WO2018216238A1 - 地熱交換器および地熱発電装置 - Google Patents

地熱交換器および地熱発電装置 Download PDF

Info

Publication number
WO2018216238A1
WO2018216238A1 PCT/JP2017/032350 JP2017032350W WO2018216238A1 WO 2018216238 A1 WO2018216238 A1 WO 2018216238A1 JP 2017032350 W JP2017032350 W JP 2017032350W WO 2018216238 A1 WO2018216238 A1 WO 2018216238A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
water
geothermal
gate valve
area
Prior art date
Application number
PCT/JP2017/032350
Other languages
English (en)
French (fr)
Inventor
千年生 田原
Original Assignee
千年生 田原
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千年生 田原 filed Critical 千年生 田原
Publication of WO2018216238A1 publication Critical patent/WO2018216238A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the present invention relates to a geothermal exchanger and a geothermal power generation apparatus that can efficiently extract geothermal energy.
  • Geothermal power generation using geothermal energy uses a high-temperature magma layer as a heat source and can be made into semi-permanent thermal energy and does not generate greenhouse gases in the process of power generation. In recent years, it has attracted attention as a fuel alternative. In addition, due to the accident at the nuclear power plant, Japan's energy policy, which relied heavily on nuclear power, has been reevaluated from the ground up, and expectations for the use of geothermal energy are increasing.
  • Patent Document 1 and Patent Document 2 describe a geothermal exchanger that employs a method of sending water from the ground and collecting energy.
  • Patent Document 1 What is described in Patent Document 1 is a method of taking out a high-pressure hot water single-phase flow taken out by a geothermal exchanger installed underground as steam with a steam-water separator, but the working fluid circulating in the double pipe Since the head loss is increased, the overall efficiency of the pressurizing pump is increased due to the increased capacity.
  • the present invention has been made in view of such circumstances, and by providing high temperature and high pressure steam, improving the flash rate, thereby providing a geothermal exchanger and a geothermal power generator with high energy extraction efficiency.
  • the purpose is to do.
  • a geothermal exchanger includes a double pipe provided with an outer pipe provided in the ground and supplied with water from the ground, and an inner pipe disposed inside the outer pipe. It has a pipe structure, and the inner pipe has a gate valve provided at the bottom, and heat is supplied from the earth to the water in the outer pipe, forming a high-pressure area where high-pressure hot water is generated without boiling.
  • the gas-liquid two-phase flow is a geothermal exchanger that is taken out to the ground, and has a flash rate improving means for improving the flash rate in the decompression area, and the flash rate improving means is located at the position where the gate valve is installed.
  • the gate valve opens and the pressure in the decompression area is reduced to near the pressure required by the turbine and converted into a gas-liquid two-phase flow, which is injected into the outer pipe.
  • the gate valve is made to open by setting the pressure to pressurize the water to be applied by the pressurizing pump.
  • a high-pressure state can be created by setting the pressure to pressurize the water injected into the outer tube with a pressurizing pump. This allows the liquid phase that does not contain steam to exist in the high-pressure area.
  • the high-pressure hot water is in a state containing a large amount of heat.
  • a gate valve is provided at the bottom of the inner pipe. The gate valve is set at a reference value based on the pressure difference between the pressure of the high-pressure hot water in the high-pressure area and the pressure-reduction area in the inner pipe at the position where the gate valve is installed.
  • the pressure exceeds the limit, it is decompressed in the decompression area and converted into a gas-liquid two-phase flow, so a gas-liquid two-phase flow is generated from hot water containing a large amount of heat, and flash in the decompression area.
  • the rate can be improved.
  • the outer pipe is compared with a method that generates a gas-liquid two-phase flow after raising the hot water to the ground.
  • the burden on the pressurizing pump for pressurizing the water injected into the tank can be reduced, and the overall efficiency for energy collection can be increased.
  • the pressure difference of the high pressure hot water in the high pressure area at the position where the gate valve is installed is set as the saturation pressure at the saturation temperature of water determined from geothermal temperature conditions.
  • the gate valve can be configured to open beyond the set reference value.
  • the pressure of the high-pressure hot water in the high-pressure area at the position where the gate valve is installed which is the condition for opening the gate valve, is the saturation pressure at the water saturation temperature determined from the geothermal temperature conditions.
  • the pressure difference from the decompression area can be set large, and the flash rate in the decompression area can be improved.
  • the pressure of the high-pressure hot water in the high-pressure area at the position where the gate valve is installed is set near the critical pressure of water and exceeds the set reference value of the pressure difference.
  • the valve can be configured to open.
  • the cross-sectional area of the outer pipe cross section perpendicular to the direction of the water flow descending the outer pipe is relative to the direction of the gas-liquid two-phase flow ascending the inner pipe.
  • the cross-sectional area of the vertical cross section of the inner pipe can be set large.
  • the cross-sectional area of the outer pipe cross section is increased, the speed of water descending the outer pipe is reduced, so that it is possible to increase the heat absorption time for water to absorb heat from the earth and the tropics. Moreover, although it passes through a low temperature region at the upper part of the decompression area of the inner pipe, the passage speed of the rising gas-liquid two-phase flow is increased, so that heat loss in the decompression area can be reduced.
  • the gate valve can have a structure having a throttling function.
  • the pressure can be reduced by narrowing the pipe diameter on the downstream side of the gate valve, whereby the pressure difference can be increased, so that the flash rate can be further increased.
  • the gas-liquid two-phase flow taken out on the ground is separated into steam and pressure water by a high-pressure flasher, and the remaining pressure water from which the steam is separated is further depressurized to obtain an intermediate pressure. It can be set as the structure converted into vapor
  • the remaining pressure water that has been depressurized and separated from the steam is still in a sufficiently high pressure and temperature state, so that the heat efficiency can be further improved by taking out the steam by reducing the pressure one more stage.
  • the remaining pressure water from which the vapor is separated from the gas-liquid two-phase flow taken out on the ground is supplied to the make-up water tank while maintaining a high temperature state, and from the condenser to the make-up water tank. It can be set as the structure which heats the circulating water sent.
  • the safety of the system can be improved by heating the circulating water with this pressure water.
  • an insertion pipe formed by combining at least one outer pipe and at least one inner pipe is inserted into a plurality of geothermal wells, and outlets of the inner pipes are arranged in parallel. Connected and configured, the depressurization area of the inner pipe is monitored, and the geothermal wells where the steam temperature in the depressurization area is below the specified value are removed, and the steam obtained using each geothermal well is collected in total Can be configured.
  • the capacity of the turbine, condenser, generator, transformer, etc. can be designed to be large.
  • the geothermal power generation apparatus of the present invention is characterized in that power is generated using the geothermal exchanger of the present invention. Since the geothermal exchanger of the present invention can improve the flash rate, high-performance power generation is possible.
  • the present invention it is possible to realize a geothermal exchanger and a geothermal power generation device with high energy extraction efficiency by improving the flash rate.
