなくソース電位が変化するので、電流が多く流れる。一般的に、配線の合成インダクタンスは、配線長さから決まる自己インダクタンスと、周囲の配線に起因した磁界の影響から決まる相互インダクタンスとの差分で決まる。
 3列に配列している素子列の中で素子列Aの半導体素子2aは、主配線4の端部45からの配線長さが最短となっているので、主配線4の自己インダクタンスが小さくなっている。相互インダクタンスの影響が複数の半導体素子2に対して均一とすると、自己インダクタンスが小さい、すなわち合成インダクタンスが小さい箇所に位置する半導体素子2aに電流が多く流れる。なぜならば、主配線4の合成インダクタンスが小さい箇所に接続される半導体素子2aは、その合成インダクタンスが大きい箇所に接続される半導体素子2cと比べて、時間遅れなくソース電位が変化し、ゲートとソースに任意の電圧を印加できるため、電流が多く流れるからである。
 以上から分かるように、半導体素子2aは、他の半導体素子2と比べたとき、主配線4の合成インダクタンスの影響を最も受けないことから、最大の電流が流れる。つまり、半導体素子2aは、3列の素子列の中で、主配線4の端部45までの配線長さが最短であるので、主配線4の合成インダクタンスの影響を最も受けない。その結果、複数の半導体素子2の中で、半導体素子2aは、損失が最大となるので、熱的破壊が最も進行する。
 そこで、実施の形態1では、半導体素子2aにセンサ3aとして温度センサを実装し、制御端子1aを介して温度センサと制御基板を接続し、制御基板は、温度センサの検出値が予め設定される閾値を超える前に、半導体素子2aへの電流を、遮断するまたは減少させるように構成されている。このように構成することで、半導体素子2aの熱的破壊を防止する。
 また、半導体パワーモジュールにおいて、半導体素子2を制御する制御信号にノイズが入り、ドレインとソース間に大電流が流れると、最大の電流が流れる半導体素子2aの熱的破壊が進行する。
 そこで、実施の形態1では、半導体素子2aにセンサ3aとして電流センサを実装し、制御端子1aを介して電流センサと制御基板を接続し、制御基板は、電流センサの検出値が予め設定される閾値を超える前に、半導体素子2aへの電流を、遮断するまたは減少させるように構成されている。このように構成することで、半導体素子2aの短絡破壊を防止する。
 主配線4の直線部41と直線部42の間隔は、素子列を構成する半導体素子2に寄与する合成インダクタンスを下げるために、製造制約で許容する値まで小さくすることが望ましい。主配線4に流れる電流は、直線部41と直線部42との間で向きが異なる状態となる。したがって、直線部41に流れる電流によって発生する磁界と、直線部42に流れる電流によって発生する磁界とが互いに打ち消し合い、相互インダクタンスの影響を大きくすることで、合成インダクタンスを下げることが可能となる。その結果、半導体素子2のスイッチング時のサージ電圧を抑制することが可能となる。
 冷却器9の冷媒は、主配線4の合成インダクタンスの影響が大きい半導体素子2cからその影響が小さい半導体素子2aの方向に流れるようにしている。つまり、センサ3aが実装される半導体素子2aは、X方向に流れる冷却器9の冷媒流れの最も下流側に配置されることとなる。このようにすることで、半導体素子2bおよび2cからの受熱によって冷媒温度が上昇し、結果として、半導体素子2aの直下の冷媒温度が最も高くなる。
 センサ3aとして温度センサが実装される半導体素子2aは、素子列Aを構成する半導体素子2a~2cの中で、最大電流が流れ、かつ、直下の冷却器9の冷媒温度が最も高い。したがって、半導体素子2aに温度センサを実装することで、半導体素子2aの温度を検出することは効果的である。
 また、素子列が少なくとも3列以上に配列している場合には、半導体素子同士の熱干渉の影響によって、端部の素子列を除く素子列の半導体素子2gの温度が高くなる。したがって、この場合には、端部の素子列を除く素子列の半導体素子2gに温度センサを実装することで、半導体素子2gの温度を検出することが望ましい。
 半導体素子2aに実装される温度センサの形態としては、例えば、ダイオードを半導体素子2aの内部に実装する形態、サーミスタを半導体素子2aのソースに実装する形態、および半導体素子2aに近接して電極6a上に実装する形態が考えられる。ただし、温度検出の精度を考慮すると、上記の形態のうち、ダイオードを半導体素子2aの内部に実装する形態を選択することが望ましい。
 ここで、半導体素子2に電流が流れ出すゲート電圧の閾値、半導体素子2の導通抵抗値にばらつきがある場合は、それらが小さい半導体素子2を主配線4の合成インダクタンスが小さい箇所に配置することで電流の偏差が大きくなる。
 従来において、上述したとおり、ワイドバンドギャップ半導体のウェハ基板は、多数の欠陥を含んでいる。そこで、半導体素子2の製造歩留りを上げて低コスト化を実現するためには、各半導体パワーモジュールに含まれる半導体素子は、素子サイズが小さい複数の半導体素子を並列に接続した構成とする必要がある。
 しかしながら、並列に接続した複数の半導体素子のすべてに温度センサまたは電流センサといったセンサを実装した場合、複数のセンサと複数の制御端子とワイヤで個別に接続して各センサを制御基板と接続する必要がある。この場合、制御基板を含む半導体パワーモジュールの大型化、高コスト化となってしまう。
