JP5999827B1 - 地熱交換器および地熱発電装置 - Google Patents

地熱交換器および地熱発電装置 Download PDF

Info

Publication number
JP5999827B1
JP5999827B1 JP2016098359A JP2016098359A JP5999827B1 JP 5999827 B1 JP5999827 B1 JP 5999827B1 JP 2016098359 A JP2016098359 A JP 2016098359A JP 2016098359 A JP2016098359 A JP 2016098359A JP 5999827 B1 JP5999827 B1 JP 5999827B1
Authority
JP
Japan
Prior art keywords
pipe
steam
geothermal
water
water injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016098359A
Other languages
English (en)
Other versions
JP2017106430A (ja
Inventor
俊一 田原
俊一 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EST. INC.
Original Assignee
EST. INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EST. INC. filed Critical EST. INC.
Application granted granted Critical
Publication of JP5999827B1 publication Critical patent/JP5999827B1/ja
Publication of JP2017106430A publication Critical patent/JP2017106430A/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】熱交換に伴って地熱帯が冷却される場合であっても、抽出熱量を確保することが可能な地熱交換器および地熱発電装置を提供する。【解決手段】地熱交換器1は、地上から水が供給される水注入管2と、水注入管2に接するように地中に設けられた蒸気取出管3とを備えている。蒸気取出管3には、その下部領域に複数の噴出口5が設けられ、地熱帯4から熱が供給されて生成される高温圧力水は噴出口5から噴霧状態で蒸気取出管3内へ噴き出す。水注入管2と蒸気取出管3とは生産井9内に設置され、生産井9の上部11は調節弁13に接続されるとともに生産井9の下部10は開放されて、地熱流体が生産井9内に流入し2重管の外管の外側を通過する構造となっており、地熱帯4の熱源が熱交換時に冷却されることを抑制し2重管を加熱するための熱が地熱流体によって供給される。【選択図】図1

