WO2018216514A1 - 高温部品及びその製造方法 - Google Patents

高温部品及びその製造方法 Download PDF

Info

Publication number
WO2018216514A1
WO2018216514A1 PCT/JP2018/018416 JP2018018416W WO2018216514A1 WO 2018216514 A1 WO2018216514 A1 WO 2018216514A1 JP 2018018416 W JP2018018416 W JP 2018018416W WO 2018216514 A1 WO2018216514 A1 WO 2018216514A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
temperature
powder
coarsening
alloy
Prior art date
Application number
PCT/JP2018/018416
Other languages
English (en)
French (fr)
Inventor
真也 日比野
利茂 藤光
嘉道 野村
竜太朗 岡田
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to US16/616,285 priority Critical patent/US11326230B2/en
Priority to EP18805974.5A priority patent/EP3633052A4/en
Priority to JP2019519572A priority patent/JP6913163B2/ja
Priority to TW107116925A priority patent/TW201908499A/zh
Publication of WO2018216514A1 publication Critical patent/WO2018216514A1/ja
Priority to US17/739,385 priority patent/US11773470B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a high-temperature component made of a ⁇ ′ (gamma prime) precipitation-strengthened Ni-base alloy and a method for manufacturing the same.
  • high-temperature parts such as a turbine part of a gas turbine engine are made of a superalloy material that exhibits predetermined mechanical properties in a high-temperature environment.
  • a superalloy material a ⁇ ′ precipitation strengthened Ni-based alloy is known in which an intermetallic compound called a ⁇ ′ phase is finely precipitated to improve high temperature strength.
  • the ⁇ 'precipitation strengthened Ni-base alloy is, for example, Cr (chromium), W (tungsten), Mo (molybdenum), Re (rhenium) It contains at least one of Co (cobalt) and combines with Ni (nickel) to form a ⁇ ′ phase (mainly Ni 3 (Al, Ti)) as a main element such as Al (aluminum), Ti ( It contains at least one of titanium), Ta (tantalum), Nb (niobium) and V (vanadium).
  • Patent Documents 1 and 2 disclose this kind of ⁇ ′ precipitation strengthened nickel-base alloy and parts made thereof.
  • the manufacturing process of a part made of a ⁇ ′ precipitation strengthened nickel-base alloy described in Patent Document 1 obtains a billet in which the alloy powder is consolidated by hot isostatic pressing (HIP) and / or extrusion consolidation.
  • the crystal grain structure of the intermediate product is recrystallized at a temperature higher than the alloy's ⁇ 'solvus temperature and lower than the initial melting temperature, and the ⁇ ' precipitates are dissolved (solidified) in the alloy, and then the matrix. It undergoes age hardening treatment for reprecipitation of the ⁇ 'phase inside or at the grain boundary.
  • the total content of Al, Ti, and Nb is 10.5% or more and 13% in atomic percent in order to set the volume ratio of the ⁇ ′ phase to 40 to 50%. It is as follows. A part made of this alloy is obtained by solidifying an alloy powder by hot isostatic pressing and / or drawing, forming the part by isothermal forging, and subjecting the formed part to a recrystallization heat treatment. Is obtained by cooling. In the recrystallization heat treatment, by processing at a temperature higher than the solvus temperature of the ⁇ ′ phase of the alloy and lower than the melting start temperature of the alloy, a part having a coarse grain microstructure exceeding 15 ⁇ m is obtained.
  • MIM metal injection molding
  • the MIM manufacturing process generally includes a step of obtaining a compound by uniformly kneading metal powder and a binder (plastic + wax), a step of obtaining an intermediate molded body by injecting the compound into a mold and releasing the mold, and heating. , Removing the binder from the intermediate molded body with a catalyst or a solvent (degreasing), and sintering the degreased intermediate molded body to obtain a molded body (powder molded body).
  • MIM can form three-dimensional shapes with near net shape, has high material yield, can reduce material costs and post-processing costs, and has relatively short production running time and high productivity. There are excellent points. Therefore, if MIM is applied to a manufacturing method for high-temperature parts, there are many advantages such as providing high-temperature parts at low cost.
  • the inventors of the present application employ an alloy having a typical composition of IN713C (hereinafter referred to as “IN713C-MIM”) as an example of a ⁇ ′ precipitation-strengthened Ni-based alloy constituting a high-temperature part manufactured by MIM. -The high temperature characteristics of MIM were examined.
  • IN713C is one of ⁇ ′ precipitation-strengthened Ni-based alloys having excellent creep resistance.
  • IN713C-MIM has low creep resistance compared to parts manufactured by casting, and has reached a high temperature characteristic that can be adopted as high temperature parts such as turbine parts. The current situation is not.
  • Patent Documents 1 and 2 disclose a powder forging method in which a sintered body of alloy powder is forged. As disclosed in Patent Documents 1 and 2, it is known that a crystal grain can be coarsened by causing recrystallization and grain growth by heat treatment after applying strain by isothermal forging or cold forging to a part before heat treatment. Yes. This is because, when the free energy of the material is increased due to the dislocation accumulated in the crystal grains due to the applied plastic strain, the recrystallized grains generated using this free energy as the driving force become fine, This is because the grain boundary energy, which is the driving force for grain growth, is higher as the crystal grains are finer.
  • both MIM and forging are raw material technologies, and forging a powder compact formed by MIM is not usually performed, and MIM and forging are incompatible.
  • the present invention has been made in view of the above circumstances, and its purpose is to use a powder forming method excluding a method including plastic working such as powder forging, from a metal powder, from a ⁇ ′ precipitation strengthened Ni-based alloy.
  • a technique for coarsening the crystal grains of the structure of high-temperature parts is proposed.
  • a typical composition of IN713C contains 0.08 to 0.20% by mass of C (carbon), and a powder compact obtained by molding an alloy powder of this composition by MIM further has a C content.
  • carbides metal carbide
  • the inventors of the present application presumed that carbides (metal carbide) existing at the crystal grain boundaries of the powder molded body hindered the grain boundary movement and inhibited the crystal grain growth, and the IN713C-MIM crystal grains were coarse. It came to the idea that one of the causes of the failure was the amount of carbon contained in the IN713C-MIM powder compact.
  • the manufacturing method of the high temperature component which concerns on 1 aspect of this invention is the following.
  • a crystal grain coarsening step of coarsening the crystal grain size of the powder compact by heat treatment The powder compact is characterized by containing 0.002% or more and 0.07% or less of C and 5.40% or more and 8.40% or less of Al + Ti by mass percentage.
  • the content of C that is present in the grain boundaries of the powder compact and generates carbides that inhibit crystal grain growth is 0.002% by mass or more and 0.07% by mass in the powder compact. It was found that the crystal grain size of the resulting high-temperature part was grown from the particle size of the alloy powder by limiting to not more than%. A high temperature component having a crystal structure coarsened by such crystal grain growth is expected to have high creep resistance.
  • a high-temperature part made of a reinforced Ni-base alloy, having an average crystal grain size of 150 ⁇ m or more, a crystal grain structure having an equiaxed structure in all three orthogonal cross sections and a non-dendritic structure is manufactured. be able to.
  • a metal structure in which the average of the dimensional ratio (aspect ratio) between the major axis and the minor axis of each crystal grain is less than 2 is defined as “equiaxial structure”.
  • the C content may be greater than 0.03% and 0.07% or less in terms of mass percentage.
  • the ⁇ ′ precipitation strengthened Ni-based alloy has a mass percentage of Nb + Ta of not more than 4.60%, Cr of not less than 5.00% and not more than 22.80% in addition to C, Al, and Ti. 19.50% or less of Co, 1.80% or more and 13.75% or less of Mo + W, 0.10% or less of B, 1.0% or less of Zr, and 2.0% or less of Hf. It may be.
  • the ⁇ ′ precipitation-strengthened Ni-based alloy has a mass percentage of C of 0.03% to 0.07%, Al + Ti of 6.00% to 7.50%, 50% to 3.00% Nb + Ta, 11.00% to 15.00% Cr, 3.80% to 5.20% Mo, 0.005% to 0.020% B And 0.05% or more and 0.20% or less of Zr, and the balance may be made of Ni and inevitable impurities.
  • the method for producing a high-temperature component is isotropic to the powder compact using gas pressure, which is performed between the molding step and the crystal grain coarsening step or simultaneously with the crystal grain coarsening step.
  • a porosity reduction step of reducing the porosity by applying pressure may be further included.
  • the crystal grain coarsening step includes heating the powder compact at a predetermined coarsening treatment temperature in a vacuum atmosphere or an inert gas atmosphere, It is preferable that the heat treatment temperature is a temperature in a range of not less than the pinning effect disappearance temperature inherent to the powder compact and not more than the solidus temperature of the powder compact.
  • the solidus temperature may be a value obtained by adding a predetermined ⁇ ° C. to the solidus temperature obtained by experiment.
  • the C content may be greater than 0.03% and 0.07% or less in terms of mass percentage.
  • the said powder molded object is 4.60% or less Nb + Ta, 5.00% or more and 22.80% or less Cr in addition to C, Al, and Ti. 19.50% or less of Co, 1.80% or more and 13.75% or less of Mo + W, 0.10% or less of B, 1.0% or less of Zr, and 2.0% or less of Hf. It may be.
  • the powder compact is 0.03% to 0.07% C, 6.00% to 7.50% Al + Ti, 1.50% in mass percentage.
  • Nb + Ta of 3.00% or less, 11.00% or more and 15.00% or less of Cr, 3.80% or more and 5.20% or less of Mo, 0.005% or more and 0.020% or less of B, and It may contain 0.05% or more and 0.20% or less of Zr, with the balance being made of Ni and inevitable impurities.
  • the specific powder forming method may include a powder forging method, and the forming step may include collecting the alloy powder into the shape of the high-temperature part and baking it. .
  • the forming step includes injecting a compound obtained by kneading the alloy powder and a resin binder into a mold to form an intermediate formed body, and degreasing the intermediate formed body. And sintering the degreased intermediate molded body to obtain the powder molded body.
  • the MIM to obtain a powder molded body molded into the shape of a high-temperature part, a high-temperature part with high shape accuracy can be obtained. Furthermore, by using MIM, the yield of the material is high, the material cost and the post-processing cost can be reduced, the production running time is relatively short, and the improvement of productivity can be expected.
  • an average particle diameter of the alloy powder is 20 ⁇ m or more and 60 ⁇ m or less.
  • the alloy powder has the above average particle diameter, it is expected that the resin binder can be easily removed from the gaps between the powders when the intermediate formed body is degreased.
  • the alloy powder preferably contains 0.002% or more and 0.02% or less of C in terms of mass percentage.
  • the grain when manufacturing a high-temperature part made of a ⁇ ′ precipitation-strengthened Ni-based alloy having excellent high-temperature characteristics from a metal powder using a molding method other than forging such as MIM,
  • the grain can be coarsened.
  • FIG. 1 is a flowchart of a method for manufacturing a high-temperature component.
  • FIG. 2 is a flowchart of the process of the molding process.
  • FIG. 3 is a table of structure photographs corresponding to the criteria for evaluation of crystal grain coarsening.
  • FIG. 4 is a table of the structure photographs corresponding to the evaluation criteria for crystal grain coarsening.
  • FIG. 5 is a diagram showing an example of a DSC thermogram of the powder compact.
  • FIG. 6 is a chart showing the results of creep tests of high-temperature parts.
  • the method for manufacturing a high-temperature component according to the present invention is used as a method for manufacturing a high-temperature component suitable for use in a severe high-temperature environment such as a turbine component of a gas turbine engine.
  • This high-temperature component is made of a ⁇ ′ precipitation-strengthened Ni-base alloy having higher high-temperature strength (particularly creep resistance) than stainless steel and heat-resistant steel.
  • Table 1 shows the ratio (mass percentage) of elements contained in the ⁇ ′ precipitation-strengthened Ni-based alloy (hereinafter simply referred to as “alloy”) constituting the high-temperature component.
  • alloy has a mass percentage of 0.002% or more and 0.07% or less (preferably 0.006% or more and 0.07% or less, more preferably greater than 0.03% and 0.07% or less).
  • the sum (Al + Ti) of the content rate of Al (aluminum) and the content rate of Ti (titanium) in the alloy is 5.40% or more and 8.40% or less in mass percentage.
  • the alloy includes, in mass percentage, Cr (chromium) of 5.00% to 22.80%, Co (cobalt) of 19.50% or less (including 0%). ), 1.80% to 13.75% Mo (molybdenum) + W (tungsten), 4.60% or less (including 0%) Nb (niobium) + Ta (tantalum), 0.10% or less (0 B) (excluding%), Zr (zirconium) of 1.0% or less (excluding 0%), Hf of 2.0% or less (including 0%), Ni (nickel) and impurities as the balance It may be contained.
  • ⁇ ′ precipitation strengthened Ni-based alloys As alloys having the compositions shown in Table 1, ⁇ ′ precipitation strengthened Ni-based alloys (alloy trade names: IN713C, IN713LC, Mar-M246 + Hf, Mar-M247, CM247LC, B1900, B1900 + Hf, Rene'80, IN738) , IN738LC, IN792, Rene'95, IN939, alloy ⁇ (original alloy)), the ratio of C is 0.002% by mass or more and 0.07% by mass or less (preferably, 0.005% or less). 006% by mass or more and 0.07% by mass or less, more preferably more than 0.03% by mass and 0.07% by mass or less).
  • the ⁇ ′ precipitation-strengthened Ni-based alloy based on the typical composition of IN713C, IN713LC, and alloy ⁇ shown in Table 2 is 0.002% to 0.07% (preferably 0% by mass). 0.006% or more and 0.07% or less, more preferably more than 0.03% and 0.7% or less) C, 6.00% or more and 7.50% or less Al + Ti, 1.50% or more and 3.00 or more. % Nb + Ta, 11.00% to 15.00% Cr, 3.80% to 5.20% Mo, 0.005% to 0.020% B, 0.05% to 0 .20% or less of Zr, with the balance being Ni and inevitable impurities.
  • the ⁇ ′ precipitation-strengthened Ni-based alloy based on the typical composition of alloy ⁇ shown in Table 2 is 0.002% or more and 0.07% or less (preferably 0.006%) by mass percentage. 0.07% or less, more preferably 0.03% or more and 0.7% or less) C, 6.00% or more and 7.50% or less Al + Ti, 1.80% or more and 3.00% or less. Nb + Ta, 13.00% to 15.00% Cr, 3.80% to 5.20% Mo, 0.005% to 0.020% B, 0.05% to 0.20% It contains the following Zr, with the balance being Ni and inevitable impurities.
  • FIG. 1 is a flowchart showing a flow of manufacturing a high-temperature component.
  • the manufacturing process of a high-temperature part includes a forming step (step S1) for forming a powder formed body having a desired high-temperature part shape from an alloy powder, and pressurizing the formed powder formed body.
  • the manufacturing process of the high-temperature component further includes a hardening step (step S4) for hardening the powder compact with the coarsened particle size after the crystal grain coarsening step (step S3) depending on the type of alloy. You can leave.
  • step S1 a powder compact is formed from the alloy powder using a specific powder forming method.
  • the powder compact takes into account some deformation that occurs in the porosity reduction process (step S2) and the heat treatment process (step S3 and step S4), which will be described later. Presents a near net shape.
  • MIM is adopted as a powder molding method.
  • the molding method of the powder compact is not limited to MIM, and a powder molding method other than the powder forging method may be employed.
  • a powder forming process involves collecting the alloy powder into a high temperature part shape and baking it.
  • powder molding methods include MIM, press compression molding, hot isostatic pressing (HIP), cold isostatic pressing (CIP), and additive manufacturing (AM). Any one of them may be adopted.
  • HIP hot isostatic pressing
  • CIP cold isostatic pressing
  • AM additive manufacturing
  • alloy powder is filled into a high-temperature part-shaped capsule, an intermediate product is formed by applying uniform high pressure and high temperature to the capsule, and the intermediate product is sintered to obtain a powder compact.