 これに対して、実施の形態1では、制御端子1aに近接する半導体素子2aのみに1個のセンサ3aを実装しているので、センサの数および制御端子の数を削減することができ、その結果、制御基板を含む半導体パワーモジュールの小型化、低コスト化の実現が可能となる。
 また、従来において、並列接続した複数の半導体素子に接続される主配線の合成インダクタンスが増大し、サージによってこれらの半導体素子が破壊される可能性がある。
 これに対して、実施の形態1では、Y方向から見て、主配線4の直線部41および直線部42が対向した2層構造の状態となっているので、1層構造の状態と比べて、主配線4の合成インダクタンスの大幅な低減が可能となる。したがって、ワイドバンドギャップ半導体から形成されるスイッチング素子を高速スイッチング動作する場合に、サージの抑制が可能となり、その結果、高効率インバータ駆動の実現が可能となる。
 なお、制御端子1aは、主配線4から可能な限り離して配置することが望ましい。このようにすることで、制御端子1aにおいて主配線4が起因して発生しうる電気ノイズを減少させることができる。
 以上、本実施の形態1による半導体パワーモジュールは、X方向に配置される複数の半導体素子2からなる素子列がY方向に複数列配列して実装される電極6a(第1の電極)と、電極6aに実装される各素子列に接続される主配線4(第1の主配線)と、電極6aに実装される複数列の素子列の中で、主配線4の合成インダクタンスの影響を最も受けない半導体素子2a(第1の検出対象素子)に実装されるセンサ3a(第1のセンサ)と、電極6a上に配置される制御端子1a(第1の制御端子)と、制御端子1aを介して取得したセンサ3aの検出結果に基づいて、半導体素子2aに流れる電流を制御する制御基板と、を備えて構成されている。
 このように構成することで、1つのセンサを用いて半導体素子の温度を検出可能な構成となるので、温度の検出誤差をより小さくすることができる。したがって、半導体パワーモジュールの許容温度に対する余裕度を小さくすることが可能となり、その結果、電力変換装置の大出力化が可能となる。
 また、半導体パワーモジュールのすべての半導体素子にセンサを実装する必要がなくなるので、例えば、センサを実装するのに必要な面積を減少させることができ、その結果、低コスト化を実現できる。さらに、1つのセンサを制御基板に接続するだけの構成となるので、接続配線を設けるスペースを小さくすることができ、その結果、電力変換装置の小型化が可能となる。また、半導体パワーモジュールを構成する複数の半導体素子の中で、流れる電流が最大となり、熱的に最も厳しくなる半導体素子にセンサとして温度センサまたは電流センサを実装することで、1つのセンサによって半導体素子の過昇温防止または過電流防止を実現できる。
 以上から分かるように、本実施の形態1における半導体パワーモジュールは、電力変換装置の大出力化および小型化の実現に寄与する。
 実施の形態2.
 本発明の実施の形態2では、先の実施の形態1と構成が異なる半導体パワーモジュールについて、図4および図5を参照しながら説明する。図4は、本発明の実施の形態2における半導体パワーモジュールの上面図である。図5は、図4のII-II線に沿った矢視断面図である。なお、本実施の形態2では、先の実施の形態1と同様である点の説明を省略し、先の実施の形態1と異なる点を中心に説明する。
 実施の形態2における半導体パワーモジュールは、先の図14に示す上アーム側の半導体パワーモジュール301,303,305と下アーム側の半導体パワーモジュール302,304,306を個別に組み合わせた3組の各組に対応している。つまり、図4および図5に示す半導体パワーモジュールを3つ用意することで、図14に示すインバータ回路を構成可能となる。
 実施の形態2における半導体パワーモジュールは、制御端子1a(第1の制御端子)、制御端子1b(第2の制御端子)、複数の半導体素子2、センサ3a(第1のセンサ)、センサ3b(第2のセンサ)、主配線10(第1の主配線)、主配線11(第2の主配線)、主配線12(第3の主配線)、主配線13、電極6a(第1の電極)、電極6b(第2の電極)、絶縁基板7、2枚の放熱板8、冷却器9および制御基板(図示せず)を備える。
 絶縁基板7上に配置される電極6aは、一定ピッチでX方向に配置される複数の半導体素子2からなる素子列が一定ピッチでY方向に複数列配列して実装される。同様に、絶縁基板7上に配置される電極6bは、一定ピッチでX方向に配置される複数の半導体素子2からなる素子列が一定ピッチでY方向に複数列配列して実装される。このように、絶縁基板7には、電極6aと電極6bが分割されて搭載され、電極6aおよび電極6bのそれぞれに複数の半導体素子2が実装されている。
 センサ3aは、電極6aに実装される複数列の素子列の中で、主配線10の合成インダクタンスの影響を最も受けない半導体素子(第1の検出対象素子)に実装される。なお、実施の形態2では、センサ3aが実装される半導体素子2を半導体素子2aと表記し、半導体素子2aを含む素子列を素子列Aと表記し、素子列Aに含まれる他の半導体素子2を半導体素子2b,2cと表記する。