Description

本発明は、地熱エネルギーを効率よく取り出すことができる地熱交換器および地熱発電装置に関する。
地熱エネルギーを利用して発電する地熱発電は、高温のマグマ層を熱源とするものであり、半永久的な熱エネルギーとすることができるとともに、発電の過程において温室効果ガスを発生しないことから、化石燃料の代替手段として近年注目されている。また、原子力発電所の事故により、原子力に多くを依存していた日本のエネルギー政策は根本から見直すことを余儀なくされており、地熱エネルギーの活用への期待が高まっている。
従来の地熱発電は、地熱帯をボーリングし、地熱帯に存在する自然の蒸気や熱水を自然の圧力を利用して取り出し発電を行っている。そのため、取り出された蒸気と熱水には、地熱帯特有の硫黄その他の不純物が多量に含まれている。この不純物はスケールとなって、熱井戸や配管類、あるいはタービン等に付着する。スケールが付着すると、経年的に発電出力が減少し長期間の使用が困難となる。
このスケールによる問題を解決するために、地上から水を送り、蒸気にして取り出す方式を採用した地熱交換器が、特許文献1、特許文献2に記載されている。
特許第5731051号公報 特許第5791836号公報
特許文献1に記載されたものは、地下に設置された地熱交換器内で減圧沸騰させ、蒸気単相流を取り出すものであり、特許文献2に記載されたものは、取出した蒸気の熱損失を減少させることに関する技術であり、いずれも地熱エネルギーを効率よく取り出すことができる点に大きな利点がある。
しかし、特許文献1、特許文献2では、地下に設置された地熱交換器で地熱を取り出す際に、熱交換に伴って生じる地熱帯周辺の急激な温度低下は考慮されておらず、十分な潜熱が供給されることが基本的な前提条件となっている。このような地熱帯の熱源が熱交換時に冷却されることは、学会においても熱抽出に伴う急激な温度低下として問題提起がなされており、抽出熱量は地熱交換器周囲地層内の温度勾配による熱移動で決まることが報告されている。
熱交換という物理現象において、熱交換の対象となる相手が冷却されることは当然であるとしても、有効な地熱発電装置を実現するためには、このリスクは回避しなければならない。
本発明は上記の問題点を解決するためになされたもので、熱交換に伴って地熱帯が冷却される場合であっても、そのリスクを最小限にして抽出熱量を確保することが可能な地熱交換器および地熱発電装置を提供することを目的とする。
以上の課題を解決するために、本発明の地熱交換器は、地中に設けられ地上から水が供給される水注入管と、前記水注入管に接するように地中に設けられ、複数の噴出口を有する蒸気取出管とを備え、前記蒸気取出管内の圧力は、タービンが必要とする圧力近くに減圧されており、前記水注入管内の水に対して地熱帯から熱が供給されて生成される高圧熱水が前記噴出口を介して地中に存在する蒸気取出管内で蒸気単相流に変換され、この蒸気単相流が地上に取出される地熱交換器であって、前記水注入管と前記蒸気取出管とは生産井内に設置され、前記生産井の上部は調節弁に接続され、前記生産井の下部は開放されて地熱流体が前記生産井内に流入し、前記水注入管と前記蒸気取出管とによって構成される2重管の外管の外側を通過する構造となっていることで、地熱帯の熱源が熱交換時に冷却されることを抑制し2重管を加熱するための熱が地熱流体によって供給されることを特徴とする。
この地熱交換器は、地中に設けられた水注入管に対して地上から給水することで、水注入管下部において、地上からの深さにほぼ比例した圧力水を作り、この圧力水に対して地熱帯から熱が供給されて生成される高温圧力水を、地中に設けられ減圧された蒸気取出管に噴出させて地中の蒸気取出管内にて蒸気単相流に変換する方法を採っているため、熱伝導率が低い蒸気として地上に取り出されることとなり、低温地帯を通過する際に生じる熱ロスを極めて低く抑えることができるものであり、さらに、地熱帯の熱源が熱交換時に冷却されることを抑制し2重管を加熱するための熱が地熱流体によって供給されるため、熱交換に伴って地熱帯が冷却される場合であっても、抽出熱量を確保することが可能である。
また、本発明の地熱交換器は、地中に設けられ地上から水が供給される水注入管と、前記水注入管に接するように地中に設けられ、複数の噴出口を有する蒸気取出管とを備え、前記蒸気取出管内の圧力は、タービンが必要とする圧力近くに減圧されており、前記水注入管内の水に対して地熱帯から熱が供給されて生成される高圧熱水が前記噴出口を介して地中に存在する蒸気取出管内で蒸気単相流に変換され、この蒸気単相流が地上に取出される地熱交換器であって、前記蒸気取出管が前記水注入管の内側に配置され、前記蒸気取出管の径は、地熱帯側下方から地表側上方に向かって小さくなるように前記蒸気取出管が形成されており、前記水注入管と前記蒸気取出管とは生産井内に設置され、前記生産井の上部は調節弁に接続され、前記生産井の下部は開放されて地熱流体が前記生産井内に流入し、前記水注入管と前記蒸気取出管とによって構成される2重管の外管の外側を通過する構造となっていることで、地熱帯の熱源が熱交換時に冷却されることを抑制し2重管を加熱するための熱が地熱流体によって供給されることを特徴とする。
この地熱交換器では、蒸気取出管の径は、地熱帯側下方から地表側上方に向かって小さくなるように蒸気取出管が形成されていることにより、地表に近い低温領域に近づくにつれて、蒸気単相流が蒸気取出管内を上昇する際の速度が増大し通過時間が短縮される。蒸気が上昇する際の流速は、蒸気取出管の径の二乗に反比例して増大し、蒸気が上昇するに要する通過時間は、蒸気取出管の径の二乗に比例して短くなる。さらに、外管である水注入管との接触面積は、蒸気取出管の径に比例して小さくなることから、外管である水注入管との間で熱交換される熱量は、内管である蒸気取出管の径の三乗に比例して減少するため、蒸気単相流が低温領域を通過する際の熱損失を低減することができる。さらに、地熱帯の熱源が熱交換時に冷却されることを抑制し2重管を加熱するための熱が地熱流体によって供給されるため、熱交換に伴って地熱帯が冷却される場合であっても、抽出熱量を確保することが可能である。
また、本発明の地熱交換器は、地中に設けられ地上から水が供給される水注入管と、前記水注入管に接するように地中に設けられて複数の噴出口を有する蒸気取出管と、前記水注入管と前記蒸気取出管との境界下部領域であって前記噴出口が設けられた領域に取付けられた加熱器とを備え、前記蒸気取出管内底部の圧力は、タービンが必要とする圧力以下に減圧されており、前記水注入管内の水に対して地熱帯から熱が供給されて生成される高圧熱水が前記噴出口を介して蒸気取出管内で蒸気単相流に変換され、前記加熱器によって減圧沸騰時の温度低下が補償されて地上に取出され、前記蒸気取出管の出口側、または蒸気発生部からタービンに至る蒸気系統内にブロワーが取り付けられており、前記蒸気取出管から取り出される蒸気はブロワーによってブーストされる地熱交換器であって、前記水注入管と前記蒸気取出管とは生産井内に設置され、前記生産井の上部は調節弁に接続され、前記生産井の下部は開放されて地熱流体が前記生産井内に流入し、前記水注入管と前記蒸気取出管とによって構成される2重管の外管の外側を通過する構造となっていることで、地熱帯の熱源が熱交換時に冷却されることを抑制し2重管を加熱するための熱が地熱流体によって供給されることを特徴とする。
この地熱交換器では、加熱器によって減圧沸騰時の温度低下が補償されるとともに、蒸気をブロワーでブーストすることにより、ブロワーの吸込み側の圧力は、タービン圧力からブロワー圧力を差引いた数値となり、蒸気取出管底部の蒸気噴出し部の圧力は、飽和蒸気の圧力よりブロワー圧力分低下し、蒸気が飽和蒸気から過熱蒸気領域へ移動する効果と、蒸気の気化をアシストする相乗効果が生まれる。さらに、地熱帯の熱源が熱交換時に冷却されることを抑制し2重管を加熱するための熱が地熱流体によって供給されるため、熱交換に伴って地熱帯が冷却される場合であっても、抽出熱量を確保することが可能である。
本発明の地熱交換器においては、少なくとも1つの前記水注入管と少なくとも1つの前記蒸気取出管とが組み合わされてなる挿入管が、複数の生産井に対して挿入されて構成され、前記蒸気取出管の出口が並列に接続されて、それぞれの生産井を用いて得られる蒸気が合計して採集され、採集された蒸気の圧力を均一化する蒸気ヘッダーを備えている構成とすることができる。
ボーリングする場所によって、温度・圧力ともそれぞれ異なるため、発電に利用した場合に、生産井1つに対する発電出力がそれぞれ違うこととなる。そのため、複数の生産井に対して、挿入管の蒸気取出管の出口を並列につなぎ、それぞれの生産井を用いて得られる蒸気を合計して採集することで、タービン・復水器・発電機・変圧器等の容量を大きく設計することができ、発電所全体の効率がアップするという利点がある。また、蒸気ヘッダーを配置することにより、採集された蒸気の圧力の均一化を図ることができる。