  • the geothermal exchanger 1 has a double pipe structure including an outer pipe 2 provided in the ground and supplied with water from the ground, and an inner pipe 3 arranged inside the outer pipe 2.
  • the gate valve 6 provided on the bottom 4 is provided.
  • the water injected into the outer pipe 2 is supplied with heat from the earth and is not boiled to generate high-pressure hot water, thereby forming a high-pressure area 5.
  • This high-pressure hot water does not boil and flows into the inner pipe 3 when the gate valve 6 is opened.
  • the high-pressure area 5 it exists as liquid-phase high-pressure hot water that does not contain steam.
  • the upper part of the decompression area 8 in the inner pipe 3 is decompressed close to the pressure required by the turbine, and in this decompression area 8, the high-pressure hot water is converted into a gas-liquid two-phase flow. Is taken to the ground.
  • a pressure gradient can be obtained at the lower part and the upper part of the decompression area 8.
  • boiling is performed by using a pressure difference in which the primary side of the gate valve 6 is saturated water pressure of the pressure water and the secondary side is the turbine pressure, resulting in a two-phase flow corresponding to the flash rate and volume expansion. Ascending the decompression area 8 rapidly.
  • the geothermal exchanger 1 has a flash rate improving means for improving the flash rate in the decompression area 8.
  • This flush rate improving means is used when the pressure difference between the pressure of the high-pressure hot water in the high-pressure area 5 and the pressure-reduction area 8 in the inner pipe 3 at the position where the gate valve 6 is installed exceeds a set reference value. 6 is opened, and the pressure in the decompression area 8 is reduced to near the pressure required by the turbine and converted into a gas-liquid two-phase flow. By setting the pressure to be pressurized by 9, the gate valve 6 is opened.
  • the pressure of the high-pressure hot water in the high-pressure area 5 at the position where the gate valve 6 is installed can be the saturation pressure at the saturation temperature of water determined from the geothermal temperature conditions, You can also Details of the flash rate improving means will be described later.
  • the produced gas-liquid two-phase flow rises and is taken out to the ground and separated into steam and pressure water in the high-pressure flasher 10.
  • the steam single-phase flow generated by the separation is introduced into the high-pressure portion of the turbine 12 through the high-pressure steam tank 11 and the steam valve 21 to drive the turbine 12.
  • a diffusion valve 13 is connected to the high-pressure steam tank 11.
  • the remaining pressure water from which the steam has been separated by the high-pressure flasher 10 is still sufficiently high in pressure and temperature, and therefore is further depressurized by the pressure-reducing valve 14 and converted into a steam single-phase flow by the intermediate-pressure flasher 15.
  • This steam single-phase flow is introduced into the turbine 12 via the intermediate pressure steam tank 16 and the intermediate pressure steam valve 17 and can be used as an auxiliary for driving the turbine 12. Thereby, the thermal efficiency of the system can be significantly improved.
  • steam from the intermediate pressure steam tank 16 is introduced from an intermediate portion of the turbine 12, but the intermediate pressure turbine 12 may be installed in a separate system.
  • the steam that exits the turbine 12 is then cooled by cooling water in the condenser 18 and returned to water, is pressurized by the pressurizing pump 9 through the replenishing water tank 19, and is supplied to the outer pipe 2 again. By repeating this process, geothermal heat is continuously extracted.
  • Make-up water is supplied to the make-up water tank 19 as necessary.
  • a heat insulating portion 20 is formed at a place where the outer tube 2 is in contact with a low temperature zone near the ground surface.
  • the gate valve 6 it is possible to use a quick-closing type lift check valve with a built-in spring. This is characterized in that at the moment when the fluid in the pipe turns into a reverse flow, it is completely closed by the action of a spring with a built-in valve body, and does not cause a water hammer. Since the gate valve 6 is installed at the boundary between the high-pressure area 5 and the pressure-reduction area 8, the gate valve does not open unless the difference between the primary pressure and the spring pressure exceeds a set value due to the action of the spring. With this effect, the primary side of the gate valve 6 can be set to a high pressure.
  • the secondary side can be depressurized by providing a throttle structure that narrows the pipe diameter, such as an orifice, on the downstream side of the gate valve 6.
  • This throttle structure may be integrated with the gate valve 6.
  • the flash rate is (Enthalpy of saturated water on the high-pressure side-enthalpy of saturated water on the low-pressure side) ⁇ latent heat on the low-pressure side. Therefore, if the pressure difference increases by reducing the pressure by the throttle structure, the temperature difference also increases accordingly. As a result, the flash rate increases.
  • the throttle mechanism can adjust the pressure difference by changing the aperture.
  • the pressure on the primary side of the gate valve 6 can be varied by adjusting the discharge pressure of the pressurizing pump 9, and the pressure of the pressurizing pump 9 can vary the rotation speed of the motor that drives the pressurizing pump 9. Thus, it can be easily changed.
  • the secondary side of the gate valve 6 is directly connected to the throttle mechanism, and is determined by the downstream flasher, that is, the turbine pressure. Strictly speaking, a pressure gradient is formed between the secondary of the gate valve 6 and the flasher, but in a large sense, the secondary side of the gate valve 6 is set to the turbine pressure. Therefore, the secondary side of the gate valve 6 may be a turbine pressure, and the primary side of the gate valve 6 may be a variable controllable pressure linked to the saturation pressure.
  • FIG. 2 shows a cross section of the outer tube and the inner tube.
  • 2 is a cross-sectional view taken along the line AA in FIG. 1.
  • the cross-sectional area of the outer pipe cross section 2a perpendicular to the direction of the water flow descending the outer pipe 2 is a gas-liquid two phase rising up the inner pipe 3. It is set large with respect to the cross-sectional area of the inner pipe cross section 3a perpendicular to the flow direction.
  • Table 1 shows an example of well depth, steam temperature, and saturation pressure.
  • Table 1 water pressure is applied to the high-pressure area, but the same pressure is required for pushing up, so the water pressure and the pushing pressure are offset. Moreover, the pressure to pressurize is only the saturated pressure and the pressure loss of the circulating water. The push-up pressure needs to take into account the density decrease due to the temperature rise of the circulating water, but is ignored in this calculation. Table 2 shows the basis for calculating each item in Table 1.
  • the well depth and ambient temperature in Table 1 are based on predicted data in the Nabeyama area, Beppu City, Oita Prefecture.
  • the steam temperature was assumed to be an ambient temperature at a well depth of ⁇ 100 ° C.
  • FIG. 3 shows the phase diagram and critical point of water.
  • the pressure of the high-pressure hot water in the high-pressure area 5 at the position where the gate valve 6 is installed which is a condition for opening the gate valve 6, as an example, the saturation temperature of water determined from the geothermal temperature conditions
  • the saturation pressure at. This means that the pressure on the saturation curve in FIG. 3 is the pressure of the high-pressure hot water in the high-pressure area 5 at the position where the gate valve 6 is installed.
  • the pressure of the high-pressure hot water in the high-pressure area 5 at the position where the gate valve 6 is installed which is a condition for opening the gate valve 6, can be close to the critical pressure of water.
  • the critical pressure of water is 22.12 MPa
  • the critical temperature is 374.2 ° C. When the pressure and temperature exceed the critical point, supercritical water is produced.
  • This pressure water is introduced into the decompression area 8 on the inner pipe 3 side through the gate valve 6 installed at the bottom of the inner pipe 3 constituting the double pipe.