 センサ3bは、電極6bに実装される複数列の素子列の中で、主配線11の合成インダクタンスの影響を最も受けない半導体素子(第2の検出対象素子)に実装される。なお、実施の形態2では、センサ3bが実装される半導体素子2を半導体素子2fと表記し、半導体素子2fを含む素子列を素子列Bと表記し、素子列Bに含まれる他の半導体素子2を半導体素子2d,2eと表記する。
 主配線10は、電極6aに実装される各素子列に接続される。より具体的には、電極6aに実装される各素子列の半導体素子2のソースパッドには、主配線10が接合されている。
 主配線10は、電極6aに実装される各素子列に接続され、X方向に延びる直線部101を有する。主配線10の端部102は、Z方向に延び、電子機器(例えば、コンデンサ)に接続される。先の図14を例に挙げると、主配線10の端部102はN側に接続される。
 主配線11は、電極6bに実装される各素子列に接続される。より具体的には、電極6bに実装される各素子列の半導体素子2のソースパッドには、主配線11が接合されている。
 主配線11は、X方向に延びる直線部111を有する。主配線11の端部112は、Z方向に延び、電極6aに接続される。
 主配線12は、電極6aに実装される各素子列の中で最も+X方向に位置する半導体素子2上に対向して配置される凹部121(第1の凹部)と、電極6bに実装される各素子列の中で最も-X方向に位置する半導体素子2上に対向して配置される凹部122(第2の凹部)と、凹部121の一端と凹部122の一端を接続し、直線部101および直線部111と対向し、X方向に延びる直線部123とを有する。主配線12の一方の端部124は、Z方向に延び、電極6bに接続される。主配線12の他方の端部125は、電子機器に接続される。先の図14を例に挙げると、主配線12の端部125はP側に接続される。
 凹部121と直線部101との間隔は、直線部123と直線部101との間隔よりも狭い。また、凹部122と直線部111との間隔は、直線部123と直線部111との間隔よりも狭い。主配線13は、電極6aに接続されており、Z方向に延びる。先の図14を例に挙げると、主配線13の端部はUVW側に接続される。
 制御端子1aは、電極6aに実装される複数列の素子列よりも+X方向側に電極6a上に配置され、Z方向延びる。制御端子1bは、電極6bに実装される複数列の素子列よりも-X方向側に電極6b上に配置され、Z方向に延びる。
 制御基板は、制御端子1aを介してセンサ3aに接続され、制御端子1aを介して取得したセンサ3aの検出結果に基づいて、センサ3aが実装される半導体素子2aに流れる電流を制御する。また、制御基板は、制御端子1bを介してセンサ3bに接続され、制御端子1bを介して取得したセンサ3bの検出結果に基づいて、センサ3bが実装される半導体素子2fに流れる電流を制御する。センサ3a,3bは、先の実施の形態1と同様に、温度センサまたは電流センサである。
 続いて、主配線10の合成インダクタンスおよび主配線11の合成インダクタンスについて説明する。
 半導体素子2aに影響する主配線10の合成インダクタンスは、半導体素子2aの位置で主配線10とその直上の主配線12とが近接しているので、相互インダクタンスの影響が大きい。そのため、半導体素子2aは、電極6aに実装されている他の半導体素子2と比べたとき、主配線10の合成インダクタンスが小さくなる。
 同様に、半導体素子2fに影響する主配線11の合成インダクタンスは、半導体素子2fの位置で主配線11とその直上の主配線12とが近接しているので、相互インダクタンスの影響が大きい。そのため、半導体素子2fは、電極6bに実装されている他の半導体素子2と比べたとき、主配線11の合成インダクタンスが小さくなる。
 したがって、半導体素子2aは、電極6aに実装されている他の半導体素子2と比べたとき、主配線10の合成インダクタンスの影響を最も受けないことから、最大の電流が流れる。同様に、半導体素子2fは、電極6bに実装されている他の半導体素子2と比べたとき、主配線11の合成インダクタンスの影響を最も受けないことから、最大の電流が流れる。
 そこで、実施の形態2では、半導体素子2a,2fにそれぞれセンサ3a,3bとして温度センサまたは電流センサを実装し、センサの検出値が予め設定される閾値を超える前に、半導体素子2a,2fへの電流を遮断するまたは減少させるように構成されている。
 なお、電流センサは、上記のとおり、電流が最も流れる半導体素子2a,2fの両方に実装することが望ましい。また、温度センサは、X方向に流れる冷却器9の冷媒流れの最も下流側に配置される半導体素子2fに実装することが望ましい。
 以上、本実施の形態2による半導体モジュールは、先の実施の形態1の構成に対して、X方向に配置される複数の半導体素子2からなる素子列がY方向に複数列配列して実装される電極6b(第2の電極)と、電極6bに実装される各素子列に接続される主配線11(第2の主配線)と、電極6bに実装される複数列の素子列の中で、主配線11のインダクタンスの影響を最も受けない半導体素子2f(第2の検出対象素子)に実装されるセンサ3b(第2のセンサ)と、電極6b上に配置される制御端子1b(第2の制御端子)と、をさらに備えて構成されている。
 また、上記の構成に対して、制御基板は、制御端子1bを介して取得したセンサ3bの検出結果に基づいて、半導体素子2fに流れる電流をさらに制御するように構成されている。このように構成した場合であっても、先の実施の形態1と同様の効果が得られる。