また、本発明の地熱交換器は、地中に設けられ地上から水が供給される水注入管と、前記水注入管の内側に配置されて複数の噴出口を有する蒸気取出管と、前記水注入管と前記蒸気取出管との間に設けられた中管とを備えた3重管構造であり、前記蒸気取出管内底部の圧力は、タービンが必要とする圧力以下に減圧されており、前記水注入管内の水に対して地熱帯から熱が供給されて生成される高圧熱水が前記噴出口を介して蒸気取出管内で蒸気単相流に変換されて地上に取出される地熱交換器であって、前記中管の上側から下側に向かって圧縮蒸気が下降し、前記蒸気取出管の底部には、前記中管を下降した圧縮蒸気が前記蒸気取出管に向かって噴出する圧縮蒸気噴出口が設けられており、前記水注入管と前記蒸気取出管と前記中管とは生産井内に設置され、前記生産井の上部は調節弁に接続され、前記生産井の下部は開放されて地熱流体が前記生産井内に流入し、前記水注入管と前記蒸気取出管と前記中管とによって構成される3重管の外管の外側を通過する構造となっていることで、地熱帯の熱源が熱交換時に冷却されることを抑制し3重管を加熱するための熱が地熱流体によって供給されることを特徴とする。
この地熱交換器では、内管底部から地上に設置したタービンまたは熱交換器までの系内は、地熱帯温度での飽和蒸気圧未満となり、外管である水注入管底部からの水の噴出しをアシストする効果が得られるとともに、中管を下降する加圧された圧縮蒸気による加温効果のため、内管系内の蒸気は過熱蒸気と同等の状態となる。そのため、結露しない蒸気で地上に設置したタービンまたは熱交換器を駆動することができる。また、系内を負圧にして蒸気の飽和曲線より大きく圧力を下げ、温度領域を上げることによって、過熱蒸気を生産することできるため、飽和蒸気を生産する場合よりも、熱効率は格段に向上する。
さらに、地熱帯の熱源が熱交換時に冷却されることを抑制し3重管を加熱するための熱が地熱流体によって供給されるため、熱交換に伴って地熱帯が冷却される場合であっても、抽出熱量を確保することが可能である。
本発明の地熱交換器においては、少なくとも1つの前記水注入管と少なくとも1つの前記蒸気取出管と少なくとも1つの前記中管とが組み合わされてなる挿入管が、複数の生産井に対して挿入されて構成され、前記蒸気取出管の出口が並列に接続されて、それぞれの生産井を用いて得られる蒸気が合計して採集され、採集された蒸気の圧力を均一化する蒸気ヘッダーを備えている構成とすることができる。
ボーリングする場所によって、温度・圧力ともそれぞれ異なるため、発電に利用した場合に、生産井1つに対する発電出力がそれぞれ違うこととなる。そのため、複数の生産井に対して、挿入管の蒸気取出管の出口を並列につなぎ、それぞれの生産井を用いて得られる蒸気を合計して採集することで、タービン・復水器・発電機・変圧器等の容量を大きく設計することができ、発電所全体の効率がアップするという利点がある。また、蒸気ヘッダーを配置することにより、採集された蒸気の圧力の均一化を図ることができる。
本発明の地熱交換器においては、前記生産井の上部側の温度または圧力が設定値より低下したときには、前記調節弁が開いて前記地熱流体が取り出される構成とすることができる。
地熱流体は地熱帯の圧力があるため、圧力水とすることで外管への熱移動が効率よくなされ、地熱流体を通過させる過程で、地熱交換器の外管が加熱される。また、新たな地熱流体が生産井下部から流入することを促進できるため、生産井の温度と圧力を設定値以上に維持することができる。
本発明の地熱交換器においては、前記調節弁は、前記生産井の上部側の温度または圧力に応じて開度が調節されることとすることができる。
調節弁の開度を調節することにより、地熱流体の取り出し量を調節して、取出す地熱流体の量を必要となる熱量分だけとすることができ、環境に配慮するシステムとすることができる。
本発明の地熱交換器においては、前記調節弁を介して取り出された前記地熱流体は、気水分離器によって蒸気分と温水分とに分離され、温水分は予熱槽に送られてタービン作動水を加熱する構成とすることができる。
復水器で冷却されたタービン作動水を予熱槽によって加熱することができるため、システム全体の熱効率が向上する。また、取出された地熱流体は、地熱帯特有の不純物を含んでいるが、タービン系統へ地熱流体が入らない構造となって、タービン作動水とは完全に分離されているため、不純物の影響を受けることはない。
本発明の地熱交換器においては、前記水注入管に供給される水の水位を低くすることによって、前記水注入管の上部に空気層が形成されることによる断熱部が、地表面に近い低温地帯に接する領域に対して設けられている構成とすることができる。
対象となる地熱層によっては、地中に設置する地熱交換器に供給する水圧が大きすぎる場合がある。この水圧を下げる必要性がある場合、水注入管の水位を下げることで地熱交換器内の圧力調整が可能である。これによって水注入管の上部には空気層が形成されることになり、断熱性の高い空気層によって必然的に断熱効果を得ることができる。特に、抗井の高温地帯の深度が大きい場合、水注入管に供給する高度処理水の水位を低くすることで、地表面に近い低温地帯に接する水注入管に空気層を形成することができる。
本発明の地熱交換器においては、前記水注入管に供給される水を加圧するための加圧ポンプが地上に配置されている構成とすることができる。
地熱帯によっては、地熱帯深度ごとに高温領域が出てくる場合があり、水注入管の深さによって温度が飽和温度を超えると、水注入管内で水が沸騰して蒸気になり、システムに影響をおよぼすことが起こりうる。この対策として、水注入管に対して地上から加圧ポンプで加圧することにより、注入された水が水注入管内で沸騰することを防止できる。そのため、水注入管内で蒸気が発生することなく、水注入管の下部から噴出口を介してスムーズに蒸気に変換させることができる。また、生産される蒸気の圧力を高くすることができるため、発電出力を大幅に高くすることができる。
本発明の地熱交換器においては、前記生産井は、既存の坑井である構成とすることができる。
既存の設備に付帯する空の生産井や休止中の生産井に対して、少なくとも水注入管と蒸気取出管とが組み合わされて構成される挿入管を挿入して用いることにより、新たにボーリングを行うことなく、熱水によるエネルギーを取出すことができる。特に、蒸気単相流として地中から取出すことにより、挿入管の径を小さくすることができるため、使用できる生産井の自由度が高まる。
本発明の地熱発電装置は、本発明の地熱交換器を用いて発電を行うことを特徴とする。
本発明の地熱交換器では、地熱帯の熱源が熱交換時に冷却されることを抑制するための熱が地熱流体によって供給されるため、熱交換に伴って地熱帯が冷却される場合であっても、抽出熱量を確保することが可能であり、熱交換時における熱源の冷却にも対応した地熱発電を実現することができる。
本発明によると、熱交換に伴って地熱帯が冷却される場合であっても、抽出熱量を確保することが可能な地熱交換器および地熱発電装置を実現することができる。
本発明の第一実施形態に係る地熱交換器と地熱発電装置を示す図である。 本発明の第二実施形態に係る地熱交換器と地熱発電装置を示す図である。 本発明の第三実施形態に係る地熱交換器と地熱発電装置を示す図である。 本発明の第四実施形態に係る地熱交換器と地熱発電装置を示す図である。 本発明の第一実施形態において加圧ポンプを付加したものを示す図である。 本発明の第二実施形態において加圧ポンプを付加したものを示す図である。 本発明の第三実施形態において加圧ポンプを付加したものを示す図である。 本発明の第四実施形態において加圧ポンプを付加したものを示す図である。
以下に、本発明の地熱交換器および地熱発電装置を、その実施形態に基づいて説明する。図1に、本発明の第一実施形態に係る地熱交換器と地熱発電装置を示す。
図1において、地熱交換器1は、地中に設けられて地上から水が供給される水注入管2と、水注入管2に接するように地中に設けられた蒸気取出管3とを備えている。図1においては、水注入管2を地熱帯4側に近い外管とし、蒸気取出管3を水注入管2の内側に設けた内管とした2重管構造としているが、その逆に、蒸気取出管3を外管とし、水注入管2を内管としてもよい。
蒸気取出管3には、その下部領域に、複数の噴出口5が設けられており、水注入管2と蒸気取出管3とは、この噴出口5によって開口状態となっている。すなわち、噴出口5は、水注入管2と蒸気取出管3との境界に設けられている。蒸気取出管3はタービン6に接続されており、蒸気取出管3内の圧力は、タービン6が必要とする圧力近くに減圧されている。
