WO2018218603A1 - 双极化辐射单元、天线、基站及通信系统 - Google Patents

双极化辐射单元、天线、基站及通信系统 Download PDF

Info

Publication number
WO2018218603A1
WO2018218603A1 PCT/CN2017/086832 CN2017086832W WO2018218603A1 WO 2018218603 A1 WO2018218603 A1 WO 2018218603A1 CN 2017086832 W CN2017086832 W CN 2017086832W WO 2018218603 A1 WO2018218603 A1 WO 2018218603A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiating
dual
radiation
base
arm
Prior art date
Application number
PCT/CN2017/086832
Other languages
English (en)
French (fr)
Inventor
余彦民
黄臣
刘子晖
杨铭
宋健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780091324.2A priority Critical patent/CN110692167B/zh
Priority to PCT/CN2017/086832 priority patent/WO2018218603A1/zh
Priority to EP17911542.3A priority patent/EP3624262B1/en
Priority to BR112019025312-2A priority patent/BR112019025312A2/pt
Publication of WO2018218603A1 publication Critical patent/WO2018218603A1/zh
Priority to US16/698,442 priority patent/US11043738B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/17Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/001Crossed polarisation dual antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a dual-polarized radiating element, an antenna, a base station, and a communication system.
  • the radiating element in the base station antenna can be directly formed by metal and matched with an equivalent coaxial line feed.
  • the radiation unit and the feed network are connected by a welded coaxial cable. If the radiation unit is multiplied, the solder joint will also be multiplied, which not only increases the difficulty of solder joint quality assurance, but also causes the antenna. The probability of PIM failure during the life cycle has increased significantly.
  • the radiating element in the base station antenna can also implement the radiating element and unit feeding by using a PCB process.
  • the PCB process reduces the functional parts in the radiating element, it also defines the form of the antenna to a certain extent, which increases the assembly difficulty and reduces the degree of freedom in antenna performance optimization.
  • the radiation unit and the feed network also need to be connected by a welded coaxial cable. There are also problems with solder joints.
  • the existing deployment of the wireless network it is considered that the acquisition of the new base station address is difficult, and the bearer capacity of the single base station is limited.
  • the method of directly replacing the old antenna of the existing network with a new antenna is adopted. . Therefore, for the assembly of the antenna, the degree of freedom of performance optimization and the validity of the PIM in the life cycle are very high. If the new antenna adopts the above-mentioned radiating element, it is difficult to meet the requirements of the new antenna for the new base station.
  • the embodiments of the present application provide a dual-polarized radiating element, an antenna, a base station, and a communication system, so as to solve the problem that the assembly of the antenna is complicated and the structure of the antenna is complicated, which may not meet the requirements of the new base station.
  • the problem is to solve the problem that the assembly of the antenna is complicated and the structure of the antenna is complicated, which may not meet the requirements of the new base station. The problem.
  • a dual polarized radiating element is applied to an antenna, including:
  • An insulating support structure which is a three-dimensional structure, comprising a top, a base, and an intermediate support connecting the top and the base;
  • the two radiating arms included between the sets of radiating arms or within the set of radiating arms form orthogonal +/- 45 polarizations
  • the feeding mechanism includes a balun and a feeding piece, the plane of the balun is parallel to a plane where the feeding piece is located, and one end of the balun is electrically connected to a corresponding radiation arm group, and the other end is grounded.
  • the feed piece is connected to a conductive line on a base of the insulating support structure.
  • the radiation arm group and the feeding mechanism are conformed to the surface of the insulating support structure, and the insulating support structure is integrally formed, thereby realizing the integration of the dual-polarized radiation unit, and ensuring that the shape of the radiation arm is maximized to approximate the electrical maximum. Excellent shape.
  • the existing radiation unit has many components and the complicated structure results in an antenna assembly time and poor precision.
  • the connection between the balun and the insulating support structure conforming to the insulating support structure does not need to be welded, which solves the influence of the solder joints on the PIM of the antenna in the prior art. The problem.
  • the dual-polarized radiating element comprises: 2 sets of radiating arm groups and 2 feeding mechanisms;
  • the top of the insulating support structure is a first plane, and the intermediate support is two intersecting vertical planes;
  • each set of radiating arm sets includes two radiating arms, and the two radiating arms in the two sets respectively constitute orthogonal +45 polarization And -45 polarization, the first end and the end of the radiation arm form an equivalent center line, and the angle between the equivalent center lines obtained by the two of the radiation arms in the same radiation arm group is 180 degrees;
  • the two feeding mechanisms are respectively located below the two sets of radiation arm groups, and each of the feeding mechanisms is composed of a balun and a feed piece conformed to opposite surfaces of the vertical surface, the balun One end of the vertical surface protrusion is electrically connected to a corresponding group of the radiation arm groups, and the other end is electrically connected to the ground layer.
  • the radiation arm constituting the dual-polarized radiation unit and the corresponding feeding mechanism of the radiation arm are conformed to the insulating support structure, and are connected to the feed network through a conductive connection integrally formed with the insulating support structure.
  • the various components of the dual-polarized radiating element are integrated, which solves the problem that the existing radiating unit has many components and the complicated structure leads to the long assembly time and poor precision of the antenna.
  • the connection between the balun and the insulating support structure conforming to the insulating support structure does not need to be welded, which solves the influence of the solder joints on the PIM of the antenna in the prior art. The problem.
  • the dual-polarized radiating unit further includes a metal layer disposed on a side of the first plane opposite to the two sets of radiating arms, and the balun passes through the metal layer and the corresponding A set of radiating arms are electrically connected.
  • the above solution enables the balun to be electrically connected to the corresponding set of radiating arms through the metal layer, which can reduce the connecting device of the radiating unit, thereby reducing the time for assembling the antenna.
  • the two intersecting vertical faces are a first vertical face and a second vertical face
  • the first vertical surface and the second vertical surface are respectively provided with slots, and are inserted through the slots to form a cross structure
  • the baluns are divided into two parts on the first vertical plane, each part extending the top end of the first vertical surface protrusion, and electrically connected to the corresponding one of the group of radiation arms through the first through hole;
  • the feeding piece located on the first vertical plane is divided into one long and one short, and the long portion of the feeding piece extends to the upper surface of the base;
  • the balun is divided into two parts on the second vertical plane, and each part is extended by the second vertical plane a top end electrically connected to the corresponding one of the set of radiating arms through the first through hole;
  • the feeding piece located on the second vertical plane is divided into a length and a short portion, and the long portion extends to an upper surface of the base;
  • One of the first vertical surface and the second vertical surface adjacent to the long portion of the feed piece is adjacent to each other.
  • the first through holes are disposed at adjacent ends of the radiating arms located within the same group.
  • the dual polarized radiating element comprises: 4 sets of radiating arm groups and 4 feeding mechanisms;
  • the top of the insulating support structure is a second plane, and a center position of the second plane is hollow, and a hollow edge of the center position forms an octagon;
  • the intermediate support member of the insulating support structure is an octagonal table, and an upper bottom edge of the octagonal table is integrally formed with a hollow edge of the central position, and a lower bottom edge is integrally formed with a bottom of the insulating support structure And the diameter of the upper bottom is larger than the diameter of the lower bottom;
  • each set of radiation arm groups includes two radiation arms, and two sets of adjacent ones of the radiation arm groups form an orthogonal +45 pole
  • the other two sets of adjacent radiating arm groups form an orthogonal -45 polarization, and the leading end and the end of the radiating arm form an equivalent center line, and the two of the same radiating arm group are
  • the angle between the equivalent center lines obtained by the radiation arms is 90 degrees;
  • the four feeding mechanisms are respectively located on corresponding ribbed surfaces below the four sets of radiating arm groups, and each of the feeding mechanisms is composed of baluns and feed sheets that are relatively conformal to the inner and outer sides of the ribbed surface.
  • the feed piece is conformed to an inner side surface of the ribbed surface
  • the balun is conformed to an outer side surface of the ribbed surface
  • one end of the balun is electrically connected to a corresponding set of the radiation arm sets The other end is electrically connected to the ground layer.
  • the insulating material is used as the supporting structure, and the radiation arm group and the feeding mechanism are conformed to the surface, and the insulating supporting structure is integrally formed, thereby realizing the integration of the dual polarized radiation unit and ensuring the shape of the radiating arm. Maximum approximation of the electrical optimum shape.
  • the existing radiation unit has many components and the complicated structure results in an antenna assembly time and poor precision.
  • the integrally formed insulating support structure the connection between the balun and the insulating support structure conforming to the insulating support structure does not need to be welded, which solves the influence of the solder joints on the PIM of the antenna in the prior art. The problem.
  • the radiation arm group constituting the orthogonal +45 polarization and the radiation arm group constituting the orthogonal -45 polarization have the ends of the adjacent two of the radiation arms respectively An extended metal arm that is perpendicular to the base of the insulating support structure.
  • the extended metal arm is located in the same plane as the corresponding radiant arm.
  • the upper surface of the base is provided with a signal strip line corresponding to the feed sheet, and the ground layer and the conductive connection member are disposed on the back surface;
  • One end of the signal strip line and one end of the corresponding feeding piece are electrically connected at a intersection of the base and the vertical surface, and the other end of the signal strip line passes through the conductive connecting member and the ground layer Electrical connections.
  • the conductive connection member can be electrically connected to the signal strip line of the feed network, which saves the solder joint of the coaxial cable connecting the radiation unit and the feed network.
  • the upper surface of the base is provided with a signal strip line feed network, and the back surface is provided with the a grounding layer and a conductive connecting member, wherein the signal strip line feeding network is composed of two one-two splitters;
  • Each of the two-in-one power splitter has two output ends respectively connected to the opposite two feed pieces, and the input end is electrically connected to the ground layer through the conductive connection.
  • the above solution electrically connects the signal strips of the feed network through the conductive connectors, thereby saving the solder joints of the coaxial cables connecting the radiating elements and the feed network.
  • the base is provided with a second through hole and a conductive connecting member, and the base is fixed to the ground layer through the second through hole and the fixing member, the grounding
  • the layer includes a reflector or a suspended strip feed network.
  • the above solution electrically connects the signal strips of the feed network through the conductive connectors, thereby saving the solder joints of the coaxial cables connecting the radiating elements and the feed network.
  • the ground layer is the suspended strip line feed network
  • the suspended strip line feed network is composed of a cavity and a signal line suspended in the cavity.
  • a third through hole is disposed on one side of the hollow body and the signal line;