 実施の形態3.
 本発明の実施の形態3では、先の実施の形態2と構成が異なる半導体パワーモジュールについて、図6および図7を参照しながら説明する。図6は、本発明の実施の形態3における半導体パワーモジュールの上面図である。図7は、図6のIII-III線に沿った矢視断面図である。なお、本実施の形態3では、先の実施の形態1、2と同様である点の説明を省略し、先の実施の形態1、2と異なる点を中心に説明する。
 実施の形態3における半導体パワーモジュールは、制御端子1a(第1の制御端子)、制御端子1b(第2の制御端子)、複数の半導体素子2、センサ3a(第1のセンサ)、センサ3b(第2のセンサ)、主配線14(第1の主配線)、主配線15(第2の主配線)、主配線16、主配線17、電極6a(第1の電極)、電極6b(第2の電極)、絶縁基板7、2枚の放熱板、冷却器9(図示せず)および制御基板(図示せず)を備える。
 先の実施の形態2と同様に、絶縁基板7上には、電極6aと電極6bが分割されて搭載され、電極6aおよび電極6bのそれぞれに複数の半導体素子2が実装されている。
 主配線14は、電極6aに実装される各素子列に接続される。より具体的には、電極6aに実装される各素子列の半導体素子2のソースパッドには、主配線14が接合されている。
 主配線14は、電極6aに実装される各素子列に接続され、X方向に延びる直線部141を有する。主配線14の端部142は、Z方向に延び、電極6bに接続される。
 主配線15は、電極6bに実装される各素子列に接続される。より具体的には、電極6bに実装される各素子列の半導体素子2のソースパッドには、主配線15が接合されている。
 主配線15は、電極6bに実装される各素子列に接続され、X方向に延びる直線部151(第1の直線部)と、直線部151および直線部141に対向し、X方向に延びる直線部152(第2の直線部)と、直線部151の一端と直線部152の一端を接続する接続部153と、直線部152の他端に接続され、電極6aに実装される各素子列の中で最も+X方向に位置する半導体素子2上に対向して配置される凹部154と、を有する。主配線15の端部155は、電子機器に接続される。先の図14を例に挙げると、主配線15の端部155はN側に接続される。
 凹部154と直線部141との間隔は、直線部152と直線部141との間隔よりも狭い。
 主配線16は、電極6aに接続され、Z方向に延び、主配線17は、電極6bに接続され、Z方向に延びる。主配線16の端部は、電子機器に接続される。先の図14を例に挙げると、主配線17の端部はUVW側に接続されており、主配線16の端部はP側に接続される。
 続いて、主配線14の合成インダクタンスおよび主配線15の合成インダクタンスについて説明する。
 電極6bに実装された複数の半導体素子2の中で、半導体素子2fは、主配線15の端部155からの配線長さが最短であるので、主配線15の自己インダクタンスが小さくなっている。そのため、電極6bに実装された複数の半導体素子2の中で、半導体素子2fは、流れる電流が最も大きく、損失が大きい。
 一方、電極6aに実装された複数の半導体素子2において、半導体素子2aの位置で主配線14とその直上の主配線15とが近接している。そのため、半導体素子2aは、電極6aに実装されている他の半導体素子2と比べたとき、主配線14の合成インダクタンスが小さくなる。そのため、電極6aに実装された複数の半導体素子2の中で、半導体素子2aは、流れる電流が最も大きく、損失が大きい。
 そこで、実施の形態3では、半導体素子2a,2fにそれぞれセンサ3a,3bとして温度センサまたは電流センサを実装し、センサの検出値が予め設定される閾値を超える前に、半導体素子2a,2fへの電流を遮断するまたは減少させるように構成されている。
 以上、本実施の形態3による半導体モジュールは、先の実施の形態2の構成に対して、主配線14および主配線15が以下のように構成されている。すなわち、主配線14(第1の主配線)は、電極6a(第1の電極)に実装される各素子列に接続され、X方向に延びる直線部141を有するように構成されている。主配線15(第2の主配線)は、電極6b(第2の電極)に実装される各素子列に接続され、X方向に延びる直線部151(第1の直線部)と、直線部151および直線部141に対向し、X方向に延びる直線部152(第2の直線部)と、直線部151の一端と直線部152の一端を接続する接続部153と、直線部152の他端に接続され、電極6aに実装される半導体素子2a(第1の検出対象素子)上に対向して配置される凹部154と、を有するように構成されている。このように構成した場合であっても、先の実施の形態1と同様の効果が得られる。
 実施の形態4.
 本発明の実施の形態4では、先の実施の形態2、3と構成が異なる半導体パワーモジュールについて、図8および図9を参照しながら説明する。図8は、本発明の実施の形態4における半導体パワーモジュールの上面図である。図9は、図8のIV-IV線に沿った矢視断面図である。なお、本実施の形態4では、先の実施の形態1~3と同様である点の説明を省略し、先の実施の形態1~3と異なる点を中心に説明する。