水注入管2に自然の落差を利用して供給された水は、水注入管2の底部付近において、地上からの深さにほぼ比例した圧力が加えられ、地熱帯4から熱が供給されて高温圧力水となる。蒸気取出管3内は減圧されているため、この圧力差を利用して、高温圧力水は矢印で示すように、噴出口5から噴霧状態で蒸気取出管3内へ噴き出し、タービン6が必要とする圧力と、水注入管2の底部との圧力差を利用して気化して蒸気単相流に変換される。地下にて生成された蒸気単相流は、蒸気取出管3とタービン6との圧力差でタービン6へ移動したのち、タービン6内で膨張してタービン6を回す動力となる。この動力によって発電機7により発電がなされる。
タービン6を出た蒸気はその後、復水器8にて冷却水により冷却されて水に戻り、再び水注入管2に供給される。循環する水量はタービン6が必要とする蒸気量に等しいため、循環させる水量は非常に少なくて済む。この過程を繰り返すことによって、連続して地熱を取り出す。必要に応じて、補給水は補給水槽12から補給される。
蒸気取出管3とタービン6との間には、蒸気ヘッダー18が設けられている。蒸気ヘッダー18は、複数の生産井から生産された蒸気をまとめて、単機のタービン6に供給するような場合に用いられるもので、これにより、圧力を均一化させることができる。
水注入管2と蒸気取出管3とは生産井9内に設置され、生産井9の上部11は調節弁13に接続されるとともに生産井9の下部10は開放されて、地熱流体が生産井9内に流入し2重管の外管である水注入管2の外側を通過する構造となっており、地熱帯4の熱源が熱交換時に冷却されることを抑制し2重管を加熱するための熱が地熱流体によって供給される。生産井9の外管は、ボーリング時に挿入したケーシング19をそのまま使用する。地熱流体とは、マグマからの熱で熱せられた高温高圧の地下水のように、地熱エネルギーによって高いエネルギーを獲得した流体を意味する。
このように、地熱交換器1は生産井9内に挿入され、地熱交換器1の最下部は、ケーシング19よりもさらに深く設置して、地熱帯4との熱伝導面積が大きくなるようにしている。生産井9と地熱交換器1とは、生産井9の深さ分熱交換ゾーンを大きくすることができ、地熱帯4上部、低温地帯20における地熱交換器1の熱損失を低減することができる。
生産井9の上部11は調節弁13に接続されている。生産井9の上部11側の温度と圧力は常時計測されており、生産井9の上部11側の温度または圧力が設定値より下がった場合には、調節弁13を「開」にして、地熱流体の自然の圧力を利用して地熱流体を通過させて生産井9から取り出す。地熱流体を通過させる過程で、地熱交換器1の外管が加熱される。地熱流体は、地熱帯の圧力があるため、生産井9上部の圧力を調節した圧力水とすることで、外管への熱移動が効率よくなされる。
調節弁13は、生産井9の上部11側の温度または圧力に応じて開度が調節される。調節弁13の開度を調節することにより、地熱流体の取り出し量を調節して、取出す地熱流体の量を必要となる熱量分だけとすることができ、環境に配慮するシステムとすることができる。
生産井9の外部に取り出された地熱流体は、気水分離器14で減圧して、蒸気分と温水分とに分離される。蒸気分は大気開放させ、温水分は予熱槽15に送られて、復水器8にて冷却されたタービン作動水を加熱する。これによりシステム全体の熱効率が向上する。
気水分離器14で温水となった地熱流体は、移送ポンプ16によって還元井に送られて地中に戻され、温泉水の減少防止に役立たせる。取出された地熱流体は、地熱帯4特有の不純物を含んでいるが、タービン系統へ地熱流体が入らない構造となって、タービン作動水とは完全に分離されているため、不純物の影響を受けることはない。
生産井9の上部11側の温度と圧力が設定値より高い場合は、地熱交換システムが有効に機能していることを意味するため、この場合は調節弁を「閉」にして、地熱流体を取り出さないようにして、環境へ配慮する。
上述したように、地熱流体は必要時においては取り出して利用するが、タービン系統を含む蒸気系統とは完全に別系統としており、地熱流体を取り出すことにおいては環境負荷を与えることにはなるが、タービンその他の蒸気系統は汚染されないシステムとすることができる。また、環境に配慮して、地熱流体のうち温水分は、還元井から地中に戻すことにするが、薬品注入は最小限に抑えて、地下水の汚染を防止し、取出す地熱流体の量は必要となる熱量分だけとする
なお、図1においては、地上から注入された水と、生成された蒸気の流れを白い矢印で示し、地熱流体の流れを黒い矢印で示している。これは、以下に説明する図2、図3、図4においても同様である。
図2に、本発明の第二実施形態に係る地熱交換器と地熱発電装置を示す。
図2において、地熱交換器1は、地中に設けられて地上から水が供給される水注入管2と、水注入管2に接するように地中に設けられた蒸気取出管3とを備えている。図2においては、水注入管2を地熱帯4側に近い外管とし、蒸気取出管3を水注入管2の内側に設けた内管とした2重管構造としている。
蒸気取出管3には、その下部領域に、複数の噴出口5が設けられており、水注入管2と蒸気取出管3とは、この噴出口5によって開口状態となっている。すなわち、噴出口5は、水注入管2と蒸気取出管3との境界に設けられている。蒸気取出管3はタービン6に接続されており、蒸気取出管3内の圧力は、タービン6が必要とする圧力近くに減圧されている。
水注入管2に自然の落差を利用して供給された水は、水注入管2の底部付近において、地上からの深さにほぼ比例した圧力が加えられ、地熱帯4から熱が供給されて高温圧力水となる。蒸気取出管3内は減圧されているため、この圧力差を利用して、高温圧力水は矢印で示すように、噴出口5から噴霧状態で蒸気取出管3内へ噴き出し、タービン6が必要とする圧力と、水注入管2の底部との圧力差を利用して気化して蒸気単相流に変換される。地下にて生成された蒸気単相流は、蒸気取出管3とタービン6との圧力差でタービン6へ移動したのち、タービン6内で膨張してタービン6を回す動力となる。この動力によって発電機7により発電がなされる。
タービン6を出た蒸気はその後、復水器8にて冷却水により冷却されて水に戻り、再び水注入管2に供給される。循環する水量はタービン6が必要とする蒸気量に等しいため、循環させる水量は非常に少なくて済む。この過程を繰り返すことによって、連続して地熱を取り出す。必要に応じて、補給水は補給水槽12から補給される。蒸気取出管3とタービン6との間には、蒸気ヘッダー18が設けられている。
蒸気取出管3の径は、地熱帯側下方から地表側上方に向かって小さくなるように、蒸気取出管3が形成されている。図2においては、蒸気取出管3の径が、地熱帯側下方から地表側上方に向かって段階的に小さくなっている構造のものを示しているが、地熱帯側下方から地表側上方に向かって連続的に小さくなっている構造のものであってもよい。
蒸気取出管3の径が、地熱帯側下方から地表側上方に向かって小さくなるように蒸気取出管3が形成されていることにより、地表に近い低温地帯20に近づくにつれて、蒸気単相流が蒸気取出管3内を上昇する際の速度が増大し通過時間が短縮される。外管である水注入管2との間で熱交換される熱量は、内管である蒸気取出管3の径の三乗に比例して減少するため、蒸気単相流が低温領域を通過する際の熱損失を低減することができる。
また、外管である水注入管2を設置した後で、内管である蒸気取出管3を取り付ける場合には、蒸気取出管3の径が地熱帯側下方から地表側上方に向かって小さくなっていることにより、地熱帯側下方の径と同一の径で蒸気取出管3を形成する場合と比べて、蒸気取出管3の重量を軽くすることができ、工事の際の利便性を高めることができる。
水注入管2と蒸気取出管3とは生産井9内に設置され、生産井9の上部11は調節弁13に接続されるとともに生産井9の下部10は開放されて、地熱流体が生産井9内に流入し2重管の外管である水注入管2の外側を通過する構造となっており、地熱帯4の熱源が熱交換時に冷却されることを抑制し2重管を加熱するための熱が地熱流体によって供給される。生産井9の外管は、ボーリング時に挿入したケーシング19をそのまま使用する。
生産井9の上部11は調節弁13に接続されている。生産井9の上部11側の温度と圧力は常時計測されており、生産井9の上部11側の温度または圧力が設定値より下がった場合には、調節弁13を「開」にして、地熱流体の自然の圧力を利用して地熱流体を通過させて生産井9から取り出す。地熱流体を通過させる過程で、地熱交換器1の外管が加熱される。地熱流体は、地熱帯の圧力があるため、生産井9上部の圧力を調節した圧力水とすることで、外管への熱移動が効率よくなされる。