  • the cold isostatic pressing method an alloy powder is sealed in a high-temperature part shape, a uniform liquid pressure is applied thereto to form an intermediate product, and the intermediate product is sintered to obtain a powder compact.
  • the alloy powder is melted and solidified layer by layer with a laser or an electron beam to form a powder molded body having a desired shape. Note that a method including plastic working such as forging, extrusion, rolling, and drawing is not used as a method for forming the powder compact.
  • cold plastic processing and isothermal plastic processing below the recrystallization temperature of the material such that dislocations due to plastic strain applied to the material remain are not used for forming a powder compact.
  • FIG. 2 is a flowchart of processing in the molding process.
  • the alloy powder and the binder are uniformly kneaded to obtain a compound thereof (step S11).
  • the compound is formed into pellets with good moldability using a pelletizer.
  • the binder may be one conventionally used for MIM, for example, polypropylene (PP), polyethylene (PE), polyacetal (POM), polymethyl methacrylate (PMMA), carnauba wax (CW). ), Paraffin wax (PW), and stearic acid (St).
  • Table 3 shows the ratio (mass percentage) of elements contained in the alloy powder.
  • This alloy powder is a Ni-based alloy powder containing, by mass percentage, 0.002% or more and 0.02% or less of C and 5.40% or more and 8.40% or less of Al + Ti.
  • this alloy powder is 4.60% or less (including 0%) Nb + Ta, 5.00% or more and 22.80% or less of Cr, 19.50 by mass percentage.
  • % Of Co (including 0%), Mo + W of 1.80% or more and 13.75% or less, B of 0.10% or less (excluding 0%), 1.0% or less (excluding 0%) Zr, Hf of 2.0% or less (including 0%), Ni and impurities may be contained as the balance.
  • the alloy powder has an average particle diameter of 20 ⁇ m or more and 60 ⁇ m or less, desirably 30 ⁇ m or more and 50 ⁇ m or less.
  • the average particle diameter is represented by a volume-based median diameter (d50).
  • the volume-based median diameter is 50% when the sample is measured using a particle size distribution measuring device based on the laser diffraction / scattering method and the particle size distribution (cumulative distribution) is obtained. Is defined as the particle size.
  • This average particle size is larger than the average particle size (about 10 ⁇ m) of the metal powder used in the conventional general MIM.
  • the compound obtained as described above is injected into a cavity of a desired high-temperature part shape of a mold using an injection molding machine (step S12). Then, the mold is opened, and the green body (intermediate molded body) is released from the mold (step S13).
  • the green body is obtained by injection molding a compound that is a kneaded product of an alloy powder and a binder.
  • Degreasing methods include a method of degreasing by immersing the green body in an organic solvent or water, and a method of degreasing by heating the green body in a degreasing incinerator at 100 to 600 ° C.
  • the degreased green body is sintered to obtain a powder compact (step S15).
  • the degreased green body is generally heated at 1200 to 1300 ° C. for 0.5 to 3 hours.
  • the sintering conditions used are determined in consideration of economics so that the powder compact is sufficiently densified (for example, a specific density of 95% or more) and a combination of temperature and time. This sintering process may be performed continuously with the above-described degreasing process.
  • the carbon content of the powder molded body is 0.002% or more and 0.07% or less (desirably, 0.006% or more and 0.07% or less, more preferably greater than 0.03% by mass percentage).
  • the process of the molding process of the powder compact is controlled so that it becomes 0.07% or less.
  • the carbon content of the alloy powder is limited to 0.002% or more and 0.02% or less.
  • the binder is removed from the gaps between the powders of the powder compact in the degreasing process by adopting an alloy powder having a larger particle size than in the past. Easy to use.
  • step S2 a gas pressure is applied to the powder compact so as to reduce the porosity of the powder compact obtained in the molding step (step S1). Since the porosity in the powder compact can also be a pinning factor that inhibits the growth of crystal grains, the smaller the porosity of the powder compact after the porosity reduction step (step S2), the better.
  • step S2 for example, HIP (hot isostatic pressing) is used.
  • HIP hot isostatic pressing
  • a gas pressure a high temperature of 900 to 1300 ° C. and an isotropic pressure of several tens to 200 MPa are simultaneously applied to a powder compact that is an object to be treated.
  • the type of gas used in HIP is an inert gas (eg, Ar), and the parameters of HIP can be changed according to the alloy composition and the target cycle time of processing, but the temperature, pressure, and time are It is preferable to set it to a degree sufficient to substantially eliminate the porosity.
  • step S3 a coarsening heat treatment for coarsening the crystal grains of the powder compact is performed.
  • the powder compact is heated at a predetermined coarsening temperature for a predetermined coarsening time in a vacuum or an inert gas atmosphere.
  • the vacuum atmosphere means a space state where the pressure is less than 1000 Pa.
  • the “inert gas atmosphere” means a space state substituted with an inert gas such as Ar of 1000 Pa or more.
  • carbides composed of metal atoms and carbon atoms such as Ti, Nb, Ta, Hf, Mo, Cr, and Ni contained in the alloy.
  • carbides composed of metal atoms and carbon atoms such as Ti, Nb, Ta, Hf, Mo, Cr, and Ni contained in the alloy.
  • MC carbide in which Ti, Nb, Ta, Hf and C are bonded at a ratio of about 1: 1, M 6 C carbide in which C and Mo, Ni, Cr, etc. are bonded in a ratio of about 6: 1, Cr, Mo, etc.
  • M 23 C 6 carbide in which C and C are bonded at a ratio of about 23: 6 is known (“M” represents a metal element).
  • MC carbide is the most stable at high temperature, and the inventors of the present application have described a pinning force in which carbide present in the crystal grain boundary of the powder molded body, mainly MC carbide, tries to hinder the movement of the grain boundary. I think that is expressed. It has been found from experiments that this pinning effect drops sharply at a certain temperature. Hereinafter, the temperature at which the pinning effect rapidly decreases is referred to as “pinning effect disappearing temperature”. At the temperature at which the pinning effect disappears, the carbide that exists at the grain boundary and exhibits the pinning effect is decomposed, or the energy of grain boundary movement overcomes the pinning force and is swallowed by the grain boundary where the carbide moves.
  • the pinning effect disappearance temperature is experimentally obtained in advance, and the coarsening temperature is set to a temperature equal to or higher than the pinning effect disappearance temperature and equal to or lower than the solidus temperature of the powder compact.
  • the solidus temperature of the powder compact is a temperature at which a liquid phase is first generated from the powder compact, and depends on the composition of the powder compact and its carbon content. When the coarsening temperature exceeds the soridus temperature, a liquid phase having a low melting point of some of the elements constituting the powder compact is formed and a partially molten layer is formed at the grain boundary.
  • FIG. 5 shows an example of a DSC thermogram obtained by measuring the powder compact with a differential scanning calorimeter (DSC).
  • the differential scanning calorimeter measures the temperature of the reference material and the sample while applying a certain amount of heat to the sample, captures the thermal properties of the sample as a temperature difference, and measures endothermic and exothermic reactions due to changes in the sample state.
  • Device In the DSC thermogram shown in FIG. 5, the vertical axis represents heat flow (Heat Flow) [mJ / s], and the horizontal axis represents temperature [° C.].
  • an exothermic peak is observed at the solvus temperature, and an endothermic peak is observed between the solidus temperature and the liquidus temperature.
  • the temperature at the beginning of the end of the endothermic peak is defined as the solidus temperature, and the temperature at which the endothermic peak is fully increased is defined as the liquidus temperature.
  • the coarsening time is affected by the coarsening temperature in addition to the shape of the powder compact and the carbon content.
  • the longer the coarsening treatment time the greater the degree of coarsening of the crystal grains, but it is uneconomical if the coarsening treatment time is long. Therefore, the coarsening time may be determined based on the balance between the size of the crystal grains for the high temperature parts to have the desired creep resistance and the economy, based on the results obtained through experiments.
  • the coarsening heat treatment is performed in a vacuum atmosphere, Cr contained in the alloy evaporates, or Cr diffuses at the grain boundary in the process of evaporating, so that Cr is concentrated at the grain boundary. . Therefore, in order to avoid the evaporation of Cr in the alloy, the coarsening heat treatment is performed in an inert gas atmosphere.
  • the porosity reduction step (step S2) is performed between the forming step (step S1) and the crystal grain coarsening step (step S3).
  • the porosity reduction step (step S2) is a crystal grain coarsening. It may be performed simultaneously with the process (Step S3). Further, as will be described later, when the porosity reduction step (step S2) is omitted, the grain coarsening step (step S3) is performed continuously to the sintering process of the forming step (step S1). Also good.
  • step S4 predetermined solution treatment and aging treatment are performed for each alloy, and an appropriate ⁇ ′ phase is dispersed and precipitated in the matrix phase. These conditions are determined in consideration of the required mechanical characteristics. Some alloys exhibit strength without being subjected to a hardening treatment (step S4) by performing slow cooling after the crystal grain coarsening step (step S3). Further, the solution treatment can be omitted by performing rapid cooling after the crystal grain coarsening step (step S3). High-temperature components can be manufactured by the above steps (S1 to S4 or S1 to S3).
  • the method for manufacturing a high-temperature part described above is to produce a powder molded body having a desired high-temperature part shape from an alloy powder of a ⁇ ′ precipitation-strengthened Ni-base alloy by using a specific powder forming method (excluding the powder forging method).
  • a crystal grain coarsening step (step S3) for coarsening the crystals of the body by heat treatment.
  • the porosity reduction process (step S2) and the crystal grain coarsening process (step S3) may proceed simultaneously. Further, after the crystal grain coarsening step (step S3), a heat treatment for precipitating the ⁇ ′ phase from the powder compact with the coarse crystal grain size may be performed.
  • the forming step includes collecting the alloy powder into a high temperature part shape and baking it.
  • a powder molding method any one of a metal powder injection molding method, a press compression molding method, a hot isostatic compression molding method, a cold isostatic compression molding method, and an additive manufacturing method is adopted. Good.
  • the powder compact contains 0.002% or more and 0.07% or less of C and 5.40% or more and 8.40% or less of Al + Ti by mass percentage.
  • this powder compact is 4.60% or less (including 0%) of Nb + Ta, 5.00% or more and 22.80% or less of Cr, 19.50 by mass percentage.
  • % Or less (including 0%) Co, 1.80% or more and 13.75% or less Mo + W, 0.10% (excluding 0%) or less B, 1.0% or less (excluding 0%) Zr and 2.0% or less (including 0%) of Hf may be contained.
  • the powder compact corresponds to IN713LC and alloy ⁇ in Table 2 in terms of mass percentage of C greater than 0.03% and less than or equal to 0.07%, Al + Ti greater than or equal to 6.00% and less than or equal to 7.50%, 50% to 3.00% Nb + Ta, 11.00% to 15.00% Cr, 3.80% to 5.20% Mo, 0.005% to 0.020% B And 0.05% or more and 0.20% or less of Zr, and the balance may be made of Ni and inevitable impurities.
  • a high-temperature component having such a composition becomes a ⁇ ′ precipitation-strengthened Ni-base alloy having excellent creep resistance.
  • the content of C that is present in the grain boundary of the powder molded body and that is considered to inhibit the growth of the crystal is limited, and undergoes a grain coarsening step. It is known that the crystal grain size grows from the grain size of the alloy powder. The growth of the crystal grain size is expected to improve the creep resistance of high-temperature parts. That is, according to the manufacturing method for high-temperature parts, a high-temperature part made of a ⁇ ′ precipitation-strengthened Ni-base alloy having excellent high-temperature characteristics can be manufactured from metal powder using a molding method other than forging such as MIM. it can.
  • (gamma) 'precipitation strengthening type containing 0.002% or more and 0.07% or less C and 5.40% or more and 8.40% or less Al + Ti by mass percentage
  • a high-temperature component made of a Ni-based alloy, having an average crystal grain size of 150 ⁇ m or more, having a crystal grain structure in which the cross sections in all three orthogonal directions are equiaxed, and a non-dendritic structure is obtained.
  • the powder compact in the method for producing a high-temperature component, in the crystal grain coarsening step, is heated at a predetermined coarsening temperature in a vacuum atmosphere or an inert gas atmosphere.
  • the “roughening treatment temperature” is a temperature in the range from the pinning effect disappearance temperature inherent to the powder compact to the solidus temperature of the powder compact.
  • the heat treatment for coarsening the grains rapidly reduces the pinning effect of the carbide existing at the grain boundaries of the powder compact, and the temperature within the range of the pinning effect disappearance temperature to the solidus temperature of the powder compact. In this case, there is no obstacle to the movement of the grain boundary of the powder molded body, so that growth of crystal grains is expected to be promoted.
  • the molding step includes injecting a compound obtained by kneading the alloy powder and the resin binder into a mold to mold an intermediate molded body (green body), and degreasing the intermediate molded body. And sintering the degreased intermediate molded body to obtain a powder molded body.
  • the MIM As described above, by using the MIM to obtain a powder molded body molded into the shape of a high-temperature part, a high-temperature part with high shape accuracy can be obtained. Furthermore, by using MIM, the yield of the material is high, the material cost and the post-processing cost can be reduced, the production running time is relatively short, and the improvement of productivity can be expected.
  • the volume-based average particle diameter (d50) of the alloy powder is set to 20 ⁇ m or more and 60 ⁇ m or less.
  • the alloy powder used in MIM contains 0.002% or more and 0.02% or less of C by mass percentage.
  • the C content of the powder compact can be suppressed to 0.07% or less.
  • Step S1 A compound in which the alloy powder and the binder were uniformly kneaded was injected into a mold to obtain a plate-like green body having a thickness of about 1 to 3 mm.
  • the binder used what mixed PP, POM, and PW, and what mixed PP, PMMA, and PW depending on the sample.
  • Table 4 shows the ratio (mass percentage) of the elements contained in the alloy powder of each sample. In the alloy powders of samples a1-6, b1-7, c1-5, d1-12, e1-6, f1, g1, and h1, the ratio of C was changed from the composition of “alloy ⁇ ” in Table 2.
  • the average particle diameter (d50) of the alloy powder is 48.0 ⁇ m in all cases except for samples a1 to 4, f2, and g2 described later.
  • the obtained green body is heated and degreased while gradually raising the temperature from room temperature to 500 ° C., and further continuously heated under appropriate sintering conditions (furnace temperature and time) so that sufficient densification proceeds.
  • a powder molded body was obtained.
  • HIP was performed on the powder compact obtained in step S1 under an atmosphere of 1204 ° C. and 102 to 104 MPa for 4 hours. In some samples, this HIP is intentionally omitted.
  • Step S3 The powder compact with the pores reduced in step S2 was heated at a coarsening treatment temperature for a coarsening treatment time in a vacuum or an Ar atmosphere.
  • the coarsening treatment temperature and the coarsening treatment time are different for each sample.