  • the gate valve 6 is set to “open at the pressure difference from the critical pressure”
  • the pressure water introduced into the decompression area 8 is a flush rate calculated by the pressure difference between the high pressure area 5 and the decompression area 8. Is converted into a gas-liquid two-phase flow that is proportional to the steam and pressure water that is inversely proportional to the flash rate.
  • Table 3 shows an example of flash rate calculation.
  • the flash rate represents the proportion of steam at this time.
  • the pressure water When the pressure water is depressurized, the pressure water releases a part of the enthalpy and equilibrates by lowering the temperature to a temperature corresponding to the depressurization.
  • the pressure is reduced in the reduced pressure area 8 in the double pipe installed in the high heat zone, but the pressure difference in the reduced pressure area 8 is “the pressure difference between the pressure near the critical pressure and the turbine pressure”.
  • the flash rate becomes very large, reaching several times the flash rate in the case of Japanese Patent No. 4927136.
  • the flash rate can be increased by boiling under reduced pressure from high-pressure water. This means that the amount of water to be circulated can be reduced relative to the required amount of steam, and the capacity of the pressurizing pump 9 can be designed to be small, which is an effective means for increasing efficiency.
  • high pressure water is produced in the high pressure area 5, which is the lower part of the outer pipe 2 of the double pipe.
  • a pressure corresponding to the saturated vapor pressure calculated with the temperature of the earth and the tropics is increased.
  • the pressurizing pressure can be increased to a critical point depending on the geotropics.
  • the gate valve 6 installed at the boundary between the high pressure area 5 and the pressure reduction area 8 is opened at a set reference value or more, so that the gate valve 6 As a result, the primary side of the gate valve 6 can be pressurized close to the critical pressure.
  • the flash rate is 40% or more in a temperature range exceeding 300 ° C., and a system with a very high overall efficiency can be constructed. In principle, it is possible to produce steam with a pressure of 4MPa, temperature of 350 ° C or higher, and to build a system with 8MPa, 300 ° C and a flash rate of 49%, enabling large-capacity power generation and positioning as renewable energy. is there.
  • heat insulation treatment is necessary as appropriate, and in particular, the place where heat treatment is necessary is between the inner pipe 3 and the outer pipe 2 of the double pipe and the outer pipe 2 is at a low temperature. It is a place that touches the earth tropics.
  • the surface in contact with the high temperature zone in the lower part of the double pipe is made of a material having excellent heat conduction characteristics.
  • the position which installs the gate valve 6 is made into the bottom part of the inner pipe 3 which comprises a double pipe
  • the generator breaker In the event of a major equipment accident such as a turbine or generator or a power transmission system accident, the generator breaker is activated. In this case, to prevent the pressure in the geothermal exchanger from rising rapidly. Respond by actuating the pressure regulating valve to prevent sudden pressure rise in the double pipe.
  • condensate may be stored in the steam system including the inside of the high-pressure flasher 10, but in this case, by opening the pressure regulating valve, the pressure in the system is reduced to the atmospheric pressure at once. Can be dealt with.
  • low pressure and low pressure steam are produced because the inside of the high pressure flasher 10 has a low pressure close to atmospheric pressure. And then switch to high temperature, high pressure steam.
  • the pressure of the collected steam can be made uniform, and the steam whose pressure is made uniform can be supplied to a single turbine.
  • the geothermal exchanger 1 has a double pipe structure including an outer pipe 2 provided in the ground and supplied with water from the ground, and an inner pipe 3 arranged inside the outer pipe 2.
  • the gate valve 6 provided on the bottom 4 is provided.
  • the water injected into the outer pipe 2 is supplied with heat from the earth and is not boiled to generate high-pressure hot water, thereby forming a high-pressure area 5.
  • This high-pressure hot water does not boil and flows into the inner pipe 3 when the gate valve 6 is opened.
  • the pressure is reduced near the pressure required by the turbine.
  • the high-pressure hot water is converted into a gas-liquid two-phase flow, and this gas-liquid two-phase flow is To be taken out.
  • the geothermal exchanger 1 has a flash rate improving means for improving the flash rate in the decompression area 8.
  • This flush rate improving means is used when the pressure difference between the pressure of the high-pressure hot water in the high-pressure area 5 at the position where the gate valve 6 is installed and the pressure-reducing area in the inner pipe 3 exceeds a set reference value. Is opened, and the pressure in the decompression area 8 is reduced to near the pressure required by the turbine and converted into a gas-liquid two-phase flow.
  • the gate valve 6 is opened by setting the pressure to be pressurized by.
  • the pressure of the high-pressure hot water in the high-pressure area 5 at the position where the gate valve 6 is installed can be the saturation pressure at the saturation temperature of water determined from the geothermal temperature conditions.
  • You can also A specific example of the flash rate improving means is the same as that described in the first embodiment.
  • the produced gas-liquid two-phase flow rises and is taken out to the ground and separated into steam and pressure water in the high-pressure flasher 10.
  • the steam single-phase flow generated by this separation is introduced into the turbine 12 through the high-pressure steam tank 11 and the steam valve 21 to drive the turbine 12.
  • a diffusion valve 13 is connected to the high-pressure steam tank 11.
  • the pressure water after the vapor is separated from the gas-liquid two-phase flow taken out on the ground is supplied to the make-up water tank 19 while maintaining a high temperature state, and the circulating water sent from the condenser 18 to the make-up water tank 19 is heated. It is the composition to do. Since the remaining pressure water from which the steam has been separated is still sufficiently high in pressure and temperature, the safety of the system can be improved by heating the circulating water with this pressure water.
  • Example 4 shows a comparison of the flash rates of Example 1 and Example 2.
  • Example 1 since a large amount of power is generated by the high-pressure turbine and the medium-pressure turbine, the temperature of the circulating water returning to the well is lowered. On the other hand, in Example 2, since the electric power is generated only by the high-pressure turbine, the temperature of the circulating water returning to the well becomes high. Depending on the capacity of the well, the flash rate is higher in the heat exchange in the high temperature region.
  • Table 5 shows a comparison of power generation amount between Example 1 and Example 2.
  • Example 6 shows a comparison of the required capacity of the pressurizing pump 9.
  • the capacity of the pressure pump 9 is larger in the second embodiment. If the capacity of the pressurizing pump 9 is subtracted from the power generation value, the actual power generation value is the same. However, the power generation capacity increase in the intermediate pressure turbine and the capacity increase due to the pressure increase of the turbine 12 are separate calculations and are designed according to the well capacity.
  • Example 2 comparing the case where the circulating water from the turbine 12 is heated as in Example 2 and the case where it is not heated, in Example 2, the amount of heating of the circulating water from the condenser 18 by the heat exchanger is compared. The amount of heat from the flasher entering the make-up water tank 19 is lost. The amount of heat lost is transferred to the circulating water from the condenser 18, and the overall thermal efficiency does not change.
  • the present invention can be used as a geothermal exchanger and a geothermal power generator with high energy extraction efficiency by improving the flash rate, and in particular, can be used as a renewable energy type power generator capable of generating a large capacity. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