調節弁13は、生産井9の上部11側の温度または圧力に応じて開度が調節される。調節弁13の開度を調節することにより、地熱流体の取り出し量を調節して、取出す地熱流体の量を必要となる熱量分だけとすることができ、環境に配慮するシステムとすることができる。
生産井9の外部に取り出された地熱流体は、気水分離器14で減圧して、蒸気分と温水分とに分離される。蒸気分は大気開放させ、温水分は予熱槽15に送られて、復水器8にて冷却されたタービン作動水を加熱する。これによりシステム全体の熱効率が向上する。
気水分離器14で温水となった地熱流体は、移送ポンプ16によって還元井に送られて地中に戻され、温泉水の減少防止に役立たせる。取出された地熱流体は、地熱帯4特有の不純物を含んでいるが、タービン系統へ地熱流体が入らない構造となって、タービン作動水とは完全に分離されているため、不純物の影響を受けることはない。
図3に、本発明の第三実施形態に係る地熱交換器と地熱発電装置を示す。
図3において、地熱交換器1は、地中に設けられて地上から水が供給される水注入管2と、水注入管2に接するように地中に設けられた蒸気取出管3とを備えている。図3においては、水注入管2を地熱帯4側に近い外管とし、蒸気取出管3を水注入管2の内側に設けた内管とした2重管構造としているが、その逆に、蒸気取出管3を外管とし、水注入管2を内管としてもよい。
蒸気取出管3には、その下部領域に、複数の噴出口5が設けられており、水注入管2と蒸気取出管3とは、この噴出口5によって開口状態となっている。すなわち、噴出口5は、水注入管2と蒸気取出管3との境界に設けられている。蒸気取出管3はタービン6に接続されており、蒸気取出管3内底部の圧力は、タービン6が必要とする圧力以下に減圧されている。
水注入管2に自然の落差を利用して供給された水は、水注入管2の底部付近において、地上からの深さにほぼ比例した圧力が加えられ、地熱帯4から熱が供給されて高温圧力水となる。蒸気取出管3内は減圧されているため、この圧力差を利用して、高温圧力水は矢印で示すように、噴出口5から噴霧状態で蒸気取出管3内へ噴き出し、タービン6が必要とする圧力と、水注入管2の底部との圧力差を利用して気化して蒸気単相流に変換される。地下にて生成された蒸気単相流は、蒸気取出管3とタービン6との圧力差でタービン6へ移動したのち、タービン6内で膨張してタービン6を回す動力となる。この動力によって発電機7により発電がなされる。
タービン6を出た蒸気はその後、復水器8にて冷却水により冷却されて水に戻り、再び水注入管2に供給される。循環する水量はタービン6が必要とする蒸気量に等しいため、循環させる水量は非常に少なくて済む。この過程を繰り返すことによって、連続して地熱を取り出す。必要に応じて、補給水は補給水槽12から補給される。蒸気取出管3とタービン6との間には、蒸気ヘッダー18が設けられている。
水注入管2と蒸気取出管3との境界下部領域であって、噴出口5が設けられた領域に、加熱器21が取付けられており、この加熱器21によって、減圧沸騰時の蒸気温度低下が補償される。これにより、蒸気を発生させる管と地熱帯岩石等との熱伝導率の差に起因する、地熱帯からの熱供給の遅れが生じても、蒸気温度が低下することを防止でき、出力が向上する。
蒸気取出管3の出口側には、ブロワー22が取り付けられており、蒸気取出管3から取り出される蒸気は、ブロワー22によってブーストされる。
蒸気をブロワー22でブーストすると、ブロワー22の吸込み側の圧力は、タービン圧力からブロワー圧力を差引いた数値となり、蒸気取出管3底部の蒸気噴出し部の圧力は、飽和蒸気の圧力よりブロワー圧力分低下する。そのため、蒸気が飽和蒸気から過熱蒸気領域へ移動する効果と、蒸気の気化をアシストする相乗効果が生まれる。また、ブロワー圧力を大きくすることによって、タービンへ供給する圧力を高く設定できるため、より大きな効果を得ることができる。また、ブロワー22の回転数を制御することにより、発電出力を制御することができる。
なお、ブロワー22を取り付ける位置は、蒸気取出管3の出口側に限らず、蒸気発生部からタービンに至る蒸気系統内とすることができる。
蒸気取出管3の出口側には、加熱器23が取り付けられており、蒸気取出管3から取り出される蒸気は、加熱器23によって加熱される。
加熱器23によって蒸気を加熱することにより、高温・高圧の過熱蒸気とすることができる。そのため、タービン6の入り口温度を高く設定でき、タービン6の出力・効率を向上することができる。また、タービン6内で蒸気が水に戻ることを防止できるため、タービン6または熱交換器を駆動する蒸気が結露しにくい状態を保つことができる。
なお、加熱器23を取り付ける位置は、蒸気取出管3の出口側に限らず、蒸気発生部からタービン6に至る蒸気系統内とすることができる。
上述した加熱器21、ブロワー22、加熱器23の電源は、発電出力の一部を使うことができる。これにより、発電効率は少しダウンするが、高温、高圧の過熱蒸気を生産することができるため、全体としての出力を大きく向上させることができる。
水注入管2と蒸気取出管3とは生産井9内に設置され、生産井9の上部11は調節弁13に接続されるとともに生産井9の下部10は開放されて、地熱流体が生産井9内に流入し2重管の外管である水注入管2の外側を通過する構造となっており、地熱帯4の熱源が熱交換時に冷却されることを抑制し2重管を加熱するための熱が地熱流体によって供給される。生産井9の外管は、ボーリング時に挿入したケーシング19をそのまま使用する。
生産井9の上部11は調節弁13に接続されている。生産井9の上部11側の温度と圧力は常時計測されており、生産井9の上部11側の温度または圧力が設定値より下がった場合には、調節弁13を「開」にして、地熱流体の自然の圧力を利用して地熱流体を通過させて生産井9から取り出す。地熱流体を通過させる過程で、地熱交換器1の外管が加熱される。地熱流体は、地熱帯の圧力があるため、生産井9上部の圧力を調節した圧力水とすることで、外管への熱移動が効率よくなされる。
調節弁13は、生産井9の上部11側の温度または圧力に応じて開度が調節される。調節弁13の開度を調節することにより、地熱流体の取り出し量を調節して、取出す地熱流体の量を必要となる熱量分だけとすることができ、環境に配慮するシステムとすることができる。
生産井9の外部に取り出された地熱流体は、気水分離器14で減圧して、蒸気分と温水分とに分離される。蒸気分は大気開放させ、温水分は予熱槽15に送られて、復水器8にて冷却されたタービン作動水を加熱する。これによりシステム全体の熱効率が向上する。
気水分離器14で温水となった地熱流体は、移送ポンプ16によって還元井に送られて地中に戻され、温泉水の減少防止に役立たせる。取出された地熱流体は、地熱帯4特有の不純物を含んでいるが、タービン系統へ地熱流体が入らない構造となって、タービン作動水とは完全に分離されているため、不純物の影響を受けることはない。
図4に、本発明の第四実施形態に係る地熱交換器と地熱発電装置を示す。
図4において、地熱交換器1は、地中に設けられ地上から水が供給される水注入管2と、水注入管2の内側に配置された蒸気取出管3と、水注入管2と蒸気取出管3との間に設けられた中管24とを備えている。従って、外管である水注入管2と、内管である蒸気取出管3と、その中間領域に位置する中管24とからなる3重管構造となっている。
蒸気取出管3には、その下部領域に、複数の噴出口5が設けられており、水注入管2と蒸気取出管3とは、この噴出口5によって開口状態となっている。蒸気取出管3はタービン6に接続されており、蒸気取出管3内底部の圧力は、タービン6が必要とする圧力以下に減圧されている。
水注入管2に自然の落差を利用して供給された水は、水注入管2の底部付近において、地上からの深さにほぼ比例した圧力が加えられ、地熱帯4から熱が供給されて高温圧力水となる。蒸気取出管3内は減圧されているため、この圧力差を利用して、高温圧力水は矢印で示すように、噴出口5から噴霧状態で蒸気取出管3内へ噴き出し、タービン6が必要とする圧力と、水注入管2の底部との圧力差を利用して気化して蒸気単相流に変換される。地下にて生成された蒸気単相流は、蒸気取出管3とタービン6との圧力差で移動し、タービン6を回す動力となる。この動力によって発電機7により発電がなされる。タービン6を出た蒸気はその後、復水器8にて冷却水により冷却されて水に戻り、再び水注入管2に供給される。この繰り返しにより、継続的に発電がなされる。必要に応じて、補給水は補給水槽12から補給される。
中管24の上側から下側に向かって圧縮蒸気が下降し、蒸気取出管3の底部には、中管24を下降した圧縮蒸気が蒸気取出管3に向かって噴出する圧縮蒸気噴出口25が設けられている。
蒸気取出管3の出口側に蒸気ヘッダー18、ブロワー26が取り付けられている。蒸気ヘッダー18を通過した蒸気の一部は、ブロワー26に送られ、ブロワー26によって中管24の上部から下部に対して圧力をかけて、圧縮蒸気を送り込み、循環させる。