 実施の形態4における半導体パワーモジュールは、制御端子1a(第1の制御端子)、制御端子1b(第2の制御端子)、複数の半導体素子2、センサ3a(第1のセンサ)、センサ3b(第2のセンサ)、主配線18(第1の主配線)、主配線19(第2の主配線)、主配線20、主配線21、電極6a(第1の電極)、電極6b(第2の電極)、絶縁基板7、2枚の放熱板8、冷却器9(図示せず)および制御基板(図示せず)を備える。
 先の実施の形態2と同様に、絶縁基板7上には、電極6aと電極6bが分割されて搭載され、電極6aおよび電極6bのそれぞれに複数の半導体素子2が実装されている。
 主配線18は、電極6aに実装される各素子列に接続される。より具体的には、電極6aに実装される各素子列の半導体素子2のソースパッドには、主配線18が接合されている。
 主配線18は、電極6aに実装される各素子列に接続され、X方向に延びる直線部181(第1の直線部)と、直線部181に対向し、X方向に延びる直線部182(第2の直線部)と、直線部181の一端と直線部182の一端を接続する接続部183と、を有する。主配線18の端部184は、電子機器に接続される。先の図14を例に挙げると、主配線18の端部184はN側に接続される。
 主配線19は、電極6bに実装される各素子列に接続される。より具体的には、電極6bに実装される各素子列の半導体素子2のソースパッドには、主配線19が接合されている。
 主配線19は、電極6bに実装される各素子列に接続され、X方向に延びる直線部191(第1の直線部)と、直線部191に対向し、X方向に延びる直線部192(第2の直線部)と、直線部191の一端と直線部192の一端を接続する接続部193と、を有する。主配線19の端部194は、Z方向に延び、電極6aに接続される。
 主配線20は、電極6aに接続され、Z方向に延び、端部が電子機器に接続される。主配線21は、電極6bに接続され、Z方向に延び、端部が電子機器に接続される。先の図14を例に挙げると、主配線20の端部はUVW側に接続されており、主配線21の端部はP側に接続される。
 以上、本実施の形態4による半導体モジュールは、先の実施の形態2の構成に対して、主配線18および主配線19が以下のように構成されている。すなわち、主配線18(第1の主配線)は、電極6a(第1の電極)に実装される各素子列に接続され、X方向に延びる直線部181(第1の直線部)と、直線部181に対向し、X方向に延びる直線部182(第2の直線部)と、直線部181の一端と直線部182の一端を接続する接続部183と、を有するように構成されている。主配線19(第2の主配線)は、電極6b(第2の電極)に実装される各素子列に接続され、X方向に延びる直線部191(第1の直線部)と、直線部191に対向し、X方向に延びる直線部192(第2の直線部)と、直線部191の一端と直線部192の一端を接続する接続部193と、を有するように構成されている。このように構成した場合であっても、先の実施の形態1と同様の効果が得られる。
 実施の形態5.
 本発明の実施の形態5では、先の実施の形態2~4と構成が異なる半導体パワーモジュールについて、図10および図11を参照しながら説明する。図10は、本発明の実施の形態5における半導体パワーモジュールの上面図である。図11は、図10のV-V線に沿った矢視断面図である。なお、本実施の形態5では、先の実施の形態1~4と同様である点の説明を省略し、先の実施の形態1~4と異なる点を中心に説明する。
 実施の形態5における半導体パワーモジュールは、制御端子1a(第1の制御端子)、制御端子1b(第2の制御端子)、複数の半導体素子2、センサ3a(第1のセンサ)、センサ3b(第2のセンサ)、主配線22(第1の主配線)、主配線23(第2の主配線)、主配線24、主配線25、電極6a(第1の電極)、電極6b(第2の電極)、絶縁基板7、2枚の放熱板8、冷却器9(図示せず)および制御基板(図示せず)を備える。
 先の実施の形態2と同様に、絶縁基板7上には、電極6aと電極6bが分割されて搭載され、電極6aおよび電極6bのそれぞれに複数の半導体素子2が実装されている。
 主配線22は、電極6aに実装される各素子列に接続される。より具体的には、電極6aに実装される各素子列の半導体素子2のソースパッドには、主配線22が接合されている。
 主配線22は、電極6aに実装される各素子列に接続され、X方向に延びる直線部221(第1の直線部)と、後述する直線部231および直線部221に対向し、X方向に延びる直線部222(第2の直線部)と、直線部221の一端と直線部222の一端を接続する接続部223と、を有する。主配線22の端部224は、Z方向に延び、電極6bに接続される。
 主配線23は、電極6bに実装される各素子列に接続される。より具体的には、電極6bに実装される各素子列の半導体素子2のソースパッドには、主配線23が接合されている。
 主配線23は、電極6bに実装される各素子列に接続され、X方向に延びる直線部231を有する。主配線23の端部232は、Z方向に延び、第1の電子機器に接続される。先の図14を例に挙げると、主配線23の端部232はN側に接続される。
 主配線24は、電極6aに接続され、Z方向に延び、端部が第1の電子機器に接続される。主配線25は、電極6bに接続され、Z方向に延び、端部が第2の電子機器に接続される。先の図14を例に挙げると、主配線25の端部はUVW側に接続されており、主配線24の端部はP側に接続される。
 以上、本実施の形態5による半導体パワーモジュールは、先の実施の形態2の構成に対して、主配線22および主配線23が以下のように構成されている。すなわち、主配線23(第2の主配線)は、電極6b(第2の電極)に実装される各素子列に接続され、X方向に延びる直線部231を有するように構成されている。主配線22(第1の主配線)は、電極6a(第1の電極)に実装される各素子列に接続され、X方向に延びる直線部221(第1の直線部)と、直線部231および直線部221に対向し、X方向に延びる直線部222(第2の直線部)と、直線部221の一端と直線部222の一端を接続する接続部223と、を有するように構成されている。このように構成した場合であっても、先の実施の形態1と同様の効果が得られる。
 実施の形態6.
 本発明の実施の形態6では、先の実施の形態2~5と構成が異なる半導体パワーモジュールについて、図12および図13を参照しながら説明する。図12は、本発明の実施の形態6における半導体パワーモジュールの下面図である。図13は、図12のVI-VI線に沿った矢視断面図である。なお、本実施の形態6では、先の実施の形態1~5と同様である点の説明を省略し、先の実施の形態1~5と異なる点を中心に説明する。
 実施の形態6における半導体パワーモジュールは、制御端子1a(第1の制御端子)、制御端子1b(第2の制御端子)、複数の半導体素子2、センサ3a(第1のセンサ)、センサ3b(第2のセンサ)、主配線26(第1の主配線)、主配線27(第2の主配線)、主配線28、主配線29、電極6a(第1の電極)、電極6b(第2の電極)、2枚の絶縁基板7、2枚の放熱板8、冷却器9および制御基板(図示せず)を備える。
 冷却器9の上面に、複数の半導体素子2が実装される電極6aと、電極6aが搭載される絶縁基板7と、その絶縁基板7を載置する放熱板8とが配置される。冷却器9の下面に、複数の半導体素子2が実装される電極6bと、電極6bが搭載される絶縁基板7と、その絶縁基板7を載置する放熱板8とが配置されている。このように、電極6aは、冷却器9の上面側に配置され、電極6bは、冷却器9の下面側に配置されている。
 主配線26は、電極6aに実装される各素子列に接続される。主配線26は、電極6aに実装される各素子列に接続され、X方向に延びる直線部261(第1の直線部)と、直線部261に対向し、X方向に延びる直線部262(第2の直線部)と、直線部261の一端と直線部262の一端を接続する接続部263と、を有する。主配線26の直線部262の他端は、第1の電子機器と接続される。先の図14を例に挙げると、主配線26の直線部262の他端はN側に接続される。
 主配線27は、電極6bに実装される各素子列に接続される。主配線27は、電極6bに実装される各素子列に接続され、X方向に延びる直線部271(第1の直線部)と、直線部271に対向し、X方向に延びる直線部272(第2の直線部)と、直線部271の一端と直線部272の一端を接続する接続部273と、を有する。主配線27の直線部272の他端は、電極6aに接続される。
 主配線28は、電極6aに接続され、X方向に延び、端部が第2の電子機器に接続される。主配線29は、電極6bに接続され、X方向に延び、端部が第1の電子機器に接続される。先の図14を例に挙げると、主配線28の端部はUVW側に接続されており、主配線29の端部はP側に接続される。
 以上、本実施の形態6による半導体パワーモジュールは、先の実施の形態2の構成に対して、電極6a(第1の電極)は、冷却器9の上面側に配置され、電極6b(第2の電極)は、冷却器9の下面側に配置されて構成されている。主配線26(第1の主配線)は、電極6aに実装される各素子列に接続され、X方向に延びる直線部261(第1の直線部)と、直線部261に対向し、X方向に延びる直線部262(第2の直線部)と、直線部261の一端と直線部262の一端を接続する接続部263と、を有するように構成されている。主配線27(第2の主配線)は、電極6bに実装される各素子列に接続され、X方向に延びる直線部271(第1の直線部)と、直線部271に対向し、X方向に延びる直線部272(第2の直線部)と、直線部271の一端と直線部272の一端を接続する接続部273と、を有するように構成されている。このように構成した場合であっても、先の実施の形態1と同様の効果が得られる。
 1a,1b 制御端子、2 半導体素子、3a,3b センサ、4 主配線、41,42 直線部、43,44 接続部、45 端部、5 主配線、6a,6b 電極、7 絶縁基板、8 放熱板、9 冷却器、10 主配線、101 直線部、102 端部、11 主配線、111 直線部、112 端部、12 主配線、121,122 凹部、123 直線部、124,125 端部、13 主配線、14 主配線、141 直線部、142 端部、15 主配線、151,152 直線部、153 接続部、154 凹部、155 端部、16,17 主配線、18 主配線、181,182 直線部、183 接続部、184 端部、19 主配線、191,192 直線部、193 接続部、194 端部、20,21 主配線、22 主配線、221,222 直線部、223 接続部、224 端部、23 主配線、231 直線部、232 端部、24,25 主配線、26 主配線、261,262 直線部、263 接続部、27 主配線、271,272 直線部、273 接続部、28,29 主配線。

Claims (12)

  1.  X方向に配置される複数の半導体素子からなる素子列が前記X方向に垂直のY方向に複数列配列して実装される第1の電極と、
     前記第1の電極に実装される各素子列に接続される第1の主配線と、
     前記第1の電極に実装される前記複数列の素子列の中で、前記第1の主配線の合成インダクタンスの影響を最も受けない半導体素子である第1の検出対象素子に実装される第1のセンサと、
     前記第1の電極上に配置される第1の制御端子と、
     前記第1の制御端子を介して前記第1のセンサに接続され、前記第1の制御端子を介して取得した前記第1のセンサの検出結果に基づいて、前記第1の検出対象素子に流れる電流を制御する制御基板と、
     を備えた半導体パワーモジュール。
  2.  前記複数の半導体素子を冷却する冷却器をさらに備え、
     前記第1の検出対象素子は、前記X方向に流れる前記冷却器の冷媒流れの最も下流側に配置される
     請求項1に記載の半導体パワーモジュール。
  3.  前記第1の主配線は、
      前記第1の電極に実装される各素子列に接続され、前記X方向に延びる第1の直線部と、
      前記第1の直線部に対向し、前記X方向に延びる第2の直線部と、
      前記第1の直線部の一端と前記第2の直線部の一端を接続する接続部と、
     を有し、
     前記第1の検出対象素子は、前記複数列の素子列の中で、前記第1の主配線の端部までの配線長さが最短である半導体素子である
     請求項1または2に記載の半導体パワーモジュール。
  4.  前記素子列は3列以上に配列し、
     端部の素子列を除く素子列の半導体素子に温度センサが実装されている
     請求項1から3のいずれか1項に記載の半導体パワーモジュール。
  5.  前記X方向に配置される複数の半導体素子からなる素子列が前記Y方向に複数列配列して実装される第2の電極と、
     前記第2の電極に実装される各素子列に接続される第2の主配線と、
     前記第2の電極に実装される前記複数列の素子列の中で、前記第2の主配線の合成インダクタンスの影響を最も受けない半導体素子である第2の検出対象素子に実装される第2のセンサと、
     前記第2の電極上に配置される第2の制御端子と、
     をさらに備え、
     前記制御基板は、
      前記第2の制御端子を介して前記第2のセンサと接続され、前記第2の制御端子を介して取得した前記第2のセンサの検出結果に基づいて、前記第2の検出対象素子に流れる電流をさらに制御する
     請求項1に記載の半導体パワーモジュール。
  6.  前記第1の主配線および前記第2の主配線上に対向して配置される第3の主配線をさらに備え、
     前記第3の主配線の端部は、前記第2の電極に接続され、
     前記第2の主配線の端部は、前記第1の電極に接続され、
     前記第1の主配線は、前記第1の電極に実装される各素子列に接続され、前記X方向に延びる直線部を有し、
     前記第2の主配線は、前記第2の電極に実装される各素子列に接続され、前記X方向に延びる直線部を有し、
     前記第3の主配線は、
      前記第1の電極に実装される前記第1の検出対象素子上に対向して配置される第1の凹部と、
      前記第2の電極に実装される前記第2の検出対象素子上に対向して配置される第2の凹部と、
      前記第1の凹部の一端と前記第2の凹部の一端を接続し、前記第1の主配線の前記直線部および前記第2の主配線の前記直線部と対向し、前記X方向に延びる直線部と、
     を有し、
     前記第3の主配線の前記第1の凹部と前記第1の主配線の前記直線部との間隔は、前記第3の主配線の前記直線部と前記第1の主配線の前記直線部との間隔よりも狭く、
     前記第3の主配線の前記第2の凹部と前記第2の主配線の前記直線部との間隔は、前記第3の主配線の前記直線部と前記第2の主配線の前記直線部との間隔よりも狭い
     請求項5に記載の半導体パワーモジュール。
  7.  前記第1の主配線の端部は、前記第2の電極に接続され、
     前記第1の主配線は、前記第1の電極に実装される各素子列に接続され、前記X方向に延びる直線部を有し、
     前記第2の主配線は、
      前記第2の電極に実装される各素子列に接続され、前記X方向に延びる第1の直線部と、
      前記第1の直線部および前記第1の主配線の前記直線部に対向し、前記X方向に延びる第2の直線部と、
      前記第1の直線部の一端と前記第2の直線部の一端を接続する接続部と、
      前記第2の直線部の他端に接続され、前記第1の電極に実装される前記第1の検出対象素子上に対向して配置される凹部と、
     を有し、
     前記第2の主配線の前記凹部と前記第1の主配線の前記直線部との間隔は、前記第2の主配線の前記第2の直線部と前記第1の主配線の前記直線部との間隔よりも狭い
     請求項5に記載の半導体パワーモジュール。
  8.  前記第2の主配線の端部は、前記第1の電極に接続され、
     前記第1の主配線は、
      前記第1の電極に実装される各素子列に接続され、前記X方向に延びる第1の直線部と、
      前記第1の直線部に対向し、前記X方向に延びる第2の直線部と、
      前記第1の直線部の一端と前記第2の直線部の一端を接続する接続部と、
     を有し、
     前記第2の主配線は、
      前記第2の電極に実装される各素子列に接続され、前記X方向に延びる第1の直線部と、
      前記第1の直線部に対向し、前記X方向に延びる第2の直線部と、
      前記第1の直線部の一端と前記第2の直線部の一端を接続する接続部と、
     を有する請求項5に記載の半導体パワーモジュール。
  9.  前記第1の主配線の端部は、前記第2の電極に接続され、
     前記第2の主配線は、前記第2の電極に実装される各素子列に接続され、前記X方向に延びる直線部を有し、
     前記第1の主配線は、
      前記第1の電極に実装される各素子列に接続され、前記X方向に延びる第1の直線部と、
      前記第2の主配線の前記直線部および前記第1の直線部に対向し、前記X方向に延びる第2の直線部と、
      前記第1の直線部の一端と前記第2の直線部の一端を接続する接続部と、
     を有する請求項5に記載の半導体パワーモジュール。
  10.  前記複数の半導体素子を冷却する冷却器をさらに備え、
     前記第1の電極は、前記冷却器の上面側に配置され、
     前記第2の電極は、前記冷却器の下面側に配置され、
     前記第2の主配線の端部は、前記第1の電極に接続され、
     前記第1の主配線は、
      前記第1の電極に実装される各素子列に接続され、前記X方向に延びる第1の直線部と、
      前記第1の直線部に対向し、前記X方向に延びる第2の直線部と、
      前記第1の直線部の一端と前記第2の直線部の一端を接続する接続部と、
     を有し、
     前記第2の主配線は、
      前記第2の電極に実装される各素子列に接続され、前記X方向に延びる第1の直線部と、
      前記第1の直線部に対向し、前記X方向に延びる第2の直線部と、
      前記第1の直線部の一端と前記第2の直線部の一端を接続する接続部と、
     を有する請求項5に記載の半導体パワーモジュール。
  11.  前記センサは、温度センサまたは電流センサである
     請求項1から10のいずれか1項に記載の半導体パワーモジュール。
  12.  前記半導体素子は、ワイドバンドギャップ半導体によって形成されている
     請求項1から11のいずれか1項に記載の半導体パワーモジュール。
PCT/JP2017/020124 2017-05-30 2017-05-30 半導体パワーモジュール WO2018220721A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019521577A JP6745991B2 (ja) 2017-05-30 2017-05-30 半導体パワーモジュール
EP17912122.3A EP3633722A4 (en) 2017-05-30 2017-05-30 POWER SEMICONDUCTOR MODULE
PCT/JP2017/020124 WO2018220721A1 (ja) 2017-05-30 2017-05-30 半導体パワーモジュール
US16/607,177 US11094610B2 (en) 2017-05-30 2017-05-30 Semiconductor power module
CN201780091081.2A CN110663110B (zh) 2017-05-30 2017-05-30 半导体功率模块

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/020124 WO2018220721A1 (ja) 2017-05-30 2017-05-30 半導体パワーモジュール

Publications (1)

Publication Number Publication Date
WO2018220721A1 true WO2018220721A1 (ja) 2018-12-06

Family

ID=64454662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020124 WO2018220721A1 (ja) 2017-05-30 2017-05-30 半導体パワーモジュール

Country Status (5)

Country Link
US (1) US11094610B2 (ja)
EP (1) EP3633722A4 (ja)
JP (1) JP6745991B2 (ja)
CN (1) CN110663110B (ja)
WO (1) WO2018220721A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065259A1 (ja) * 2019-10-01 2021-04-08 株式会社デンソー 半導体装置
WO2022224340A1 (ja) * 2021-04-20 2022-10-27 三菱電機株式会社 電力用半導体装置
JP7380062B2 (ja) 2019-10-18 2023-11-15 富士電機株式会社 半導体モジュール

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11860046B1 (en) * 2021-02-25 2024-01-02 Acacia Communications, Inc. Temperature sensor
EP4102555A1 (en) * 2021-06-10 2022-12-14 Infineon Technologies AG Power semiconductor module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353778A (ja) * 1999-04-05 2000-12-19 Mitsubishi Electric Corp パワー半導体モジュール
JP3194353B2 (ja) 1996-07-26 2001-07-30 トヨタ自動車株式会社 半導体モジュールの温度検出装置
JP2003324179A (ja) * 2002-05-02 2003-11-14 Mitsubishi Electric Corp 半導体装置
JP2006041407A (ja) * 2004-07-30 2006-02-09 Hitachi Industrial Equipment Systems Co Ltd 半導体素子の温度検出方法及び電力変換装置
JP2009141150A (ja) * 2007-12-06 2009-06-25 Denso Corp 半導体装置
WO2017056176A1 (ja) * 2015-09-29 2017-04-06 三菱電機株式会社 半導体装置およびそれを備える半導体モジュール

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19534604C1 (de) * 1995-09-18 1996-10-24 Siemens Ag Durch Feldeffekt steuerbares Halbleiterbauelement mit mehreren Temperatursensoren zum Schutz vor Überlastung
TW200530566A (en) * 2004-03-05 2005-09-16 Hitachi Ind Equipment Sys Method for detecting temperature of semiconductor element and semiconductor power converter
DE102006001874B4 (de) * 2006-01-13 2012-05-24 Infineon Technologies Ag Verfahren und Vorrichtung zur Strom- und Temperaturmessung in einer leistungselektronischen Schaltung
DE102009045181B4 (de) * 2009-09-30 2020-07-09 Infineon Technologies Ag Leistungshalbleitermodul
DE102014109816B4 (de) * 2014-07-14 2016-11-03 Infineon Technologies Ag Leistungshalbleitermodul und System mit mindestens zwei Leistungshalbleitermodulen
DE102014217299A1 (de) * 2014-08-29 2016-03-03 Robert Bosch Gmbh Temperaturerfassungseinrichtung zur erfassung einer vielzahl von temperaturen in einer leistungshalbleitervorrichtung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3194353B2 (ja) 1996-07-26 2001-07-30 トヨタ自動車株式会社 半導体モジュールの温度検出装置
JP2000353778A (ja) * 1999-04-05 2000-12-19 Mitsubishi Electric Corp パワー半導体モジュール
JP2003324179A (ja) * 2002-05-02 2003-11-14 Mitsubishi Electric Corp 半導体装置
JP2006041407A (ja) * 2004-07-30 2006-02-09 Hitachi Industrial Equipment Systems Co Ltd 半導体素子の温度検出方法及び電力変換装置
JP2009141150A (ja) * 2007-12-06 2009-06-25 Denso Corp 半導体装置
WO2017056176A1 (ja) * 2015-09-29 2017-04-06 三菱電機株式会社 半導体装置およびそれを備える半導体モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633722A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065259A1 (ja) * 2019-10-01 2021-04-08 株式会社デンソー 半導体装置
JP2021057534A (ja) * 2019-10-01 2021-04-08 株式会社デンソー 半導体装置
JP7380062B2 (ja) 2019-10-18 2023-11-15 富士電機株式会社 半導体モジュール
WO2022224340A1 (ja) * 2021-04-20 2022-10-27 三菱電機株式会社 電力用半導体装置
JP7422945B2 (ja) 2021-04-20 2024-01-26 三菱電機株式会社 電力用半導体装置

Also Published As

Publication number Publication date
CN110663110A (zh) 2020-01-07
JP6745991B2 (ja) 2020-08-26
EP3633722A1 (en) 2020-04-08
EP3633722A4 (en) 2020-04-22
JPWO2018220721A1 (ja) 2019-11-07
US20200388558A1 (en) 2020-12-10
US11094610B2 (en) 2021-08-17
CN110663110B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
WO2018220721A1 (ja) 半導体パワーモジュール
US9379083B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP4434181B2 (ja) 電力変換装置
US8921998B2 (en) Semiconductor module
WO2014061211A1 (ja) 半導体装置
JP6400201B2 (ja) パワー半導体モジュール
US8400775B2 (en) Capacitor with direct DC connection to substrate
EP3522213B1 (en) Semiconductor device
JP2006210500A (ja) 電力用半導体装置
US20150206864A1 (en) Semiconductor Device
WO2020008874A1 (ja) パワーモジュール
JP6381764B1 (ja) 半導体パワーモジュール
JP2007049810A (ja) 電力変換装置用半導体装置及び同半導体装置を有する温度保護機能付き電力変換装置
JP2005252305A (ja) 電力用半導体装置
US11335660B2 (en) Semiconductor module
JP2018074088A (ja) 半導体装置
JP6818873B2 (ja) スイッチング素子駆動ユニット
JP6354283B2 (ja) 半導体モジュール及び半導体装置
JP5217015B2 (ja) 電力変換装置及びその製造方法
JP6123722B2 (ja) 半導体装置
JP2015053410A (ja) 半導体モジュール
JP6906583B2 (ja) 半導体パワーモジュール
US11450647B2 (en) Semiconductor module and semiconductor device including the same
JP7139799B2 (ja) 半導体装置
WO2020189065A1 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521577

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017912122

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017912122

Country of ref document: EP

Effective date: 20200102