  • Step S4 After performing the solution heat treatment at 1204 ° C. for 2 hours on the powder compact after the coarsening heat treatment in Step S3, two-stage aging treatment is performed at 840 ° C. for 4 hours and 760 ° C. for 12 hours, A sample was obtained. In any process, a gas fan cool is performed for cooling. Step S4 was performed only for the sample for which the strength test was performed, and was omitted for the sample for which the structure was observed.
  • sample observation and evaluation procedure The plate-like sample was cut so that the thickness direction was included in the visual field and then embedded in the resin, the cut surface was polished, etched with marble liquid, and the cut surface was imaged with an optical microscope. Then, using the structure photograph (image) obtained by imaging, the average grain size of the crystal was determined by the following procedures (1) to (3). In addition, when the sharpness of the image is insufficient for the evaluation of the crystal grain size in the entire thickness direction in one structural photograph, a composite photograph of a plurality of structural photographs was used as the structural photograph. In addition, the imaging range of the tissue photograph was set such that the aspect ratio between the thickness direction and the orthogonal direction was about 1: 1.
  • the average particle size was 150 ⁇ m or more, it was evaluated that the crystal particle size was coarsened, and when the average particle size was less than 150 ⁇ m, it was evaluated that the crystal particle size was insufficiently coarsened.
  • tissue photograph the presence or absence of the uneven distribution of the non-roughened crystal grain, the presence or absence of the partial melting of a grain boundary, and the presence or absence of evaporation of Cr were also evaluated.
  • Table 5 below shows the criteria for evaluation of crystal grain coarsening
  • FIGS. 3 and 4 show structural photographs corresponding to the criteria for evaluation of crystal grain coarsening.
  • step S1 An experiment was conducted to verify that the carbon content of the powder compact can be reduced by the alloy powder size.
  • the average particle diameter (d50) of the alloy powder is 10.9 ⁇ m, the coarsening temperature is 1280 ° C., the coarsening time is 12 hours, and the coarsening atmosphere is 10 kPa Ar. Got.
  • the carbon content of the powder compact of sample a1 was 0.074% by mass.
  • the average particle diameter (d50) of the alloy powder is 23.6 ⁇ m, the coarsening temperature is 1280 ° C., the coarsening time is 12 hours, and the coarsening atmosphere is 10 kPa Ar. Got.
  • the carbon content of the powder compact of sample a2 was 0.050% by mass.
  • the average particle size (d50) of the alloy powder is 30.7 ⁇ m, the coarsening temperature is 1280 ° C., the coarsening time is 12 hours, and the coarsening atmosphere is 10 kPa Ar. ⁇ 4 were obtained.
  • the carbon content of the powder compact of sample a3 was 0.061% by mass, and the carbon content of the powder compact of sample a4 was 0.046% by mass.
  • the average particle size (d50) of the alloy powder is 48.0 ⁇ m, the coarsening temperature is 1280 ° C., the coarsening time is 12 hours, and the coarsening atmosphere is 10 kPa Ar. ⁇ 6 were obtained.
  • the carbon content of the powder compact of sample a5 was 0.058% by mass, and the carbon content of the powder compact of sample a6 was 0.034% by mass.
  • Table 6 shows the characteristics of the alloy powders of Samples a1 to 6 and the observation and evaluation results of those samples. As is clear from Table 6, in sample a1, coarsened crystal grains were observed even inside the cross section of the sample, but the average crystal grain size did not satisfy the predetermined standard (150 ⁇ m or more). In Samples a2 to 6, coarsening of the crystal grain size was observed. In samples a2 to a6, the carbon amount of the alloy powder is the same, but the average particle size of the alloy powder is different, so that the carbon amount of the powder compact is different. Therefore, samples a2 to a6 showed differences in the degree of coarsening of the crystal grain size and the distribution of crystal grains with insufficient coarsening.
  • the carbon content of the powder compact is in the range of 0.034% by mass or more and 0.061% by mass or less (generally more than 0.03% by mass and 0.07% by mass or less). Sufficient coarsening is observed. Further, when the carbon content of the powder compact was 0.074% by mass, the crystal grain size was coarsened although the standard was not satisfied. Furthermore, since the carbide is responsible for the pinning effect on the coarsening of the crystal grain size, it is easily guessed that the grain size of the crystal grain is increased even when the carbon content is smaller than 0.034% by mass. From this, it can be said that the crystal grain size is sufficiently coarsened when the carbon content of the powder compact is 0.07% or less.
  • step S1 Verification of differences in grain growth due to differences in carbide-forming elements contained in alloy powder.
  • the average particle diameter (d50) of the alloy powder is 48.0 ⁇ m, the coarsening temperature is 1280 ° C., the coarsening time is 12 hours, and the coarsening atmosphere is 10 kPa Ar. Got.
  • elements that combine with C to form MC carbide are Ti and Nb.
  • Sample Ta was obtained by the same sample preparation procedure as Sample h1 by adding Powder Ta having an average particle diameter of 25 ⁇ m to the alloy powder used in Sample h1 at a ratio of 1.65% by mass.
  • Ti, Nb, and Ta are elements that combine with C to form MC carbide.
  • Sample H3 was obtained by adding the powder Hf having an average particle size of 25 ⁇ m to the alloy powder used in sample h1 at a ratio of 1.50 mass% and following the same sample preparation procedure as that of sample h1.
  • elements that combine with C to form MC carbide are Ti, Nb, and Hf.
  • Table 7 shows the characteristics of the alloy powders of the samples h1, h2, and h3, and the observation and evaluation results of these samples.
  • the crystal grain size was coarsened in all of the samples h1, h2, and h3. From the above, it has been found that in an alloy containing at least one element of Ti, Nb, Ta, and Hf, the grain size of the powder compact is increased by limiting the carbon content of the powder compact. Since not only the MC carbides formed by Ti and Nb contained in alloy ⁇ but also MC carbides formed by Ta and Hf, the coarsening of the crystal grain size was expressed, so the similar alloys shown in Table 2 Also, it is easily guessed that the grain size becomes coarse by limiting the carbon content of the powder compact.
  • step S3 In the crystal grain coarsening step (step S3), an experiment for verifying an appropriate coarsening time was performed.
  • the coarsening treatment temperature is set to 1280 ° C.
  • the coarsening treatment time is changed to 4, 12, 36 hours
  • the coarsening treatment atmosphere is set to a vacuum atmosphere higher than 10 ⁇ 2 Pa
  • the coarsening treatment is performed by the above-described sample preparation procedure.
  • Four types of samples b5 to 7 having different times were obtained.
  • the carbon content of the powder compact was 0.034 to 0.058% by mass.
  • Table 8 shows the observation and evaluation results of samples b1 to b7 having different coarsening times.
  • the coarsening treatment time is 2 hours or more, and the crystal grain size is confirmed to be coarse. The particle size was coarsened.
  • the coarsening treatment time was 4 hours or longer, and coarsening of the crystal grain size was confirmed, but Cr evaporation was observed.
  • sample b7 partial melting was also observed. From the above, it was found that the grain size becomes coarse when the coarsening time is 2 hours or longer, but the coarsening time is desirably 4 hours or longer.
  • step S3 An experiment was conducted to verify an appropriate coarsening atmosphere.
  • the coarsening temperature is 1280 ° C.
  • the coarsening time is 4 hours
  • the coarsening atmosphere is a vacuum atmosphere higher than 10 ⁇ 2 Pa
  • an Ar atmosphere of 100 Pa an Ar atmosphere of 1300 Pa
  • an Ar atmosphere of 10 kPa an Ar atmosphere of 104 MPa.
  • five types of samples c1 to 5 having different coarsening atmospheres were obtained by the above-described sample preparation procedure.
  • the carbon content of the powder compact was 0.034 to 0.058% by mass.
  • Table 9 shows the observation and evaluation results of samples c1 to 5 having different roughening treatment atmospheres. As apparent from Table 9, coarsening of the crystal grain size was confirmed in any of the samples c1 to c5, but Cr evaporation was observed in the samples c1 and c2, and partial melting was observed in the sample c5. Samples c3 and 4 showed good coarsening of the crystal grain size. From this, it was found that the evaporation of Cr can be suppressed by setting the coarsening atmosphere to an inert gas atmosphere higher than 100 Pa.
  • step S3 In the crystal grain coarsening step (step S3), an experiment for verifying an appropriate coarsening temperature was performed.
  • samples having different coarsening treatment temperature and coarsening treatment atmosphere were prepared, and observed and evaluated, respectively.
  • the coarsening treatment temperature was varied at 1300, 1280, 1260, 1250, 1240, and 1220 ° C.
  • the coarsening treatment time was 12 hours
  • the coarsening treatment atmosphere was 10 kPa Ar atmosphere.
  • samples d1 to d6 In each sample, the carbon content of the powder compact was 0.034 to 0.058% by mass.
  • the coarsening treatment temperature was varied at 1300, 1280, 1260, 1250, 1240, 1220 ° C.
  • the coarsening treatment time was 12 hours
  • the coarsening treatment atmosphere was a vacuum atmosphere higher than 10 ⁇ 2 Pa.
  • Samples d7 to 12 were obtained by the sample preparation procedure described above.
  • the carbon content of the powder compact was 0.034 to 0.058% by mass.
  • Table 10 shows the observation and evaluation results of samples d1 to d12. From Table 10, in samples d1 to 6, in the Ar atmosphere, coarsening was confirmed in sample d4 having a coarsening temperature of 1250 ° C., and no coarsening was confirmed in sample d5 having a coarsening temperature of 1240 ° C. . From this, it is estimated that in the alloys of Samples d1 to 6, the pinning effect disappearance temperature in the Ar atmosphere is 1241 ° C. or higher and 1250 ° C. or lower.
  • step S2 [Verification of influence of porosity reduction process on coarsening temperature] An experiment was conducted to verify the influence of the porosity reduction step (step S2) included in the high-temperature component manufacturing method on the coarsening temperature of the crystal grain coarsening step (step S3).
  • the coarsening temperature was varied at 1300, 1280 and 1260 ° C.
  • the coarsening time was 12 hours
  • the coarsening atmosphere was a vacuum atmosphere higher than 10 ⁇ 2 Pa
  • the porosity reduction treatment Samples e3 to e6 were obtained by the above-described sample preparation procedure omitting HIP (procedure (iii)).
  • the carbon content of the powder compact was 0.034 to 0.058% by mass.
  • Table 11 shows the observation and evaluation results of samples e1 to e5.
  • the aforementioned high-temperature part manufacturing method in which the porosity reduction step (step S2) is omitted that is, a molding step (step S1) for molding a powder compact of a desired high-temperature part shape from Ni-based alloy powder,
  • the ⁇ ′ precipitation-strengthened Ni-base whose crystal grain size is increased also by a method for producing a high-temperature part including a crystal grain coarsening step (step S3) in which the crystal grain size of the powder compact is coarsened by heat treatment.
  • step S3 when the porosity reduction step (step S2) was omitted and the crystal grain coarsening step (step S3) was performed in an Ar atmosphere, the crystal grains became coarse at a coarsening temperature of 1300 ° C. Since the crystal grains did not coarsen at the coarsening temperature of 1280 ° C., it is presumed that the pinning effect disappearance temperature is 1281 ° C. or higher and 1300 ° C. or lower when the porosity reduction step is omitted. Furthermore, when the porosity reduction step (step S2) was omitted and the crystal grain coarsening step (step S3) was performed in a high vacuum atmosphere, the crystal grains became coarse at a coarsening temperature of 1280 ° C.
  • the pinning effect disappearance temperature is 1261 ° C. or higher and 1280 ° C. or lower when the porosity reduction step is omitted.
  • Table 12 shows the pinning effect disappearance temperature estimated from the verification experiment results regarding the above coarsening temperature.
  • Table 13 shows the measurement results of the solidus temperature and liquidus temperature of the powder compacts having carbon contents of 0.034 to 0.058 mass% and 0.10 mass%.
  • the solidus temperature and liquidus temperature were measured by preparing samples f1 and f2 of powder compacts having carbon contents of 0.034 to 0.058% by mass and 0.10% by mass, and measuring each sample with a differential scanning calorimeter ( DSC), and the solidus temperature and liquidus temperature of each sample were determined from the results.
  • the powder compact of sample f1 is molded by MIM as shown in step S1 of the above-described sample preparation procedure, but the powder compact of sample f2 is hot isostatic pressing (HIP). It is formed by.
  • the powder compact of sample f2 has a predetermined composition shown in Table 4, and an alloy powder having an average particle diameter (d50) of 26.9 ⁇ m is enclosed in a can made of mild steel, and is 104 MPa at 1204 ° C. This was obtained by performing hot isostatic pressing for 4 hours in an Ar atmosphere and finally removing the mild steel.
  • the porosity reduction step when the porosity reduction step is omitted, the crystal grain size of the powder compact becomes coarser in both the Ar atmosphere and the vacuum atmosphere as compared with the case of performing the porosity reduction step. It turns out that the temperature to do is high. From these, the pores in the powder compact become a pinning factor that hinders the coarsening of the crystal grain size, and when omitting the porosity reduction step, compared to the case of performing the porosity reduction step, It is inferred that the temperature at which the pinning effect disappeared became high. Therefore, in order to increase the crystal grain size of the powder compact at a relatively low coarsening temperature in the crystal grain coarsening step (step S3), the porosity reduction step (step S2) is not omitted. It can be said that this is preferable.
  • test pieces and comparative test pieces were prepared by the following method, and a creep rupture test was performed in accordance with ASTM E139.
  • the coarsening temperature was 1280 ° C.
  • the coarsening time was 12 hours
  • the coarsening atmosphere was 10 kPa Ar
  • sample g1 was obtained by the above-described sample preparation procedure. From this sample g1, a test piece g1 'having a gauge distance of 12 mm, a width of 3.2 mm, and a thickness of 1.5 to 2 mm was produced. Note that the shape of the test piece g1 'deviates from the standard of ASTM E139. A creep rupture test was performed on the test piece g1 'by changing the test conditions at 927 ° C / 227 MPa and 980 ° C / 90 MPa.
  • step S3 the coarsening process (step S3) is omitted in the above-described sample preparation procedure.
  • a comparative sample g2 was obtained by the same procedure except that the solution treatment was performed at 1176 ° C. for 2 hours in the curing treatment (step S4) and then the aging treatment was performed at 925 ° C. for 16 hours.
  • the content of C in the powder compact of Comparative Sample g2 was 0.12% by mass. From this comparative sample g2, a comparative test piece g2 'having a gauge distance of 16 to 20 mm and a size of 4 mm was prepared.
  • a creep rupture test was performed on the test piece g2 ′ by changing the test conditions at 927 ° C./227 MPa, 980 ° C./90 MPa, 760 ° C./690 MPa, 816 ° C./172 MPa, 927 ° C./90 MPa, 927 ° C./50 MPa. It was.
  • FIG. 6 shows the results of plotting the results of the creep rupture test converted into Larson mirror parameters.
  • literature values of In713C castings described in “SUPERALLOYS II” Chester T. Sims, Norman S. Stoloff, William C. Hagel (1987) are also included for comparison.
  • the degree of divergence between the curve of the sample g1 and the curve of the In713C casting is smaller than the degree of divergence between the curve of the comparative sample g2 and the curve of the In713C casting.
  • the sample g1 whose crystal grain size is coarsened by the crystal grain coarsening treatment has excellent high temperature creep strength (creep resistance) compared to the comparative sample g2 whose crystal grain size is not coarsened. It can be seen that the high-temperature creep strength is improved to a level close to that of the cast product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Powder Metallurgy (AREA)

Abstract

高温部品の製造方法は、γ'析出強化型Ni基合金の合金粉末から、特定の粉末成形法を用いて所望の高温部品形状の粉末成形体を成形する成形工程と、粉末成形体の結晶粒径を熱処理により粗大化させる結晶粒粗大化工程とを含み、前記粉末成形体は、質量百分率で、0.002%以上0.07%以下のCと、5.40%以上8.40%以下のAl+Tiとを含有する。

Description

高温部品及びその製造方法
 本発明は、γ'(ガンマプライム)析出強化型Ni基合金から成る高温部品及びその製造方法に関する。
 従来から、例えば、ガスタービンエンジンのタービン部品などの高温部品は、高温環境下で所定の機械的特性を発揮する超合金材料で構成されている。このような超合金材料として、γ'相と呼ばれる金属間化合物を微細に析出させて高温強度を向上させた、γ'析出強化型Ni基合金が知られている。γ'析出強化型Ni基合金は、例えば、母相(γマトリックス相)に固溶して強化する主元素としてCr(クロム)、W(タングステン)、Mo(モリブデン)、Re(レニウム)、及びCo(コバルト)のうちの少なくとも1つを含有し、Ni(ニッケル)と結合してγ'相(主に、Ni(Al,Ti))を形成する主元素としてAl(アルミニウム)、Ti(チタン)、Ta(タンタル)、Nb(ニオブ)及びV(バナジウム)のうちの少なくとも1つを含有する。特許文献1,2では、この種のγ'析出強化型ニッケル基合金及びそれからなる部品が開示されている。
 特許文献1に記載されたγ'析出強化型ニッケル基合金からなる部品の製造プロセスは、熱間等静圧圧縮成形(HIP)及び/又は押出圧密などによって合金粉末が圧密化されたビレットを得る工程、ビレットを合金のγ’ソルバス温度(γ'相の固溶温度)よりわずかに低い温度でネットシェイプ鍛造することによって成形された中間製品を得る工程、及び、中間製品を合金のγ’ソルバス温度よりも高い温度で固溶化熱処理(スーパーソルバス熱処理)することによって結晶粒が均一に粗大化された製品を得る工程から成る。固溶化熱処理は、合金のγ’ソルバス温度より高く且つ初期溶融温度より低い温度で、中間製品の結晶粒組織を再結晶化し、γ’析出物を合金に溶解(固溶化)させたのち、マトリックス内部又は粒界でγ’相を再析出させるための時効硬化処理を経る。
 特許文献2に記載されたニッケル基合金は、γ'相の容積割合を40~50%とするために、Al、Ti、及びNbの含有率の和を原子パーセントで10.5%以上13%以下としたものである。この合金からなる部品は、合金の粉末が熱間静水圧圧縮成形及び/又は引き抜きによって固化され、それが等温鍛造によって部品に成形され、成形された部品に対し再結晶化熱処理が施され、それが冷却されることにより得られる。再結晶化熱処理では、合金のγ'相のソルバス温度より高く且つ合金の溶融開始温度よりも低い温度で処理されることによって、15μmを超える粗大結晶粒微小構造の部品が得られる。
 ところで、粉末冶金法の一つとして、樹脂成形技術と粉末冶金の技法を組合せた金属粉末射出成形(Metal Injection Molding,以下、「MIM」と称する)が知られている。MIMの製造プロセスは、一般に、金属粉末とバインダー(プラスチック+ワックス)を均一に混練することによってコンパウンドを得る工程、コンパウンドを金型に射出して離型することによって中間成形体を得る工程、加熱、触媒、又は溶媒などによって中間成形体からバインダーを取り除く(脱脂する)工程、及び、脱脂された中間成形体を焼結して成形体(粉末成形体)を得る工程から成る。
特表2016-532777号公報 特開2007-277721号公報
 MIMでは、ニアネットシェイプの三次元形状の成形が可能であり、材料の歩留まりが高く材料費及び後加工費を削減できる点、及び、生産のランニングタイムが比較的短く、生産性が高い点などの優れた点がある。従って、MIMを高温部品の製造方法に適用すれば、高温部品を安価に提供できるなどの多くのメリットがある。
 γ”析出強化型Ni基合金であるIN718(IN:Inconelは登録商標、以下同様)などの組成では、MIMによって所定の高温特性を備えた高温部品を製造できることが確認されている。しかしながら、γ'析出強化型Ni基合金では、MIMによって製造される高温部品は、高温特性に劣ることがわかっている。
 本願の発明者らは、MIMによって製造される高温部品を構成するγ'析出強化型Ni基合金の一例として、IN713Cの典型的組成の合金(以下、「IN713C-MIM」)を採用し、IN713C-MIMの高温特性について検討した。IN713Cは、耐クリープ性に優れたγ'析出強化型Ni基合金の一つである。
 これまでのIN713C-MIMに関する研究によれば、IN713C-MIMは、鋳造で製造された部品と比較して、耐クリープ性が低く、タービン部品などの高温部品として採用できるレベルの高温特性に到達していないというのが現状である。
 本願の発明者らは、IN713C-MIMの高温特性が向上しない理由が、原料である金属粉末の粒子径に依存した微細な結晶粒組織にあり、高温特性を向上させるためには結晶粒を粗大化することが効果的であると考えている。一般に、耐高温性能を有するNi基合金において結晶粒の粗大化により耐クリープ性が向上することが知られており、特許文献1に記載されたγ'析出強化型Ni基合金では結晶粒の粗大化により耐クリープ性を含む高温特性を向上させている。
 ところが、本願の発明者らが、特許文献1に記載された技術に倣ってIN713C-MIMの熱処理(スーパーソルバス熱処理)をしたところ、熱処理の前後で、耐クリープ性を向上させるために十分な程度の結晶粒の粗大化は確認できなかった。
 また、特許文献1,2は、合金粉末の焼結体を鍛造する、粉末鍛造法を開示している。特許文献1,2のように、熱処理前の部品に等温鍛造又は冷間鍛造によってひずみ与えたうえで、熱処理によって再結晶及び粒成長を行わせることにより、結晶粒を粗大化できることが知られている。これは、与えられた塑性ひずみにより結晶粒内に蓄積された転位に起因して材料の自由エネルギーが高められると、この自由エネルギーを駆動力として生成された再結晶粒が微細となることと、粒成長の駆動力となる粒界エネルギーは結晶粒が微細であるほど高いことによる。しかし、MIMと鍛造とはいずれも素形材技術であり、MIMで成形された粉末成形体を鍛造することは通常行われず、MIMと鍛造とは相容れない。
 本発明は以上の事情に鑑みてされたものであり、その目的は、粉末鍛造などの塑性加工を含む方法を除く粉末成形方法を用いて、金属粉末から、γ'析出強化型Ni基合金からなる高温部品を製造するにあたり、高温部品の組織の結晶粒を粗大化する技術を提案する。
 IN713Cの典型的組成には0.08~0.20質量%のC(炭素)が含まれており、この組成の合金粉末をMIMで成形して得られる粉末成形体では更にCの含有量が増加する。本願の発明者らは、粉末成形体の結晶粒界に存在する炭化物(メタルカーバイド)が粒界移動を妨げて結晶の粒成長を阻害していると推定し、IN713C-MIMの結晶粒が粗大化しなかったことの原因の一つが、IN713C-MIMの粉末成形体の含有炭素量にあるという考えに至った。
 そこで、本発明の一態様に係る高温部品の製造方法は、
γ'析出強化型Ni基合金の合金粉末から、特定の粉末成形方法を用いて所望の高温部品形状の粉末成形体を成形する成形工程と、
前記粉末成形体の結晶粒径を熱処理により粗大化させる結晶粒粗大化工程とを含み、
前記粉末成形体は、質量百分率で、0.002%以上0.07%以下のCと、5.40%以上8.40%以下のAl+Tiとを含有することを特徴としている。
 上記高温部品の製造方法によれば、粉末成形体の結晶粒界に存在して結晶の粒成長を阻害する炭化物を生成するCの含有量を粉末成形体において0.002質量%以上0.07%以下に制限することにより、得られる高温部品の結晶粒径は合金粉末の粒子径から成長していることがわかった。このような結晶の粒成長により粗大化された結晶組織を有する高温部品は、高い耐クリープ性を備えることが期待される。
 そして、上記の高温部品の製造方法によれば、質量百分率で、0.002%以上0.07%以下のCと、5.40%以上8.40%以下のAl+Tiとを含有するγ'析出強化型Ni基合金からなり、平均結晶粒径が150μm以上であり、その結晶粒組織が、直交する3方向全ての断面が等軸組織であり、且つ、非デンドライト組織である高温部品を製造することができる。なお、本明細書及び請求の範囲では、各結晶粒の長軸と短軸との寸法比(アスペクト比)の平均が2未満である金属組織を「等軸組織」と定義する。
 上記の高温部品は、Cの含有量が、質量百分率で0.03%より大きく0.07%以下であってよい。
 上記の高温部品は、前記γ'析出強化型Ni基合金がC、Al、及びTiの他に、質量百分率で、4.60%以下のNb+Ta、5.00%以上22.80%以下のCr、19.50%以下のCo、1.80%以上13.75%以下のMo+W、0.10%以下のB、1.0%以下のZr、及び、2.0%以下のHfを含有していてよい。
 また、上記の高温部品は、前記γ'析出強化型Ni基合金が、質量百分率で、0.03%以上0.07%以下のC、6.00%以上7.50%以下のAl+Ti、1.50%以上3.00%以下のNb+Ta、11.00%以上15.00%以下のCr、3.80%以上5.20%以下のMo、0.005%以上0.020%以下のB、及び、0.05%以上0.20%以下のZrを含有し、残部がNi及び不可避的不純物からなるものであってよい。
 上記高温部品の製造方法は、前記成形工程と前記結晶粒粗大化工程の間に、又は、前記結晶粒粗大化工程と同時に行われる、ガス圧を利用して前記粉末成形体に等方的な圧力を加えることにより気孔率を低減させる気孔率低減工程を更に含んでいてよい。
 また、上記高温部品の製造方法において、前記結晶粒粗大化工程が、前記粉末成形体を、真空雰囲気下又は不活性ガス雰囲気下において、所定の粗大化処理温度で加熱することを含み、前記粗大化処理温度が、前記粉末成形体に固有のピン止め効果消失温度以上前記粉末成形体のソリダス温度以下の範囲の温度であることが好ましい。但し、上記ソリダス温度は、実験によって求めたソリダス温度から所定のα℃を加えた値としてよい。
 また、上記高温部品の製造方法において、Cの含有量が、質量百分率で0.03%より大きく0.07%以下であってよい。
 また、上記高温部品の製造方法において、前記粉末成形体は、C、Al、及びTiの他に、質量百分率で、4.60%以下のNb+Ta、5.00%以上22.80%以下のCr、19.50%以下のCo、1.80%以上13.75%以下のMo+W、0.10%以下のB、1.0%以下のZr、及び、2.0%以下のHfを含有していてよい。
 また、上記高温部品の製造方法において、前記粉末成形体が、質量百分率で、0.03%以上0.07%以下のC、6.00%以上7.50%以下のAl+Ti、1.50%以上3.00%以下のNb+Ta、11.00%以15.00%以下のCr、3.80%以上5.20%以下のMo、0.005%以上0.020%以下のB、及び、0.05%以上0.20%以下のZrを含有し、残部がNi及び不可避的不純物からなるものであってよい。
 また、上記高温部品の製造方法において、前記特定の粉末成形方法は粉末鍛造法を除き、前記成形工程は前記合金粉末を前記高温部品形状に集めてそれを焼き固めることを含むものであってよい。
 また、上記高温部品の製造方法において、前記成形工程が、前記合金粉末と樹脂バインダーとを混練したコンパウンドを金型に射出して中間成形体を成形することと、前記中間成形体を脱脂することと、脱脂された前記中間成形体を焼結して前記粉末成形体を得ることとを含んでいてよい。
 このように、MIMを利用して、高温部品の形状に成形された粉末成形体を得ることによって、形状精度の高い高温部品を得ることができる。更に、MIMを利用することによって、材料の歩留まりが高く、材料費及び後加工費を削減でき、生産のランニングタイムが比較的短く、生産性の向上が期待できる。
 上記高温部品の製造方法において、前記合金粉末の平均粒子径が、20μm以上60μm以下であることが好ましい。
 合金粉末が上記の平均粒子径であることにより、中間成形体を脱脂する際に粉末同士の隙間からの樹脂バインダーの抜け性の向上が期待される。
 また、上記高温部品の製造方法において、前記合金粉末は、質量百分率で、0.002%以上0.02%以下のCを含んでいることが好ましい。
 本発明によれば、MIMなどの鍛造以外の成形方法を用いて、金属粉末から、高温特性に優れたγ'析出強化型Ni基合金からなる高温部品を製造するにあたり、高温部品の組織の結晶粒を粗大化することができる。
図1は、高温部品の製造方法の流れ図である。 図2は、成形工程の処理の流れ図である。 図3は、結晶粒粗大化の評価の基準と対応する組織写真の表である。 図4は、結晶粒粗大化の評価の基準と対応する組織写真の表である。 図5は、粉末成形体のDSCサーモグラムの一例を示す図である。 図6は、高温部品のクリープ試験結果を示す図表である。
 本発明に係る高温部品の製造方法は、例えば、ガスタービンエンジンのタービン部品などの、厳しい高温環境下での使用に適した高温部品を製造する方法として用いられる。この高温部品は、ステンレス鋼や耐熱鋼よりも高温強度(特に、耐クリープ性)の優れた、γ'析出強化型Ni基合金からなる。
 表1に、上記高温部品を構成しているγ'析出強化型Ni基合金(以下、単に「合金」と称する)に含まれる元素の割合(質量百分率)を示す。この合金は、質量百分率で、0.002%以上0.07%以下(好ましくは、0.006%以上0.07%以下、更に好ましくは、0.03%より大きく0.07%以下)のC(炭素)を含有する。また、上記合金のAl(アルミニウム)の含有率とTi(チタン)の含有率との和(Al+Ti)は、質量百分率で5.40%以上8.40%以下である。上記合金は、上記のC、Al及びTiの他に、質量百分率で、5.00%以上22.80%以下のCr(クロム)、19.50%以下(0%を含む)のCo(コバルト)、1.80%以上13.75%以下のMo(モリブデン)+W(タングステン)、4.60%以下(0%を含む)のNb(ニオブ)+Ta(タンタル)、0.10%以下(0%を除く)のB(ホウ素)、1.0%以下(0%を除く)のZr(ジルコニウム)、2.0%以下(0%を含む)のHf、残部としてNi(ニッケル)及び不純物を含有していてよい。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1に示す組成を有する合金として、表2に示すγ'析出強化型Ni基合金(合金商標名:IN713C、IN713LC、Mar-M246+Hf、Mar-M247、CM247LC、B1900、B1900+Hf、Rene’80、IN738、IN738LC、IN792、Rene’95、IN939、alloyα(オリジナル合金))の典型的組成(又は公称組成)から、Cの割合を0.002質量%以上0.07質量%以下(好ましくは、0.006質量%以上0.07質量%以下、更に好ましくは、0.03質量%より多く0.07質量%以下)に変化させたものが挙げられる。
 例えば、表2に示すIN713C、IN713LC、及びalloyαの典型的組成をもとにしたγ'析出強化型Ni基合金は、質量百分率で、0.002%以上0.07%以下(好ましくは、0.006%以上0.07%以下、更に好ましくは、0.03%より多く0.7%以下)のC、6.00%以上7.50%以下のAl+Ti、1.50%以上3.00%以下のNb+Ta、11.00%以上15.00%以下のCr、3.80%以上5.20%以下のMo、0.005%以上0.020%以下のB、0.05%以上0.20%以下のZrを含有し、残部がNi及び不可避的不純物からなる。
 また、例えば、表2に示すalloyαの典型的組成をもとにしたγ'析出強化型Ni基合金は、質量百分率で、0.002%以上0.07%以下(好ましくは、0.006%以上0.07%以下、更に好ましくは、0.03%より多く0.7%以下)のC、6.00%以上7.50%以下のAl+Ti、1.80%以上3.00%以下のNb+Ta、13.00%以上15.00%以下のCr、3.80%以上5.20%以下のMo、0.005%以上0.020%以下のB、0.05%以上0.20%以下のZrを含有し、残部がNi及び不可避的不純物からなる。
 ここで、高温部品の製造方法を、図1を参照しながら説明する。図1は、高温部品の製造の流れを示す流れ図である。
 図1に示すように、高温部品の製造プロセスは、合金粉末から所望の高温部品形状の粉末成形体を成形する成形工程(ステップS1)と、成形された粉末成形体を加圧することにより気孔率を低減させる気孔率低減工程(ステップS2)と、気孔率が低減した粉末成形体の結晶粒径を熱処理により粗大化させる結晶粒粗大化工程(ステップS3)とを含む。高温部品の製造プロセスは、合金の種類に応じて、上記の結晶粒粗大化工程(ステップS3)の後に、粒径が粗大化された粉末成形体を硬化させる硬化工程(ステップS4)を更に含んでいてよい。
〔成形工程〕
 成形工程(ステップS1)では、特定の粉末成形法を用いて、合金粉末から粉末成形体を成形する。粉末成形体は、後述する気孔率低減工程(ステップS2)や熱処理工程(ステップS3及びステップS4)で生じる幾分の変形が考慮されているが、実質的に所望の高温部品形状(ネットシェイプ・ニアネットシェイプ)を呈する。
 ここでは粉末成形法としてMIMを採用している。但し、粉末成形体の成形法は、MIMに限定されず、粉末鍛造法を除く粉末成形法が採用されてよい。このような粉末成形法は、合金粉末を高温部品形状に集めて、それを焼き固めることを含むものである。このような粉末成形法として、MIM、プレス圧縮成形法、熱間等静圧圧縮成形法(HIP)、冷間等静圧圧縮成形法(CIP)、及び積層造形法(AM:Additive Manufacturing)のうちいずれか一つが採用されてもよい。プレス圧縮成形法では、合金粉末を所望の高温部品形状の型で圧縮成形することにより中間品を造形し、中間品を焼結して粉末成形体を得る。熱間等静圧圧縮成形法では、合金粉末を高温部品形状のカプセルに充填し、それに均一な高圧と高温をかけることにより中間品を造形し、中間品を焼結して粉末成形体を得る。冷間等静圧圧縮成形法では、合金粉末を高温部品形状に密封し、それに均一な液圧を加えて中間品を造形し、中間品を焼結して粉末成形体を得る。積層造形法では、合金粉末をレーザーや電子ビームで1レイヤーずつ溶融凝固させて、所望形状の粉末成形体を造形する。なお、粉末成形体の成形法として、鍛造、押出し、圧延、及び引抜きなどの塑性加工を含む方法は用いられない。とりわけ、材料に与えられた塑性ひずみによる転位が残留するような、材料の再結晶温度以下での冷間塑性加工及び等温塑性加工は粉末成形体の成形に用いられない。
 図2は、成形工程の処理の流れ図である。図2に示すように、成形工程(ステップS1)では、先ず、合金粉末とバインダーとを均一に混練して、それらのコンパウンドを得る(ステップS11)。コンパウンドは、ペレタイザーを使用して成形性の良いペレット状に成形される。バインダーは、従来、MIMに一般的に使用されてきたものであってよく、例えば、ポリプロピレン(PP)、ポリエチレン(PE)、ポリアセタール(POM)、ポリメタクリル酸メチル(PMMA)、カルナウバワックス(CW)、パラフィンワックス(PW)、及び、ステアリン酸(St)などのうち少なくとも1種類を含む。
 表3に、合金粉末に含まれる元素の割合(質量百分率)を示す。この合金粉末は、質量百分率で、0.002%以上0.02%以下のCと、5.40%以上8.40%以下のAl+Tiとを含有するNi基合金粉末である。この合金粉末は、上記のC、Al及びTiの他に、質量百分率で、4.60%以下(0%を含む)のNb+Ta、5.00%以上22.80%以下のCr、19.50%以下(0%を含む)のCo、1.80%以上13.75%以下のMo+W、0.10%以下(0%を除く)のB、1.0%以下(0%を除く)のZr、2.0%以下(0%を含む)のHf、残部としてNi及び不純物を含有していてよい。
Figure JPOXMLDOC01-appb-T000003
 合金粉末は、20μm以上60μm以下、望ましくは、30μm以上50μm以下の平均粒子径を有する。ここで、平均粒子径は、体積基準のメジアン径(d50)で表される。体積基準のメジアン径は、レーザー回折・散乱法を測定原理とする粒度分布測定装置を用いて試料を測定し、粒度分布(累積分布)を求めたときの体積基準の相対粒子量が50%になる粒子径と定義される。この平均粒子径は、従来の一般的なMIMで用いられる金属粉末の平均粒子径(10μm程度)と比較して大きい。
 上記のようにして得たコンパウンドを、射出成形機を用いて、金型の所望の高温部品形状のキャビティに射出する(ステップS12)。そして、金型を開いて、グリーン体(中間成形体)を金型から離型する(ステップS13)。グリーン体は、合金粉末とバインダーとの混練物であるコンパウンドが射出成形されたものである。
 次に、グリーン体からバインダーを取り除く、即ち、脱脂する(ステップS14)。脱脂の方法としては、有機溶剤又は水にグリーン体を浸漬して脱脂する方法、グリーン体を100~600℃の脱脂焼却炉で加熱して脱脂する方法などがある。
 続いて、脱脂されたグリーン体を焼結して粉末成形体を得る(ステップS15)。この工程では、一般的には1200~1300℃で0.5~3時間、脱脂されたグリーン体を加熱する。用いられる焼結条件は、粉末成形体が十分に緻密化される(例えば、比密度95%以上)温度と時間の組み合わせとなるように、経済性も考慮して決定される。この焼結工程は、前述の脱脂工程と連続して行われてもよい。
 本願の発明者らは、粉末成形体の結晶の粒成長を阻害する因子の一つが、結晶粒界に存在する炭化物であると考えている。そこで、粉末成形体の含有炭素量が、質量百分率で、0.002%以上0.07%以下(望ましくは、0.006%以上0.07%以下、更に好ましくは、0.03%より大きく0.07%以下)となるように粉末成形体の成形工程のプロセスを制御する。具体的には、合金粉末の炭素含有量を0.002%以上0.02%以下に制限する。また、MIMでは粉末表面に残存するバインダーによる炭素汚染も考えられるため、従来と比較して大きな粒子径の合金粉末を採用することにより、脱脂処理において粉末成形体の粉末同士の隙間からバインダーが抜けやすいようにしている。
〔気孔率低減工程〕
 気孔率低減工程(ステップS2)では、成形工程(ステップS1)で得られた粉末成形体の気孔率を減少させるように、粉末成形体にガス圧を与える。粉末成形体中の気孔も結晶粒の成長を阻害するピン止め因子となりうることから、気孔率低減工程(ステップS2)後の粉末成形体の気孔率は、少ないほどよい。
 気孔率低減工程(ステップS2)では、例えば、HIP(熱間等静圧圧縮成形法)を用いる。具体的には、ガス圧を利用して、900~1300℃の高温と数10~200MPaの等方的な圧力とを被処理体である粉末成形体に同時に加える。HIPで使用するガス種類は不活性ガス(例えば、Ar)であり、HIPのパラメータは、合金組成及び処理の目標サイクルタイムに従って変更可能であるが、温度、圧力、及び時間は、粉末成形体の気孔率を実質的になくすのに十分な程度に設定することがよい。
〔結晶粒粗大化工程〕
 結晶粒粗大化工程(ステップS3)では、粉末成形体の結晶粒を粗大化するための粗大化熱処理を行う。粗大化熱処理は、粉末成形体を、真空又は不活性ガス雰囲気下において、所定の粗大化処理温度で、所定の粗大化処理時間だけ加熱する。この熱処理では、粉末成形体が再結晶するために十分な自由エネルギーを持っていないため、再結晶は殆ど生じないと考えられる。なお、上記において「真空雰囲気」とは、圧力が1000Pa未満の空間状態のことをいう。また、上記において「不活性ガス雰囲気」とは、1000Pa以上のArなどの不活性ガスで置換された空間状態のことをいう。
 粉末成形体の結晶粒界には、合金に含まれるTi、Nb、Ta、Hf、Mo、Cr、Niなどの金属原子と炭素原子からなる化合物(以下、「炭化物」と称する)が存在している。Ti、Nb、Ta、HfとCが約1:1の比率で結合したMC炭化物や、Mo、Ni、CrなどとCが約6:1の比率で結合したMC炭化物、Cr、MoなどとCが約23:6の比率で結合したM23炭化物などが知られている(「M」は金属元素を表す)。中でも、MC炭化物は高温で最も安定的であり、本願の発明者らは、粉末成形体の結晶粒界に存在する炭化物、主にMC炭化物が、粒界の移動を妨げようとするピン止め力を発現させていると考えている。そして、このピン止め効果は或る温度を境に急激に低下することが実験からわかっている。このピン止め効果が急激に低下する温度を、以下では「ピン止め効果消失温度」と称する。ピン止め効果消失温度では、粒界に存在してピン止め効果を発現させている炭化物が分解したり、或いは、粒界移動のエネルギーがピン止め力に勝って炭化物が移動する粒界に飲み込まれたりすることによって、ピン止め効果が急激に低下すると考えられる。この考えによれば、ピン止め効果消失温度以上の粗大化処理温度で熱処理を行うことにより、粉末成形体の結晶の成長を阻む要素が粒界からなくなり、結晶粒の粗大化の促進が期待される。
 上記のピン止め効果消失温度は、合金の組成によって異なり、また、類似する組成であっても炭素の含有量によって異なると考えられる。そこで、ピン止め効果消失温度を予め実験的に求め、粗大化処理温度を、ピン止め効果消失温度以上で、粉末成形体のソリダス温度以下の温度とする。粉末成形体のソリダス温度は、粉末成形体から最初に液相が生じる温度であって、粉末成形体の組成とその炭素含有量に依存する。粗大化処理温度がソリダス温度を超えると、粉末成形体を構成する元素のうち一部分の融点が低い液相が生じて粒界に部分溶融層が生じることから、理論上の粗大化処理温度はソリダス温度以下である。但し、実際はソリダス温度からα℃を加えた値を、粗大化処理温度の上限値としてよい。αは、リキダス温度とソリダス温度の差分の20%と規定する(α=(リキダス温度-ソリダス温度)/5)。
 図5は、粉末成形体を示差走査熱量計(DSC)で測定して得たDSCサーモグラムの一例を示している。示差走査熱量計は、試料に一定の熱を与えながら、基準物質と試料との温度を測定して、試料の熱物性を温度差としてとらえ、試料の状態変化による吸熱反応や発熱反応を測定する装置である。図5に示すDSCサーモグラムは、縦軸が熱流量(Heat Flow)[mJ/s]、横軸が温度[℃]を表している。
 図5のDSCサーモグラムでは、ソルバス温度で発熱ピークがみられ、ソリダス温度とリキダス温度の間に吸熱ピークがみられる。その吸熱ピークの下がり初めの温度がソリダス温度と規定され、その吸熱ピークの上がりきった温度がリキダス温度と規定される。
 粗大化処理時間は、粉末成形体の形状や炭素量に加えて、粗大化処理温度にも影響される。粗大化処理時間が長いほど結晶粒の粗大化の程度が大きくなるが、粗大化処理時間が長くなると不経済である。そこで、粗大化処理時間は、実験で得られた結果に基づいて、高温部品が所望の耐クリープ性を備えるための結晶粒のサイズと、経済性との兼ね合いから決定してよい。
 なお、粗大化熱処理を真空雰囲気下で行うと、合金に含まれるCrが蒸発したり、蒸発する過程でCrが粒界拡散することによって、粒界にCrが濃化したりすることがわかっている。従って、合金中のCrの蒸発を回避する場合には、不活性ガス雰囲気下で粗大化熱処理を行う。
 なお、上記では、気孔率低減工程(ステップS2)が成形工程(ステップS1)と結晶粒粗大化工程(ステップS3)の間に行われるが、気孔率低減工程(ステップS2)は結晶粒粗大化工程(ステップS3)と同時に行われてもよい。また、後述するように、気孔率低減工程(ステップS2)が省略される場合には、成形工程(ステップS1)の焼結処理に連続して結晶粒粗大化工程(ステップS3)が行われてもよい。
〔硬化工程〕
 硬化工程(ステップS4)では、合金ごとに所定の溶体化処理及び時効処理を施し、母相中に適切なγ’相を分散析出させる。これらの条件は、必要とされる機械特性を勘案して決定される。なお、合金によっては、結晶粒粗大化工程(ステップS3)後に徐冷することにより、硬化処理(ステップS4)を施さずに強度を発揮するものがある。また、結晶粒粗大化工程(ステップS3)後に急冷を施すことにより、溶体化処理を省略することもできる。以上の工程(S1~S4又はS1~S3)により、高温部品を製造することができる。
 以上に説明した高温部品の製造方法は、γ'析出強化型Ni基合金の合金粉末から特定の粉末成形方法(但し、粉末鍛造法を除く)を用いて所望の高温部品形状の粉末成形体を成形する成形工程(ステップS1)と、成形された粉末成形体に対しガス圧を利用して等方的な圧力を加えることにより気孔率を低減させる気孔率低減工程(ステップS2)と、粉末成形体の結晶を熱処理により粗大化させる結晶粒粗大化工程(ステップS3)とを含んでいる。気孔率低減工程(ステップS2)と結晶粒粗大化工程(ステップS3)は同時に進行してもよい。また、結晶粒粗大化工程(ステップS3)の後に、結晶粒径が粗大化された粉末成形体からγ'相を析出させる熱処理を行ってもよい。
 上記において、成形工程は、合金粉末を高温部品形状に集めてそれを焼き固めることを含む。このような粉末成形方法として、金属粉末射出成形法、プレス圧縮成形法、熱間等静圧圧縮成形法、冷間等静圧圧縮成形法、及び積層造形法のうちいずれか1つが採用されてよい。
 上記において、粉末成形体は、質量百分率で、0.002%以上0.07%以下のCと、5.40%以上8.40%以下のAl+Tiとを含有する。この粉末成形体は、C、Al、及びTiの他に、質量百分率で、4.60%以下(0%を含む)のNb+Ta、5.00%以上22.80%以下のCr、19.50%以下(0%を含む)のCo、1.80%以上13.75%以下のMo+W、0.10%(0%を除く)以下のB、1.0%以下(0%を除く)のZr、及び、2.0%以下(0%を含む)のHfを含有してよい。
 或いは、粉末成形体は、表2のIN713LC及びalloyαに対応して、質量百分率で、0.03%より多く0.07%以下のC、6.00%以上7.50%以下のAl+Ti、1.50%以上3.00%以下のNb+Ta、11.00%以上15.00%以下のCr、3.80%以上5.20%以下のMo、0.005%以上0.020%以下のB、及び、0.05%以上0.20%以下のZrを含有し、残部がNi及び不可避的不純物からなるものであってよい。このような組成の高温部品は耐クリープ性に優れたγ'析出強化型Ni基合金となる。
 上記製造方法によって得られる高温部品では、粉末成形体の結晶粒界に存在して結晶の成長を阻害すると考えられる炭化物を生成するCの含有量が制限されており、結晶粒粗大化工程を経ることによって結晶粒径が合金粉末の粒子径から成長することがわかっている。このような結晶粒径の成長により、高温部品の耐クリープ性の向上が期待される。即ち、上記高温部品の製造方法によれば、MIMなどの鍛造以外の成形方法を用いて、金属粉末から、高温特性に優れたγ'析出強化型Ni基合金からなる高温部品を製造することができる。
 そして、上記の高温部品の製造方法によって、質量百分率で、0.002%以上0.07%以下のCと、5.40%以上8.40%以下のAl+Tiとを含有するγ'析出強化型Ni基合金からなり、平均結晶粒径が150μm以上であり、その結晶粒組織が、直交する3方向全ての断面が等軸組織であり、且つ、非デンドライト組織である高温部品が得られる。
 また、上記高温部品の製造方法では、結晶粒粗大化工程において、粉末成形体を、真空雰囲気下又は不活性ガス雰囲気下において、所定の粗大化処理温度で加熱する。ここで「粗大化処理温度」は、粉末成形体に固有のピン止め効果消失温度以上粉末成形体のソリダス温度以下の範囲の温度である。
 このように、結晶粒粗大化のための熱処理が、粉末成形体の粒界に存在する炭化物のピン止め効果が急激に低減するピン止め効果消失温度以上粉末成形体のソリダス温度以下の範囲の温度で行われることによって、粉末成形体の粒界の移動を阻害するものがなくなるので、結晶粒の成長の促進が期待される。
 また、上記高温部品の製造方法では、成形工程が、合金粉末と樹脂バインダーとを混練したコンパウンドを金型に射出して中間成形体(グリーン体)を成形することと、中間成形体を脱脂することと、脱脂された中間成形体を焼結して粉末成形体を得ることとを含んでいる。
 このようにMIMを利用して、高温部品の形状に成形された粉末成形体を得ることによって、形状精度の高い高温部品を得ることができる。更に、MIMを利用することによって、材料の歩留まりが高く、材料費及び後加工費を削減でき、生産のランニングタイムが比較的短く、生産性の向上が期待できる。
 そして、MIMを利用して高温部品の形状に成形された粉末成形体を得るに際し、合金粉末の体積基準の平均粒子径(d50)を20μm以上60μm以下としている。このように合金粉末が上記の平均粒子径であることにより、中間成形体を脱脂する際に粉末同士の隙間からの樹脂バインダーの抜け性の向上が期待される。
 また、MIMで使用される合金粉末は、質量百分率で、0.002%以上0.02%以下のCを含んでいる。このように、合金粉末のCの含有量を0.002%以上0.02%以下に抑えることによって、粉末成形体のCの含有量を0.07%以下に抑えることができる。
[実施例]
 次に、本発明に係る高温部品の製造方法の実施例を説明する。
〔試料作製手順〕
 以下で説明する各試料に共通する試料作製手順は、以下の通りである。
(ステップS1)
合金粉末とバインダーとを均一に混練したコンパウンドを、金型に射出して、厚さ約1~3mmの板状のグリーン体を得た。なお、バインダーは、PP、POM、及びPWを混ぜ合わせたものと、PP、PMMA,及びPWを混ぜ合わせたものとを、試料によって使い分けた。各試料の合金粉末に含まれる元素の割合(質量百分率)を表4に示す。なお、試料a1‐6、b1-7、c1-5、d1-12、e1-6、f1、g1、及び、h1の合金粉末は、表2の「alloyα」の組成からCの割合を変更したものである。
また、合金粉末の平均粒子径(d50)は、後述する試料a1~4,f2,g2を除いて、いずれも48.0μmである。
得られたグリーン体を、室温から500℃まで徐々に昇温させながら加熱脱脂し、更に連続して、十分な緻密化が進むような適切な焼結条件(炉内温度と時間)で加熱して、粉末成形体を得た。
(ステップS2)
上記ステップS1で得られた粉末成形体に対し、1204℃、102~104MPaのAr雰囲気下、4時間の条件でHIPを行った。なお、試料によっては、このHIPが意図的に省略されたものがある。
(ステップS3)
上記ステップS2によって気孔が低減された粉末成形体に対し、真空又はAr雰囲気下で、粗大化処理温度で、粗大化処理時間だけ加熱した。粗大化処理温度及び粗大化処理時間は、試料ごとに異なる。
(ステップS4)
上記ステップS3の粗大化熱処理を終えた粉末成形体に対し、1204℃で2時間の溶体化処理を施したのち、840℃で4時間と760℃で12時間の2段階の時効処理を行い、試料を得た。いずれの処理においても、冷却にはガスファンクールを実施している。なお、ステップS4は、強度試験を行う試料に対してのみ行い、組織観察を行う試料では省略した。
Figure JPOXMLDOC01-appb-T000004
〔試料観察及び評価手順〕
 板状の試料を厚み方向が視野に含まれるように切断してから樹脂埋めし、その切断面を研磨し、マーブル液でエッチングし、切断面を光学顕微鏡で撮像した。そして、撮像で得られた組織写真(画像)を用いて、以下の(1)~(3)の手順で結晶の平均粒径を求めた。なお、1枚の組織写真では厚み方向の全域について画像の鮮明度が結晶粒径の評価のために不十分である場合には、複数枚の組織写真を合成したものを組織写真として用いた。また、組織写真の撮像範囲を、厚み方向とその直行方向のアスペクト比が約1:1となるようにした。
(1)組織写真の撮像範囲全域に対し、縦横それぞれ等間隔で20本ずつの線を引き、各線について粒界とが交差する数を数える。
(2)組織写真中の金属組織上(つまり樹脂上ではない)に引かれた各線の長さを写真中のスケールバーに基づいて実寸法に変換した値を、(1)で求めた数で割った値を、各線における粒径とした。
(3)樹脂部を通る線を除く各線について求めた粒径の平均値を平均結晶粒径とした。
 平均粒径が150μm以上であれば結晶粒径が粗大化したと評価し、平均粒径が150μm未満であれば結晶粒径の粗大化が不十分であると評価した。また、組織写真から、非粗大化結晶粒の偏在の有無や、粒界の部分溶融の有無や、Crの蒸発の有無についても評価した。次表5に、結晶粒粗大化の評価の基準を示し、図3及び図4に結晶粒粗大化の評価の基準と対応する組織写真を示す。
Figure JPOXMLDOC01-appb-T000005
 表5及び図3に示すように、「粗大化した(A)」と評価するものは、平均結晶粒径が150μm以上であって、その結晶粒組織が、直交する3方向全ての断面が等軸組織であり、且つ、非デンドライト組織であるものである。また、「粗大化した/非粗大化結晶粒の偏在(A*1)」と評価するものは、上記(A)の評価基準をクリアできるものの、組織写真に平均結晶粒径100μm以下の結晶粒の10個以上の群集が確認されるものである。また、「粗大化した/部分溶融あり(A*2)」と評価するものは、上記(A)の評価基準をクリアできるものの、組織写真に粒界に部分的な溶融が観察されるものである。また、「粗大化した/Cr蒸発あり(A*3)」と評価するものは、上記(A)の評価基準をクリアできるものの、組織写真に粒界にCr蒸発が観察されるものである。表5及び図4に示すように、「粗大化が一部見受けられた(B)」と評価するものは、平均結晶粒径が150μm未満であるが、試料の断面内部においても粗大化した結晶粒が観察されるものである。また、「粗大化しなかった(C)」と評価するものは、上記(A)(B)の評価基準を満たさないものである。
〔粉末成形体の炭素量測定手順〕
 粉末成形体の炭素量は、板状の試料をドリル等で切子状に削り出し、非分散型赤外線吸収表法を用いて測定した。ただし、MIMにより作製された粉末成形体は、バインダーの抜け性の違いから、試料最表面の炭素量が低く測定される場合があるため、試料内部から切子を採取するよう留意した。
〔合金粉末サイズによる炭素量減少効果の検証〕
 成形工程(ステップS1)において、合金粉末サイズによって、粉末成形体の含有炭素量を減少できることを検証するための実験を行った。
 合金粉末の平均粒子径(d50)を10.9μmとし、粗大化処理温度を1280℃、粗大化処理時間を12時間、粗大化処理雰囲気を10kPaのAr雰囲気とし、前述の試料作製手順によって試料a1を得た。試料a1の粉末成形体の炭素量は0.074質量%であった。
 合金粉末の平均粒子径(d50)を23.6μmとし、粗大化処理温度を1280℃、粗大化処理時間を12時間、粗大化処理雰囲気を10kPaのAr雰囲気とし、前述の試料作製手順によって試料a2を得た。試料a2の粉末成形体の炭素量は0.050質量%であった。
 合金粉末の平均粒子径(d50)を30.7μmとし、粗大化処理温度を1280℃、粗大化処理時間を12時間、粗大化処理雰囲気を10kPaのAr雰囲気とし、前述の試料作製手順によって試料a3~4を得た。試料a3の粉末成形体の炭素量は0.061質量%であり、試料a4の粉末成形体の炭素量は0.046質量%であった。
 合金粉末の平均粒子径(d50)を48.0μmとし、粗大化処理温度を1280℃、粗大化処理時間を12時間、粗大化処理雰囲気を10kPaのAr雰囲気とし、前述の試料作製手順によって試料a5~6を得た。試料a5の粉末成形体の炭素量は0.058質量%であり、試料a6の粉末成形体の炭素量は0.034質量%であった。
Figure JPOXMLDOC01-appb-T000006
 表6に、試料a1~6の合金粉末の特性と、それらの試料の観察及び評価結果が示されている。表6から明らかなように、試料a1では、試料の断面内部においても粗大化した結晶粒が観察されたが、平均結晶粒径は所定の基準(150μm以上)を満たさなかった。試料a2~6では結晶粒径の粗大化がみられた。試料a2~6では合金粉末の炭素量は同じであるが、合金粉末の平均粒子径が異なり、そのことから粉末成形体の炭素量が異なる。そのため、試料a2~6には、結晶粒径の粗大化の程度や、粗大化の不十分な結晶粒の分布に差異がみられた。試料a2では、試料の厚み方向中央部に集中して粗大化の不十分な結晶粒が存在している一方、試料a2よりも平均粒子径の大きい試料a3~6では、粗大化の不十分な結晶粒は確認されなかった。以上から、合金粉末の平均粒子径が大きいほど良好に結晶粒径が粗大化することがわかった。
 また、表6からは、粉末成形体の炭素量が0.034質量%以上0.061質量%以下(概ね0.03質量%より多く0.07質量%以下)の範囲において、結晶粒径の十分な粗大化が認められる。また、粉末成形体の炭素量が0.074質量%において、基準を満たさないものの結晶粒径の粗大化が認められた。更に、結晶粒径の粗大化に対するピン止め効果は炭化物が担うことから、炭素量が0.034質量%より小さい場合でも、結晶粒径の粗大化が進むことは容易に推察される。このことから、粉末成形体の炭素量が0.07%以下の範囲において、結晶粒径が十分に粗大化するといえる。
〔合金粉末に含まれる炭化物形成元素の違いによる粒成長の差異の検証〕
 成形工程(ステップS1)において、合金粉末に含まれる炭化物形成元素の違いによる結晶の粒成長を検証するための実験を行った。
 合金粉末の平均粒子径(d50)を48.0μmとし、粗大化処理温度を1280℃、粗大化処理時間を12時間、粗大化処理雰囲気を10kPaのAr雰囲気とし、前述の試料作製手順によって試料h1を得た。試料h1の合金粉末において、Cと結びついてMC炭化物を形成する元素はTi及びNbである。
 試料h1で使用した合金粉末に平均粒子径が25μmの粉末Taを1.65質量%の割合で追加して、試料h1と同じ試料作製手順によって試料h2を得た。試料h2の合金粉末において、Cと結びついてMC炭化物を形成する元素はTi、Nb、及びTaである。
 試料h1で使用した合金粉末に平均粒子径が25μmの粉末Hfを1.50質量%の割合で追加して、試料h1と同じ試料作製手順によって試料h3を得た。試料h3の合金粉末において、Cと結びついてMC炭化物を形成する元素はTi、Nb、及びHfである。
Figure JPOXMLDOC01-appb-T000007
 表7に、試料h1,h2,h3の合金粉末の特性と、それらの試料の観察及び評価結果が示されている。表7から明らかなように、試料h1,h2,及びh3のいずれにおいても結晶粒径の粗大化がみられた。以上から、Ti、Nb、Ta,及びHfのうち少なくとも1つの元素を含む合金において、粉末成形体の炭素量を制限することにより結晶粒径の粗大化が発現することがわかった。alloyαに含まれるTi、Nbが形成するMC炭化物だけでなく、Ta、Hfが形成するMC炭化物が含まれていても結晶粒径の粗大化が発現したことから、表2で示した類似の合金についても、粉末成形体の炭素量を制限することにより結晶粒径の粗大化が発現することは容易に推察される。
〔粗大化処理時間の検証〕
 結晶粒粗大化工程(ステップS3)において、適切な粗大化処理時間を検証するための実験を行った。
 粗大化処理温度を1280℃、粗大化処理時間を1,2,4,12時間で相違させ、粗大化処理雰囲気を10kPaのAr雰囲気とし、前述の試料作製手順によって粗大化処理時間の異なる4種の試料b1~4を得た。各試料において、粉末成形体の炭素含有量は0.034~0.058質量%であった。
 また、粗大化処理温度を1280℃、粗大化処理時間を4,12,36時間で相違させ、粗大化処理雰囲気を10-2Paよりも高真空雰囲気とし、前述の試料作製手順によって粗大化処理時間の異なる4種の試料b5~7を得た。各試料において、粉末成形体の炭素含有量は0.034~0.058質量%であった。
Figure JPOXMLDOC01-appb-T000008
 表8に、粗大化処理時間の異なる試料b1~7の観察及び評価結果が示されている。表8から明らかなように、不活性ガス雰囲気下では、粗大化処理時間が2時間以上で結晶粒径の粗大化が確認され、4時間以上で非粗大化結晶粒の偏在のない良好な結晶粒径の粗大化がみられた。一方、真空雰囲気下では、粗大化処理時間が4時間以上で結晶粒径の粗大化が確認されたが、Crの蒸発が観察された。また、試料b7では、部分溶融も併せて観察された。以上から、粗大化処理時間が2時間以上で結晶粒径が粗大化するが、粗大化処理時間は望ましくは4時間以上であることがわかった。
〔粗大化処理雰囲気の検証〕
 結晶粒粗大化工程(ステップS3)において、適切な粗大化処理雰囲気を検証するための実験を行った。
 粗大化処理温度を1280℃、粗大化処理時間を4時間、粗大化処理雰囲気を10-2Paよりも高真空雰囲気,100PaのAr雰囲気,1300PaのAr雰囲気,10kPaのAr雰囲気,104MPaのAr雰囲気で相違させ、前述の試料作製手順によって粗大化処理雰囲気の異なる5種の試料c1~5を得た。各試料において、粉末成形体の炭素含有量は0.034~0.058質量%であった。
Figure JPOXMLDOC01-appb-T000009
 表9に、粗大化処理雰囲気の異なる試料c1~5の観察及び評価結果が示されている。表9から明らかなように、試料c1~5のいずれにおいても結晶粒径の粗大化が確認されたが、試料c1,c2ではCrの蒸発が観察され、試料c5では部分溶融が観察された。試料c3,4では良好な結晶粒径の粗大化がみられた。このことから、粗大化処理雰囲気を100Paより大きい不活性ガス雰囲気とすることで、Crの蒸発を抑えられることがわかった。
〔粗大化処理温度の検証〕
 結晶粒粗大化工程(ステップS3)において、適切な粗大化処理温度を検証するための実験を行った。
 粗大化処理条件のうち、粗大化処理温度と粗大化処理雰囲気の異なる試料を作成し、それぞれ観察及び評価をした。
 粗大化処理温度を表10の通りに1300,1280,1260,1250,1240,1220℃で相違させ、粗大化処理時間を12時間、粗大化処理雰囲気を10kPaのAr雰囲気とし、前述の試料作製手順によって試料d1~6を得た。各試料において、粉末成形体の炭素含有量は0.034~0.058質量%であった。
 粗大化処理温度を表10の通りに1300,1280,1260,1250,1240,1220℃で相違させ、粗大化処理時間を12時間、粗大化処理雰囲気を10-2Paよりも高真空雰囲気とし、前述の試料作製手順によって試料d7~12を得た。試料d7~12において粉末成形体の炭素含有量は0.034~0.058質量%であった。
Figure JPOXMLDOC01-appb-T000010
 表10に、試料d1~12の観察及び評価結果が示されている。表10から、試料d1~6では、Ar雰囲気下において、粗大化処理温度が1250℃の試料d4で粗大化が確認され、粗大化処理温度が1240℃の試料d5で粗大化が確認されなかった。これより、試料d1~6の合金では、Ar雰囲気下でのピン止め効果消失温度が1241℃以上1250℃以下にあると推定される。
 また、表10から、試料d9~12では、真空雰囲気下において、粗大化処理温度が1240℃の試料d11で粗大化が確認され、粗大化処理温度が1220℃の試料d12で粗大化が確認されなかった。これより、試料d9~12の合金では、真空雰囲気下でのピン止め効果消失温度が1221℃以上1240℃以下にあると推定される。
〔気孔率低減工程の粗大化処理温度に与える影響の検証〕
 高温部品の製造方法に含まれる気孔率低減工程(ステップS2)が、結晶粒粗大化工程(ステップS3)の粗大化処理温度に与える影響を検証するための実験を行った。
 粗大化処理温度を表11の通りに1300,1280℃で相違させ、粗大化処理時間を12時間、粗大化処理雰囲気を10kPaのAr雰囲気とし、気孔率低減処理としてのHIP(手順(iii))を省略した前述の試料作製手順で試料e1,2を得た。各試料において、粉末成形体の炭素含有量は0.034~0.058質量%であった。
 粗大化処理温度を表11の通りに1300,1280,1260℃で相違させ、粗大化処理時間を12時間、粗大化処理雰囲気を10-2Paよりも高真空雰囲気とし、気孔率低減処理としてのHIP(手順(iii))を省略した前述の試料作製手順で試料e3~6を得た。試料e3~5において、粉末成形体の炭素含有量は0.034~0.058質量%であった。
Figure JPOXMLDOC01-appb-T000011
 表11に、試料e1~5の観察及び評価結果が示されている。表11から、気孔率低減工程(ステップS2)が省略された前述の高温部品の製造方法、即ち、Ni基合金粉末から所望の高温部品形状の粉末成形体を成形する成形工程(ステップS1)と、前記粉末成形体の結晶粒径を熱処理により粗大化させる結晶粒粗大化工程(ステップS3)とを含む高温部品の製造方法によっても、結晶粒径が粗大化されたγ’析出強化型Ni基合金からなる高温部品を得ることができることが明らかである。
 また、気孔率低減工程(ステップS2)を省略し、結晶粒粗大化工程(ステップS3)をAr雰囲気下で行った場合には、粗大化処理温度が1300℃では結晶粒が粗大化したが、粗大化処理温度が1280℃では結晶粒が粗大化しなかったことから、気孔率低減工程を省略した場合のピン止め効果消失温度が1281℃以上1300℃以下にあることが推察される。更に、気孔率低減工程(ステップS2)を省略し、結晶粒粗大化工程(ステップS3)を高真空雰囲気下で行った場合には、粗大化処理温度が1280℃では結晶粒が粗大化したが、粗大化処理温度が1260℃では結晶粒が粗大化しなかったことから、気孔率低減工程を省略した場合のピン止め効果消失温度が1261℃以上1280℃以下にあることが推察される。
 以上の粗大化処理温度に関する検証実験結果から推定されるピン止め効果消失温度を表12に示す。また、表13では、炭素含有量が0.034~0.058質量%と0.10質量%の粉末成形体の、ソリダス温度及びリキダス温度の測定結果を示す。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 ソリダス温度及びリキダス温度の測定は、炭素含有量が0.034~0.058質量%と0.10質量%で異なる粉末成形体の試料f1,f2を作成し、各試料を示差走査熱量計(DSC)で計測し、その結果から各試料のソリダス温度、及びリキダス温度を求めた。なお、試料f1の粉末成形体は、前述の試料作製手順のステップS1に示した通り、MIMによって成形したものであるが、試料f2の粉末成形体は、熱間等静圧圧縮成形(HIP)によって成形したものである。より詳細には、試料f2の粉末成形体は、表4に示す所定組成であって、平均粒子径(d50)が26.9μmの合金粉末を、軟鋼製の缶に封入し、1204℃で104MPaのAr雰囲気下で4時間の熱間等静圧圧縮を行い、最後に軟鋼を除去して得たものである。
 また、表12から、気孔率低減工程の有無にかかわらず、Ar雰囲気下よりも真空雰囲気下の方がピン止め効果消失温度が低くなることがわかった。
 また、表12及び表13から、気孔率低減工程を省略した場合には、Ar雰囲気下の粗大化熱処理では、粗大化処理温度をソリダス温度近傍まで上げないと粉末成形体の結晶粒径は粗大化しないことがわかった。
 更に、表12から、気孔率低減工程を省略した場合には、気孔率低減工程を行う場合と比較として、Ar雰囲気下及び真空雰囲気下のいずれにおいても、粉末成形体の結晶粒径が粗大化する温度が高いことがわかった。これらのことから、粉末成形体中の気孔が結晶粒径の粗大化を妨げるピン止め因子となって、気孔率低減工程を省略する場合には、気孔率低減工程を行う場合と比較して、ピン止め効果消失温度が高温になったと推察される。このことから、結晶粒粗大化工程(ステップS3)において比較的低温の粗大化処理温度で粉末成形体の結晶粒径を粗大化させるためには、気孔率低減工程(ステップS2)を省略せずに行うことが好ましいといえる。
 また、表13を参照した表10,11から、粗大化処理温度がソリダス温度を超えると結晶組織の部分的な溶融が生じることがわかった。
 また、表13から、粉末成形体の炭素量が多い場合には、ソリダス温度が低くなることがわかった。結晶粒粗大化熱処理温度は、ピン止め効果消失温度以上、ソリダス温度以下であることから、そのウインドウを広げるためにも、粉末成形体の炭素量は少ない方が好ましいといえる。
〔高温部品の高温特性の検証〕
 高温部品の高温クリープ特性を評価するために、以下に示す方法で試験片及び比較試験片を作製し、ASTM E139に準拠してクリープラプチャー試験を行った。
 粗大化処理温度を1280℃、粗大化処理時間を12時間、粗大化処理雰囲気を10kPaのAr雰囲気とし、前述の試料作製手順で試料g1を得た。この試料g1から、標点距離12mm,幅3.2mm,厚さ1.5~2mmのサイズの試験片g1’を作製した。なお、試験片g1’の試験片形状は、ASTM E139の規格から外れている。この試験片g1’に対し、試験条件を927℃/227MPa、980℃/90MPaで変化させて、クリープラプチャー試験を行った。
 また、質量百分率で、表4に示す所定の組成であって、平均粒子径(d50)が26.9μmである合金粉末を用い、前述の試料作製手順のうち粗大化処理(ステップS3)を省略し、硬化処理(ステップS4)で1176℃で2時間の溶体化処理を施したのち925℃で16時間の時効処理を行なった点を除いて、余は同じ手順で比較試料g2を得た。比較試料g2の粉末成形体のCの含有量は0.12質量%であった。この比較試料g2から、標点距離16~20mm,Φ4mmのサイズの比較試験片g2’を作製した。この試験片g2’に対し、試験条件を927℃/227MPa,980℃/90MPa,760℃/690MPa,816℃/172MPa,927℃/90MPa,927℃/50MPaで変化させて、クリープラプチャー試験を行った。
 上記クリープラプチャー試験の結果をラーソンミラーパラメータに換算してプロットした結果が、図6に示されている。なお、図6では、『SUPERALLOYS II』Chester T. Sims, Norman S. Stoloff, William C. Hagel(1987年)に記載されたIn713C鋳造品の文献値も比較のために載せている。
 図6から明らかなように、試料g1の曲線とIn713C鋳造品の曲線との乖離度は、比較試料g2の曲線とIn713C鋳造品の曲線との乖離度と比較して小さい。この試験結果から、結晶粒粗大化処理によって結晶粒径が粗大化している試料g1では、結晶粒径が粗大化していない比較試料g2と比較して優れた高温クリープ強度(耐クリープ性)を備えていること、及び、その高温クリープ強度は鋳造品のそれに近い程度まで向上していることがわかる。

Claims (14)

  1.  γ'析出強化型Ni基合金の合金粉末から、特定の粉末成形方法を用いて所望の高温部品形状の粉末成形体を成形する成形工程と、
     前記粉末成形体の結晶粒径を熱処理により粗大化させる結晶粒粗大化工程とを含み、
     前記粉末成形体は、質量百分率で、0.002%以上0.07%以下のCと、5.40%以上8.40%以下のAl+Tiとを含有する、
    高温部品の製造方法。
  2.  前記成形工程と前記結晶粒粗大化工程の間に、又は、前記結晶粒粗大化工程と同時に行われる、ガス圧を利用して前記粉末成形体に等方的な圧力を加えることにより気孔率を低減させる気孔率低減工程を更に含む、
    請求項1に記載の高温部品の製造方法。
  3.  前記結晶粒粗大化工程が、前記粉末成形体を、真空雰囲気下又は不活性ガス雰囲気下において、所定の粗大化処理温度で加熱することを含み、
     前記粗大化処理温度が、前記粉末成形体に固有のピン止め効果消失温度以上前記粉末成形体のソリダス温度以下の範囲の温度である、
    請求項1又は2に記載の高温部品の製造方法。
  4.  前記粉末成形体のCの含有量が、質量百分率で0.03%より多く0.07%以下である、
    請求項1~3のいずれか一項に記載の高温部品の製造方法。
  5.  前記粉末成形体は、C、Al、及びTiの他に、質量百分率で、4.60%以下のNb+Ta、5.00%以上22.80%以下のCr、19.50%以下のCo、1.80%以上13.75%以下のMo+W、0.10%以下のB、1.0%以下のZr、及び、2.0%以下のHfを含有する、
    請求項1~4のいずれか一項に記載の高温部品の製造方法。
  6.  前記粉末成形体が、質量百分率で、0.03%より多く0.07%以下のC、6.00%以上7.50%以下のAl+Ti、1.50%以上3.00%以下のNb+Ta、11.00%以上15.00%以下のCr、3.80%以上5.20%以下のMo、0.005%以上0.020%以下のB、及び、0.05%以上0.20%以下のZrを含有し、残部がNi及び不可避的不純物からなる、
    請求項1~3のいずれか一項に記載の高温部品の製造方法。
  7.  前記特定の粉末成形方法は粉末鍛造法を除き、前記成形工程は前記合金粉末を前記高温部品形状に集めてそれを焼き固めることを含む、
    請求項1~6のいずれか一項に記載の高温部品の製造方法。
  8.  前記成形工程が、
    前記合金粉末と樹脂バインダーとを混練したコンパウンドを金型に射出して中間成形体を成形することと、
    前記中間成形体を脱脂することと、
    脱脂された前記中間成形体を焼結して前記粉末成形体を得ることとを含む、
    請求項1~7のいずれか一項に記載の高温部品の製造方法。
  9.  前記合金粉末の平均粒子径が、20μm以上60μm以下である、
    請求項8に記載の高温部品の製造方法。
  10.  前記合金粉末は、質量百分率で、0.002%以上0.02%以下のCを含む、
    請求項8又は9に記載の高温部品の製造方法。
  11.  質量百分率で、0.002%以上0.07%以下のCと、5.40%以上8.40%以下のAl+Tiとを含有するγ'析出強化型Ni基合金からなり、平均結晶粒径が150μm以上であり、その結晶粒組織が、直交する3方向全ての断面が等軸組織であり、且つ、非デンドライト組織である、
    高温部品。
  12.  Cの含有量が、質量百分率で0.03%より多く0.07%以下である、
    請求項11に記載の高温部品。
  13.  前記γ'析出強化型Ni基合金が、C、Al、及びTiの他に、質量百分率で、4.60%以下のNb+Ta、5.00%以上22.80%以下のCr、19.50%以下のCo、1.80%以上13.75%以下のMo+W、0.10%以下のB、1.0%以下のZr、及び、2.0%以下のHfを含有する、
    請求項11に記載の高温部品。
  14.  前記γ'析出強化型Ni基合金が、質量百分率で、0.03%より多く0.07%以下のC、6.00%以上7.50%以下のAl+Ti、1.50%以上3.00%以下のNb+Ta、11.00%以上15.00%以下のCr、3.80%以上5.20%以下のMo、0.005%以上0.020%以下のB、及び、0.05%以上0.20%以下のZrを含有し、残部がNi及び不可避的不純物からなる、
    請求項11に記載の高温部品。
PCT/JP2018/018416 2017-05-22 2018-05-11 高温部品及びその製造方法 WO2018216514A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/616,285 US11326230B2 (en) 2017-05-22 2018-05-11 High temperature component and method for producing same
EP18805974.5A EP3633052A4 (en) 2017-05-22 2018-05-11 HIGH TEMPERATURE COMPONENTS AND METHOD OF MANUFACTURING THEREOF
JP2019519572A JP6913163B2 (ja) 2017-05-22 2018-05-11 高温部品の製造方法
TW107116925A TW201908499A (zh) 2017-05-22 2018-05-18 高溫零件及其製造方法
US17/739,385 US11773470B2 (en) 2017-05-22 2022-05-09 High temperature component and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2017/019037 2017-05-22
PCT/JP2017/019037 WO2018216067A1 (ja) 2017-05-22 2017-05-22 高温部品及びその製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/616,285 A-371-Of-International US11326230B2 (en) 2017-05-22 2018-05-11 High temperature component and method for producing same
US17/739,385 Division US11773470B2 (en) 2017-05-22 2022-05-09 High temperature component and method for producing same

Publications (1)

Publication Number Publication Date
WO2018216514A1 true WO2018216514A1 (ja) 2018-11-29

Family

ID=64395359

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/019037 WO2018216067A1 (ja) 2017-05-22 2017-05-22 高温部品及びその製造方法
PCT/JP2018/018416 WO2018216514A1 (ja) 2017-05-22 2018-05-11 高温部品及びその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019037 WO2018216067A1 (ja) 2017-05-22 2017-05-22 高温部品及びその製造方法

Country Status (5)

Country Link
US (2) US11326230B2 (ja)
EP (1) EP3633052A4 (ja)
JP (3) JP6913163B2 (ja)
TW (1) TW201908499A (ja)
WO (2) WO2018216067A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020110326A1 (ja) * 2018-11-30 2021-02-15 三菱パワー株式会社 Ni基合金軟化粉末および該軟化粉末の製造方法
US11591683B2 (en) 2020-02-18 2023-02-28 Pratt & Whitney Canada Corp. Method of manufacturing nickel based super alloy parts

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2565063B (en) 2017-07-28 2020-05-27 Oxmet Tech Limited A nickel-based alloy
JP7141967B2 (ja) * 2019-03-12 2022-09-26 川崎重工業株式会社 造形体製造方法、中間体および造形体
JP7218225B2 (ja) * 2019-03-22 2023-02-06 三菱重工業株式会社 積層造形用合金粉末、積層造形物及び積層造形方法
FR3095143B1 (fr) * 2019-04-16 2021-12-17 Safran Aircraft Engines Procédé de fabrication d’une pièce par irradiation localisée d’un matériau par concourance d’au moins deux faisceaux
US11384414B2 (en) 2020-02-07 2022-07-12 General Electric Company Nickel-based superalloys
CN112828307A (zh) * 2020-12-30 2021-05-25 南方科技大学 一种粗化沉淀强化镍基高温合金晶粒的激光粉床熔融成形方法
US11753704B2 (en) 2021-01-19 2023-09-12 Siemens Energy, Inc. Low melt superalloy powder for liquid assisted additive manufacturing of a superalloy component
CN113560576A (zh) * 2021-06-18 2021-10-29 深圳艾利门特科技有限公司 超高强高韧钢零件的mim成型工艺
JP2023032514A (ja) * 2021-08-27 2023-03-09 国立研究開発法人物質・材料研究機構 ニッケル基超合金及びその粉末、並びにニッケル基超合金造形体の製造方法
CN114737084A (zh) * 2022-06-07 2022-07-12 中国航发北京航空材料研究院 高强抗蠕变高温合金及其制备方法
JP7202058B1 (ja) 2022-11-14 2023-01-11 株式会社エヌ・ティ・ティ・データ・ザムテクノロジーズ Ni基合金造形物の製造方法、およびNi基合金造形物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051375A (ja) * 2005-08-19 2007-03-01 General Electric Co <Ge> 粉末の射出成形、圧密、および熱処理によるシートの製造
JP2007277721A (ja) 2006-03-31 2007-10-25 Snecma ニッケル系合金
JP2011012346A (ja) * 2009-06-30 2011-01-20 General Electric Co <Ge> スーパーソルバス熱処理ニッケル基超合金の最終結晶粒径を制御し改善する方法
JP2015227505A (ja) * 2014-05-12 2015-12-17 アルストム テクノロジー リミテッドALSTOM Technology Ltd ガンマプライム強化された超合金から成る付加製造された構成部材の造形後熱処理の方法
WO2016013433A1 (ja) * 2014-07-23 2016-01-28 株式会社Ihi Ni合金部品の製造方法
JP2016532777A (ja) 2013-07-23 2016-10-20 ゼネラル・エレクトリック・カンパニイ 超合金及びそれからなる部品

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4140528A (en) * 1977-04-04 1979-02-20 Crucible Inc. Nickel-base superalloy compacted articles
US4685977A (en) * 1984-12-03 1987-08-11 General Electric Company Fatigue-resistant nickel-base superalloys and method
US4832112A (en) * 1985-10-03 1989-05-23 Howmet Corporation Method of forming a fine-grained equiaxed casting
JP3067416B2 (ja) * 1992-08-20 2000-07-17 三菱マテリアル株式会社 高温耐熱部品製造用Ni基合金粉末
US5451142A (en) * 1994-03-29 1995-09-19 United Technologies Corporation Turbine engine blade having a zone of fine grains of a high strength composition at the blade root surface
US5584947A (en) 1994-08-18 1996-12-17 General Electric Company Method for forming a nickel-base superalloy having improved resistance to abnormal grain growth
US5725692A (en) * 1995-10-02 1998-03-10 United Technologies Corporation Nickel base superalloy articles with improved resistance to crack propagation
GB0719195D0 (en) * 2007-10-02 2007-11-14 Rolls Royce Plc A nickel base superalloy
JP6131186B2 (ja) * 2010-07-09 2017-05-17 ゼネラル・エレクトリック・カンパニイ ニッケル基合金、その加工、及びそれから形成した構成部品
JP2014070230A (ja) 2012-09-27 2014-04-21 Hitachi Metals Ltd Ni基超耐熱合金の製造方法
US10131980B2 (en) 2015-03-30 2018-11-20 Hitachi Metals, Ltd. Method of producing Ni-based superalloy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051375A (ja) * 2005-08-19 2007-03-01 General Electric Co <Ge> 粉末の射出成形、圧密、および熱処理によるシートの製造
JP2007277721A (ja) 2006-03-31 2007-10-25 Snecma ニッケル系合金
JP2011012346A (ja) * 2009-06-30 2011-01-20 General Electric Co <Ge> スーパーソルバス熱処理ニッケル基超合金の最終結晶粒径を制御し改善する方法
JP2016532777A (ja) 2013-07-23 2016-10-20 ゼネラル・エレクトリック・カンパニイ 超合金及びそれからなる部品
JP2015227505A (ja) * 2014-05-12 2015-12-17 アルストム テクノロジー リミテッドALSTOM Technology Ltd ガンマプライム強化された超合金から成る付加製造された構成部材の造形後熱処理の方法
WO2016013433A1 (ja) * 2014-07-23 2016-01-28 株式会社Ihi Ni合金部品の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHESTER T. SIMSNORMAN S. STOLOFFWILLIAM C. HAGEL, SUPERALLOYS IT, 1987

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020110326A1 (ja) * 2018-11-30 2021-02-15 三菱パワー株式会社 Ni基合金軟化粉末および該軟化粉末の製造方法
US11591683B2 (en) 2020-02-18 2023-02-28 Pratt & Whitney Canada Corp. Method of manufacturing nickel based super alloy parts

Also Published As

Publication number Publication date
JP7109608B2 (ja) 2022-07-29
JPWO2018216514A1 (ja) 2020-03-26
JP2021088775A (ja) 2021-06-10
US11326230B2 (en) 2022-05-10
EP3633052A4 (en) 2021-02-17
JP2021088776A (ja) 2021-06-10
US20220267880A1 (en) 2022-08-25
EP3633052A1 (en) 2020-04-08
WO2018216067A1 (ja) 2018-11-29
JP7329003B2 (ja) 2023-08-17
US20200087754A1 (en) 2020-03-19
JP6913163B2 (ja) 2021-08-04
US11773470B2 (en) 2023-10-03
TW201908499A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
JP7109608B2 (ja) 高温部品
US11325189B2 (en) Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same
JP7012468B2 (ja) 超合金物品及び関連物品の製造方法
CA3061851C (en) Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same
JP2782189B2 (ja) ニッケル基超合金鍛造品の製造方法
US10544485B2 (en) Additive manufacturing of high-temperature components from TiAl
WO2020110326A1 (ja) Ni基合金軟化粉末および該軟化粉末の製造方法
JP7073051B2 (ja) 超合金物品及び関連物品の製造方法
JP4994843B2 (ja) ニッケル含有合金、その製造方法、およびそれから得られる物品
JP5645054B2 (ja) アニーリングツインを含有するニッケル基耐熱超合金と耐熱超合金部材
CN113597476B (zh) 一种Co基合金结构体的制造方法
JP7128916B2 (ja) 積層造形体
JP7237222B1 (ja) コバルト基合金造形物およびコバルト基合金製造物の製造方法
CN115725876A (zh) Co基合金材料、Co基合金制品和该制品的制造方法
JP2021172851A (ja) Ni基合金部材の製造方法
JP2023050990A (ja) コバルト基合金造形物およびコバルト基合金製造物の製造方法
JP2012107269A (ja) ニッケル基耐熱超合金と耐熱超合金部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805974

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019519572

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018805974

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018805974

Country of ref document: EP

Effective date: 20200102