運転初期は、中管24の最下部へ向けて圧縮された空気を送り、中管24下部から圧縮蒸気噴出口25を介して、内管である蒸気取出管3に向かって上向きに噴出させる。噴出された圧縮空気は内管である蒸気取出管3を通って、蒸気ヘッダー18へ戻り、循環ラインを構成する。運転状態に入ると、圧縮空気には気化された蒸気が混入することになるが、熱効率アップのために、空気分を外部に放出させてブロワー26に影響が出ないようにする。ブロワー26の動力として発電出力の一部を使うことができる。
ブロワー26の出口側に加熱器27が取り付けられており、ブロワー26から噴出す圧縮された循環用蒸気は、加熱器27によって加熱される。加熱する熱源として発電出力の一部を使うことができる。
水注入管2と蒸気取出管3と中管24とは生産井9内に設置され、生産井9の上部11は調節弁13に接続されるとともに生産井9の下部10は開放されて、地熱流体が生産井9内に流入し3重管の外管である水注入管2の外側を通過する構造となっており、地熱帯4の熱源が熱交換時に冷却されることを抑制し3重管を加熱するための熱が地熱流体によって供給される。生産井9の外管は、ボーリング時に挿入したケーシング19をそのまま使用する。
生産井9の上部11は調節弁13に接続されている。生産井9の上部11側の温度と圧力は常時計測されており、生産井9の上部11側の温度または圧力が設定値より下がった場合には、調節弁13を「開」にして、地熱流体の自然の圧力を利用して地熱流体を通過させて生産井9から取り出す。地熱流体を通過させる過程で、地熱交換器1の外管が加熱される。地熱流体は、地熱帯の圧力があるため、生産井9上部の圧力を調節した圧力水とすることで、外管への熱移動が効率よくなされる。
調節弁13は、生産井9の上部11側の温度または圧力に応じて開度が調節される。調節弁13の開度を調節することにより、地熱流体の取り出し量を調節して、取出す地熱流体の量を必要となる熱量分だけとすることができ、環境に配慮するシステムとすることができる。
生産井9の外部に取り出された地熱流体は、気水分離器14で減圧して、蒸気分と温水分とに分離される。蒸気分は大気開放させ、温水分は予熱槽15に送られて、復水器8にて冷却されたタービン作動水を加熱する。これによりシステム全体の熱効率が向上する。
気水分離器14で温水となった地熱流体は、移送ポンプ16によって還元井に送られて地中に戻され、温泉水の減少防止に役立たせる。取出された地熱流体は、地熱帯4特有の不純物を含んでいるが、タービン系統へ地熱流体が入らない構造となって、タービン作動水とは完全に分離されているため、不純物の影響を受けることはない。
上述したいずれの実施形態においても、抗井の高温地帯の深度が大きい場合、水注入管2に供給する高度処理水の水位を低くすることにより、地表面に近い低温地帯20に接する水注入管2には空気層17が形成されるため、これにより断熱効果を向上することができる。また、水注入管2下部における地熱帯4と接する面は、熱伝導特性に優れた材質のものを使用して、地熱を吸収しやすいようにする。
本発明の第一実施形態から第三実施形態においては、地熱交換器1は、少なくとも1つの水注入管2と少なくとも1つの蒸気取出管3とが組み合わされてなる挿入管が、複数の生産井9に対して挿入されて構成され、蒸気取出管3の出口が並列に接続されて、それぞれの生産井9を用いて得られる蒸気が合計して採集され、採集された蒸気の圧力を均一化する蒸気ヘッダー18を備えている構成とすることができる。
また、本発明の四実施形態においては、地熱交換器1は、少なくとも1つの水注入管2と少なくとも1つの蒸気取出管3と少なくとも1つの中管30とが組み合わされてなる挿入管が、複数の生産井9に対して挿入されて構成され、蒸気取出管3の出口が並列に接続されて、それぞれの生産井9を用いて得られる蒸気が合計して採集され、採集された蒸気の圧力を均一化する蒸気ヘッダー18を備えている構成とすることができる。
1つの生産井9に対して1つの挿入管を挿入して使用することも可能であるが、ボーリングする場所によって、温度・圧力ともそれぞれ異なるため、発電に利用した場合に1つの生産井9に対する発電出力がそれぞれ違うこととなる。そのため、複数の生産井9に対して、挿入管の蒸気取出管3の出口を並列につなぎ、それぞれの生産井9を用いて得られる蒸気を合計して採集することで、タービン・復水器・発電機・変圧器等の容量を大きく設計することができ、発電所全体の効率がアップするという利点がある。また、蒸気ヘッダー18を配置することにより、採集された蒸気の圧力の均一化を図ることができ、圧力が均一化された蒸気を単機のタービンに供給することができる。
例えば、3つの生産井9を使用する場合、それぞれの生産井9での熱出力を発電機出力に換算して、1号井500kW、2号井400kW、3号井600kWである場合、3ユニット独立で発電システムを構築するより、これらを合計して、1号井+2号井+3号井=1500kWの1ユニットとして設計すれば、全体の出力は同じでも、タービン・復水器・発電機・変圧器の容量を大きく設計することができ、電気機器の効率は容量によってアップするため、発電に利用した場合には発電所全体の効率がアップすることになる。また、工事費等の建設費を格段に安くすることができる。
また、地熱交換器1の設置にあたっては、新設の生産井を用いることができる他、既存の設備、例えば、既存の地熱発電所に付帯する生産井であって、空の生産井や休止中の生産井を用いることができる。第一実施形態から第三実施形態においては、このような生産井に対して、水注入管2と蒸気取出管3とが組み合わされて構成される挿入管を挿入して用いることができ、第四実施形態においては、水注入管2と蒸気取出管3と中管24とが組み合わされて構成される挿入管を挿入して用いることができる。特に、蒸気単相流として地中から取出すことにより、挿入管の径を小さくすることができるため、使用できる生産井の自由度が高まり、既存の生産井の有効利用を促進することができる。
図5から図8に、加圧ポンプが地上に配置されている形態を示す。
図5は、第一実施形態において加圧ポンプ28を付加したものであり、図6は、第二実施形態において加圧ポンプ28を付加したものであり、図7は、第三実施形態において加圧ポンプ28を付加したものであり、図8は、第四実施形態において加圧ポンプ28を付加したものである。いずれの場合においても、水注入管2に供給される水を加圧するための加圧ポンプ28が地上に配置されている。水注入管2に供給される水は、地上にて加圧ポンプ28によって加圧されるため、水注入管2の下部においては、この加圧による圧力と、地上からの深さにほぼ比例した圧力を合計した加圧水となる。
図1から図4に示すように、本発明は、自然水圧で加圧されることを基本としているが、地熱帯によっては、地熱帯深度ごとに高温領域が出てくる場合がある。このような状況下において、水注入管2の深さによって温度が飽和温度を超えると、水注入管2内で水が沸騰して蒸気になり、システムに影響をおよぼすことが起こりうる。加圧ポンプ28は、この状況に対応するための手段であり、図5から図8に示すように、水注入管2に対して地上から加圧ポンプ28で加圧することにより、注入された水が水注入管2内で沸騰することを防止できる。そのため、水注入管2内で蒸気が発生することなく、水注入管2の下部から噴出口5を介してスムーズに蒸気に変換させることができる。また、生産される蒸気の圧力を高くすることができるため、発電出力を大幅に高くすることができる。
上述したように、本発明によると、熱交換という物理現象において、熱交換の対象となる相手が冷却されるという、2重管式地熱発電のリスクを大幅に回避することができる。また、使用する蒸気、熱水によって不純物が装置に付着することがなく、熱効率に優れた熱交換が可能であり、地熱帯付近における環境に悪影響を及ぼすことの少ない、新しい地熱発電装置を実現することができる。
本発明の地熱交換器および地熱発電装置は、沸騰水型地熱発電に応用が可能であり、従来型地熱発電方式である、フラッシュ型、ダブルフラッシュ型、バイナリー発電方式の生産井と一部を共用することが可能であるため、地熱発電全般の普及に大きく貢献できる。
1 地熱交換器
2 水注入管
3 蒸気取出管
4 地熱帯
5 噴出口
6 タービン
7 発電機
8 復水器
9 生産井
10 生産井の下部
11 生産井の上部
12 補給水槽
13 調節弁
14 気水分離器
15 予熱槽
16 移送ポンプ
17 空気層
18 蒸気ヘッダー
19 ケーシング
20 低温地帯
21 加熱器
22 ブロワー
23 加熱器
24 中管
25 圧縮蒸気噴出口
26 ブロワー
27 加熱器
28 加圧ポンプ