【課題】フラッシュ率を向上させることによって、エネルギー採取効率の高い地熱交換器と地熱発電装置を提供する。 【解決手段】地熱交換器1は、地上から水が供給される外管2と、外管2の内側に配置された内管3とを備え、内管3はその底部4に仕切弁6を備えている。外管2内に注入された水に対して、地熱帯から熱が供給されて沸騰せずに高圧熱水が生成され、この高圧熱水は沸騰せずに、仕切弁6が開いたときに内管3内に流入し、減圧エリア8で減圧されて、高圧熱水は気液2相流に変換され、地上に取出される。

Description

地熱交換器および地熱発電装置
 本発明は、地熱エネルギーを効率よく取り出すことができる地熱交換器および地熱発電装置に関する。
 地熱エネルギーを利用して発電する地熱発電は、高温のマグマ層を熱源とするものであり、半永久的な熱エネルギーとすることができるとともに、発電の過程において温室効果ガスを発生しないことから、化石燃料の代替手段として近年注目されている。また、原子力発電所の事故により、原子力に多くを依存していた日本のエネルギー政策は根本から見直すことを余儀なくされており、地熱エネルギーの活用への期待が高まっている。
 従来の地熱発電は、地熱帯をボーリングし、地熱帯に存在する自然の蒸気や熱水を自然の圧力を利用して取り出し発電を行っている。そのため、取り出された蒸気と熱水には、地熱帯特有の硫黄その他の不純物が多量に含まれている。この不純物はスケールとなって、熱井戸や配管類、あるいはタービン等に付着する。スケールが付着すると、経年的に発電出力が減少し長期間の使用が困難となる。
 このスケールによる問題を解決するために、地上から水を送り、エネルギーを採取する方式を採用した地熱交換器が、特許文献1、特許文献2に記載されている。
特許第4927136号公報 特許第5731051号公報
 特許文献1に記載されたものは、地下に設置された地熱交換器で取出した高圧熱水単相流を気水分離器で蒸気として取出す方法であるが、2重管内を循環する作動流体の損失水頭が大きくなるため、加圧ポンプの容量アップ分総合効率が悪くなる。
 また、特許文献2に記載されたものは、地下に設置された地熱交換器内で加温沸騰させて、蒸気単相流を地上に取り出す方法であるが、適用される対象が原理上高温の地熱地帯に限定される。
 従って、地熱エネルギーを有効に取り出すためには、高温域の地熱帯まで作動流体を加圧して、圧力、温度を高めることで、フラッシュ率を向上させることが必要である。また、超臨界に近いエネルギー量は莫大なものがあり、これを利用することができれば、効果的な地熱エネルギーの採取が可能となる。
 本発明は、このような事情を考慮してなされたもので、高温、高圧の蒸気を生産することにより、フラッシュ率を向上させることによって、エネルギー採取効率の高い地熱交換器と地熱発電装置を提供することを目的とする。
 以上の課題を解決するために、本発明の地熱交換器は、地中に設けられ地上から水が供給される外管と、前記外管の内側に配置された内管とを備えた2重管構造であり、内管はその底部に設けられた仕切弁を備え、外管内の水に対して地熱帯から熱が供給されて、沸騰せずに高圧熱水が生成される高圧エリアが形成され、仕切弁が開いたときに高圧エリアの高圧熱水が内管内に流入し、内管内の減圧エリアの上部はタービンが必要とする圧力近くに減圧されて気液2相流に変換され、この気液2相流が地上に取出される地熱交換器であって、減圧エリアでのフラッシュ率を向上させるフラッシュ率向上手段を有し、フラッシュ率向上手段は、仕切弁が設置された位置における高圧エリア内の高圧熱水の圧力と内管内の減圧エリアとの圧力差が設定基準値を超えたときに仕切弁が開いて、減圧エリアにおける圧力が、タービンが必要とする圧力近くに減圧されて気液2相流に変換されることによるものであり、外管に注入される水を加圧ポンプにより加圧する圧力を設定することによって、仕切弁が開くようにしたことを特徴とする。
 高圧エリアでは、外管に注入される水を加圧ポンプにより加圧する圧力を設定することによって、高圧の状態を作ることができ、これによって、高圧エリアに存在する、蒸気を含まない液相の高圧熱水は、熱量を多く含む状態となる。内管の底部には仕切弁が設けられており、この仕切弁は、仕切弁が設置された位置における高圧エリア内の高圧熱水の圧力と内管内の減圧エリアとの圧力差が設定基準値を超えたときに開いて、減圧エリアで減圧されて気液2相流に変換されるため、熱量を多く含む熱水から気液2相流が生成されることになり、減圧エリアでのフラッシュ率を向上することができる。
 また、地下に設置された仕切弁を介して、熱水から気液2相流が生成されるため、熱水を地上に上げてから気液2相流を生成する方式と比較すると、外管に注入される水を加圧するための加圧ポンプの負担が小さくて済み、エネルギー採取のための総合効率を高めることができる。
 本発明の地熱交換器においては、前記仕切弁が設置された位置における高圧エリア内の高圧熱水の圧力を、地熱帯の温度条件から定められる水の飽和温度における飽和圧力として、前記圧力差の設定基準値を超えて前記仕切弁が開くようにした構成とすることができる。
 仕切弁が開く条件となる、仕切弁が設置された位置における高圧エリア内の高圧熱水の圧力を、地熱帯の温度条件から定められる水の飽和温度における飽和圧力とすると、その温度条件において、減圧エリアとの圧力差を大きく設定することができ、減圧エリアでのフラッシュ率を向上することができる。
 また、本発明の地熱交換器においては、前記仕切弁が設置された位置における高圧エリア内の高圧熱水の圧力を、水の臨界圧力付近として、前記圧力差の設定基準値を超えて前記仕切弁が開くようにした構成とすることができる。
 この場合には、減圧エリアとの圧力差は、超臨界近くの圧力とタービン圧との圧力差となるため、フラッシュ率は非常に大きくなる。
 本発明の地熱交換器においては、前記外管を下降する水の流れの方向に対して垂直な外管断面の断面積は、前記内管を上昇する気液2相流の流れの方向に対して垂直な内管断面の断面積に対して大きく設定されている構成とすることができる。
 外管断面の断面積を大きくしていることによって、外管を下降する水の速度が遅くなるため、水が地熱帯から熱を吸収する熱吸収時間を長くとることができる。また、内管の減圧エリア上部では低温域を通過することになるが、上昇する気液2相流の通過速度が速くなるため、減圧エリアにおける熱損失を減少させることができる。
 本発明の地熱交換器においては、前記仕切弁は絞り機能を有する構造とすることができる。
 仕切弁の下流側の管径を細くすることによって減圧することができ、これによって圧力差を大きくすることができるため、フラッシュ率をさらに大きくすることができる。
 本発明の地熱交換器においては、地上に取出された気液2相流は、高圧フラッシャーによって蒸気と圧力水とに分離され、蒸気を分離された残りの圧力水はさらに減圧されて、中圧フラシャーによって蒸気に変換される構成とすることができる。
 減圧され蒸気を分離された残りの圧力水は、まだ十分に圧力、温度とも高い状態であるため、これをさらにもう一段階減圧して蒸気を取り出すことによって、熱効率をさらに向上させることができる。
 本発明の地熱交換器においては、地上に取出された気液2相流から蒸気を分離された残りの圧力水は、高温状態を維持して補給水槽に供給され、復水器から補給水槽に送られる循環水を加熱する構成とすることができる。
 蒸気を分離された残りの圧力水は、まだ十分に圧力、温度とも高い状態であるため、この圧力水で循環水を加熱することにより、システムの安全性を高めることができる。
 本発明の地熱交換器においては、少なくとも1つの前記外管と少なくとも1つの前記内管とが組み合わされてなる挿入管が、複数の地熱井に対して挿入され、前記内管の出口が並列に接続されて構成され、前記内管の減圧エリアが監視されており、減圧エリアの蒸気温度が規定値を下回った地熱井を外して、それぞれの地熱井を用いて得られる蒸気が合計して採集される構成とすることができる。
 それぞれの地熱井を用いて得られる蒸気を合計して採集することにより、タービン・復水器・発電機・変圧器等の容量を大きく設計することができる。特に、減圧エリアの蒸気温度が規定値を下回った地熱井を外して、それぞれの地熱井を用いて得られる蒸気が合計して採集される構成とすることにより、効率的なエネルギー採取が可能となる。
 本発明の地熱発電装置は、本発明の地熱交換器を用いて発電を行うことを特徴とする。
 本発明の地熱交換器は、フラッシュ率を向上することができるため、高性能の発電が可能となる。
 本発明によると、フラッシュ率を向上させることによって、エネルギー採取効率の高い地熱交換器と地熱発電装置を実現することができる。
本発明の第一実施形態に係る地熱交換器と地熱発電装置の構成を示す図である。 外管と内管の断面を示す図である。 水の相図と臨界点を示す図である。 本発明の第二実施形態に係る地熱交換器と地熱発電装置の構成を示す図である。
 以下に、本発明の地熱交換器と地熱発電装置を、その実施形態に基づいて説明する。
 図1に、本発明の第一実施形態に係る地熱交換器と地熱発電装置の構成を示す。