  • the conductive connector is a probe-shaped conductive connector
  • the probe-shaped conductive connection is electrically connected to the signal line through the cavity and the third via on the signal line.
  • the conductive connection is electrically connected to the signal line of the feed network, which saves the solder joint of the coaxial cable connecting the radiation unit and the feed network.
  • the ground layer is the suspended strip line feed network
  • the suspended strip line feed network is composed of a cavity and a signal line suspended in the cavity.
  • a fourth through hole is disposed on one side of the hollow body;
  • the conductive connector is electrically coupled to the signal line through the fourth through hole; the conductive connector is a mushroom-shaped conductive connector or a probe-shaped conductive connector.
  • the above solution is electrically coupled to the signal line of the feed network through the conductive connection member, thereby saving the solder joint of the coaxial cable connecting the radiation unit and the feed network.
  • the feed sheet is L-shaped.
  • the base also has an elastic structural member for fixing the base.
  • the elastic structural member can be used for fixing the performance debugging component of the radiation unit.
  • the dual-polarized radiating unit further includes: a metal structural member integrally formed with the insulating supporting structure, above the insulating supporting structure, the metal structural member is used for the dual polarization
  • the radiating element performs electrical performance debugging.
  • an embodiment of the present application discloses an antenna having an independent array of the dual polarized radiating elements in any one of the possible designs of the first aspect.
  • an embodiment of the present application discloses a base station, where the base station includes the antenna disclosed in the second aspect.
  • an embodiment of the present application discloses a communication system, characterized in that the communication system comprises the base station disclosed in the third aspect.
  • FIG. 1 is a simplified diagram of a dual polarized radiation unit disclosed in an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a dual polarized radiation unit disclosed in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a dual polarized radiation unit disclosed in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a dual polarized radiation unit disclosed in an embodiment of the present application.
  • FIG. 5 is a bottom view of another dual polarized radiation unit disclosed in an embodiment of the present application.
  • FIG. 6 is a bottom view of another dual polarized radiation unit disclosed in an embodiment of the present application.
  • FIG. 7 is a partial structural diagram of another dual-polarized radiating element disclosed in an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another dual-polarized radiation unit disclosed in an embodiment of the present application.
  • FIG. 9 is a partial structural diagram of another dual-polarized radiating unit disclosed in an embodiment of the present application.
  • FIG. 10 is a front perspective view of another dual polarized radiation unit disclosed in an embodiment of the present application.
  • FIG. 11 is a schematic structural view of a conductive connecting member disclosed in an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a feeding network and a conductive connecting member disclosed in an embodiment of the present application
  • FIG. 13 is a schematic structural diagram of another feeding network and a conductive connecting member disclosed in an embodiment of the present application.
  • FIG. 14 is a schematic structural view of a conductive connecting member disclosed in an embodiment of the present application.
  • the embodiment of the present application discloses a dual-polarized radiating unit that is applied to an antenna.
  • the antenna refers to a base station antenna, but the dual-polarized radiating unit in the embodiment of the present application is not limited to being applicable to a base station antenna.
  • the polarization of the base station antenna is defined by the dual polarized radiation unit disclosed in the embodiment of the present application.
  • the polarization of the base station antenna refers to the ground as the horizontal plane, the base station antenna is placed vertically on the ground plane, and the electromagnetic wave propagation direction is taken as the line of sight direction.
  • the horizontal, vertical or +/- 45 polarization is defined by the angle between the linear polarization unit and the ground. .
  • the angle between the dual polarized radiation unit and the ground is defined as +/- 45 polarization.
  • the embodiment of the present application discloses a simple diagram of a dual-polarized radiation unit.
  • the dual polarized radiation unit package The invention comprises an integrally formed insulating support structure, which is a three-dimensional structure.
  • the insulating support structure includes a top portion 101, a base 103, and an intermediate support member 102 connecting the top portion 101 and the base 103.
  • At least two sets of radiating arm sets, and a feed mechanism corresponding to the radiating arm set, are conformed to the insulating support structure.
  • the object A has two surfaces
  • the carrier B is used to carry the object A.
  • a surface of the object A contacts the surface of the carrier B and completely conforms to the surface of the carrier B
  • the other surface of the object A also generally conforms to the surface of the carrier B, resulting in a far distance
  • the relationship between the object A and the carrier B is called conformal.
  • the radiating arm set contains two radiating arms, and orthogonal +/- 45 polarizations are formed between the two radiating arms.
  • orthogonal +/- 45 polarizations are formed between the sets of radiating arms.
  • the shapes or structures of the radiating arms located within the same group are the same or similar.
  • the feed mechanism includes: a balun and a feed piece.
  • the plane in which the balun is located is parallel to the plane in which the feed piece is located.
  • balun One end of the balun is electrically connected to the corresponding radiating arm set, and the other end is electrically connected to the ground plane.
  • the feed piece is connected to a conductive line on the base of the insulating support structure.
  • the balun refers to a balanced-unbalanced converter (English: ba l un). Since the antenna port usually needs balanced excitation, and the ordinary transmission line is usually unbalanced transmission, it is necessary to increase the balun to perform conversion when the antenna is excited by the ordinary transmission line.
  • the insulative support structure 10 conforming to the radiation arm set 11 and the feed mechanism 12 may be integrally formed by means of abrasive tools or printing. Thereby, it is ensured that the shape of the radiating arm in the radiating arm group 11 is maximally approximated to the electrical optimum shape.
  • the radiation arm group and the feeding mechanism are conformed to the surface of the insulating support structure, and the insulating support structure is integrally formed, thereby realizing integration of the dual-polarized radiation unit, and ensuring the maximum shape of the radiation arm. Approaching the electrical optimum shape.
  • the existing radiation unit has many components and the complicated structure results in an antenna assembly time and poor precision.
  • the connection between the balun and the insulating support structure conforming to the insulating support structure does not need to be welded, which solves the influence of the solder joints on the PIM of the antenna in the prior art. The problem.
  • FIG. 2 is a schematic structural diagram of a dual polarized radiation unit 2 disclosed in the embodiment of the present application.
  • the dual polarized radiating element 2 includes an integrally formed insulating support structure, and two sets of radiating arm groups and two feeding mechanisms conformed to the surface of the insulating supporting structure.
  • the insulating support structure is composed of a top portion, an intermediate support member 201, and a base.
  • the top is a first plane and the two sets of radiating arms are conformal to the surface of the first plane.
  • a set of radiating arms includes two radiating arms.
  • the two sets of radiation arm groups comprise a total of four radiation arms of a radiation arm 20a, a radiation arm 20b, a radiation arm 20c and a radiation arm 20d.
  • the radiating arm 20a and the radiating arm 20c are located in the first group of radiating arms to form an orthogonal +45 polarization.
  • the radiating arm 20b and the radiating arm 20d are located within the second set of radiating arm groups to form an orthogonal -45 polarization.
  • the respective ends and ends of the radiating arm 20a, the radiating arm 20b, the radiating arm 20c, and the radiating arm 20d constitute an equivalent center line. Moreover, the angle between the equivalent centerlines obtained by the two radiating arms in the same radiation arm group is 180 degrees.
  • the angle between the equivalent center line 21a of the radiating arm 20a and the equivalent center line 21c of the radiating arm 20c It is 180 degrees and approximates a straight line.
  • the angle between the same radiating arm 20b in the second set of radiating arm groups and the equivalent centerline of the radiating arm 20d is 180 degrees, which is also approximately a straight line.
  • the radiating arms located in the same group of radiation arm groups disclosed in the embodiments of the present application have the same shape and size.
  • the two feed mechanisms are respectively located below the two sets of radiation arm groups, and each of the feed mechanisms is composed of a balun and a feed piece that conform to the opposite surfaces of the vertical faces.
  • One end of the vertical surface of the balun extension is electrically connected to a corresponding set of radiating arm groups, and the other end is electrically connected to the ground layer.
  • the intermediate support member 201 is two intersecting vertical faces. As shown in FIG. 2, the two intersecting vertical faces include a first vertical face 2011 and a second vertical face 2012.
  • the first vertical surface 2011 and the second vertical surface 2012 are respectively provided with slots, and the slots are inserted through the slots to form a cross structure.
  • a balun 23 in a feed mechanism below the first set of radiating arm groups is shown in FIG. 2, which is located on the first vertical plane 2011.
  • the balun 23 is divided into two parts due to the intersecting structure of the first vertical plane 2011 and the second vertical plane 2012, and each part of the balun 23 extends the top end of the first vertical plane 2011, passing through the first through hole 22
  • the radiation arm 20a and the radiation arm 20c in the corresponding first set of radiation arm groups are electrically connected.
  • the first through hole 22 is disposed at an end of the same group of radiation arms that are close to the two radiation arms. As shown in Fig. 2, the first through holes 22 on the radiating arm 20a, the radiating arm 20b, the radiating arm 20c, and the radiating arm 20d are all close to one end of the radiation arm in the same group.
  • a feed piece located in the same feed mechanism as the balun 23 is located on the other side of the first vertical surface 2021. Similarly, the feed piece is divided into one long and one short, and the portions extending in the vertical direction are approximately parallel. The long portion of the feed piece extends to the upper surface of the base.
  • balun in the feeding mechanism is located on the second vertical plane 2012, and is divided by the intersection structure of the first vertical plane 2011 and the second vertical plane 2012 In two parts, each portion of the balun extends the top end of the second vertical face 2012 projection and is electrically connected to the corresponding set of radiating arms through the first through hole 22.
  • a feed piece 25 located below the second set of radiating arm sets is shown in FIG. 2, the feed piece 25 being located on the other side of the second vertical face 2012. Similarly, the feed piece 25 is divided into one long and one short, and the portions extending in the vertical direction are approximately parallel. The long portion of the feed piece 25 extends to the upper surface of the base 203.
  • the balun and the feeding piece located in the same feeding mechanism respectively conform to the two surfaces of one vertical plane, and cooperate to form a mechanism for balanced feeding of the corresponding radiation arm.
  • the feed transmission line type of the feed mechanism is a microstrip line.
  • the microstrip line refers to a microwave transmission line composed of a single conductor strip and a ground layer supported on both sides of a dielectric substrate.
  • the dielectric constant of the dielectric substrate is significantly larger than the relative dielectric constant 1 of the air, so for the microstrip line containing the shield case, the vertical height of the conductor strip to the metal shield shell is greater than the height of the conductor strip from the ground plane.
  • the balun may occupy part of the surface of the vertical surface when conforming to the vertical surface, and may occupy the entire surface.
  • first vertical plane 2011 and the second vertical plane 2012 form a cross structure
  • one side of the long portion of the feed sheet is formed adjacent to each other.
  • the positional relationship between the different sets of feeders and baluns is: the projections of the approximately parallel parts of the feed piece on the plane of the balun are located on both sides of the balun.
  • the feed piece may preferably be L-shaped.
  • the structure of the base may include: a second through hole and a conductive connecting member.
  • the base is fixed to the ground layer through the second through hole and the fixing member.
  • the ground plane includes a reflector or a suspended strip feed network.
  • the base may further include: a signal strip line corresponding to the feeding piece disposed on the upper surface of the base, and a ground layer and a conductive connecting member disposed on the back surface.
  • one end of the signal strip line 26 as shown in FIG. 2 and one end of the corresponding feed sheet 25 are electrically connected at the intersection of the base and the vertical plane.
  • the other end of the signal strip line 26 is electrically connected to the ground plane via a conductive connection.
  • the base is also provided with a second through hole and an elastic structural member for fixing the base.
  • the second through hole corresponds to the rivet hole 27 as shown in FIG. 2, and the elastic structural member corresponds to the elastic hook 28 provided on the edge of the base shown in FIG. 2.
  • the conductive connector can be a probe connector 29.
  • the ground layer disposed on the back surface of the base is a metal ground layer, and two probe connectors 29 are disposed. 2 and 3, the probe connector 29, the signal strip line 26, and the feed sheet 25 are electrically connected.
  • the integrally formed insulating support structure disclosed in the embodiment of the present application further includes a metal structural member integrally formed on the top of the insulating support structure.
  • the metal structural member is used for electrical performance debugging of the dual polarized radiation unit.
  • the metal structural member corresponds to the resilient hook 30 shown in Figure 3 at the top of the insulating support structure.
  • the resilient hook 30 can be a metal guide tab.
  • the dual-polarized radiating element further includes a metal layer disposed on a side opposite to the two sets of radiating arms on the first plane. That is, the two sets of radiation arm groups are located on the upper surface of the first plane, and the metal layer is located on the lower surface of the first plane.
  • the balun is electrically coupled to a corresponding set of radiating arms through the metal layer.
  • This metal layer corresponds to the coupling metal face 31 shown in FIG.
  • the electrical connections involved include: electrical direct connection (or electrical direct conduction) and electrical coupling connection (or electrical coupling connection).
  • the electrical direct connection is: there is a DC conduction connection between the two conductive parts.
  • welding between parts can be judged by a multimeter test.
  • the electrical coupling connection is seen as the presence of an RF-conducting connection between two conductive components, such as a close-coupled metal surface between components.
  • the connection can be tested and determined using a vector network analyzer.
  • the radiating arm constituting the dual-polarized radiating unit and the feeding mechanism corresponding to the radiating arm are conformed to the insulating supporting structure, and the conductive connecting member and the feeding network integrally formed with the insulating supporting structure are formed. connection.
  • the various components of the dual-polarized radiating element are integrated, which solves the problem that the existing radiating unit has many components and the complicated structure leads to the long assembly time and poor precision of the antenna.
  • the connection between the balun and the insulating support structure conforming to the insulating support structure does not need to be welded, which solves the influence of the solder joints on the PIM of the antenna in the prior art. The problem.
  • the dual-polarized radiating unit disclosed in the embodiment of the present application includes an integrally formed insulating supporting structure, and four sets of radiating arm groups and four feeding mechanisms conformed to the surface of the insulating supporting structure.
  • the direction of the line of sight is from the intermediate support to the top of the insulating support structure and is the outer surface of the insulating support structure.
  • the top of the insulating support structure is a second plane, and the center position of the second plane is hollow, and the hollow edge of the center position forms an octagon.
  • Each set of radiating arm sets includes two radiating arms. Two sets of adjacent radiating arm sets form an orthogonal +45 polarization, and the other two sets of adjacent radiating arm sets form an orthogonal -45 polarization.
  • the radiating arm 1a and the radiating arm 1b are the first group of radiating arm groups 2a; the radiating arm 1f and the radiating arm 1e are the second group of radiating arm groups 2c; the radiating arm 1c and the radiating arm 1d are The third group of radiation arm groups 2b; the radiation arm 1g and the radiation arm 1h are the fourth group of radiation arm groups 2d.
  • the first group of radiation arm groups 2a and the second radiation arm group 2c are orthogonal +45 polarization; the third group of radiation arm groups 2b and the fourth radiation arm group 2d are orthogonal to -45 polarization.
  • the radiating arms located in the same group of radiation arm groups disclosed in the embodiments of the present application have the same shape and size.
  • the head end and the end of the radiating arm constitute an equivalent center line.
  • the difference is that the angle between the equivalent centerlines obtained by the two radiating arms in the same radiating arm group is 90 degrees.
  • the radiating arm 1a and the radiating arm 1b in the first set of radiating arm groups are taken as an example.
  • the radiation arm 1a has a head end 4a and a tip end 4b.
  • the head end 4a and the end end 4b of the radiation arm 1a constitute an equivalent center line 5a; the head end and the end end of the radiation arm 1b constitute an equivalent center line 5b. .
  • the equivalent polarization axes of the two sets of radiating arm groups orthogonally constituting the +45 polarization are mirror-symmetric, and the equivalent polarization axis is 6a.
  • the two sets of radiating arms orthogonally forming -45 polarization, and the equivalent polarization axes of the equally extended dual-polarized radiating elements are mirror-symmetrical, and the equivalent polarization axis is 6b.
  • the radiating arm group constituting the orthogonal +45 polarization and the radiating arm group constituting the orthogonal-45 polarization are adjacent to each other.
  • the ends of the radiating arms each have an extended metal arm that is perpendicular to the base of the insulating support structure.
  • the extended metal arm 32 is shown in FIG.
  • the extended metal arm 32 and the corresponding radiant arm will lie in the same plane.
  • the intermediate support member of the insulating support structure is an octagonal table, and the upper bottom edge of the octagonal table is integrally formed with the hollow edge of the center position.
  • the lower bottom edge of the octagonal table is integrally formed with the bottom portion 11 of the insulating support structure, and the diameter of the upper base is larger than the diameter of the lower base.
  • the four feeding mechanisms are respectively located on the corresponding ribbed surfaces below the four sets of radiating arm groups.
  • Each feed mechanism is formed by a balun and a feed piece that are relatively conformal to the inner and outer sides of the rib face.
  • the feeding piece is conformed to the inner side surface of the ribbed surface.
  • the balun conforms to the outer surface of the ribbed surface.
  • One end of the balun (top 7) is electrically connected to a corresponding set of radiating arm sets, and the other end (bottom 8d) is electrically connected to the ground plane.
  • the bottom 8d of the balun is electrically connected to the ground layer of the base 11 through the through hole 9d.
  • the through hole 9a, the through hole 9b, and the through hole 9c function the same as the through hole 9d, so that the bottoms of the other three bales can be electrically connected to the ground layer of the base 11 through the corresponding through holes.
  • the bottom 8c of the other balun shown in FIG. 8 is electrically connected to the ground plane of the base 11 through the corresponding through hole 9c.
  • a feed piece 12a, a feed piece 12b and a feed piece 12c are shown in Fig. 9.
  • the feed piece 12a and the feed piece 12c are mirror-symmetrical with the equivalent polarization axis 6a.
  • the feed piece 12b is mirror-symmetrical to another feed piece, not shown, with an equivalent polarization axis 6b.
  • the balun can occupy part of the surface and occupy the entire surface when conforming to the outer surface of the octagonal table.
  • the power feeding piece shown in the embodiment of the present application may be L-shaped.
  • the structure of the base may include:
  • the base is fixed to the ground layer through the second through hole and the fixing member.
  • the ground plane includes a reflector or a suspended strip feed network.
  • the base may further include: a signal strip line corresponding to the feeding piece disposed on the upper surface of the base, and a ground layer and a conductive connecting member disposed on the back surface.
  • the base is also provided with a second through hole, which corresponds to the through hole 15 as shown in FIG.
  • the through hole 15 can be a rivet hole and a rivet can fix the base.
  • the base may further include: a top surface of the base is provided with a signal strip line feed network, and a back surface is provided with a ground layer and a conductive connection.
  • the signal strip line feed network is composed of two one-two splitters. Each of the two-part power splitter is connected to the opposite two feed pieces, and the input end is electrically connected to the ground layer through the conductive connection.
  • the same set of L-type feeders are connected to a two-power splitter at 13a and 13b.
  • the output end 14a of the two-power splitter is electrically connected to the conductive connection on the back side of the base.
  • the two output ends of the two-part power splitter are connected to the probe-type conductive connecting member 161 on the base.
  • the probe-type conductive connector 161 has a recess at its end that can be used to carry and solder the inner core of the coaxial cable.
  • the back of the base has a recessed support for carrying and soldering the outer conductor of the coaxial cable and electrically conducting with the ground plane of the bottom. Thereby the connection between the base and the feed network is achieved.
  • the ground layer may be a suspended strip line feed network.
  • the suspended strip feeder network is composed of a hollow body 18 and a signal line 17 suspended in the hollow body 18.
  • the center position of the signal line 17 has a coupling sleeve 19, which is a signal line. 17 and the coupling sleeve 19 are integrally formed.
  • a third through hole is disposed on one side of the hollow body.
  • the probe-shaped conductive connector 162 is electrically coupled to the coupling sleeve 19 on the signal line 17 through a third through hole in the cavity 18.
  • the suspended strip line feed network is composed of a hollow body 18 and a signal line 17 suspended in the hollow body 18, and a fourth through hole is provided on one side of the hollow body 18.
  • the conductive connector is electrically coupled to the signal line 17 through the fourth through hole.
  • the conductive connectors are mushroom-shaped conductive connectors 16a and 16b. It can also be a probe-shaped conductive connector.
  • the insulating material is used as the supporting structure, and the radiation arm group and the feeding mechanism are conformed to the surface, and the insulating supporting structure is integrally formed, thereby realizing the integration of the dual-polarized radiation unit while ensuring The shape of the radiating arm maximizes the electrical optimum shape.
  • the existing radiation unit has many components and the complicated structure results in an antenna assembly time and poor precision.
  • the integrally formed insulating support structure the connection between the balun and the insulating support structure conforming to the insulating support structure does not need to be welded, which solves the influence of the solder joints on the PIM of the antenna in the prior art. The problem.
  • the present application also correspondingly discloses a base station antenna constructed using the dual-polarized radiating unit, and a communication system having the base station antenna.
  • the dual-polarized radiating element is not limited to being applied in a base station antenna.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供了一种双极化辐射单元、天线、基站及通信系统。该双极化辐射单元包括:立体结构的绝缘支撑结构,包括顶部,底座,以及连接顶部与底座的中间支撑件,共形于绝缘支撑结构上的至少2组辐射臂组,以及对应辐射臂组的馈电机构;辐射臂组之间或辐射臂组内包含的2个辐射臂形成正交的+/-45极化;馈电机构包括巴伦和馈电片,巴伦所在的平面与馈电片所在的平面平行,巴伦的一端与对应的辐射臂组电气连接,另一端与接地层电气连接;馈电片与绝缘支撑结构的底座上的导电线相连。将辐射臂组和馈电机构共形于一体成型的绝缘支撑结构的表面,从而实现双极化辐射单元的集成化,减少现有辐射单元器件,简化构造,降低焊点对天线PIM的影响。

Description

双极化辐射单元、天线、基站及通信系统 技术领域
本发明涉及无线通信技术领域,更具体地说,涉及一种双极化辐射单元、天线、基站及通信系统。
背景技术
随着车联网、物联网、视频直播等高数据流量通信应用的发展,无线通信网络为了满足高数据流量通信的需求,需要获取更高吞吐率。目前,最常用的方式为:在频谱效率不变的情况下增加新频谱,或者为同一频率增加更多收发信道。其中,增加新频谱需要在基站天线内集成更多频段的阵列,增加更多收发信道则需要在基站天线内集成更多的同频阵列。
目前,基站天线内的辐射单元可以由金属直接成型并配合等效同轴线馈电实现。此种辐射单元中会存在较多功能性零件,不同辐射单元的同类零件的尺寸和形状差异较大,这种尺寸偏差会对天线的天气性能造成影响,且工作频率越高越明显。另外,该种辐射单元与馈电网络之间通过焊接同轴线缆相连,若辐射单元成倍增加,焊点也将成倍增加,这不仅增加了焊点质量保证的难度,同时也导致天线生命周期内的PIM失效几率显著增加。
基站天线内的辐射单元也可以采用PCB工艺实现辐射单元和单元馈电。虽然采用PCB工艺减少了辐射单元中的功能性零件,但是起也一定程度上限定了天线的形式,增加了装配难度,降低了天线性能优化的自由度。另外,该种辐射单元与馈电网络之间的也需要通过焊接同轴电缆相连。同样存在焊点所带来的问题。
另一方面,在现有部署无线网络时考虑到新增基站地址获取困难,单基站承载能力受限等问题,在实际进行无线网络部署时多采用直接用新天线替换现网老天线的方式进行。因此对于天线的装配,性能优化的自由度以及生命周期内的PIM的有效性的要求很高,若新天线采用上述的辐射单元,则很难达到满足新天线对于新基站的要求。
发明内容
本申请实施例提供一种双极化辐射单元、天线、基站及通信系统,以解决现有技术中由于构成辐射单元的器件较多且结构复杂,导致天线的装配难度增加无法满足新基站的要求的问题。
为实现上述目的,本申请提供了如下技术方案:
第一方面,一种双极化辐射单元,应用于天线,包括:
绝缘支撑结构,所述绝缘支撑结构为立体结构,包括顶部,底座,以及连接所述顶部与所述底座的中间支撑件;
共形于所述绝缘支撑结构上的至少2组辐射臂组,以及对应所述辐射臂组的馈电机构;
所述辐射臂组之间或所述辐射臂组内包含的2个辐射臂形成正交的+/-45极化;
所述馈电机构包括巴伦和馈电片,所述巴伦所在的平面与所述馈电片所在的平面平行,所述巴伦的一端与对应的辐射臂组电气连接,另一端与接地层电气连接;
所述馈电片与所述绝缘支撑结构的底座上的导电线相连。
上述方案,将辐射臂组和馈电机构共形于绝缘支撑结构的表面,且绝缘支撑结构一体成型,从而实现双极化辐射单元的集成化,同时确保辐射臂的外形最大程度的逼近电气最优外形。一方面,解决了现有辐射单元器件多,构造复杂导致够成的天线装配时间长,精度差的问题。另一方面,在一体成型的绝缘支撑结构上,共形于该绝缘支撑结构上巴伦与该绝缘支撑结构之间的连接不需要焊接,解决了现有技术中焊点对天线的PIM造成影响的问题。
在一种可能的设计中,双极化辐射单元包括:2组辐射臂组和2个馈电机构;
所述绝缘支撑结构的顶部为第一平面,所述中间支撑件为两个相交的垂直面;
所述2组辐射臂共形于所述第一平面的表面上,每一组辐射臂组中包括2个辐射臂,2组内的所述2个辐射臂分别构成正交的+45极化和-45极化,所述辐射臂的首端和末端构成一等效中心线,同一所述辐射臂组中的2个所述辐射臂所得到的等效中心线的夹角为180度;
所述2个馈电机构分别位于所述2组辐射臂组的下方,每个所述馈电机构由共形于所述垂直面的相对表面的巴伦和馈电片构成,所述巴伦延所述垂直面凸起的一端与对应的一组所述辐射臂组电气连接,另一端与所述接地层电气连接。
上述方案,将构成双极化辐射单元的辐射臂,以及辐射臂对应的馈电机构共形于绝缘支撑结构上,并通过与绝缘支撑结构一体成型的导电连接件与馈电网络连接。在确保较优的电气外形的情况下,将双极化辐射单元的各个部件进行集成化,解决了现有辐射单元器件多,构造复杂导致够成的天线装配时间长,精度差的问题。另一方面,在一体成型的绝缘支撑结构上,共形于该绝缘支撑结构上巴伦与该绝缘支撑结构之间的连接不需要焊接,解决了现有技术中焊点对天线的PIM造成影响的问题。
在一种可能的设计中,双极化辐射单元还包括,设置于所述第一平面与所述2组辐射臂相背一面的金属层,所述巴伦通过所述金属层与对应的所述一组辐射臂电气连接。
上述方案,使巴伦通过金属层与对应的一组辐射臂电气连接,可以减少辐射单元的连接器件,从而降低天线装配时的时间。
在一种可能的设计中,所述两个相交的垂直面为第一垂直面和第二垂直面;
所述第一垂直面和所述第二垂直面上分别设置有插槽,并通过所述插槽相插接构成交叉结构;
位于所述第一垂直面上被分为两部分的所述巴伦,每一部分延所述第一垂直面凸起的顶端,通过第一通孔与对应的所述一组辐射臂电气连接;
位于所述第一垂直面上被分为一长一短两部分的所述馈电片,所述馈电片的长部分延伸至所述底座的上表面;
位于所述第二垂直面上被分为两部分的所述巴伦,每一部分延所述第二垂直面凸起的 顶端,通过第一通孔与对应的所述一组辐射臂电气连接;
位于所述第二垂直面上被分为一长一短两部分的所述馈电片,所述长部分延伸至所述底座的上表面;
所述第一垂直面和所述第二垂直面中,分别共形有所述馈电片的长部分的一面相邻。
在一种可能的设计中,位于同一组内的所述辐射臂的相近一端设置所述第一通孔。
在一种可能的设计中,双极化辐射单元包括:4组辐射臂组和4个馈电机构;
所述绝缘支撑结构的所述顶部为第二平面,且所述第二平面的中心位置为镂空,所述中心位置的镂空边缘形成八边形;
所述绝缘支撑结构的所述中间支撑件为八棱台,且所述八棱台的上底边沿与所述中心位置的镂空边沿一体成型,下底边沿与所述绝缘支撑结构的底部一体成型,且所述上底的直径大于所述下底的直径;
所述4组辐射臂组共形于所述第二平面的下表面上,每一组辐射臂组中包括2个辐射臂,2组相邻的所述辐射臂组构成正交的+45极化,另2组相邻的所述辐射臂组构成正交的-45极化,所述辐射臂的首端和末端构成一等效中心线,同一所述辐射臂组中的2个所述辐射臂所得到的等效中心线的夹角为90度;
所述4个馈电机构分别位于所述4组辐射臂组下方相应的棱台面上,每个所述馈电机构由相对共形于所述棱台面内外两侧的巴伦和馈电片构成,所述馈电片共形于所述棱台面的内侧表面,所述巴伦共形于所述棱台面的外侧表面,所述巴伦的一端与对应的一组所述辐射臂组电气连接,另一端与所述接地层电气连接。
上述方案,通过采用绝缘材料作为支撑结构,且将辐射臂组和馈电机构共形于表面,并使得绝缘支撑结构一体成型,从而实现双极化辐射单元的集成化,同时确保辐射臂的外形最大程度的逼近电气最优外形。一方面,解决了现有辐射单元器件多,构造复杂导致够成的天线装配时间长,精度差的问题。另一方面,在一体成型的绝缘支撑结构上,共形于该绝缘支撑结构上巴伦与该绝缘支撑结构之间的连接不需要焊接,解决了现有技术中焊点对天线的PIM造成影响的问题。
在一种可能的设计中,构成正交+45极化的所述辐射臂组与构成正交-45极化的所述辐射臂组中,相邻的2个所述辐射臂的末端分别具有1个垂直于所述绝缘支撑结构的底座的延伸金属臂。
在一种可能的设计中,当所述4组辐射臂组合围构成的口径值等于或大于预设值,所述延伸金属臂与对应的所述辐射臂位于同一平面内。
在一种可能的设计中,所述底座的上表面设置有对应所述馈电片的信号带线,背面设置有所述接地层和导电连接件;
所述信号带线的一端与对应的所述馈电片的一端在所述底座与所述垂直面相交处电气连接,所述信号带线的另一端通过所述导电连接件与所述接地层电气连接。
上述方案,导电连接件可以和馈电网络的信号带线电气连接,节省了连接辐射单元与馈电网络的同轴电缆的焊点。
在一种可能的设计中,所述底座的上表面设置有信号带线馈电网络,背面设置有所述 接地层和导电连接件,所述信号带线馈电网络由2个一分二的功分器构成;
每个所述一分二的功分器,两个输出端分别与相对的两个所述馈电片连接,输入端通过所述导电连接件与所述接地层电气连接。
上述方案,通过导电连接件与馈电网络的信号带线电气连接,节省了连接辐射单元与馈电网络的同轴电缆的焊点。
在一种可能的设计中,所述底座上设置有第二通孔和导电连接件,所述底座通过所述第二通孔和所述固定件固定于与所述接地层上,所述接地层包括反射板或悬置带线馈电网络。
上述方案,通过导电连接件与馈电网络的信号带线电气连接,节省了连接辐射单元与馈电网络的同轴电缆的焊点。
在一种可能的设计中,所述接地层为所述悬置带线馈电网络,所述悬置带线馈电网络由一空腔体和悬置于所述空腔体内的信号线构成,所述空腔体的一面以及信号线上设置有第三通孔;
相应地,所述导电连接件为探针形导电连接件;
所述探针形导电连接件通过所述空腔体和所述信号线上的所述第三通孔与所述信号线电气连接。
上述方案,通过导电连接件与馈电网络的信号线电气连接,节省了连接辐射单元与馈电网络的同轴电缆的焊点。
在一种可能的设计中,所述接地层为所述悬置带线馈电网络,所述悬置带线馈电网络由一空腔体和悬置于所述空腔体内的信号线构成,所述空腔体的一面上设置有第四通孔;
相应地,所述导电连接件通过所述第四通孔,与所述信号线电气耦合连接;所述导电连接件为蘑菇形导电连接件或探针形导电连接件。
上述方案,通过导电连接件与馈电网络的信号线电气耦合连接,节省了连接辐射单元与馈电网络的同轴电缆的焊点。
在一种可能的设计中,所述馈电片为L型。
在一种可能的设计中,所述底座上还具有用于固定所述底座的弹性结构件。
上述方案,该弹性结构件可用于固定辐射单元的性能调试件。
在一种可能的设计中,双极化辐射单元还包括:与所述绝缘支撑结构一体成型,位于所述绝缘支撑结构上方的金属结构件,所述金属结构件用于对所述双极化辐射单元进行电气性能调试。
第二方面,本申请实施例公开了一种天线,所述天线具有第一方面任意一种可能的设计中的所述的双极化辐射单元构成的独立阵列。
第三方面,本申请实施例公开了一种基站,所述基站包括第二方面公开的所述的天线。
第四方面,本申请实施例公开了一种通信系统,其特征在于,所述通信系统包括第三方面公开的所述的基站。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些示例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例公开的双极化辐射单元的简易图;
图2为本申请实施例公开的双极化辐射单元的结构示意图;
图3为本申请实施例公开的双极化辐射单元的结构示意图;
图4为本申请实施例公开的双极化辐射单元的结构示意图;
图5为本申请实施例公开的另一双极化辐射单元的底视图;
图6为本申请实施例公开的另一双极化辐射单元的底视图;
图7为本申请实施例公开的另一双极化辐射单元的部分结构示意图;
图8为本申请实施例公开的另一双极化辐射单元的结构示意图;
图9为本申请实施例公开的另一双极化辐射单元的部分结构示意图;
图10为本申请实施例公开的另一双极化辐射单元的正面立体图;
图11为本申请实施例公开的导电连接件的结构示意图;
图12为本申请实施例公开的馈电网络与导电连接件的结构示意图;
图13为本申请实施例公开的另一种馈电网络与导电连接件的结构示意图;
图14为本申请实施例公开的导电连接件的结构示意图。
具体实施方式
下面将结合本申请具体实施方式中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分示例,而不是全部的示例。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他示例,都属于本申请保护的范围。
由背景技术可知,在现有部署无线网络时考虑到新增基站地址获取困难,单基站承载能力受限等问题。现有天线中的辐射单元器件多,且在装配天线的过程中进行线缆布局时,会进行焊接。因焊点质量直接影响着天线的PIM,且焊点具有时效性,随着时间的推移,焊点的质量则会发生退化,从而影响天线的PIM,导致天线的生命周期缩短。因而,采用现有技术中的辐射单元已经很难达到满足新天线对于新基站的要求。
本申请实施例公开了一种双极化辐射单元,应用于天线中。在本申请实施例中该天线指基站天线,但本申请实施例中的双极化辐射单元并不仅限于适用于基站天线中。
采用本申请实施例公开的双极化辐射单元定义基站天线的极化。
基站天线的极化是指以地面作为水平面,基站天线垂直放置于地平面上,将电磁波传播方向作为视线方向,通过线极化单元与地面的夹角定义水平、垂直或+/-45极化。在本申请实施例中,双极化辐射单元与地面的夹角定义为+/-45极化。
如图1所示,本申请实施例公开了一种双极化辐射单元的简易图。该双极化辐射单元包 括:一体成型的绝缘支撑结构,该绝缘支撑结构为立体结构。
该绝缘支撑结构包括顶部101,底座103,以及连接该顶部101与底座103的中间支撑件102。
至少2组辐射臂组,以及对应该辐射臂组的馈电机构共形于该绝缘支撑结构上。
在具体应用实例中对于共形进行举例说明:例如,物体A具有2个表面,承载体B用于承载物体A。其中,物体A的一表面接触承载体B的表面,并与该承载体B的表面完全贴合,且物体A的另一表面通常也和该承载体B的这个表面近似贴合,导致从远处看无法识别物体A和承载体B是否是2个物体时,物体A和承载体B的这种关系称为共形。
该辐射臂组中包含2个辐射臂,2个辐射臂之间形成正交的+/-45极化。
或者,辐射臂组之间形成正交的+/-45极化。
在具体应用实例中,位于同一组内的辐射臂的形状或结构相同或相似。
该馈电机构包括:巴伦和馈电片。该巴伦所在的平面与该馈电片所在的平面平行。
该巴伦的一端与对应的辐射臂组电气连接,另一端与接地层电气连接。
该馈电片与该绝缘支撑结构的底座上的导电线相连。
在本申请实施例中,巴伦指平衡-非平衡转换器(英文:ba l un)。因天线端口通常需要平衡激励,而普通传输线通常为非平衡传输,所以利用普通传输线对天线进行激励时需要增加巴伦进行转换。
在具体应用实例中,该共形有辐射臂组11和馈电机构12的绝缘支撑结构10可以通过磨具或者打印的方式一体成型。从而确保辐射臂组11内的辐射臂的外形最大程度的逼近电气最优外形。
在本申请实施例中,将辐射臂组和馈电机构共形于绝缘支撑结构的表面,且绝缘支撑结构一体成型,从而实现双极化辐射单元的集成化,同时确保辐射臂的外形最大程度的逼近电气最优外形。一方面,解决了现有辐射单元器件多,构造复杂导致够成的天线装配时间长,精度差的问题。另一方面,在一体成型的绝缘支撑结构上,共形于该绝缘支撑结构上巴伦与该绝缘支撑结构之间的连接不需要焊接,解决了现有技术中焊点对天线的PIM造成影响的问题。
基于上述本申请实施例公开的双极化辐射单元,本申请通过以下具体示例进行进一步的详细说明。
示例一
如图2所示,为本申请实施例公开的双极化辐射单元2的结构示意图。
该双极化辐射单元2包括一体成型的绝缘支撑结构,以及共形于该绝缘支撑结构表面的2组辐射臂组和2个馈电机构。
图2中为了说明该一体成型的绝缘支撑结构的各部分结构采用了爆炸图对各部分进行显示,实际上该绝缘支撑结构是一体的。
如图2所示,该绝缘支撑结构由顶部、中间支撑件201和底座构成。
该顶部为第一平面,2组辐射臂组共形于该第一平面的表面上。一组辐射臂组中包括2个辐射臂。
如图2所示,在本申请实施例中,该2组辐射臂组共包括辐射臂20a、辐射臂20b、辐射臂20c和辐射臂20d四个辐射臂。
其中,辐射臂20a与辐射臂20c位于第一组辐射臂组内,构成正交的+45极化。辐射臂20b与辐射臂20d位于第二组辐射臂组内,构成正交的-45极化。
该辐射臂20a、辐射臂20b、辐射臂20c和辐射臂20d各自的首端和末端构成一等效中心线。并且,位于同一辐射臂组中的2个辐射臂所得到的等效中心线的夹角为180度。
以图2中位于第一组辐射臂组内的辐射臂20a和辐射臂20c的等效中心线为例:辐射臂20a的等效中心线21a与辐射臂20c的等效中心线21c的夹角为180度,近似于一条直线。
同样的位于第二组辐射臂组内的辐射臂20b和辐射臂20d的等效中心线之间的夹角为180度,也近似于一条直线。
需要说明的是,+45极化和-45极化的实现方式类似,可以相互参照。2组辐射臂组的等效中心线也近似于正交。
在具体实现过程中,本申请实施例中公开的位于同一组辐射臂组内的辐射臂具有相同的形状和尺寸。
2个馈电机构分别位于2组辐射臂组的下方,每个馈电机构由共形于垂直面的相对表面的巴伦和馈电片构成。该巴伦延该垂直面凸起的一端与对应的一组辐射臂组电气连接,另一端与接地层电气连接。
如图2所示,具体的:该中间支撑件201为两个相交的垂直面。如图2所示,两个相交的垂直面包括第一垂直面2011和第二垂直面2012。
该第一垂直面2011和第二垂直面2012上分别设置有插槽,并通过该插槽相插接构成交叉结构。
图2中示出了位于第一组辐射臂组下方的一馈电机构内的巴伦23,该巴伦23位于第一垂直面2011上。因第一垂直面2011和第二垂直面2012的交叉结构该巴伦23被分为两部分,该巴伦23的每一部分延该第一垂直面2011凸起的顶端,通过第一通孔22与对应的第一组辐射臂组中的辐射臂20a和辐射臂20c电气连接。
在本申请实施例中,该第一通孔22设置于同一组辐射臂组中两个辐射臂相近的一端。如图2所示,位于辐射臂20a、辐射臂20b、辐射臂20c和辐射臂20d上的第一通孔22均靠近同组内辐射臂相近的一端。
与该巴伦23位于同一馈电机构中的馈电片,位于该第一垂直面2021的另一面。同样,该馈电片被分为一长一短两部分,且延垂直面方向的部分近似于平行。该馈电片的长部分延伸至底座的上表面。
同样的,另一个馈电机构位于第二辐射臂组下方,该馈电机构中的巴伦位于第二垂直面2012上,并因第一垂直面2011和第二垂直面2012的交叉结构被分为两部分,该巴伦的每一部分延第二垂直面2012凸起的顶端,通过第一通孔22与对应的一组辐射臂电气连接。
图2中示出了位于第二组辐射臂组下方的馈电片25,该馈电片25位于该第二垂直面2012的另一面。同样,该馈电片25被分为一长一短两部分,且延垂直面方向的部分近似于平行。该馈电片25的长部分延伸至底座203的上表面。
需要说明的是,位于同一馈电机构中的巴伦和馈电片分别共形于一个垂直面的两个表面上,共同作用形成对对应辐射臂进行平衡馈电的机构。在具体应用实例中,该馈电机构的馈电传输线类型为微带线。
该微带线指由支撑在介质基片两侧的单一导体带和接地层所构成的微波传输线。一般介质基片的介电常数均明显大于空气的相对介电常数1,所以对于含屏蔽壳的微带线,导体带到金属屏蔽壳的垂直高度要大于导体带距离接地层的高度。
在具体应用实例中,巴伦在共形于该垂直面时,可以占用该垂直面的部分表面,也可以占用全部表面。
需要说明的是,在第一垂直面2011和第二垂直面2012构成交叉结构的时候,其分别共形有馈电片的长部分的一面相邻。不同组的馈电片和巴伦的位置关系为:馈电片中近似平行的两部分在巴伦所在平面上的投影,分别位于该巴伦的两侧。
在具体应用实例中,该馈电片优选的可以为L型。
基于上述本申请实施例公开的双极化辐射单元,该底座的结构可以包括:第二通孔和导电连接件。该底座通过第二通孔和固定件固定于接地层上。该接地层包括反射板或悬置带线馈电网络。
该底座还可以包括:在该底座的上表面设置有对应馈电片的信号带线,背面设置有接地层和导电连接件。
举例说明,如图2示出的信号带线26的一端与对应的馈电片25的一端在底座与垂直面相交处电气连接。该信号带线26的另一端通过导电连接件与接地层电气连接。
进一步的,该底座上也还设置有第二通孔和用于固定底座的弹性结构件。该第二通孔相当于如图2所示出的铆钉孔27,该弹性结构件相当于图2所示出的设置于底座边缘的弹性勾28。
如图3所示,该导电连接体可以为探针连接件29。在本申请实施例中,该底座的背面所设置的接地层为金属接地层,并设置有2个探针连接件29。结合图2和图3,该探针连接件29、信号带线26和馈电片25之间电气导通。
在具体应用过程中,本申请实施例所公开的一体成型的绝缘支撑结构上还包括,一体成型于该绝缘支撑结构顶部的金属结构件。该金属结构件用于对双极化辐射单元进行电气性能调试。如图3所示,该金属结构件相当于图3中示出的位于绝缘支撑结构件顶部的弹性勾30。在具体应用中,该弹性勾30可以是金属引向片。
在具体应用过程中,该双极化辐射单元,还包括设置于第一平面与2组辐射臂相背一面的金属层。也就是说,该2组辐射臂组位于第一平面的上表面,该金属层位于该第一平面的下表面。该巴伦通过该金属层与对应的一组辐射臂电气耦合连接。该金属层相当于图4中示出的耦合金属面31。
在本申请实施例中,所涉及到的电气连接包括:电气直接连接(或者,电气直接导通)和电气耦合连接(或者,电气耦合连接)。
其中,电气直接连接为:两个导电部件间存在直流导通连接。例如,部件间进行焊接,该连接可用万用表测试判断。
电气耦合连接看为:两个导电部件间存在射频导通连接,比如部件间进行金属面近距离耦合。该连接可用矢量网络分析仪进行测试判断。
在本申请实施例中,将构成双极化辐射单元的辐射臂,以及辐射臂对应的馈电机构共形于绝缘支撑结构上,并通过与绝缘支撑结构一体成型的导电连接件与馈电网络连接。在确保较优的电气外形的情况下,将双极化辐射单元的各个部件进行集成化,解决了现有辐射单元器件多,构造复杂导致够成的天线装配时间长,精度差的问题。另一方面,在一体成型的绝缘支撑结构上,共形于该绝缘支撑结构上巴伦与该绝缘支撑结构之间的连接不需要焊接,解决了现有技术中焊点对天线的PIM造成影响的问题。
示例二
本申请实施例公开的双极化辐射单元,该双极化辐射单元包括一体成型的绝缘支撑结构,以及共形于该绝缘支撑结构表面的4组辐射臂组和4个馈电机构。
如图5和图6所示,为该双极化辐射单元的底视图,视线的方向为由绝缘支撑结构的中间支撑件至顶部的方向,且为绝缘支撑结构的外表面。
该绝缘支撑结构的顶部为第二平面,且该第二平面的中心位置为镂空,该中心位置的镂空边缘形成八边形。
4组辐射臂组共形于第二平面的下表面上。每一组辐射臂组中包括2个辐射臂。2组相邻的辐射臂组构成正交的+45极化,另2组相邻的辐射臂组构成正交的-45极化。
具体如图5中所示出的,辐射臂1a和辐射臂1b为第一组辐射臂组2a;辐射臂1f和辐射臂1e为第二组辐射臂组2c;辐射臂1c和辐射臂1d为第三组辐射臂组2b;辐射臂1g和辐射臂1h为第四组辐射臂组2d。
其中,第一组辐射臂组2a和第二辐射臂组2c够成正交+45极化;第三组辐射臂组2b和第四辐射臂组2d够成正交-45极化。
在具体实现过程中,本申请实施例中公开的位于同一组辐射臂组内的辐射臂具有相同的形状和尺寸。
与示例一中相同,辐射臂的首端和末端构成一等效中心线。不同之处在于,同一辐射臂组中的2个辐射臂所得到的等效中心线的夹角为90度。
结合附图5和图6,以第一组辐射臂组内的辐射臂1a和辐射臂1b为例。如图6所示,辐射臂1a的首端为4a,末端为4b,辐射臂1a的首端4a和末端4b构成等效中心线5a;辐射臂1b的首端和末端构成等效中心线5b。
其中,如图6所示,正交构成+45极化的两组辐射臂组延双极化辐射单元的等效极化轴镜像对称,该等效极化轴为6a。正交构成-45极化的两组辐射臂,同样延双极化辐射单元的等效极化轴镜像对称,该等效极化轴为6b。
基于上述本申请实施例公开的双极化辐射单元,在具体实现过程中,构成正交+45极化的辐射臂组与构成正交-45极化的辐射臂组中,相邻的2个辐射臂的末端分别具有1个垂直于绝缘支撑结构的底座的延伸金属臂。如图7所示的延伸金属臂32。
进一步的,当4组辐射臂组合围构成的口径值等于或大于预设值,该延伸金属臂32与对应的辐射臂将位于同一平面内。
如图8所示,该绝缘支撑结构的中间支撑件为八棱台,且该八棱台的上底边沿与中心位置的镂空边沿一体成型。该八棱台的下底边沿与绝缘支撑结构的底部11一体成型,且上底的直径大于下底的直径。
4个馈电机构分别位于4组辐射臂组下方相应的棱台面上。每个馈电机构由相对共形于所述棱台面内外两侧的巴伦和馈电片构成。
其中,馈电片共形于棱台面的内侧表面。该巴伦共形于棱台面的外侧表面。该巴伦的一端(顶端7)与对应的一组辐射臂组电气连接,另一端(底部8d)与接地层电气连接。
在具体应用实例中,如图8所示,巴伦的底部8d通过通孔9d与底座11的接地层电气连接。图8中通孔9a、通孔9b和通孔9c与通孔9d的作用相同,使另外3个巴伦的底部可以通过对应的通孔与底座11的接地层电气连接。例如,图8中示出的另一巴伦的底部8c,通过对应的通孔9c与底座11的接地层电气连接。
如图9所示,为该绝缘支撑结构的正面立体图,图9中示出了馈电片12a、馈电片12b和馈电片12c。其中,馈电片12a与馈电片12c以等效极化轴6a镜像对称。馈电片12b与另一未示出的馈电片以等效极化轴6b镜像对称。
在具体应用实例中,巴伦在共形于该八棱台外侧表面时,可以占用部分表面,也可以占用全部表面。
需要说明的是,不同组的馈电片和巴伦的位置关系与示例一中的位置关系相同,可参考示例一中的描述,这里不再进行赘述。
在具体应用实例中,在本申请实施例中示出的馈电片可以为L型。
基于上述本申请实施例公开的双极化辐射单元,该底座的结构可以包括:
第二通孔和导电连接件。该底座通过第二通孔和固定件固定于接地层上。该接地层包括反射板或悬置带线馈电网络。
该底座还可以包括:在该底座的上表面设置有对应馈电片的信号带线,背面设置有接地层和导电连接件。
进一步的,该底座上也还设置有第二通孔,该第二通孔相当于如图8所示出的通孔15。该通孔15可以为铆钉孔配合铆钉可以固定底座。
该底座还可以包括:底座的上表面设置有信号带线馈电网络,背面设置有接地层和导电连接件。如图10所示的双极化辐射单元的正面立体图,信号带线馈电网络由2个一分二的功分器构成。每个一分二的功分器,两个输出端分别与相对的两个馈电片连接,输入端通过导电连接件与接地层电气连接。
例如,如图10中示出的同组的L型馈电片为例,该同组的L型馈电片在13a和13b处与一份二功分器连接。其中,一份二功分器的输出端14a与底座背面的导电连接件电气连接。
进一步的,如图11所示,通过使一份二的功分器的两个输出端连接设置与底座上的探针型导电连接件161。该探针型导电连接件161的末端具有凹槽,可以用于承载并焊接同轴线缆的内芯。相应地,该底座的背面具有含凹槽的支座,用于承载并焊接同轴线缆的外导体,以及与底部的接地层电气导通。从而实现底座和馈电网络的连接。
基于上述本申请实施例公开的接地层,在示例二中,该接地层可以为悬置带线馈电网络。
如图12所示,悬置带线馈电网络由一空腔体18和悬置于该空腔体18内的信号线17构成,该信号线17的中心位置具有耦合套筒19,该信号线17和该耦合套筒19一体成型。该空腔体的一面上设置有第三通孔。
该探针形导电连接件162通过空腔体18上的第三通孔,与信号线17上的耦合套筒19电气耦合连接。
如图13所示,悬置带线馈电网络由一空腔体18和悬置于空腔体18内的信号线17构成,该空腔体18的一面上设置有第四通孔。
该导电连接件通过第四通孔,与信号线17电气耦合连接。
其中,如图14所示,该导电连接件为蘑菇形导电连接件16a和16b。也可以为探针形导电连接件。
在本申请实施例中,通过采用绝缘材料作为支撑结构,且将辐射臂组和馈电机构共形于表面,并使得绝缘支撑结构一体成型,从而实现双极化辐射单元的集成化,同时确保辐射臂的外形最大程度的逼近电气最优外形。一方面,解决了现有辐射单元器件多,构造复杂导致够成的天线装配时间长,精度差的问题。另一方面,在一体成型的绝缘支撑结构上,共形于该绝缘支撑结构上巴伦与该绝缘支撑结构之间的连接不需要焊接,解决了现有技术中焊点对天线的PIM造成影响的问题。
基于上述本申请实施例公开的双极化辐射单元,本申请还对应公开了使用该双极化辐射单元构造的基站天线,以及具有该基站天线的通信系统。
需要说明的是,该双极化辐射单元并不仅限于在基站天线中应用。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (19)

  1. 一种双极化辐射单元,应用于天线,其特征在于,包括:
    绝缘支撑结构,所述绝缘支撑结构为立体结构,包括顶部,底座,以及连接所述顶部与所述底座的中间支撑件;
    共形于所述绝缘支撑结构上的至少2组辐射臂组,以及对应所述辐射臂组的馈电机构;
    所述辐射臂组之间或所述辐射臂组内包含的2个辐射臂形成正交的+/-45极化;
    所述馈电机构包括巴伦和馈电片,所述巴伦所在的平面与所述馈电片所在的平面平行,所述巴伦的一端与对应的辐射臂组电气连接,另一端与接地层电气连接;
    所述馈电片与所述绝缘支撑结构的底座上的导电线相连。
  2. 根据权利要求1所述的双极化辐射单元,其特征在于,包括:2组辐射臂组和2个馈电机构;
    所述绝缘支撑结构的顶部为第一平面,所述中间支撑件为两个相交的垂直面;
    所述2组辐射臂共形于所述第一平面的表面上,每一组辐射臂组中包括2个辐射臂,2组内的所述2个辐射臂分别构成正交的+45极化和-45极化,所述辐射臂的首端和末端构成一等效中心线,同一所述辐射臂组中的2个所述辐射臂所得到的等效中心线的夹角为180度;
    所述2个馈电机构分别位于所述2组辐射臂组的下方,每个所述馈电机构由共形于所述垂直面的相对表面的巴伦和馈电片构成,所述巴伦延所述垂直面凸起的一端与对应的一组所述辐射臂组电气连接,另一端与所述接地层电气连接。
  3. 根据权利要求2所述的双极化辐射单元,其特征在于,还包括,设置于所述第一平面与所述2组辐射臂相背一面的金属层,所述巴伦通过所述金属层与对应的所述一组辐射臂电气连接。
  4. 根据权利要求2或3所述的双极化辐射单元,其特征在于,所述两个相交的垂直面为第一垂直面和第二垂直面;
    所述第一垂直面和所述第二垂直面上分别设置有插槽,并通过所述插槽相插接构成交叉结构;
    位于所述第一垂直面上被分为两部分的所述巴伦,每一部分延所述第一垂直面凸起的顶端,通过第一通孔与对应的所述一组辐射臂电气连接;
    位于所述第一垂直面上被分为一长一短两部分的所述馈电片,所述馈电片的长部分延伸至所述底座的上表面;
    位于所述第二垂直面上被分为两部分的所述巴伦,每一部分延所述第二垂直面凸起的顶端,通过第一通孔与对应的所述一组辐射臂电气连接;
    位于所述第二垂直面上被分为一长一短两部分的所述馈电片,所述长部分延伸至所述底座的上表面;
    所述第一垂直面和所述第二垂直面中,分别共形有所述馈电片的长部分的一面相邻。
  5. 根据权利要求4所述的双极化辐射单元,其特征在于,位于同一组内的所述辐射臂的相近一端设置所述第一通孔。
  6. 根据权利要求1所述的双极化辐射单元,其特征在于,包括:4组辐射臂组和4个馈电机构;
    所述绝缘支撑结构的所述顶部为第二平面,且所述第二平面的中心位置为镂空,所述中心位置的镂空边缘形成八边形;
    所述绝缘支撑结构的所述中间支撑件为八棱台,且所述八棱台的上底边沿与所述中心位置的镂空边沿一体成型,下底边沿与所述绝缘支撑结构的底部一体成型,且所述上底的直径大于所述下底的直径;
    所述4组辐射臂组共形于所述第二平面的下表面上,每一组辐射臂组中包括2个辐射臂,2组相邻的所述辐射臂组构成正交的+45极化,另2组相邻的所述辐射臂组构成正交的-45极化,所述辐射臂的首端和末端构成一等效中心线,同一所述辐射臂组中的2个所述辐射臂所得到的等效中心线的夹角为90度;
    所述4个馈电机构分别位于所述4组辐射臂组下方相应的棱台面上,每个所述馈电机构由相对共形于所述棱台面内外两侧的巴伦和馈电片构成,所述馈电片共形于所述棱台面的内侧表面,所述巴伦共形于所述棱台面的外侧表面,所述巴伦的一端与对应的一组所述辐射臂组电气连接,另一端与所述接地层电气连接。
  7. 根据权利要求6所述的双极化辐射单元,其特征在于,构成正交+45极化的所述辐射臂组与构成正交-45极化的所述辐射臂组中,相邻的2个所述辐射臂的末端分别具有1个垂直于所述绝缘支撑结构的底座的延伸金属臂。
  8. 根据权利要求7所述的双极化辐射单元,其特征在于,当所述4组辐射臂组合围构成的口径值等于或大于预设值,所述延伸金属臂与对应的所述辐射臂位于同一平面内。
  9. 根据权利要求1-5中任意一项所述的双极化辐射单元,其特征在于,所述底座的上表面设置有对应所述馈电片的信号带线,背面设置有所述接地层和导电连接件;
    所述信号带线的一端与对应的所述馈电片的一端在所述底座与所述垂直面相交处电气连接,所述信号带线的另一端通过所述导电连接件与所述接地层电气连接。
  10. 根据权利要求1、6-8中任意一项所述的双极化辐射单元,其特征在于,所述底座的上表面设置有信号带线馈电网络,背面设置有所述接地层和导电连接件,所述信号带线馈电网络由2个一分二的功分器构成;
    每个所述一分二的功分器,两个输出端分别与相对的两个所述馈电片连接,输入端通过所述导电连接件与所述接地层电气连接。
  11. 根据权利要求1-8中任意一项所述的双极化辐射单元,其特征在于,所述底座上设置有第二通孔和导电连接件,所述底座通过所述第二通孔和所述固定件固定于与所述接地层上,所述接地层包括反射板或悬置带线馈电网络。
  12. 根据权利要求11所述的双极化辐射单元,其特征在于,所述接地层为所述悬置带线馈电网络,所述悬置带线馈电网络由一空腔体和悬置于所述空腔体内的信号线构成,所述空腔体的一面以及信号线上设置有第三通孔;
    相应地,所述导电连接件为探针形导电连接件;
    所述探针形导电连接件通过所述空腔体和所述信号线上的所述第三通孔与所述信号线 电气连接。
  13. 根据权利要求11所述的双极化辐射单元,其特征在于,所述接地层为所述悬置带线馈电网络,所述悬置带线馈电网络由一空腔体和悬置于所述空腔体内的信号线构成,所述空腔体的一面上设置有第四通孔;
    相应地,所述导电连接件通过所述第四通孔,与所述信号线电气耦合连接;所述导电连接件为蘑菇形导电连接件或探针形导电连接件。
  14. 根据权利要求1-13中任意一项所述的双极化辐射单元,其特征在于,所述馈电片为L型。
  15. 根据权利要求1-13中任意一项所述的双极化辐射单元,其特征在于,所述底座上还具有用于固定所述底座的弹性结构件。
  16. 根据权利要求1-13中任意一项所述的双极化辐射单元,其特征在于,还包括:与所述绝缘支撑结构一体成型,位于所述绝缘支撑结构上方的金属结构件,所述金属结构件用于对所述双极化辐射单元进行电气性能调试。
  17. 一种天线,其特征在于,所述天线具有权利要求1-16中任意一项所述的双极化辐射单元构成的独立阵列。
  18. 一种基站,其特征在于,所述基站包括权利要求17所述的天线。
  19. 一种通信系统,其特征在于,所述通信系统包括权利要求18所述的基站。
PCT/CN2017/086832 2017-06-01 2017-06-01 双极化辐射单元、天线、基站及通信系统 WO2018218603A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780091324.2A CN110692167B (zh) 2017-06-01 2017-06-01 双极化辐射单元、天线、基站及通信系统
PCT/CN2017/086832 WO2018218603A1 (zh) 2017-06-01 2017-06-01 双极化辐射单元、天线、基站及通信系统
EP17911542.3A EP3624262B1 (en) 2017-06-01 2017-06-01 Dual-polarized radiation unit, antenna, base station and communication system
BR112019025312-2A BR112019025312A2 (pt) 2017-06-01 2017-06-01 Elemento de radiação de polarização dupla, antena, estação base, e sistema de comunicações
US16/698,442 US11043738B2 (en) 2017-06-01 2019-11-27 Dual-polarized radiating element, antenna, base station, and communications system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/086832 WO2018218603A1 (zh) 2017-06-01 2017-06-01 双极化辐射单元、天线、基站及通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/698,442 Continuation US11043738B2 (en) 2017-06-01 2019-11-27 Dual-polarized radiating element, antenna, base station, and communications system

Publications (1)

Publication Number Publication Date
WO2018218603A1 true WO2018218603A1 (zh) 2018-12-06

Family

ID=64454786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086832 WO2018218603A1 (zh) 2017-06-01 2017-06-01 双极化辐射单元、天线、基站及通信系统

Country Status (5)

Country Link
US (1) US11043738B2 (zh)
EP (1) EP3624262B1 (zh)
CN (1) CN110692167B (zh)
BR (1) BR112019025312A2 (zh)
WO (1) WO2018218603A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421202A (zh) * 2020-11-06 2021-02-26 中国电子科技集团公司第三十八研究所 一种任意形状低剖面共形阵列天线
CN114566786A (zh) * 2022-02-25 2022-05-31 深圳市鑫龙通信技术有限公司 一种辐射单元及通信基站

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211126032U (zh) * 2020-01-03 2020-07-28 昆山立讯射频科技有限公司 基站天线
CN113571880B (zh) * 2020-04-28 2023-10-20 江苏嘉华通讯科技有限公司 一种用于cpe的nr天线
CN112864592A (zh) * 2020-12-31 2021-05-28 京信通信技术(广州)有限公司 天线及其所采用的辐射单元
CN113131197B (zh) * 2021-03-12 2022-05-03 西安电子科技大学 一种双极化天线单元及基站天线
WO2022223102A1 (en) * 2021-04-20 2022-10-27 Telefonaktiebolaget Lm Ericsson (Publ) Antenna, antenna array and mobile communication base station
CN115706315A (zh) * 2021-08-10 2023-02-17 华为技术有限公司 天线装置及通信设备
CN116137386A (zh) * 2021-11-18 2023-05-19 华为技术有限公司 天线及基站
CN114899590B (zh) * 2022-05-12 2023-08-04 京信通信技术(广州)有限公司 辐射装置、天线以及通信设备
CN115642395B (zh) * 2022-09-29 2024-01-02 湖南迈克森伟电子科技有限公司 天线单元、天线阵列及电子设备
CN115863986B (zh) * 2023-02-21 2023-06-23 京信通信技术(广州)有限公司 辐射单元、移相器以及天线装置
CN116487885B (zh) * 2023-06-21 2023-08-25 西南科技大学 一种复合结构的双陷波双极化基站天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204793177U (zh) * 2015-07-07 2015-11-18 董玉良 双极化环天线
KR20160008401A (ko) * 2014-07-14 2016-01-22 주식회사 에이티앤에스 다중 편파 다이폴 안테나
CN105449361A (zh) * 2015-11-17 2016-03-30 西安电子科技大学 宽带双极化基站天线单元
CN105896071A (zh) * 2016-04-27 2016-08-24 上海安费诺永亿通讯电子有限公司 双极化振子单元、天线及多频天线阵列
US20170062940A1 (en) * 2015-08-28 2017-03-02 Amphenol Corporation Compact wideband dual polarized dipole
WO2017035726A1 (zh) * 2015-08-31 2017-03-09 华为技术有限公司 一种用于多频天线双极化的天线振子

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6621384B1 (en) * 2000-12-28 2003-09-16 Nortel Networks Limited Technology implementation of suspended stripline within multi-layer substrate used to vary time delay and to maximize the reach of signals with high data rates or high frequencies
US7283101B2 (en) 2003-06-26 2007-10-16 Andrew Corporation Antenna element, feed probe; dielectric spacer, antenna and method of communicating with a plurality of devices
CN100461530C (zh) 2003-08-27 2009-02-11 广州埃信科技有限公司 双极化天线
CN101505007B (zh) * 2009-03-10 2013-03-06 摩比天线技术(深圳)有限公司 一种宽频双极化天线辐射元结构
CN101673881A (zh) * 2009-10-16 2010-03-17 京信通信系统(中国)有限公司 宽频双极化阵列天线及其平面振子
KR101711150B1 (ko) * 2011-01-31 2017-03-03 주식회사 케이엠더블유 이동통신 기지국용 이중편파 안테나 및 이를 이용한 다중대역 안테나 시스템
RU2014142907A (ru) * 2012-03-26 2016-05-20 Галтроникс Корпорейшн Лтд. Изоляционные структуры для антенны с двойной поляризацией
CN104143686A (zh) * 2013-05-10 2014-11-12 中国电信股份有限公司 双极化辐射单元和天线
CN103779658B (zh) * 2013-11-22 2016-08-24 佛山市安捷信通讯设备有限公司 低剖面多频段双极化天线
CN103746180B (zh) * 2013-12-30 2016-03-09 广东晖速通信技术有限公司 一种单极化振子
JP5872018B1 (ja) * 2014-12-19 2016-03-01 電気興業株式会社 偏波共用アンテナ装置
CN105990681B (zh) * 2015-01-30 2024-03-26 深圳光启高等理工研究院 一种天线及机载通信设备
EP3166178B1 (en) * 2015-11-03 2019-09-11 Huawei Technologies Co., Ltd. An antenna element preferably for a base station antenna
WO2018103822A1 (en) * 2016-12-06 2018-06-14 Huawei Technologies Co., Ltd. Dual-band antenna element and base station

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160008401A (ko) * 2014-07-14 2016-01-22 주식회사 에이티앤에스 다중 편파 다이폴 안테나
CN204793177U (zh) * 2015-07-07 2015-11-18 董玉良 双极化环天线
US20170062940A1 (en) * 2015-08-28 2017-03-02 Amphenol Corporation Compact wideband dual polarized dipole
WO2017035726A1 (zh) * 2015-08-31 2017-03-09 华为技术有限公司 一种用于多频天线双极化的天线振子
CN105449361A (zh) * 2015-11-17 2016-03-30 西安电子科技大学 宽带双极化基站天线单元
CN105896071A (zh) * 2016-04-27 2016-08-24 上海安费诺永亿通讯电子有限公司 双极化振子单元、天线及多频天线阵列

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3624262A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421202A (zh) * 2020-11-06 2021-02-26 中国电子科技集团公司第三十八研究所 一种任意形状低剖面共形阵列天线
CN112421202B (zh) * 2020-11-06 2022-04-19 中国电子科技集团公司第三十八研究所 一种任意形状低剖面共形阵列天线
CN114566786A (zh) * 2022-02-25 2022-05-31 深圳市鑫龙通信技术有限公司 一种辐射单元及通信基站

Also Published As

Publication number Publication date
CN110692167A (zh) 2020-01-14
BR112019025312A2 (pt) 2020-06-23
CN110692167B (zh) 2021-12-21
EP3624262A1 (en) 2020-03-18
US11043738B2 (en) 2021-06-22
EP3624262B1 (en) 2024-02-28
EP3624262A4 (en) 2020-05-27
US20200099128A1 (en) 2020-03-26

Similar Documents

Publication Publication Date Title
WO2018218603A1 (zh) 双极化辐射单元、天线、基站及通信系统
KR101304929B1 (ko) 삼중대역 이중편파 다이폴 안테나 시스템 및 어레이
TWI538303B (zh) 具有低被動相互調變的天線系統
US9425515B2 (en) Multi-slot common aperture dual polarized omni-directional antenna
CN111954956B (zh) 天线和电子设备
CN208272131U (zh) 宽频辐射单元及应用该宽频辐射单元的天线阵列
CN108598699B (zh) 垂直极化全波振子阵列天线以及定向辐射天线
US20220294116A1 (en) Radiation element for antenna and antenna including the radiation element
US20200091621A1 (en) Antenna system and antenna structure thereof
CN208256906U (zh) 一种小型化宽带高增益全向天线
CN210142716U (zh) 耦合辐射单元及天线
EP4340124A1 (en) Radiation unit and base station antenna
CN208674360U (zh) 垂直极化全波振子阵列天线以及定向辐射天线
KR101286073B1 (ko) 이중편파 다이폴 안테나 구조물
CN110931951B (zh) 一种压铸辐射装置及基站阵列天线
CN112864592A (zh) 天线及其所采用的辐射单元
CN114899590B (zh) 辐射装置、天线以及通信设备
CN114267943B (zh) 双极化天线单元与辐射组件
CN219350692U (zh) 一种宽频高增益全向天线
CN217361893U (zh) 天线结构及飞行器
CN116995427B (zh) 辐射单元及基站天线
CN215579069U (zh) 宽频高增益玻璃钢全向天线
CN114122691B (zh) 高频辐射单元
CN110970708B (zh) 天线系统及其天线结构
KR20160091847A (ko) 다이폴 안테나

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019025312

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017911542

Country of ref document: EP

Effective date: 20191210

ENP Entry into the national phase

Ref document number: 112019025312

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191129