Claims (9)

  1. 地中に設けられ地上から水が供給される水注入管と、前記水注入管の内側に配置されて複数の噴出口を有する蒸気取出管と、前記水注入管と前記蒸気取出管との間に設けられた中管とを備えた3重管構造であり、前記蒸気取出管内底部の圧力は、タービンが必要とする圧力以下に減圧されており、前記水注入管内の水に対して地熱帯から熱が供給されて生成される高圧熱水が前記噴出口を介して蒸気取出管内で蒸気単相流に変換されて地上に取出される地熱交換器であって、前記中管の上側から下側に向かって圧縮蒸気が下降し、前記蒸気取出管の底部には、前記中管を下降した圧縮蒸気が前記蒸気取出管に向かって噴出する圧縮蒸気噴出口が設けられており、前記水注入管と前記蒸気取出管と前記中管とは生産井内に設置され、前記生産井の上部は調節弁に接続され、前記生産井の下部は開放されて地熱流体が前記生産井内に流入し、前記水注入管と前記蒸気取出管と前記中管とによって構成される3重管の外管の外側を通過する構造となっていることで、地熱帯の熱源が熱交換時に冷却されることを抑制し3重管を加熱するための熱が地熱流体によって供給されることを特徴とする地熱交換器。
  2. 少なくとも1つの前記水注入管と少なくとも1つの前記蒸気取出管と少なくとも1つの前記中管とが組み合わされてなる挿入管が、複数の生産井に対して挿入されて構成され、前記蒸気取出管の出口が並列に接続されて、それぞれの生産井を用いて得られる蒸気が合計して採集され、採集された蒸気の圧力を均一化する蒸気ヘッダーを備えていることを特徴とする請求項記載の地熱交換器。
  3. 前記生産井の上部側の温度または圧力が設定値より低下したときには、前記調節弁が開いて前記地熱流体が取り出されることを特徴とする請求項1または2記載の地熱交換器。
  4. 前記調節弁は、前記生産井の上部側の温度または圧力に応じて開度が調節されることを特徴とする請求項記載の地熱交換器。
  5. 前記調節弁を介して取り出された前記地熱流体は、気水分離器によって蒸気分と温水分とに分離され、温水分は予熱槽に送られてタービン作動水を加熱することを特徴とする請求項3または4記載の地熱交換器。
  6. 前記水注入管に供給される水の水位を低くすることによって、前記水注入管の上部に空気層が形成されることによる断熱部が、地表面に近い低温地帯に接する領域に対して設けられていることを特徴とする請求項1からのいずれかに記載の地熱交換器。
  7. 前記水注入管に供給される水を加圧するための加圧ポンプが地上に配置されていることを特徴とする請求項1からのいずれかに記載の地熱交換器。
  8. 前記生産井は、既存の坑井であることを特徴とする請求項1からのいずれかに記載の地熱交換器。
  9. 請求項1からのいずれかに記載の地熱交換器を用いて発電を行うことを特徴とする地熱発電装置。
JP2016098359A 2015-12-08 2016-05-17 地熱交換器および地熱発電装置 Expired - Fee Related JP5999827B1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015239687 2015-12-08
JP2015239687 2015-12-08