 地熱交換器1は、地中に設けられ地上から水が供給される外管2と、外管2の内側に配置された内管3とを備えた2重管構造であり、内管3は、その底部4に設けられた仕切弁6を備えている。
 外管2内に注入された水に対して、地熱帯から熱が供給されて沸騰せずに高圧熱水が生成され、高圧エリア5が形成される。この高圧熱水は沸騰せずに、仕切弁6が開いたときに内管3内に流入する。高圧エリア5では、蒸気を含まない液相の高圧熱水として存在する。内管3内の減圧エリア8の上部は、タービンが必要とする圧力近くに減圧されており、この減圧エリア8において、高圧熱水は気液2相流に変換され、この気液2相流が地上に取出される。
 減圧エリア8の上部を高圧フラッシャー10に接続することで、減圧エリア8の下部と上部において圧力勾配を得ることができる。減圧エリア8では、仕切弁6の一次側を圧力水の飽和蒸気圧、二次側をタービン圧力とする圧力差を利用して減圧沸騰し、フラッシュ率に応じた2相流となり、体積膨張して急速に減圧エリア8を上昇する。
 地熱交換器1は、減圧エリア8でのフラッシュ率を向上させるフラッシュ率向上手段を有している。このフラッシュ率向上手段は、仕切弁6が設置された位置における高圧エリア5内の高圧熱水の圧力と内管3内の減圧エリア8との圧力差が設定基準値を超えたときに仕切弁6が開いて、減圧エリア8における圧力が、タービンが必要とする圧力近くに減圧されて気液2相流に変換されることによるものであり、外管2に注入される水を加圧ポンプ9によって加圧する圧力を設定することによって、仕切弁6が開くようにするものである。仕切弁6が設置された位置における高圧エリア5内の高圧熱水の圧力を、地熱帯の温度条件から定められる水の飽和温度における飽和圧力とすることができ、また、水の臨界圧力付近とすることもできる。このフラッシュ率向上手段の詳細については、後に詳述する。
 生産された気液2相流は上昇して地上に取出され、高圧フラッシャー10内で、蒸気と圧力水に分離される。この分離によって生じた蒸気単相流は、高圧蒸気槽11と蒸気弁21を経てタービン12の高圧部に導入され、タービン12を駆動させる。高圧蒸気槽11には、放散弁13が接続されている。
 高圧フラッシャー10によって蒸気を分離された残りの圧力水は、まだ十分に圧力、温度とも高い状態であるため、減圧弁14によってさらに減圧され、中圧フラシャー15によって蒸気単相流に変換される。この蒸気単相流は、中圧蒸気槽16、中圧蒸気弁17を経てタービン12に導入され、タービン12を駆動させる補助とすることができる。これにより、システムの熱効率を格段に向上させることができる。図1においては、中圧蒸気槽16からの蒸気を、タービン12の中間部より導入させているが、中圧用のタービン12を別系統で設置してもよい。
 タービン12を出た蒸気はその後、復水器18にて冷却水により冷却されて水に戻り、補給水槽19を経て、加圧ポンプ9により加圧されて、再び外管2に供給される。この過程を繰り返すことによって、連続して地熱を取り出す。必要に応じて、補給水が補給水槽19へ補給される。外管2が地表付近の低温地帯と接する場所には、断熱部20が形成されている。
 仕切弁6として、スプリングを内蔵した急閉鎖型のリフト式逆止弁を用いることができる。これは、管内の流体が逆流に転ずる瞬間には、弁体が内蔵されたスプリングの作用により完全に閉鎖され、ウォーターハンマを起こさないのが特徴である。仕切弁6は、高圧エリア5と減圧エリア8の境界に設置されているため、スプリングの作用により、一次側の圧力とスプリングのバネによる圧力との差が設定値を超えないと開かない。この効果で、仕切弁6の一次側を高圧にすることができる。
 仕切弁6の下流側にオリフィスのように、管径を細くする絞り構造を備えることによって、二次側を減圧することができる。この絞り構造は、仕切弁6と一体型とすることもできる。フラッシュ率は、
(高圧側の飽和水のエンタルピー - 低圧側の飽和水のエンタルピー)÷低圧側の潜熱
であるため、絞り構造によって減圧することにより、圧力差が大きくなれば、連動して温度差も大きくなる。そのため、フラッシュ率は大きくなる。絞り機構は、口径を変えることにより圧力差を調整することができる。
 仕切弁6の一次側の圧力は、加圧ポンプ9の吐出圧を調整することによって可変とすることができ、加圧ポンプ9の圧力は、加圧ポンプ9を駆動するモーターの回転数を可変とすることによって簡単に可変とすることができる。仕切弁6の二次側は、絞り機構と直結し、その下流のフラッシャー、つまりタービン圧で決定される。厳密には、仕切弁6の二次とフラッシャーとは圧力勾配が形成されるが、大きな意味では仕切弁6の二次側はタービン圧とした。従って、仕切弁6の二次側はタービン圧、仕切弁6の一次側は飽和圧力に連動した可変制御可能な圧力でよい。
 図2に、外管と内管の断面を示す。
 図2は、図1におけるA―A断面図であり、外管2を下降する水の流れの方向に対して垂直な外管断面2aの断面積は、内管3を上昇する気液2相流の流れの方向に対して垂直な内管断面3aの断面積に対して大きく設定されている。
 外管断面2aの断面積を大きくしていることによって、外管2を下降する水の速度が遅くなるため、水が地熱帯から熱を吸収する熱吸収時間を長くとることができる。また、体積膨張した気液2相流と圧力水とでは時間当たりの質量に差はないが、内管3の減圧エリア上部では低温域を通過することになり、上昇する気液2相流の通過速度が速くなるため、減圧エリアにおける熱損失を減少させることができる。
 以下に、本発明におけるフラッシュ率向上手段の具体例について説明する。
 表1に、坑井の坑井深度と蒸気温度、飽和圧力の一例を示す。
Figure JPOXMLDOC01-appb-T000001
 表1において、高圧エリアには水圧がかかるが、押し上げる分も同じ圧力が必要であるため、水圧と押上げ圧は相殺される。また、加圧する圧力は、飽和圧力と循環水の圧損分だけとなる。押上圧は循環水の温度上昇による密度減少分を考慮する必要があるが、この計算では無視している。
 表1における各項目の算出の根拠等を、表2に示す。
Figure JPOXMLDOC01-appb-T000002
表2における計算式1は
(L×1,000×9.8)÷1,000,000
であり、計算式2は、
P0=PF-P1+P2+P3
である。
 計算は、以下の条件を前提とした。
1.高圧エリア底部(仕切弁一次)において、沸騰させないために必要な圧力を決定する。
2.坑井温度から高圧エリア底部で生成される圧力水温度を想定し、蒸気温度、蒸気圧力を決定する。
3.タービン入口圧は蒸気温度、蒸気圧から決定する。
4.タービンの条件は、大分県九重町のホテル(出力1000kW)の仕様を参考値とした。
5.仕切弁の取り付け位置は、坑井の最深部として計算した。
 表1における坑井深度と周囲温度は、大分県別府市鍋山地区における予測データによるものである。また、蒸気温度は坑井深度における周囲温度-100℃と仮定した。
 高圧エリア5においては、沸騰しないことを条件とするため、表1における「加圧分」に相当する圧力を、加圧ポンプ9によって注入する水に対して加える。加圧ポンプの圧力は(飽和圧力+圧損分)で計算する。
 図3に、水の相図と臨界点を示す。
 本発明においては、仕切弁6が開く条件となる、仕切弁6が設置された位置における高圧エリア5内の高圧熱水の圧力を、一例として、地熱帯の温度条件から定められる水の飽和温度における飽和圧力としている。これは、図3において、飽和曲線上の圧力を、仕切弁6が設置された位置における高圧エリア5の高圧熱水の圧力とすることを意味する。また、仕切弁6が開く条件となる、仕切弁6が設置された位置における高圧エリア5内の高圧熱水の圧力を、水の臨界圧力付近とすることもできる。水の臨界圧力は、22.12MPaであり、臨界温度は374.2℃である。圧力と温度が臨界点を超えると、超臨界水が生成される。
 この圧力水を、2重管を構成する内管3の底部に設置した仕切弁6を介して、内管3側の減圧エリア8に導入する。仕切弁6が、「臨界圧力との圧力差で開」となるように設定すると、減圧エリア8に導入された圧力水は、高圧エリア5と減圧エリア8との圧力差で計算されるフラッシュ率に比例する蒸気と、フラッシュ率に反比例する圧力水の気液2相流に変換される。減圧エリア8内の圧力は、タービン12の入口に直結された蒸気弁21で制御することにより、常時タービン圧相当を保持することができる。
 表3に、フラッシュ率の計算例を示す。
Figure JPOXMLDOC01-appb-T000003
 表3は、各圧力水の温度から150℃でフラッシュさせた場合のフラッシュ率を示している。例えば、臨界圧力近く(350℃)の圧力水を150℃でフラッシュさせた場合は、
(高圧側の飽和水のエンタルピー - 低圧側の飽和水のエンタルピー)÷低圧側の潜熱
 により、
 (h'(350℃)-h'(150℃))÷(h"-h')(150℃)%
 =69.4%
となる。
 この計算で明らかなように、減圧沸騰させると、蒸気の他に熱水も同時に生産され、フラッシュ率はこのときの蒸気の割合を表すものである。圧力水を減圧すると、圧力水はエンタルピーの一部を開放し、減圧分に見合った温度まで下げて平衡する。本発明においては、高熱地帯に設置された2重管内における減圧エリア8内で減圧させるが、減圧エリア8における圧力差は、「臨界圧力近くの圧力とタービン圧との圧力差」となるため、フラッシュ率は非常に大きくなり、特許第4927136号の場合のフラッシュ率の数倍に達する。このように、高圧の圧力水から減圧沸騰させることで、フラッシュ率を大きくすることができる。このことは必要蒸気量に対して、循環させる水の量を少なくできることを意味し、加圧ポンプ9の容量を小さく設計できるため、効率アップの有効手段となる。
 このように、対象となる地熱帯として、非常に高温の場所を選定することで、2重管の外管2の下部である、高圧エリア5では高温の加圧水となる。外管2側で沸騰を防止する目的と合わせて、地熱帯の温度で計算される飽和蒸気圧に見合った圧力を加圧する。加圧する圧力は、地熱帯によっては、臨界点近くまで加圧することも可能である。
 運転初期の圧力形成不成立のリスクを防止する目的と合わせて、高圧エリア5と減圧エリア8との境界に設置した仕切弁6を設定基準値以上で開くことにより、高圧エリア5では、仕切弁6の効果で、仕切弁6の1次側を臨界圧力近くまで加圧することが可能となる。フラッシュ率は、300℃を超える温度帯域では40%以上となり、総合効率は非常に高いシステムを構築することができる。原理上、圧力4MPa、温度350℃以上の蒸気が生産でき、8MPa、300℃、フラッシュ率49%のシステムが構築できることで、大容量の発電が可能であり、再生可能エネルギーとしての位置づけが可能である。
 2重管式地熱交換器では、適宜断熱処理が必要であり、特に断熱処理する必要のある場所は、2重管の内管3と外管2との間、および、外管2が低温の地熱帯に接触する箇所である。2重管下部における高温地帯と接する面は、熱伝導特性に優れた材質を使用する。
 以上説明したように、本発明においては、仕切弁6の一次側には、坑井の深さに比例した水圧がかかることになるが、一方、減圧エリア8を上昇する気液2相流には、深さに比例した圧力をかけてやらなければ、気液2相流を取り出すことができない。外管2側を下降する圧力水の質量と、内管3側を上昇する圧力水の質量は同じ数値であるため、加圧ポンプ9が必要とする揚程は、システムを通過する圧損分と飽和圧力の和で計算すればよい。このため、高圧エリア5の底部に対して高い圧力をかけることができるため、高温地帯を対象とした場合において、高い飽和圧力とすることができ、フラッシュ率を大きくすることができる。
 なお、仕切弁6を設置する位置は、2重管を構成する内管3の底部としているが、地熱帯周辺の状況によっては、地熱地帯の低温部と中温部の境界とすることもできる。
 タービン、発電機等の主要機器の事故または送電系統の事故が起こった場合には、発電機の遮断器を作動させるが、この場合、地熱交換器内の圧力が急激に上昇することを防ぐため、圧力調整弁を作動させて、2重管内の急激な圧力上昇を防ぐことによって対応する。また、高圧フラッシャー10内を含めた蒸気系統に凝縮水が貯留することが考えられるが、この場合には、圧力調整弁を開くことで、系内の圧力を一気に大気圧相当まで減圧することにより対処することができる。さらに、運転初期においては、高圧フラッシャー10内が大気圧に近い低圧のため、低温、低圧の蒸気が生産されるが、この場合も、圧力調整弁を開くことで、低温、低圧の蒸気は大気へ逃し、その後、高温、高圧の蒸気に切り替えていけばよい。
 1つの地熱井に対して、少なくとも1つの外管2と少なくとも1つの内管3とが組み合わされてなる、1つの挿入管を挿入して使用することも可能であるが、ボーリングする場所によって、温度・圧力ともそれぞれ異なるため、発電に利用した場合に、地熱井1つに対する発電出力がそれぞれ違うこととなる。そのため、複数の地熱井に対して、挿入管の内管3の出口を並列につなぎ、それぞれの地熱井を用いて得られる蒸気を合計して採集することで、タービン・復水器・発電機・変圧器等の容量を大きく設計することができ、発電所全体の効率がアップするという利点がある。また、蒸気ヘッダーを配置することにより、採集された蒸気の圧力の均一化を図ることができ、圧力が均一化された蒸気を単機のタービンに供給することができる。特に、減圧エリア8の蒸気温度が規定値を下回った地熱井を外して、それぞれの地熱井を用いて得られる蒸気が合計して採集される構成とすることにより、効率的なエネルギー採取が可能となる。
 図4に、本発明の第二実施形態に係る地熱交換器と地熱発電装置の構成を示す。
 地熱交換器1は、地中に設けられ地上から水が供給される外管2と、外管2の内側に配置された内管3とを備えた2重管構造であり、内管3は、その底部4に設けられた仕切弁6を備えている。
 外管2内に注入された水に対して、地熱帯から熱が供給されて沸騰せずに高圧熱水が生成され、高圧エリア5が形成される。この高圧熱水は沸騰せずに、仕切弁6が開いたときに内管3内に流入する。高圧エリア5では、蒸気を含まない液相の高圧熱水として存在する。
 内管3内の減圧エリア8では、タービンが必要とする圧力近くに減圧されており、この減圧エリア8において、高圧熱水は気液2相流に変換され、この気液2相流が地上に取出される。
 地熱交換器1は、減圧エリア8でのフラッシュ率を向上させるフラッシュ率向上手段を有している。このフラッシュ率向上手段は、仕切弁6が設置された位置における高圧エリア5内の高圧熱水の圧力と内管3内の減圧エリアとの圧力差が設定基準値を超えたときに仕切弁6が開いて、減圧エリア8における圧力が、タービンが必要とする圧力近くに減圧されて気液2相流に変換されることによるものであり、外管2に注入される水を加圧ポンプ9によって加圧する圧力を設定することによって、仕切弁6が開くようにするものである。仕切弁6が設置された位置における高圧エリア5内の高圧熱水の圧力を、地熱帯の温度条件から定められる水の飽和温度における飽和圧力とすることができ、また、水の臨界圧力付近とすることもできる。フラッシュ率向上手段の具体例は、第一実施形態において説明したものと同様である。
 生産された気液2相流は上昇して地上に取出され、高圧フラッシャー10内で、蒸気と圧力水に分離される。この分離によって生じた蒸気単相流は、高圧蒸気槽11と蒸気弁21を経てタービン12に導入され、タービン12を駆動させる。高圧蒸気槽11には、放散弁13が接続されている。
 地上に取出された気液2相流から蒸気を分離された後の圧力水は、高温状態を維持して補給水槽19に供給され、復水器18から補給水槽19に送られる循環水を加熱する構成となっている。蒸気を分離された残りの圧力水は、まだ十分に圧力、温度とも高い状態であるため、この圧力水で循環水を加熱することにより、システムの安全性を高めることができる。
 以下に、上述した第一実施形態(実施例1)と、第二実施形態(実施例2)との比較を行う。
 表4に、実施例1と実施例2のフラッシュ率の比較を示す。
Figure JPOXMLDOC01-appb-T000004
 実施例1は、高圧タービンと中圧タービンで多く発電するため、坑井に帰っていく循環水の温度が下がる。一方、実施例2は、高圧タービンだけで発電するため、坑井に帰っていく循環水の温度は高くなる。坑井の能力にもよるが、高温領域の熱交換の方がフラッシュ率は高くなる。
 表5に、実施例1と実施例2との発電量の比較を示す。
Figure JPOXMLDOC01-appb-T000005
 このように、実施例2の方が発電量は多い。
 表6に、加圧ポンプ9の必要容量の比較を示す。
Figure JPOXMLDOC01-appb-T000006
 このように、実施例2の方が加圧ポンプ9の容量が大きくなる。発電数値から加圧ポンプ9の容量分を差し引くと、実際の発電数値は同じである。ただし、中圧タービンでの発電容量アップと、タービン12の圧力上昇による容量アップは別計算であり、坑井の能力に応じて設計することになる。
 ここで、タービン12からの循環水を実施例2のように加熱する場合と、加熱しない場合とを比較すると、実施例2では、熱交換器で復水器18からの循環水を加熱する分、補給水槽19に入るフラッシャーからの熱量が失われる。失われた熱量分は、復水器18からの循環水に移っており、全体の熱効率は変わらない。
 しかし、補給水槽19に入る両方の循環水は、あらかじめ熱交換のプロセスを経ているため、ほとんど、同一の温度とすることができる。加圧ポンプ9の一次側(サクション側)の温度変化による負担を軽くすることは、このシステムにおいては、非常に重要であり、システムの安全性に寄与する。
 本発明は、フラッシュ率を向上させることによって、エネルギー採取効率の高い地熱交換器と地熱発電装置として利用でき、特に、大容量の発電が可能な再生可能エネルギー型の発電装置として利用することができる。
 1 地熱交換器
 2 外管
 2a 外管断面
 3 内管
 3a 内管断面
 4 底部
 5 高圧エリア
 6 仕切弁
 8 減圧エリア
 9 加圧ポンプ
 10 高圧フラッシャー
 11 高圧蒸気槽
 12 タービン
 13 放散弁
 14 減圧弁
 15 中圧フラシャー
 16 中圧蒸気槽
 17 中圧蒸気弁
 18 復水器
 19 補給水槽
 20 断熱部
 21 蒸気弁

Claims (9)

  1.  地中に設けられ地上から水が供給される外管と、前記外管の内側に配置された内管とを備えた2重管構造であり、内管はその底部に設けられた仕切弁を備え、外管内の水に対して地熱帯から熱が供給されて、沸騰せずに高圧熱水が生成される高圧エリアが形成され、仕切弁が開いたときに高圧エリアの高圧熱水が内管内に流入し、内管内の減圧エリアの上部はタービンが必要とする圧力近くに減圧されて気液2相流に変換され、この気液2相流が地上に取出される地熱交換器であって、
     減圧エリアでのフラッシュ率を向上させるフラッシュ率向上手段を有し、フラッシュ率向上手段は、仕切弁が設置された位置における高圧エリア内の高圧熱水の圧力と内管内の減圧エリアとの圧力差が設定基準値を超えたときに仕切弁が開いて、減圧エリアにおける圧力が、タービンが必要とする圧力近くに減圧されて気液2相流に変換されることによるものであり、外管に注入される水を加圧ポンプにより加圧する圧力を設定することによって、仕切弁が開くようにしたことを特徴とする地熱交換器。
  2.  前記仕切弁が設置された位置における高圧エリア内の高圧熱水の圧力を、地熱帯の温度条件から定められる水の飽和温度における飽和圧力として、前記圧力差の設定基準値を超えて前記仕切弁が開くようにしたことを特徴とする請求項1記載の地熱交換器。
  3.  前記仕切弁が設置された位置における高圧エリア内の高圧熱水の圧力を、水の臨界圧力付近として、前記圧力差の設定基準値を超えて前記仕切弁が開くようにしたことを特徴とする請求項1記載の地熱交換器。
  4.  前記外管を下降する水の流れの方向に対して垂直な外管断面の断面積は、前記内管を上昇する気液2相流の流れの方向に対して垂直な内管断面の断面積に対して大きく設定されていることを特徴とする請求項1から3のいずれかに記載の地熱交換器。
  5.  前記仕切弁は絞り機能を有する構造となっていることを特徴とする請求項1から4のいずれかに記載の地熱交換器。
  6.  地上に取出された気液2相流は、高圧フラッシャーによって蒸気と圧力水とに分離され、蒸気を分離された残りの圧力水はさらに減圧されて、中圧フラシャーによって蒸気に変換されることを特徴とする請求項1から5のいずれかに記載の地熱交換器。
  7.  地上に取出された気液2相流から蒸気を分離された残りの圧力水は、高温状態を維持して補給水槽に供給され、復水器から補給水槽に送られる循環水を加熱することを特徴とする請求項1から5のいずれかに記載の地熱交換器。
  8.  少なくとも1つの前記外管と少なくとも1つの前記内管とが組み合わされてなる挿入管が、複数の地熱井に対して挿入され、前記内管の出口が並列に接続されて構成され、前記内管の減圧エリアが監視されており、減圧エリアの蒸気温度が規定値を下回った地熱井を外して、それぞれの地熱井を用いて得られる蒸気が合計して採集されることを特徴とする請求項1から7のいずれかに記載の地熱交換器。
  9.  請求項1から8のいずれかに記載の地熱交換器を用いて発電を行うことを特徴とする地熱発電装置。
PCT/JP2017/032350 2017-05-26 2017-09-07 地熱交換器および地熱発電装置 WO2018216238A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017105120A JP6176890B1 (ja) 2017-05-26 2017-05-26 地熱交換器および地熱発電装置
JP2017-105120 2017-05-26

Publications (1)

Publication Number Publication Date
WO2018216238A1 true WO2018216238A1 (ja) 2018-11-29

Family

ID=59559124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032350 WO2018216238A1 (ja) 2017-05-26 2017-09-07 地熱交換器および地熱発電装置

Country Status (2)

Country Link
JP (1) JP6176890B1 (ja)
WO (1) WO2018216238A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6403361B1 (ja) * 2018-02-20 2018-10-10 株式会社エスト 地熱交換システムおよび地熱発電システム
JP6695561B1 (ja) * 2020-02-07 2020-05-20 株式会社エスト 地熱交換器および地熱発電装置
JP7320271B2 (ja) * 2020-05-16 2023-08-03 一般社団法人ハイパーエネルギー協会 地熱交換器および地熱発電装置
CA3241003A1 (en) * 2021-12-13 2023-06-22 Scinet Company Ltd. Coaxial circulation-type power generation device and coaxial circulation-type power generatation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013164062A (ja) * 2012-01-10 2013-08-22 Kyushu Power Service:Kk 地熱交換器および地熱発電装置
JP2014227962A (ja) * 2013-05-24 2014-12-08 株式会社大林組 地熱発電用の蒸気発生装置、地熱発電用の蒸気発生方法及び地熱発電システム
JP5731051B1 (ja) * 2014-06-05 2015-06-10 俊一 田原 沸騰水型地熱交換器および沸騰水型地熱発電装置
US20150330670A1 (en) * 2014-05-16 2015-11-19 Richard L. Wynn, Jr. System and method for utilizing oil and gas wells for geothermal power generation
JP5839531B1 (ja) * 2015-05-12 2016-01-06 株式会社エスト 地熱交換器および地熱発電装置
JP6067173B1 (ja) * 2016-09-30 2017-01-25 俊一 田原 地熱交換器および地熱発電装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712571U (ja) * 1980-06-27 1982-01-22
JPH09112407A (ja) * 1995-10-17 1997-05-02 Keiji Sugano 地熱を利用した蒸気の採取方法及び採取装置
EP1966489A2 (en) * 2004-06-23 2008-09-10 TerraWatt Holdings Corporation Method of developingand producing deep geothermal reservoirs
JP4927136B2 (ja) * 2009-09-03 2012-05-09 株式会社九州パワーサービス 地熱発電装置
GB201104975D0 (en) * 2011-03-24 2011-05-11 Dow Corning Generation of vapour for use in an industrial process
WO2013112900A2 (en) * 2012-01-27 2013-08-01 Deep Well Power, LLC Single well, self-flowing geothermal system for energy extraction
JP6268714B2 (ja) * 2013-02-18 2018-01-31 株式会社大林組 地熱発電システム
WO2015066764A1 (en) * 2013-11-06 2015-05-14 Controlled Thermal Technologies Pty Ltd Geothermal loop in-ground heat exchanger for energy extraction
JP2016164395A (ja) * 2015-03-06 2016-09-08 ジャパン・ニュー・エナジー株式会社 地熱発電システム及び地熱発電方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013164062A (ja) * 2012-01-10 2013-08-22 Kyushu Power Service:Kk 地熱交換器および地熱発電装置
JP2014227962A (ja) * 2013-05-24 2014-12-08 株式会社大林組 地熱発電用の蒸気発生装置、地熱発電用の蒸気発生方法及び地熱発電システム
US20150330670A1 (en) * 2014-05-16 2015-11-19 Richard L. Wynn, Jr. System and method for utilizing oil and gas wells for geothermal power generation
JP5731051B1 (ja) * 2014-06-05 2015-06-10 俊一 田原 沸騰水型地熱交換器および沸騰水型地熱発電装置
JP5839531B1 (ja) * 2015-05-12 2016-01-06 株式会社エスト 地熱交換器および地熱発電装置
JP6067173B1 (ja) * 2016-09-30 2017-01-25 俊一 田原 地熱交換器および地熱発電装置

Also Published As

Publication number Publication date
JP6176890B1 (ja) 2017-08-09
JP2018200027A (ja) 2018-12-20

Similar Documents

Publication Publication Date Title
WO2018216238A1 (ja) 地熱交換器および地熱発電装置
WO2016132624A1 (ja) 沸騰水型地熱交換器および沸騰水型地熱発電装置
JP6268714B2 (ja) 地熱発電システム
WO2015186431A1 (ja) 沸騰水型地熱交換器および沸騰水型地熱発電装置
EP3976940A1 (de) System zur umwandlung von thermischer energie in mechanischer energie
Lee et al. Improving power and desalination capabilities of a large nuclear power plant with supercritical CO2 power technology
JP6067173B1 (ja) 地熱交換器および地熱発電装置
CN105810256A (zh) 一种核电站非能动余热排出系统
DE102007005930A1 (de) Wärmepuppe, Kleinkraftwerk und Verfahren zum Pumpen von Wärme
JP5999827B1 (ja) 地熱交換器および地熱発電装置
JP6085645B2 (ja) 地熱交換器および地熱発電装置
JP2010174755A (ja) 発電プラント
CN103836608B (zh) 低压疏水冷却器回热系统
JP5839528B1 (ja) 温度低下補償型地熱交換器および温度低下補償型地熱発電装置
CN114321871A (zh) 一种超临界锅炉深度调峰干湿态切换系统
CN104456519A (zh) 一种用于二次再热机组的新型高效给水回热系统
JP2011157855A (ja) 発電設備及び発電設備の運転方法
CN107762576B (zh) 一种用于汽轮机凝抽背供热的冷却进汽系统及智能控制方法
JP5334885B2 (ja) 発電設備におけるボイラの熱回収装置および熱回収方法
JP4871935B2 (ja) 再熱型発電プラント及び非再熱型発電プラントを再熱型発電プラントに改造する方法
JP6695561B1 (ja) 地熱交換器および地熱発電装置
CN114278921A (zh) 一种超临界锅炉深度调峰干湿态切换系统
JP7320271B2 (ja) 地熱交換器および地熱発電装置
NO20161104A1 (en) System adapted for heating a mixed hydrocarbon stream and a method for heating a mixed hydrocarbon stream
JP4516438B2 (ja) 原子力プラントの運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911110

Country of ref document: EP

Kind code of ref document: A1