Publications (2)

Publication Number Publication Date
JP5999827B1 true JP5999827B1 (ja) 2016-09-28
JP2017106430A JP2017106430A (ja) 2017-06-15

Family

ID=56997696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016098359A Expired - Fee Related JP5999827B1 (ja) 2015-12-08 2016-05-17 地熱交換器および地熱発電装置

Country Status (1)

Country Link
JP (1) JP5999827B1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6067173B1 (ja) * 2016-09-30 2017-01-25 俊一 田原 地熱交換器および地熱発電装置
JP6403361B1 (ja) * 2018-02-20 2018-10-10 株式会社エスト 地熱交換システムおよび地熱発電システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101896092B1 (ko) * 2017-11-17 2018-09-06 (주)중원엔지니어링 수증기 순환식 개방형 지열 시스템
JP7307949B2 (ja) * 2019-11-28 2023-07-13 株式会社リビエラ 地中熱利用装置
JP7320271B2 (ja) * 2020-05-16 2023-08-03 一般社団法人ハイパーエネルギー協会 地熱交換器および地熱発電装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103122A (ja) * 1973-02-05 1974-09-30
JPH01232175A (ja) * 1988-03-11 1989-09-18 Japan Metals & Chem Co Ltd 地熱利用動力変換装置
JPH085162A (ja) * 1994-06-17 1996-01-12 Fujikura Ltd 地熱抽出装置
JP2008292030A (ja) * 2007-05-23 2008-12-04 Eco Power:Kk 地中熱利用システム
JP2013164062A (ja) * 2012-01-10 2013-08-22 Kyushu Power Service:Kk 地熱交換器および地熱発電装置
JP2013543948A (ja) * 2010-11-16 2013-12-09 イナージオ エルエルシー エネルギー抽出のためのシステムおよび方法
JP5731051B1 (ja) * 2014-06-05 2015-06-10 俊一 田原 沸騰水型地熱交換器および沸騰水型地熱発電装置
JP5791836B1 (ja) * 2015-02-16 2015-10-07 俊一 田原 沸騰水型地熱交換器および沸騰水型地熱発電装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103122A (ja) * 1973-02-05 1974-09-30
JPH01232175A (ja) * 1988-03-11 1989-09-18 Japan Metals & Chem Co Ltd 地熱利用動力変換装置
JPH085162A (ja) * 1994-06-17 1996-01-12 Fujikura Ltd 地熱抽出装置
JP2008292030A (ja) * 2007-05-23 2008-12-04 Eco Power:Kk 地中熱利用システム
JP2013543948A (ja) * 2010-11-16 2013-12-09 イナージオ エルエルシー エネルギー抽出のためのシステムおよび方法
JP2013164062A (ja) * 2012-01-10 2013-08-22 Kyushu Power Service:Kk 地熱交換器および地熱発電装置
JP5731051B1 (ja) * 2014-06-05 2015-06-10 俊一 田原 沸騰水型地熱交換器および沸騰水型地熱発電装置
JP5791836B1 (ja) * 2015-02-16 2015-10-07 俊一 田原 沸騰水型地熱交換器および沸騰水型地熱発電装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6067173B1 (ja) * 2016-09-30 2017-01-25 俊一 田原 地熱交換器および地熱発電装置
JP6403361B1 (ja) * 2018-02-20 2018-10-10 株式会社エスト 地熱交換システムおよび地熱発電システム
JP2019143517A (ja) * 2018-02-20 2019-08-29 株式会社エスト 地熱交換システムおよび地熱発電システム

Also Published As

Publication number Publication date
JP2017106430A (ja) 2017-06-15

Similar Documents

Publication Publication Date Title
JP5791836B1 (ja) 沸騰水型地熱交換器および沸騰水型地熱発電装置
JP5999827B1 (ja) 地熱交換器および地熱発電装置
JP5731051B1 (ja) 沸騰水型地熱交換器および沸騰水型地熱発電装置
JP5839531B1 (ja) 地熱交換器および地熱発電装置
JP4927136B2 (ja) 地熱発電装置
JP6067173B1 (ja) 地熱交換器および地熱発電装置
US11255576B2 (en) Closed loop energy production from producing geothermal wells
JP5917352B2 (ja) 蒸気発生システム、地熱発電システム、蒸気発生方法及び地熱発電方法
US20120144829A1 (en) Direct exchange geothermal refrigerant power advanced generating system
JP5839528B1 (ja) 温度低下補償型地熱交換器および温度低下補償型地熱発電装置
US20110041500A1 (en) Supplemental heating for geothermal energy system
JP6085645B2 (ja) 地熱交換器および地熱発電装置
JP6176890B1 (ja) 地熱交換器および地熱発電装置
US20120312016A1 (en) Geothermal Energy Method and Apparatus
JP2016164395A (ja) 地熱発電システム及び地熱発電方法
AU2010206101C1 (en) Isaakidis high temperature engineered geothermal systems (EGS)
CN205789133U (zh) 一种非能动核电站辅助降压系统
JP6695561B1 (ja) 地熱交換器および地熱発電装置
US20160010630A1 (en) Isaakidis thermal engineered systems
US11434880B1 (en) Renewable geothermal energy harvesting systems and methods
JP7320271B2 (ja) 地熱交換器および地熱発電装置
JP6403361B1 (ja) 地熱交換システムおよび地熱発電システム
US20210285342A1 (en) The method of conversion of thermal energy into mechanical energy and a thermo-hydrodynamic converter
DE102011011834A1 (de) Anlage zur Nutzung von aus geothermischen Quellen gewonnener Wärmeenergie

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160826

R150 Certificate of patent or registration of utility model

Ref document number: 5999827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees