WO2018214617A1 - 像素电路、显示面板及其驱动方法 - Google Patents

像素电路、显示面板及其驱动方法 Download PDF

Info

Publication number
WO2018214617A1
WO2018214617A1 PCT/CN2018/078838 CN2018078838W WO2018214617A1 WO 2018214617 A1 WO2018214617 A1 WO 2018214617A1 CN 2018078838 W CN2018078838 W CN 2018078838W WO 2018214617 A1 WO2018214617 A1 WO 2018214617A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
circuit
electrically connected
touch
control
Prior art date
Application number
PCT/CN2018/078838
Other languages
English (en)
French (fr)
Inventor
马占洁
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/084,387 priority Critical patent/US10585514B2/en
Publication of WO2018214617A1 publication Critical patent/WO2018214617A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0852Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor being a dynamic memory with more than one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes

Definitions

  • Embodiments of the present disclosure relate to a pixel circuit, a display panel, and a driving method thereof.
  • the Organic Light Emitting Diode (OLED) display panel has the characteristics of wide viewing angle, high contrast, and fast response. Moreover, the organic light emitting diode display panel has an advantage of higher luminance, lower driving voltage, and the like than the inorganic light emitting display device. Due to the above characteristics and advantages, an organic light emitting diode (OLED) display panel has been widely received by people and can be applied to devices having display functions such as mobile phones, displays, notebook computers, digital cameras, instrumentation, and the like.
  • At least one embodiment of the present disclosure provides a pixel circuit including a light emitting element, an illumination control circuit, a touch detection circuit, and a signal line.
  • the light-emitting control circuit is electrically connected to the light-emitting element and configured to drive the light-emitting element to emit light;
  • the touch detection circuit is configured to sense the intensity of the light incident thereon for determining whether there is a touch action;
  • the signal line is configured to be illuminated and controlled
  • the input of the circuit is electrically coupled to the output of the touch detection circuit.
  • the touch detection circuit includes a photosensitive element configured to convert light incident thereon into a sensing electrical signal.
  • the touch detection circuit further includes an amplification circuit configured to amplify a sensing electrical signal output by the photosensitive element to enhance the touch Control the signal-to-noise ratio of the touch electrical signal of the detection circuit.
  • the touch detection circuit includes a first transistor, a second transistor, a third transistor, a first capacitor, and a first node; a photosensitive element, wherein a second end of the first transistor is electrically connected to the first node; the amplifying circuit includes the second transistor and the first capacitor, and a control end of the second transistor is electrically connected To the first node, a first end of the second transistor is electrically connected to a first end of the third transistor, and a second end of the second transistor is electrically connected to a second end of the first capacitor a first end of the first capacitor is electrically connected to the first node; a second end of the third transistor is electrically connected to the signal line.
  • the light emission control circuit includes a light emission driving circuit, a light emission selection circuit, and a second capacitance.
  • An illumination driving circuit configured to drive the light emitting element to emit light; a light emitting selection circuit configured to selectively write a data signal to a control end of the light emitting driving circuit; and a second capacitor configured to store the data signal and maintain the same At the control end of the illumination driving circuit.
  • the light emission control circuit further includes a second node;
  • the light emission driving circuit includes a fourth transistor, and a control end of the fourth transistor is electrically connected to the a second node, the first end of the fourth transistor is electrically connected to the second end of the light emitting element, and the second end of the fourth transistor is configured to be electrically connected to the first power end;
  • the light emitting selection circuit comprises a fifth transistor, a first end of the fifth transistor is electrically connected to the first end of the signal line, a second end of the fifth transistor is electrically connected to the second node; One end is electrically connected to the second node, and the second end of the second capacitor is electrically connected to the second end of the fourth transistor; the first end of the light emitting element is electrically connected to the second power terminal.
  • the touch detection circuit includes a first transistor
  • the illumination control circuit includes a fourth transistor
  • the first transistor is a bottom gate transistor
  • the fourth transistor is a top gate type transistor
  • the active layers of the first transistor and the fourth transistor are formed in the same layer.
  • At least one embodiment of the present disclosure provides a display panel including an array of pixel cells and a write readout selection circuit.
  • the at least one pixel unit includes the pixel circuit described above;
  • the write readout selection circuit includes a first end, a second end, and a third end, the third end is electrically connected to the signal line of the pixel circuit, and the first end is electrically connected to the data drive
  • the second end of the circuit is electrically connectable to the touch drive circuit;
  • the write read select circuit is configured to electrically connect the first end to the third end or to electrically connect the second end and the third end.
  • the write readout selection circuit is configured to electrically connect the first end and the third end in a display phase to pass the pixel a signal line of the circuit inputs a display data signal to an illumination control circuit of the pixel circuit; the second end and the third end are electrically connected in a photo sensing read phase to be read via a signal line of the pixel circuit a touch electrical signal of the touch detection circuit of the pixel circuit.
  • the write readout selection circuit includes a first control transistor and a second control transistor; a first end of the first control transistor is electrically connected to the a signal line of the pixel circuit, the second end of the first control transistor is configured to be electrically connectable to the data driving circuit; the first end of the second control transistor is electrically connected to the signal line of the pixel circuit, the The second end of the second control transistor is configured to be electrically connectable to the touch drive circuit.
  • the display panel provided by at least one embodiment of the present disclosure further includes a touch driving circuit and a data driving circuit.
  • the second end of the first control transistor is electrically connected to the data driving circuit; the second end of the second control transistor is electrically connected to the touch driving circuit.
  • At least one embodiment of the present disclosure provides a display panel further including a voltage selection circuit configured to electrically connect an input end of the touch detection circuit of the pixel circuit to a first input power source or a second input power supply.
  • the voltage selection circuit includes a third control transistor and a fourth control transistor; a first end of the third control transistor is electrically connected to the pixel circuit An input end of the touch detection circuit, the second end of the third control transistor is configured to be electrically connected to the first input power; the first end of the fourth control transistor is electrically connected to the touch of the pixel circuit Controlling the input of the detection circuit, the second end of the fourth control transistor is configured to be electrically connectable to the second input power source.
  • At least one column of the pixel units includes the pixel circuits of any of claims 1-7 and share the same signal line.
  • At least one embodiment of the present disclosure provides a driving method of a display panel, the driving method of the display panel includes: inputting a display data signal to a light emitting control circuit of the pixel circuit via a signal line of the pixel circuit during a display phase to drive the pixel The circuit emits light; and in the light sensing reading stage, the touch electric signal of the touch detection circuit of the pixel circuit is read through the signal line of the pixel circuit to determine whether there is a touch action.
  • the display stage further includes a reset phase and a sensing phase; the driving method further includes: in the reset phase, to the pixel circuit Writing a first voltage to an input end of the touch detection circuit; writing a second voltage to an input end of the touch detection circuit of the pixel circuit during the sensing phase, wherein the second voltage is less than the first A voltage.
  • FIG. 1 is a schematic block diagram of a pixel circuit according to Embodiment 1 of the present disclosure
  • FIG. 2 is an exemplary circuit diagram of the pixel circuit shown in FIG. 1;
  • FIG. 3 is an exemplary circuit diagram of a touch detection circuit of the pixel circuit shown in FIG. 1;
  • FIG. 4A is an exemplary circuit diagram of an illumination control circuit of the pixel circuit shown in FIG. 1;
  • 4B is another exemplary circuit diagram of an illumination control circuit of the pixel circuit shown in FIG. 1;
  • FIG. 5 is a schematic diagram of a display panel according to Embodiment 2 of the present disclosure.
  • FIG. 6 is an exemplary circuit diagram of the display panel shown in FIG. 5;
  • FIG. 7 is an exemplary flowchart of a driving method of a display panel according to Embodiment 3 of the present disclosure.
  • FIG. 8 is an exemplary timing chart of the driving method illustrated in FIG. 7; FIG.
  • FIG. 9 is an exemplary schematic plan view of a display panel according to Embodiment 4 of the present disclosure.
  • Figure 10 is a cross-sectional view of the display panel shown in Figure 9 taken along line A-A'.
  • a OLED display panel with a touch function generally uses a capacitive touch technology.
  • the OLED display panel based on the capacitive touch technology needs to adopt two independent manufacturing process steps (that is, the capacitive touch substrate fabrication process and the OLED display substrate fabrication process), the process flow and product structure complex.
  • the transistor can be divided into N-type and P-type transistors according to the characteristics of the transistor.
  • the embodiment of the present disclosure elaborates the technical solution of the present disclosure by taking the transistor as a P-type transistor as an example, but the implementation of the present disclosure.
  • the transistor of the example is not limited to a P-type transistor, and one skilled in the art can also implement one or more transistors in the embodiments of the present disclosure by using an N-type transistor according to actual needs. These transistors are, for example, thin film transistors.
  • Embodiments of the present disclosure provide a pixel circuit, a display panel, and a driving method thereof, implement a display panel with a touch function, and optimize a structural layout of a pixel circuit and a display panel.
  • At least one embodiment of the present disclosure provides a pixel circuit including a light emitting element, an illumination control circuit, a touch detection circuit, and a signal line.
  • the light-emitting control circuit is electrically connected to the light-emitting element and configured to drive the light-emitting element to emit light;
  • the touch detection circuit is configured to sense the intensity of the light incident thereon for determining whether there is a touch action;
  • the signal line is configured to be illuminated and controlled
  • the input of the circuit is electrically coupled to the output of the touch detection circuit.
  • At least one embodiment of the present disclosure provides a display panel including an array of pixel cells and a write readout selection circuit.
  • the at least one pixel unit includes the pixel circuit described above;
  • the write readout selection circuit includes a first end, a second end, and a third end, the third end is electrically connected to the signal line of the pixel circuit, and the first end is electrically connected to the data drive
  • the second end of the circuit is electrically connectable to the touch drive circuit;
  • the write read select circuit is configured to electrically connect the first end to the third end or to electrically connect the second end and the third end.
  • At least one embodiment of the present disclosure provides a driving method of a display panel, the driving method of the display panel includes: inputting a display data signal to a light emitting control circuit of the pixel circuit via a signal line of the pixel circuit during a display phase to drive the pixel The circuit emits light; and in the light sensing reading stage, the touch electric signal of the touch detection circuit of the pixel circuit is read through the signal line of the pixel circuit to determine whether there is a touch action.
  • FIG. 1 is a schematic block diagram of a pixel circuit 100 according to Embodiment 1 of the present disclosure.
  • the pixel circuit 100 may include a light emitting element 110 (for example, the light emitting element EL shown in FIG. 2), an illumination control circuit 120, a touch detection circuit 130, and a signal line 140.
  • the specific form of the light-emitting element 110, the light-emitting control circuit 120, and the touch-sensing circuit 130 can be set according to specific application requirements, which is not specifically limited in the embodiment of the present disclosure.
  • a pixel circuit 100 provided in Embodiment 1 of the present disclosure may be implemented as a circuit as shown in FIG. 2.
  • the light emitting element 110 may be an organic light emitting element, and the organic light emitting element may be, for example, an organic light emitting diode, but embodiments of the present disclosure are not limited thereto.
  • the signal line 140 can include a first end 141 and a second end 142, and the signal line 140 (eg, the first end 141 of the signal line) is configured to be coupled to the input 163 of the illumination control circuit 120 and the output of the touch detection circuit 130.
  • the terminal 162 is electrically connected (see FIG. 3 and FIG. 4(a), FIG.
  • the display data signal can be input to the light emission control circuit 120 via the signal line 140 of the pixel circuit 100 at different time periods, or via the pixel.
  • the signal line 140 of the circuit 100 reads the touch electric signal of the touch detection circuit 130 of the pixel circuit 100, thereby optimizing the layout of the pixel circuit 100, saving manufacturing costs, and reducing the operating power consumption of the product.
  • touch detection circuit 130 provided by the embodiment of the present disclosure is described in detail below with reference to FIG.
  • the touch detection circuit 130 can be configured to sense the intensity of the light incident thereon, and the generated signal can be used to determine whether there is a touch action.
  • the touch detection circuit 130 may be configured to determine whether there is a touch action by the intensity of the light emitted by the light-emitting element EL to which the reflection (for example, reflected by a finger or a stylus performing a touch operation) is sensed.
  • the touch detection circuit 130 may be further configured to determine whether there is a touch action by sensing the intensity of the ambient light incident thereon.
  • the embodiment of the present disclosure configures the touch detection circuit 130 to determine whether there is a touch action by sensing the intensity of the light emitted by the light-emitting element EL reflected thereon.
  • Embodiments of the present disclosure are not limited thereto.
  • the specific form of the touch detection circuit 130 can be set according to specific application requirements, which is not specifically limited in the embodiment of the present disclosure.
  • the touch detection circuit 130 can include a photosensitive element 131 that can be configured to convert light incident thereon into a sensing electrical signal.
  • the photosensitive element 131 may include a first transistor T1, and the first transistor T1 may be, for example, a bottom gate type transistor. Since the first transistor T1 has no occlusion above the channel region, the intensity of the light incident thereon can be sensed. And causing a change in the off-state leakage current of the first transistor T1.
  • the first transistor T1 may include a first end, a second end, and a control end.
  • the first end of the first transistor T1 may be disposed as the input end 161 of the touch detection circuit 130.
  • the control terminal of the first transistor T1 may turn on the first end and the second end when receiving the on signal (for example, a low level signal), and the control terminal of the first transistor T1 receives the cutoff signal ( For example, in the case of a high level signal), the first end and the second end can be disconnected.
  • the control terminal of the first transistor T1 receives the off signal but there is a voltage difference between the first terminal and the second terminal of the first transistor T1, a leakage current may occur in the first transistor T1, and the drain
  • the intensity of the current is increased as the intensity of the light incident on the first transistor T1 is increased, whereby the presence or absence of the touch action can be determined by the strength of the leakage current of the first transistor T1.
  • the touch detection circuit 130 is configured to sense the intensity of the light emitted by the light-emitting element EL reflected thereon to determine whether there is a touch action
  • the touch detection circuit 130 when there is a touch operation of the pixel circuit 100, for example, for example The occlusion of the finger, the light emitted by the light-emitting element EL is reflected by the finger and is incident on the first transistor T1, so that the light intensity perceived by the first transistor T1 is increased, and the sensing electrical signal obtained by the first transistor T1 is converted (for example) , the current signal) is enhanced.
  • the presence of the touch operation at the corresponding position of the pixel circuit 100 and the intensity of the sensing electrical signal outputted by the first transistor T1 can be determined in the case where the intensity of the sensing electrical signal output by the first transistor T1 is greater than a predetermined value.
  • the predetermined value is less than or equal to the predetermined value, it is determined that there is no touch operation at the corresponding position of the pixel circuit 100, and thus the display panel including the pixel circuit 100 can implement the touch function.
  • the touch detection circuit 130 may further include an amplification circuit 132.
  • the amplification circuit 132 may be configured to amplify the sensing electrical signal output by the photosensitive element 131 to improve the signal-to-noise ratio of the touch electrical signal of the touch detection circuit 130.
  • the photosensitive circuit may further include a touch selection circuit, and the touch selection circuit may be configured to control the time for reading the touch electrical signal.
  • the specific configuration of the touch detection circuit 130 and the touch selection circuit may be set according to specific application requirements, which is not specifically limited in the embodiment of the present disclosure.
  • the amplifying circuit 132 may include the second transistor T2 and the first capacitor C1; for example, the touch selection circuit may include the third transistor T3; for example, the second transistor T2 and the third transistor T3 may be top-gate transistors, or It is a bottom gate transistor.
  • the touch detection circuit 130 may further include a first node 151.
  • the second end of the first transistor T1 can be electrically connected to the first node 151.
  • the control terminal of the second transistor T2 may be electrically connected to the first node 151, the first end of the second transistor T2 may be electrically connected to the first end of the third transistor T3, and the second end of the second transistor T2 may be electrically connected. It is to the second end of the first capacitor C1 and is electrically connected to the reference voltage terminal Vref.
  • the first end of the first capacitor C1 may be electrically connected to the first node 151, the second end is electrically connected to the reference voltage terminal Vref, and the second end of the third transistor T3 may be electrically connected to the signal line 140 (eg, a signal line) The first end 141).
  • the signal line 140 eg, a signal line
  • the touch detection circuit 130 can implement the touch detection function by the following steps.
  • Step S110 The reset phase is such that the first transistor T1 is in an on state, and the first voltage (reset voltage) is written on the first node 151 via the first end of the first transistor T1.
  • Step S120 The sensing phase is such that the first transistor T1 is in an off state and the second voltage is written on the first end of the first transistor T1, the second voltage being less than the first voltage.
  • Step S130 The touch electric signal reading phase is such that the third transistor T3 is in the conducting phase, and the electrical signal output by the third transistor T3 is read via the signal line 140.
  • a low level signal may be applied to the control terminal of the first transistor T1 to be in an on state, whereby the first voltage may be written in the first via the turned-on first transistor T1.
  • On node 151 the voltage written on the first node 151 can be stored in the first capacitor C1, and the first capacitor C1 can hold it at the control terminal of the second transistor T2.
  • the first voltage written causes the second transistor T2 to be in an off state.
  • the voltages of the control terminal and the second terminal of the second transistor T2 may be the same, that is, the first voltage is equal to the reference voltage Vref, and the lower two are equal.
  • a high level signal can be applied to the control terminal of the third transistor T3 to be in an off state.
  • a high level signal may be applied to the control terminals of the first transistor T1 and the third transistor T3 to bring the first transistor T1 and the third transistor T3 into an off state.
  • the light emitted by the light-emitting element EL is reflected by, for example, a finger, and is incident on the first transistor T1, so the intensity of the light perceived by the first transistor T1 and the leakage current in the first transistor T1.
  • the intensity of the increase increases, the amount of charge loss at the first end of the first capacitor C1 increases, and the amount of voltage drop of the first node 151 increases, and until the second transistor T2 becomes conductive from off.
  • the second transistor T2 becomes conductive even in the presence of a touch action, since the third transistor T3 is in an off state, there is no on-state current in the second transistor T2.
  • a low level signal may be applied to the control terminal of the third transistor T3 to bring the third transistor T3 into an on state.
  • the second transistor T2 is in an on state, thereby flowing current from the reference voltage terminal Vref to the signal line 140 via the second transistor T2 and the third transistor T3, whereby the signal line 140 can acquire the touch detection circuit 130.
  • Touch electric signal For example, the touch electric signal reading stage further includes a second sensing stage, and the second sensing stage is a time period before the third transistor T3 in the touch electric signal reading stage is turned on.
  • the intensity of the touch electrical signal depends on the voltage of the control terminal of the second transistor T2 (that is, the voltage of the first node 151), and the voltage of the control terminal of the second transistor T2 depends on the sensing phase and the second sense.
  • the cumulative value (integral value) of the leakage current of the first transistor T1 in the measurement phase that is, depends on the intensity of the light incident on the first transistor T1.
  • the voltage of the first node 151 is lower in the presence of a touch action, and thus the on-state current intensity of the second transistor T2 in the touch electric signal reading phase and The intensity of the touch electric signal acquired by the signal line 140 is higher, so that the touch operation can be determined at the corresponding position of the pixel circuit 100 if the intensity of the touch electric signal acquired by the signal line 140 is greater than a predetermined value.
  • the predetermined value can be obtained based on experimental measurements.
  • the weak off-state leakage current output by the first transistor T1 can be converted into a stronger on-state output of the second transistor T2.
  • the current can thereby increase the signal to noise ratio of the touch electrical signal of the touch detection circuit 130.
  • the sensing phase and the touch electric signal reading phase can be separated. Therefore, in the case where the touch detecting circuit 130 and the light emitting control circuit 120 share the signal line 140, the sensing can still be performed.
  • the phase is set in the display phase, and the intensity and the signal-to-noise ratio of the touch electrical signal are ensured under the premise that the time length of the touch electric signal reading phase is minimized, that is, the pixel provided in the first embodiment of the present disclosure.
  • the circuit 100 can ensure or enhance the signal to noise ratio of the touch electrical signal while optimizing the circuit layout.
  • the illumination control circuit 120 provided by the embodiment of the present disclosure will be described in detail below with reference to FIG. 1 , FIG. 2 , FIG. 4A and FIG.
  • the light emission control circuit 120 may be electrically connected to the light emitting element EL and configured to drive the light emitting element EL to emit light.
  • the light emission control circuit 120 may include a light emission driving circuit 121, a light emission selection circuit 122, and a second capacitance 123.
  • the light emitting driving circuit 121 may be configured to drive the light emitting element EL to emit light;
  • the light emitting selection circuit 122 may be configured to selectively write the data signal to the control end of the light emitting driving circuit 121;
  • the second capacitor 123 eg, the second capacitor C2
  • the specific form of the light-emitting driving circuit 121, the light-emitting selection circuit 122, and the second capacitor 123 may be set according to specific application requirements, which is not specifically limited in the embodiment of the present disclosure.
  • the light emission control circuit 120 can be implemented as a 2T1C circuit that uses two TFTs (Thin-film transistors) and one storage capacitor to drive the light-emitting elements EL (eg, OLEDs) to emit light.
  • TFTs Thin-film transistors
  • EL light-emitting elements
  • Figures 4A and 4B show schematic diagrams of two 2T1C pixel circuits 100, respectively.
  • a 2T1C type illumination control circuit 120 may include a fifth transistor T5 (ie, the illumination selection circuit 122), a fourth transistor T4 (ie, the illumination driving circuit 121), and a second capacitor C2.
  • the control terminal of the fifth transistor T5 can receive the scan signal
  • the first end of the fifth transistor T5 can be electrically connected to the signal line 140 to receive the data signal
  • the second end of the fifth transistor T5 can be electrically connected to the second node. 152, that is, the control terminal of the fourth transistor T4.
  • the first end of the fourth transistor T4 may be electrically connected to the second end of the light emitting element EL (eg, the positive end of the OLED); the second end of the fourth transistor T4 may be electrically connected to the first power terminal VDD, for example,
  • the first power terminal VDD may be a voltage source to output a constant positive voltage, or the first power terminal VDD may also be a current source or the like.
  • the first end of the second capacitor C2 is electrically connected to the second node 152 (ie, the second end of the fifth transistor T5 and the control end of the fourth transistor T4), and the second end of the second capacitor C2 is electrically connected to the The second end of the four transistor T4 and the first power terminal VDD; the first end of the light emitting element EL (for example, the negative terminal of the OLED) is electrically connected to the second power terminal VSS, for example, the second power terminal VSS may be a ground terminal.
  • the 2T1C pixel circuit 100 controls the brightness and darkness (grayscale) of the pixels using the second capacitor C2 and the two TFTs.
  • the data voltage fed through the data line charges the second capacitor C2 via the fifth transistor T5, thereby storing the data voltage In the second capacitor C2, and the stored data voltage can control the conduction degree of the fourth transistor T4, thereby controlling the magnitude of the current flowing through the fourth transistor T4 for driving the OLED to emit light, that is, the current determines The gray level of the pixel illumination.
  • another 2T1C type illumination control circuit 120 also includes a fifth transistor T5, a fourth transistor T4, and a second capacitor C2, but the connection manner thereof is slightly changed.
  • the variation of the illumination control circuit 120 of FIG. 4B with respect to FIG. 4A includes that the second end of the light emitting element EL (eg, the positive terminal of the OLED) is electrically connected to the first power terminal VDD, and the first of the light emitting elements EL The terminal (eg, the negative terminal of the OLED) is electrically coupled to the second terminal of the fourth transistor T4, and the first terminal of the fourth transistor T4 is electrically coupled to the second power terminal VSS.
  • the second end of the second capacitor C2 is connected to the second node 152 (ie, the second end of the fifth transistor T5 and the control end of the fourth transistor T4), and the first end of the second capacitor C2 is connected to the fourth transistor T4.
  • the operation mode of the 2T1C type illumination control circuit 120 is substantially the same as that of the pixel circuit 100 shown in FIG. 4A, and details are not described herein again.
  • the embodiment of the present disclosure is only described by the illumination control circuit 120 as a 2T1C circuit, but the illumination control circuit 120 of the embodiment of the present disclosure is not limited to the 2T1C circuit.
  • the illumination control circuit 120 may also have an electrical compensation function according to specific application requirements.
  • the compensation function can be implemented by voltage compensation, current compensation or hybrid compensation.
  • the illumination control circuit 120 with compensation function can be, for example, 4T1C, 4T2C, 6T1C, and other illumination control circuits 120 with electrical compensation functions, and details are not described herein again. .
  • the illuminating control circuit 120 may further include an external compensation circuit portion, for example, may include a sensing circuit portion to sense the electrical characteristics of the driving transistor or the electrical characteristics of the illuminating element.
  • an external compensation circuit portion for example, may include a sensing circuit portion to sense the electrical characteristics of the driving transistor or the electrical characteristics of the illuminating element.
  • the transistors used in Embodiment 1 and other embodiments of the present disclosure may be thin film transistors or field effect transistors or other switching devices having the same characteristics.
  • the source and drain of the transistor used here can be symmetrical in structure, so the source and drain of the transistor can be physically indistinguishable.
  • one of the first end and the other end are directly described, so that all of the embodiments of the present disclosure
  • the first and second ends of the partial transistor are interchangeable as needed.
  • the first end of the transistor of the embodiment of the present disclosure may be a source, and the second end may be a drain; or the first end of the transistor is a drain and the second end is a source.
  • the display panel including the pixel circuit 100 is provided with a touch function; by inputting the signal line 140 and the input end of the illumination control circuit 120 The output of the control detection circuit 130 is electrically connected such that the illumination control circuit 120 and the touch detection circuit 130 can share the signal line 140, whereby the layout of the pixel circuit 100 can be optimized.
  • the signal-to-noise ratio of the touch electric signal of the touch detecting circuit 130 can be improved; by setting the touch selecting circuit in the touch detecting circuit 130, The signal-to-noise ratio of the touch electrical signal is guaranteed or improved in the case of optimizing the circuit layout.
  • the present embodiment provides a display panel 10.
  • the display panel 10 includes an array of pixel units 240 and a write readout selection circuit 210.
  • FIG. 5 exemplarily shows three rows and three columns of pixel units 240, but embodiments of the present disclosure are not limited thereto, and for example, according to specific application requirements, the display panel 10 may include 1440 lines, 900 columns of pixel units 240.
  • at least one of the pixel units 240 may include any of the pixel circuits provided in the first embodiment.
  • a part of the pixels in the display panel 10 may include the pixel circuit provided in the first embodiment.
  • one pixel unit per ten pixel units may be included in the first embodiment according to the required touch precision.
  • the pixel circuit, or in order to achieve pixel-level touch precision, all of the pixel units 240 of the display panel 10 may include the pixel circuit provided in the first embodiment.
  • at least one column of pixel units 240 of the display panel 10 may include the pixel circuits provided in Embodiment 1, and each of the at least one column of pixel units 240 shares the same signal line.
  • the write readout selection circuit 210 provided in the second embodiment of the present disclosure will be described in detail below with reference to FIGS. 5 and 6.
  • the write readout selection circuit 210 may include a first end 211, a second end 212, and a third end 213, and the third end 213 is electrically connected to the signal line 140 of the pixel circuit, One end 211 can be electrically connected to the data driving circuit 222, and the second end 212 can be electrically connected to the touch driving circuit 221.
  • the write read select circuit 210 is configured to electrically connect the first end 211 to the third end 213 or to electrically connect the second end 212 and the third end 213 for corresponding signal transmission.
  • the write readout selection circuit 210 may be configured to electrically connect the first end 211 and the third end 213 during the display phase, and at this time, the display data signal may be input to the light emission control circuit of the pixel circuit via the signal line 140 of the pixel circuit;
  • the write readout selection circuit 210 can also be configured to electrically connect the second end 212 and the third end 213 during the optical sensing read phase.
  • the touch detection circuit of the pixel circuit can be read via the signal line 140 of the pixel circuit. Touch electric signal.
  • the specific form of the write-read selection circuit 210 can be set according to specific application requirements, which is not specifically limited in the embodiment of the present disclosure.
  • a write readout selection circuit 210 provided in Embodiment 2 of the present disclosure may be implemented as a circuit as shown in FIG. 6.
  • the write read select circuit 210 may include a first control transistor CT1 and a second control transistor CT2; the first end of the first control transistor CT1 (ie, the third end 213 of the write read select circuit) is electrically coupled to The signal line 140 of the pixel circuit, the second end of the first control transistor CT1 (ie, the first end 211 of the write read select circuit) is configured to be electrically connectable to the data drive circuit 222; the first of the second control transistor CT2
  • the terminal ie, the third terminal 213 of the write read select circuit
  • the second terminal of the second control transistor CT2 ie, the second terminal 212 of the write read select circuit It is configured to be electrically connected to the touch driving circuit 221.
  • the display panel 10 may further include a touch driving circuit 221 and a data driving circuit 222 according to specific application requirements.
  • the second end of the first control transistor CT1 is electrically connected to the data driving circuit 222; the second control transistor CT2 The second end is electrically connected to the touch driving circuit 221.
  • the first end 211 of the write read select circuit can be electrically connected to the third end 213 of the write read select circuit by controlling the on and off of the first control transistor CT1 and the second control transistor CT2, or
  • the second terminal 212 of the write sense selection circuit is electrically coupled to the third terminal 213 of the write read select circuit, that is, the data can be turned on and off by controlling the first control transistor CT1 and the second control transistor CT2.
  • the driving circuit 222 is electrically connected to the signal line 140 of the pixel circuit or electrically connects the touch driving circuit 221 to the signal line 140 of the pixel circuit. Therefore, the data driving circuit 222 can input a display data signal to the light emitting control circuit of the pixel circuit via the signal line 140 of the pixel circuit during the display phase; the touch driving circuit 221 can be read through the signal line 140 of the pixel circuit during the light sensing reading phase.
  • the light emission control circuit and the touch detection circuit of the pixel circuit of the display panel 10 provided in the second embodiment of the present disclosure can share the signal line 140, thereby optimizing the layout of the pixel circuit and the display panel 10.
  • the touch driving circuit 221 and the data driving circuit 222 can be implemented in various forms. For example, the two can be implemented by using a single semiconductor chip, or by using the same semiconductor chip, or by using an FPGA circuit or the like.
  • display panel 10 may also include voltage selection circuit 230.
  • the write readout selection circuit 210 provided in the second embodiment of the present disclosure will be described in detail below with reference to FIGS. 5 and 6.
  • voltage selection circuit 230 can be configured to electrically connect input 161 of the touch detection circuitry of the pixel circuit (eg, the first end of the first transistor) to first input power source Vref or second input power source Vini.
  • the specific form of the voltage selection circuit 230 can be set according to specific application requirements, and the embodiment of the present disclosure does not specifically limit this.
  • a voltage selection circuit 230 provided in Embodiment 2 of the present disclosure may be implemented as a circuit as shown in FIG. 6.
  • the voltage selection circuit 230 may include a third control transistor CT3 and a fourth control transistor CT4; the first end of the third control transistor CT3 is electrically connected to the input end 161 of the touch detection circuit of the pixel circuit, The second end of the third control transistor CT3 is configured to be electrically connected to the first input power source Vref; the first end of the fourth control transistor CT4 is electrically connected to the input end 161 of the touch detection circuit of the pixel circuit, and the fourth control transistor CT4 The second end is configured to be electrically connectable to the second input power source Vini.
  • the first input power source Vref and the second input power source Vini may be voltage sources, and the intensity of the first voltage output by the first input power source Vref may be greater than the intensity of the second voltage output by the second input power source Vini.
  • the third control transistor CT3 is turned on and the fourth control transistor CT4 is turned off
  • the first voltage can be written to the input end 161 of the touch detection circuit of the pixel circuit (for example, the first end of the first transistor)
  • the third control transistor CT3 is turned off and the fourth control transistor CT4 is turned on
  • the second voltage can be written to the input terminal 161 of the touch detection circuit of the pixel circuit.
  • a voltage selection circuit 230 provided in Embodiment 2 of the present disclosure can write two voltage signals of different strengths to the input end 161 of the touch detection circuit without setting an AC power source (for example, a voltage source).
  • an AC power source for example, a voltage source
  • the display panel 10 can be provided with a touch function; by setting the write readout selection circuit 210, The signal line 140 of the pixel circuit can be electrically connected to the data driving circuit 222 or the touch driving circuit 221, thereby enabling the data driving circuit 222 to input a display data signal to the light emitting control circuit of the pixel circuit via the signal line 140 of the pixel circuit.
  • the control driving circuit 221 can read the touch electric signal of the touch detection circuit of the pixel circuit via the signal line 140 of the pixel circuit; by setting the voltage selection circuit 230, the touch detection circuit can be used without setting the AC power supply.
  • the input terminal 161 writes two signals of different intensities (for example, voltage signals).
  • the embodiment provides a driving method of the display panel.
  • the driving method of the display panel may include the following steps.
  • Step S210 In the display phase EL, a display data signal is input to the light emission control circuit of the pixel circuit via the signal line of the pixel circuit to drive the pixel circuit to emit light.
  • Step S220 In the light sensing reading phase R, the touch electric signal of the touch detection circuit of the pixel circuit is read through the signal line of the pixel circuit to determine whether there is a touch action.
  • the above steps are not sequential, and it is not required to be accompanied by a light sensing reading phase (touch phase) in each display phase, and for every two or more displays in the case of satisfying the touch time precision.
  • the stage sets a light sensing read phase, thereby reducing power consumption.
  • FIG. 8 is an exemplary timing diagram of the driving method shown in FIG. 7, and the first transistor T1 shown in FIG. 6 of the second embodiment is located at the first row to the third transistor T3 of the nth row, in the first row.
  • the fifth transistor T5 to the nth row and the control terminals of the first control transistor CT1 to the fourth control transistor CT4 are denoted by G1, G31-G3n, G51-G5n, and CG1-CG4, respectively.
  • the length of time of the light sensing reading phase R may be equal to one-half or less to one tenth of the length of the display phase EL.
  • the display phase EL will be described in detail below with reference to FIGS. 7 and 8.
  • the control terminal CG1 of the first control transistor CT1 receives the low level signal
  • the control terminal CG2 of the second control transistor CT2 receives the high level signal
  • the first control The transistor CT1 is turned on
  • the second control transistor CT2 is turned off, whereby the data driving circuit can input the display data signal to the light-emitting control circuit of the pixel circuit via the turned-on first control transistor CT1 and the signal line of the pixel circuit; meanwhile, at the same time,
  • the control terminals G51-G5n of the fifth transistor T5 (not shown in FIGS. 7 and 8 and see FIG.
  • the control terminals G31-G3n of the third transistor T3 (not shown in FIGS. 7 and 8 and see FIG. 2) located in the first to nth rows receive a high level signal, This third transistor T3 is in an off state.
  • the touch detection circuit may include a reset phase RE and a sensing phase SE, and the driving method of the display panel may further include.
  • Step S310 In the reset phase RE, write the first voltage to the input end of the touch detection circuit of the pixel circuit.
  • Step S320 In the sensing phase SE, write a second voltage to the input end of the touch detection circuit of the pixel circuit, the second voltage being less than the first voltage.
  • the control terminal CG3 of the third control transistor CT3 and the control terminal G1 of the first transistor T1 receive the low level signal
  • the control terminal CG4 of the fourth control transistor CT4 receives the high level signal
  • the third control transistor CT3 and the first transistor T1 are turned on, and the fourth control transistor CT4 is turned off, whereby the first voltage can be written to the input end of the touch detection circuit, and the first voltage is written via the turned-on first transistor T1. Entering the first node in the pixel circuit, the first voltage written causes the second transistor T2 in the touch detection circuit to be in an off state.
  • the control terminal CG3 of the third control transistor CT3 and the control terminal G1 of the first transistor T1 receive the high level signal
  • the control terminal CG4 of the fourth control transistor CT4 receives the low level signal.
  • the third control transistor CT3 and the first transistor T1 are turned off, and the fourth control transistor CT4 is turned on, so that the second voltage can be written to the input terminal of the touch detection circuit. Since the second voltage is less than the first voltage, there is a voltage difference between the first end and the second end of the first transistor T1, so the intensity of the leakage current of the first transistor T1 increases as the intensity of the light incident thereon increases. Further, the voltage of the control terminal of the second transistor T2 decreases as the intensity of the light incident on the first transistor T1 increases.
  • the setting manner of the reset phase RE and the sensing phase SE may be set according to specific application requirements, which is not specifically limited in the embodiment of the present disclosure.
  • the reset phase RE and the sensing phase SE may be in parallel with the display phase EL, the start time of the reset phase RE may be at the start time of the display phase EL, and the sensing phase SE is located at the display phase EL.
  • the period after the reset phase RE, at which time the turn-on time of the sensing phase SE of the pixel circuits located in different rows is the same.
  • the time of the start time of the reset phase RE of the pixel circuits of different rows and the time of the start time of the sensing phase SE may be different.
  • the pixels may be turned on line by line.
  • the light sensing reading phase R will be described in detail below with reference to FIGS. 7 and 8.
  • the control terminal CG1 of the first control transistor CT1 receives the high level signal
  • the control terminal CG2 of the second control transistor CT2 receives the low level signal
  • the first control transistor CT1 is turned off, and the second control transistor CT2 is turned on, so that the touch driving circuit can read the touch detection circuit of the touch detection circuit of the pixel circuit via the signal line of the pixel circuit and the second control transistor CT2 that is turned on.
  • the control terminals G31-G3n of the third transistor T3 located in the first to nth rows receive the low-level signal row by row, and thus touch
  • the control driving circuit can read the touch electric signal of the pixel circuit row by row, thereby determining whether there is a touch action and a position where the touch action exists.
  • the control terminals G51-G5n of the fifth transistor T5 (not shown in FIGS. 7 and 8 and see FIG. 2) located in the first to nth rows are shown. Each receives a high level signal, and therefore, the fifth transistor T5 is in an off state, at which time the display panel does not emit light.
  • control terminal G1 of the first transistor T1 and the control terminal CG3 of the third control transistor CT3 may receive a high level signal
  • control terminal CG4 of the fourth control transistor CT4 may receive a low level signal, and thus, the first transistor T1 and The third control transistor CT3 is turned off, and the fourth control transistor CT4 is turned on, whereby the second voltage can be written to the input terminal of the touch detection circuit.
  • the sensing phase SE can still be set in the display phase EL in the case where the touch detection circuit and the light emission control circuit share the signal line, and thus
  • the intensity and the signal-to-noise ratio of the touch electric signal are ensured, that is, the driving method provided by the third embodiment of the present disclosure can use the display with circuit layout optimization.
  • the signal-to-noise ratio of the touch electrical signal is guaranteed or improved.
  • the embodiment provides a display panel 300.
  • the specific structure and process flow of the display panel 300 can be applied to the display panel 10 provided in the second embodiment.
  • the display panel 300 includes an array of light emitting regions 310 and a light sensing region 320.
  • the structure of the display panel 300 will be described in detail below with reference to FIGS. 9 and 10.
  • the arrangement of the light-emitting area 310 and the light-sensing area 320, the area ratio, and the like may be set according to specific application requirements, and the embodiment of the present disclosure does not specifically limit this.
  • the light sensitive region 320 may be disposed between two adjacent light emitting regions 310 in the row direction, however, embodiments of the present disclosure are not limited thereto.
  • the light sensitive region 320 may also be disposed between two adjacent light emitting regions 310 in the column direction, or between adjacent four light emitting regions 310.
  • FIG. 10 is a schematic cross-sectional view along line A-A' of one pixel unit of the display panel 300 shown in FIG.
  • one pixel unit of the display panel 300 shown in FIG. 10 may include a photo transistor 361 (for example, the first transistor in the first embodiment), a driving transistor 362 (for example, the fourth transistor in the first embodiment), and a light emitting device. 363 (for example, the light-emitting element in the first embodiment).
  • the photo transistor 361 is located in the light sensing region 320
  • the driving transistor 362 and the light emitting device 363 are located in the light emitting region 310.
  • the photo transistor 361 is a bottom gate type transistor, and may include a first gate metal layer 343, a first gate insulating layer GI1, a semiconductor layer 344, a passivation layer PVX, and a source/drain metal layer 347 which are sequentially disposed.
  • the driving transistor 362 is a top gate type transistor, and may include a semiconductor layer 344, a second gate insulating layer GI2, a second gate metal layer 346, a passivation layer PVX, and a source/drain metal layer 347 which are sequentially disposed. .
  • the semiconductor layer 344 of the photo transistor 361 and the driving transistor 362, the passivation layer PVX, and the source/drain metal layer 347 can be simultaneously formed, whereby the process flow including the touch function display panel 300 can be simplified.
  • the light emitting device 363 may include an anode layer 348, an organic light emitting layer 350, and a cathode layer 351 which are sequentially disposed.
  • a flat layer PLN may be disposed between the light emitting device 363 and the driving transistor 362, and an anode of the light emitting device 363 may be electrically connected to a source or a drain of the driving transistor 362 through a via H2 in the flat layer PLN.
  • the manufacturing process of the display panel 300 shown in FIG. 10 may include the following steps.
  • Step S310 forming a first gate metal layer 343 on the base substrate 341, and forming a gate of the photo transistor 361 by a patterning process (for example, photoresist coating, exposure, development, etching, stripping, etc.) .
  • a patterning process for example, photoresist coating, exposure, development, etching, stripping, etc.
  • Step S320 forming a first gate insulating layer GI1.
  • Step S330 forming a semiconductor layer 344 (for example, depositing an amorphous silicon layer and performing crystallization of amorphous silicon by a low-temperature crystallization process), and forming an active layer pattern of the photo transistor 361 and the driving transistor 362 by a patterning process .
  • a semiconductor layer 344 for example, depositing an amorphous silicon layer and performing crystallization of amorphous silicon by a low-temperature crystallization process
  • Step S340 forming a second gate insulating layer GI2.
  • Step S350 forming a second gate metal layer 346 and forming a gate of the driving transistor 362 by a patterning process.
  • Step S360 forming a passivation layer PVX, and forming a via hole H1 in the passivation layer PVX and the second gate insulating layer GI2 by a patterning process to expose a portion of the active layer pattern of the photo transistor 361 and the driving transistor 362.
  • Step S370 performing an n-type doping process on the exposed portions of the photo transistor 361 and the driving transistor 362 to obtain an n-type doping region 345.
  • Step S380 Forming the source/drain metal layer 347 and forming the source and drain of the photo transistor 361 and the driving transistor 362 by a patterning process.
  • Step S390 forming a planarization layer, and forming a via hole H2 in the planarization layer PLN by a patterning process (for example, exposure, development process) to expose a partial region of the source or the drain of the driving transistor 362.
  • a patterning process for example, exposure, development process
  • Step S391 forming an anode layer 348, which may be electrically connected to a source or a drain of the driving transistor 362 through a via hole in the flat layer PLN, for example, may be patterned by a patterning process such that the anode layer 348 only has the light emitting region 310 Thereby, the photo transistor 361 can be made to sense the intensity of light incident thereon.
  • Step S392 forming a pixel defining layer 349.
  • Step S393 forming an organic light emitting layer 350.
  • Step S394 forming a cathode layer 351 (for example, causing the cathode layer 351 to transmit light).
  • the buffer layer 342 may be formed on the base substrate 341, and then the first gate metal layer 343 may be formed.
  • the specific properties and forming methods of the respective hierarchical structures of the display panel 300 provided in this embodiment can be referred to the manufacturing process of the organic light emitting display device, and details are not described herein again.
  • the display panel 300 shown in FIG. 10 shows only the photo transistor 361, the driving transistor 362, and the light emitting device 363 for the sake of clarity.
  • the structure and process flow of the switching transistor of the display panel 300 may be the same as the driving transistor 362 or Part of the same, the specific production process will not be repeated here.
  • other necessary components (for example, capacitors) of the display panel 300 may be applied to conventional components, which should be understood by those skilled in the art, and will not be described here, nor should they be used as a pair. Limitations of the invention.
  • the fourth embodiment of the present disclosure can implement a display panel including a touch function by using a set of backplane flow-through processes, and can simultaneously form a semiconductor layer, a passivation layer, and a source of the photo transistor, the driving transistor, and the switching transistor.
  • the drain metal layer simplifies the process flow of the display panel including the touch function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Control Of El Displays (AREA)

Abstract

一种像素电路、显示面板及其驱动方法。该像素电路包括发光元件 (110) 、发光控制电路 (120) 、触控探测电路(130)和信号线 (140) 。发光控制电路 (120) 与发光元件 (110) 电连接且配置为驱动发光元件 (110) 发光;触控探测电路 (130) 配置为通过感测入射到其上光线的强弱以用于判定是否存在触控动作;信号线 (140) 配置为与发光控制电路 (120) 的输入端和触控探测电路 (130) 的输出端电连接。该像素电路和显示面板实现了具备触控功能的显示面板,并优化了像素电路和显示面板的结构布局。

Description

像素电路、显示面板及其驱动方法
本申请要求于2017年5月22日递交的中国专利申请第201710364526.1号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种像素电路、显示面板及其驱动方法。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)显示面板具有视角宽、对比度高、响应速度快等特点。并且,相比于无机发光显示器件,有机发光二极管显示面板具有更高的发光亮度、更低的驱动电压等优势。由于具有上述特点和优势,有机发光二极管(OLED)显示面板逐渐受到人们的广泛关注并且可以适用于手机、显示器、笔记本电脑、数码相机、仪器仪表等具有显示功能的装置。
发明内容
本公开的至少一个实施例提供了一种像素电路,该像素电路包括发光元件、发光控制电路、触控探测电路和信号线。发光控制电路与发光元件电连接且配置为驱动发光元件发光;触控探测电路配置为通过感测入射到其上光线的强弱以用于判定是否存在触控动作;信号线配置为与发光控制电路的输入端和触控探测电路的输出端电连接。
例如,在本公开的至少一个实施例提供的像素电路中,所述触控探测电路包括感光元件,所述感光元件配置为将入射到其上的光线转换为感测电信号。
例如,在本公开的至少一个实施例提供的像素电路中,所述触控探测电路还包括放大电路,所述放大电路配置为放大所述感光元件输出的感测电信号,以提升所述触控探测电路的触控电信号的信噪比。
例如,在本公开的至少一个实施例提供的像素电路中,所述触控探测电 路包括第一晶体管、第二晶体管、第三晶体管、第一电容以及第一节点;所述第一晶体管为所述感光元件,且所述第一晶体管的第二端电连接到所述第一节点;所述放大电路包括所述第二晶体管和所述第一电容,所述第二晶体管的控制端电连接到所述第一节点,所述第二晶体管的第一端电连接到所述第三晶体管的第一端,所述第二晶体管的第二端电连接到所述第一电容的第二端;所述第一电容的第一端电连接到所述第一节点;所述第三晶体管的第二端电连接到所述信号线。
例如,在本公开的至少一个实施例提供的像素电路中,所述发光控制电路包括发光驱动电路、发光选择电路和第二电容。发光驱动电路配置为可驱动所述发光元件发光;发光选择电路配置为可选择地将数据信号写入到所述发光驱动电路的控制端;第二电容配置为存储所述数据信号并将其保持在所述发光驱动电路的控制端。
例如,在本公开的至少一个实施例提供的像素电路中,所述发光控制电路还包括第二节点;所述发光驱动电路包括第四晶体管,所述第四晶体管的控制端电连接到所述第二节点,所述第四晶体管的第一端电连接到所述发光元件的第二端,所述第四晶体管的第二端配置为电连接到第一电源端;所述发光选择电路包括第五晶体管,所述第五晶体管的第一端电连接到所述信号线的第一端,所述第五晶体管的第二端电连接到所述第二节点;所述第二电容的第一端电连接到所述第二节点,所述第二电容的第二端电连接到所述第四晶体管的第二端;所述发光元件的第一端电连接到第二电源端。
例如,在本公开的至少一个实施例提供的像素电路中,所述触控探测电路包括第一晶体管,所述发光控制电路包括第四晶体管,所述第一晶体管为底栅型晶体管,所述第四晶体管为顶栅型晶体管,所述第一晶体管和所述第四晶体管的有源层同层形成。
本公开的至少一个实施例提供了一种显示面板,该显示面板包括阵列排列的像素单元和写入读出选择电路。至少一个像素单元包括上述的像素电路;写入读出选择电路包括第一端、第二端以及第三端,第三端电连接到像素电路的信号线,第一端可电连接至数据驱动电路,第二端可电连接至触控驱动电路;写入读出选择电路配置为可将第一端与第三端电连接或将第二端和第三端电连接。
例如,在本公开的至少一个实施例提供的显示面板中,所述写入读出选择电路配置为:在显示阶段将所述第一端与所述第三端电连接,以经由所述像素电路的信号线向所述像素电路的发光控制电路输入显示数据信号;在光感读取阶段将所述第二端和所述第三端电连接,以经由所述像素电路的信号线读取所述像素电路的触控探测电路的触控电信号。
例如,在本公开的至少一个实施例提供的显示面板中,所述写入读出选择电路包括第一控制晶体管和第二控制晶体管;所述第一控制晶体管的第一端电连接到所述像素电路的信号线,所述第一控制晶体管的第二端配置为可电连接到数据驱动电路;所述第二控制晶体管的第一端电连接到所述像素电路的信号线,所述第二控制晶体管的第二端配置为可电连接到触控驱动电路。
例如,本公开的至少一个实施例提供的显示面板还包括触控驱动电路和数据驱动电路。所述第一控制晶体管的第二端电连接到数据驱动电路;所述第二控制晶体管的第二端电连接到触控驱动电路。
例如,本公开的至少一个实施例提供的显示面板还包括电压选择电路,所述电压选择电路配置为将所述像素电路的触控探测电路的输入端电连接到第一输入电源或第二输入电源。
例如,在本公开的至少一个实施例提供的显示面板中,所述电压选择电路包括第三控制晶体管和第四控制晶体管;所述第三控制晶体管的第一端电连接到所述像素电路的触控探测电路的输入端,所述第三控制晶体管的第二端配置为可电连接到所述第一输入电源;所述第四控制晶体管的第一端电连接到所述像素电路的触控探测电路的输入端,所述第四控制晶体管的第二端配置为可电连接到所述第二输入电源。
例如,在本公开的至少一个实施例提供的显示面板中,至少一列所述像素单元均包括如权利要求1-7任一所述的像素电路且共用同一信号线。
本公开的至少一个实施例提供了一种显示面板的驱动方法,该显示面板的驱动方法包括:在显示阶段,经由像素电路的信号线向像素电路的发光控制电路输入显示数据信号,以驱动像素电路发光;以及在光感读取阶段,经由像素电路的信号线读取像素电路的触控探测电路的触控电信号,以判定是否存在触控动作。
例如,在本公开的至少一个实施例提供的显示面板的驱动方法中,所述 显示阶段还包括复位阶段和感测阶段;所述驱动方法还包括:在所述复位阶段,向所述像素电路的触控探测电路的输入端写入第一电压;在所述感测阶段,向所述像素电路的触控探测电路的输入端写入第二电压,其中所述第二电压小于所述第一电压。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,并非对本公开的限制。
图1是本公开实施例一提供的一种像素电路的示意性框图;
图2是图1所示的像素电路的示例性电路图;
图3是图1所示的像素电路的触控探测电路的示例性电路图;
图4A是图1所示的像素电路的发光控制电路的一种示例性电路图;
图4B是图1所示的像素电路的发光控制电路的另一种示例性电路图;
图5是本公开实施例二提供的一种显示面板的示意图;
图6是图5所示的显示面板的示例性电路图;
图7是本公开实施例三提供的一种显示面板的驱动方法的示例性流程图;
图8是图7所示的驱动方法的示例性时序图;
图9是本公开实施例四提供的一种显示面板的示例性的平面示意图;以及
图10是图9所示的显示面板的沿A-A’线的剖面示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不 同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
发明人注意到,具备触控功能的有机发光二极管显示面板通常采用电容式触控技术。然而,由于基于电容式触控技术的有机发光二极管显示面板需要采用两个独立进行的制作工艺步骤(也即,电容式触控基板制作工艺和OLED显示基板制作工艺),其工艺流程和产品结构复杂。
例如,按照晶体管的特性区分可以将晶体管分为N型和P型晶体管,为了清楚起见,本公开的实施例以晶体管为P型晶体管为例详细阐述了本公开的技术方案,然而本公开的实施例的晶体管不限于P型晶体管,本领域技术人员还可以根据实际需要利用N型晶体管实现本公开中的实施例中的一个或多个晶体管。这些晶体管例如为薄膜晶体管。
本公开的实施例提供了一种像素电路、显示面板及其驱动方法,实现了具备触控功能的显示面板,并优化了像素电路和显示面板的结构布局。
本公开的至少一个实施例提供了一种像素电路,该像素电路包括发光元件、发光控制电路、触控探测电路和信号线。发光控制电路与发光元件电连接且配置为驱动发光元件发光;触控探测电路配置为通过感测入射到其上光线的强弱以用于判定是否存在触控动作;信号线配置为与发光控制电路的输入端和触控探测电路的输出端电连接。
本公开的至少一个实施例提供了一种显示面板,该显示面板包括阵列排列的像素单元和写入读出选择电路。至少一个像素单元包括上述的像素电路;写入读出选择电路包括第一端、第二端以及第三端,第三端电连接到像素电路的信号线,第一端可电连接至数据驱动电路,第二端可电连接至触控驱动电路;写入读出选择电路配置为可将第一端与第三端电连接或将第二端和第三端电连接。
本公开的至少一个实施例提供了一种显示面板的驱动方法,该显示面板的驱动方法包括:在显示阶段,经由像素电路的信号线向像素电路的发光控 制电路输入显示数据信号,以驱动像素电路发光;以及在光感读取阶段,经由像素电路的信号线读取像素电路的触控探测电路的触控电信号,以判定是否存在触控动作。
下面通过几个实施例对根据本公开实施例的像素电路、显示面板及其驱动方法进行非限制性的说明,如下面所描述的,在不相互抵触的情况下这些具体实施例中不同特征可以相互组合,从而得到新的实施例,这些实施例也都属于本公开保护的范围。
实施例一
本实施例提供一种像素电路100,该像素电路100例如可应用于显示面板,例如OLED显示面板等。例如,图1是本公开实施例一提供的一种像素电路100的示意性框图。如图1所示,该像素电路100可以包括发光元件110(例如,可以为图2所示的发光元件EL)、发光控制电路120、触控探测电路130和信号线140。例如,发光元件110、发光控制电路120和触控探测电路130的具体形式可以根据具体应用需求进行设定,本公开的实施例对此不做具体限定。例如,本公开实施例一提供的一种像素电路100可以实现为如图2所示的电路。
例如,如图1和图2所示,发光元件110可以为有机发光元件,有机发光元件例如可以为有机发光二极管,但本公开的实施例不限于此。例如,信号线140可以包括第一端141和第二端142,信号线140(例如,信号线的第一端141)配置为与发光控制电路120的输入端163和触控探测电路130的输出端162电连接(参见图3和图4(a)、图4(b)),因此可以在不同的时间段经由像素电路100的信号线140向发光控制电路120输入显示数据信号,或者经由像素电路100的信号线140读取像素电路100的触控探测电路130的触控电信号,由此可以优化像素电路100的布局,节省制造成本,以及降低产品的运行功耗。
例如,下面结合图1-图3对本公开实施例提供的触控探测电路130进行详细说明。
例如,如图1和图2所示,触控探测电路130可以配置为通过感测入射到其上光线的强弱,所产生的信号可以用于判定是否存在触控动作。例如,触控探测电路130可以配置为通过感测反射(例如,由执行触控操作的手指或触控笔反射)到其上的由发光元件EL发射的光线的强弱判定是否存在触控 动作;又例如,触控探测电路130还可以配置为通过感测入射到其上的环境光线的强弱判定是否存在触控动作。例如,本公开的实施例以触控探测电路130配置为通过感测反射到其上的由发光元件EL发射的光线的强弱判定是否存在触控动作为例详细阐述本公开的技术方案,但本公开的实施例不限于此。
例如,触控探测电路130的具体形式可以根据具体应用需求进行设定,本公开的实施例对此不做具体限定。例如,如图3所示,触控探测电路130可以包括感光元件131,感光元件131可以配置为将入射到其上的光线转换为感测电信号。例如,感光元件131可以包括第一晶体管T1,第一晶体管T1例如可以为底栅型晶体管,由于第一晶体管T1的沟道区上方没有遮挡,因此可以感测入射到其上的光线的强弱,并引起第一晶体管T1的关态漏电流的变化。
例如,第一晶体管T1可以包括第一端、第二端和控制端,例如,第一晶体管T1的第一端可以设置为触控探测电路130的输入端161。例如,第一晶体管T1的控制端在接收到导通信号(例如,低电平信号)的情况下可以使得第一端和第二端导通,第一晶体管T1控制端在接收到截止信号(例如,高电平信号)的情况下可以使得第一端和第二端断开。然而,即使在第一晶体管T1的控制端在接收到截止信号但第一晶体管T1的第一端和第二端之间存在电压差的情况下,第一晶体管T1中会出现漏电流,并且漏电流的强度会随着入射到第一晶体管T1之上的光线的强度的增强而增强,由此可以利用第一晶体管T1的漏电流的强弱判定是否存在触控动作。
例如,在触控探测电路130配置为感测反射到其上的由发光元件EL发射的光线的强弱判定是否存在触控动作的情况下,在像素电路100的存在触控操作时,由于例如手指的遮挡,发光元件EL发射的光线被手指反射,并入射到第一晶体管T1上,因此第一晶体管T1感受到的光强增加,并且由第一晶体管T1转换获得的感测电信号(例如,电流信号)随之增强。因此,可以在第一晶体管T1输出的感测电信号的强度大于预定数值的情况下判定该像素电路100的对应位置处的存在触控操作,在第一晶体管T1输出的感测电信号的强度小于或等于预定数值的情况下判定该像素电路100的对应位置处的不存在触控操作,由此包含该像素电路100的显示面板可以实现触控功能。
例如,触控探测电路130还可以包括放大电路132,放大电路132可以配置为放大感光元件131输出的感测电信号,以提升触控探测电路130的触控 电信号的信噪比。例如,感光电路还可以包括触控选择电路,触控选择电路可以配置为控制读取触控电信号的时间。例如,触控探测电路130和触控选择电路具体形式可以根据具体应用需求进行设定,本公开的实施例对此不做具体限定。例如,放大电路132可以包括第二晶体管T2和第一电容C1;例如,触控选择电路可以包括第三晶体管T3;例如,第二晶体管T2和第三晶体管T3可以为顶栅型晶体管,也可以为底栅型晶体管。
例如,触控探测电路130还可以包括第一节点151。例如,第一晶体管T1的第二端可以电连接到第一节点151。例如,第二晶体管T2的控制端可以电连接到第一节点151,第二晶体管T2的第一端可以电连接到第三晶体管T3的第一端,第二晶体管T2的第二端可以电连接到第一电容C1的第二端,并电连接到参考电压端Vref。例如,第一电容C1的第一端可以电连接到第一节点151,第二端电连接到参考电压端Vref;第三晶体管T3的第二端可以电连接到信号线140(例如,信号线的第一端141)。
例如,在触控探测电路130包括第一电容C1、第二晶体管T2和第三晶体管T3的情况下,触控探测电路130可以通过以下步骤实现触控探测功能。
步骤S110:复位阶段,使得第一晶体管T1处于导通状态,并经由第一晶体管T1的第一端将第一电压(复位电压)写入在第一节点151上。
步骤S120:感测阶段,使得第一晶体管T1处于截止状态,并将第二电压写入在第一晶体管T1的第一端上,第二电压小于第一电压。
步骤S130:触控电信号读取阶段,使得第三晶体管T3处于导通阶段,并经由信号线140读取第三晶体管T3输出的电信号。
例如,在步骤S110中,可以向第一晶体管T1的控制端施加低电平信号,以使其处于导通状态,由此,第一电压可以经由导通的第一晶体管T1写入在第一节点151上。例如,写入在第一节点151上的电压可以存储在第一电容C1中,第一电容C1可以将其保持在第二晶体管T2的控制端。此时,写入的第一电压使第二晶体管T2处于截止状态,例如第二晶体管T2的控制端和第二端的电压可以相同,即此时第一电压等于参考电压Vref,下面以二者相等为例进行说明,但是本公开的实施例不限于此。例如,可以向第三晶体管T3的控制端施加高电平信号,以使其处于截止状态。
例如,在步骤S120中,可以向第一晶体管T1和第三晶体管T3的控制端施加高电平信号,以使第一晶体管T1和第三晶体管T3处于截止状态。例如, 在存在触控动作的情况下,发光元件EL发射的光线被例如手指反射,并入射到第一晶体管T1上,因此第一晶体管T1感受到的光线强度以及第一晶体管T1中的漏电流的强度增加,第一电容C1的第一端的电荷流失量增加,第一节点151的电压降低量增加,并直至使得第二晶体管T2由截止变为导通。需要注意的是,尽管在存在触控动作的情况下,第二晶体管T2即使变得导通,但是由于第三晶体管T3处于截止状态,第二晶体管T2中也不存在开态电流。
例如,在步骤S130中,可以向第三晶体管T3的控制端施加低电平信号,以使第三晶体管T3处于导通状态。此时,第二晶体管T2处于导通状态,由此从参考电压端Vref电流经由第二晶体管T2和第三晶体管T3,再流向信号线140,由此信号线140可以获取触控探测电路130的触控电信号。例如,触控电信号读取阶段还包括第二感测阶段,第二感测阶段为触控电信号读取阶段中的第三晶体管T3导通之前的时间段。例如,触控电信号的强度取决于第二晶体管T2的控制端的电压(也即,第一节点151的电压)大小,而第二晶体管T2的控制端的电压大小取决于感测阶段和第二感测阶段中第一晶体管T1的漏电流的累积值(积分值),也即是取决于入射到第一晶体管T1上的光线强度。例如,相比于不存在触控动作,在存在触控动作的情况下,第一节点151的电压更低,因此在触控电信号读取阶段中的第二晶体管T2的开态电流强度以及信号线140获取的触控电信号的强度更高,由此可以在信号线140获取的触控电信号的强度大于预定数值的情况下,判定该像素电路100的对应位置处存在触控操作。例如,预定数值可以根据实验测定获得。
例如,通过设置第二晶体管T2和第二电容123(例如,第二电容C2),可以将第一晶体管T1输出的较弱的关态漏电流转化为第二晶体管T2输出的较强的开态电流,由此可以提升触控探测电路130的触控电信号的信噪比。例如,通过设置第三晶体管T3,可以将感测阶段和触控电信号读取阶段分离,因此可以在触控探测电路130和发光控制电路120共用信号线140的情况下、依然可以将感测阶段设置在显示阶段之中,进而可以在使得触控电信号读取阶段的时间长度最小的前提下、保证触控电信号的强度和信噪比,也即,本公开实施例一提供的像素电路100可以在优化电路布局的情况下保证或提升触控电信号的信噪比。
例如,下面结合图1、图2、图4A和图4B对本公开实施例提供的发光控制电路120进行详细说明。例如,如图1和图2所示,发光控制电路120 可以与发光元件EL电连接且配置为驱动发光元件EL发光。
例如,发光控制电路120可以包括发光驱动电路121、发光选择电路122和第二电容123。例如,发光驱动电路121可以配置为可驱动发光元件EL发光;发光选择电路122可以配置为可选择地将数据信号写入到发光驱动电路121的控制端;第二电容123(例如,第二电容C2)可以配置为存储数据信号并将其保持在发光驱动电路121的控制端。例如,发光驱动电路121、发光选择电路122和第二电容123的具体形式可以根据具体应用需求进行设定,本公开的实施例对此不做具体限定。
例如,发光控制电路120可以实现为2T1C电路,即利用两个TFT(Thin-film transistor,薄膜晶体管)和一个存储电容来驱动发光元件EL(例如,OLED)发光。例如,图4A和图4B分别示出了两种2T1C像素电路100的示意图。
例如,如图4A所示,一种2T1C型发光控制电路120可以包括第五晶体管T5(即,发光选择电路122)、第四晶体管T4(即,发光驱动电路121)以及第二电容C2。例如,该第五晶体管T5的控制端可以接收扫描信号,第五晶体管T5的第一端可以电连接到信号线140以接收数据信号,第五晶体管T5的第二端可以电连接到第二节点152,也即,第四晶体管T4的控制端。例如,第四晶体管T4的第一端可以电连接到发光元件EL的第二端(例如,OLED的正极端);第四晶体管T4的第二端可以电连接到第一电源端VDD,例如,第一电源端VDD可以为电压源以输出恒定的正电压,或者,第一电源端VDD也可以为电流源等。例如,第二电容C2的第一端电连接到第二节点152(即,第五晶体管T5的第二端以及第四晶体管T4的控制端),第二电容C2的第二端电连接到第四晶体管T4的第二端以及第一电源端VDD;发光元件EL的第一端(例如,OLED的负极端)电连接到第二电源端VSS,例如,第二电源端VSS可以为接地端。例如,该2T1C像素电路100使用第二电容C2和两个TFT控制像素的明暗(灰阶)。在通过栅线施加扫描信号以导通第五晶体管T5情况下,通过数据线送入的数据电压(由数据驱动电路提供)经由第五晶体管T5对第二电容C2充电,由此将数据电压存储在第二电容C2中,且该存储的数据电压可以控制第四晶体管T4的导通程度,由此可以控制流过第四晶体管T4的、用于驱动OLED发光的电流大小,即此电流决定该像素发光的灰阶。
例如,如图4B所示,另一种2T1C型发光控制电路120也包括第五晶体管T5、第四晶体管T4以及第二电容C2,但是其连接方式略有改变。例如,图4B的发光控制电路120相对于图4A的变化之处包括:发光元件EL的第二端(例如,OLED的正极端)电连接到第一电源端VDD,而发光元件EL的第一端(例如,OLED的负极端)电连接到第四晶体管T4的第二端,第四晶体管T4的第一端电连接到第二电源端VSS。第二电容C2的第二端连接到第二节点152(即,第五晶体管T5的第二端以及第四晶体管T4的控制端),第二电容C2的第一端连接到第四晶体管T4的第一端以及第二电源端VSS。该2T1C型发光控制电路120的工作方式与图4A所示的像素电路100基本相同,在此不再赘述。
例如,本公开实施例仅以发光控制电路120为2T1C电路进行说明,但是本公开实施例的发光控制电路120不限于2T1C电路,例如,根据具体应用需求,发光控制电路120还可以具备电学补偿功能,以提升包含该像素电路100的显示面板的显示均匀度。例如,补偿功能可以通过电压补偿、电流补偿或混合补偿来实现,具有补偿功能的发光控制电路120例如可以为4T1C、4T2C、6T1C以及其它具有电学补偿功能的发光控制电路120,在此不再赘述。又例如,发光控制电路120还可以包括外部补偿电路部分,例如可以包括感测电路部分以感测驱动晶体管的电学特性或发光元件的电学特性,具体构造可以参见常规设计,这里不再赘述。
需要说明的是,本公开的实施例一和其它实施例中采用的晶体管可以为薄膜晶体管或场效应晶体管或其他特性相同的开关器件。这里采用的晶体管的源极、漏极在结构上可以是对称的,所以其源极、漏极在物理结构上可以是没有区别的。在本公开的实施例中,为了区分晶体管的除作为控制端的栅极之外的其它两个极,直接描述了其中一极为第一端,另一极为第二端,所以本公开实施例中全部或部分晶体管的第一端和第二端根据需要是可以互换的。例如,本公开实施例的晶体管的第一端可以为源极,第二端可以为漏极;或者,晶体管的第一端为漏极,第二端为源极。
例如,在本实施例中,通过在像素电路100中设置触控探测电路130,使得包含该像素电路100的显示面板具备触控功能;通过将信号线140与发光控制电路120的输入端和触控探测电路130的输出端电连接,使得发光控制电路120和触控探测电路130可以共用信号线140,由此可以优化像素电路100的布局。在本实施例中,通过在触控探测电路130中设置放大模块,可以提升触控 探测电路130的触控电信号的信噪比;通过在触控探测电路130中设置触控选择电路,可以在优化电路布局的情况下保证或提升触控电信号的信噪比。
实施例二
本实施例提供一种显示面板10,例如,如图5所示,该显示面板10包括阵列排列的像素单元240和写入读出选择电路210。例如,为了清楚起见,图5仅示例性的示出了三行和三列的像素单元240,但本公开的实施例不限于此,例如,根据具体应用需求,显示面板10可以包括1440行、900列的像素单元240。例如,至少一个像素单元240可以包括实施例一提供的任一像素电路。例如,根据具体应用需求,显示面板10中部分像素可以包括实施例一提供的像素电路,例如,根据所需要的触控精度,可以每十个像素单元中有一个像素单元包括实施例一提供的像素电路,或者为了实现像素级的触控精度,显示面板10的所有像素单元240均可以包括实施例一提供的像素电路。又例如,显示面板10的至少一列像素单元240可以包括实施例一提供的像素电路,并且所述至少一列像素单元240中的每列像素单元240共用同一信号线。
例如,下面结合图5和图6对本公开实施例二提供的写入读出选择电路210进行详细说明。例如,如图5和图6所示,写入读出选择电路210可以包括第一端211、第二端212以及第三端213,第三端213电连接到像素电路的信号线140,第一端211可电连接至数据驱动电路222,第二端212可电连接至触控驱动电路221。例如,写入读出选择电路210配置为可将第一端211与第三端213电连接或将第二端212和第三端213电连接,从而进行相应的信号传输。例如,写入读出选择电路210可以配置为在显示阶段将第一端211与第三端213电连接,此时可以经由像素电路的信号线140向像素电路的发光控制电路输入显示数据信号;写入读出选择电路210还可以配置为在光感读取阶段将第二端212和第三端213电连接,此时可以经由像素电路的信号线140读取像素电路的触控探测电路的触控电信号。
例如,写入读出选择电路210的具体形式可以根据具体应用需求进行设定,本公开的实施例对此不做具体限定。例如,本公开实施例二提供的一种写入读出选择电路210可以实现为如图6所示的电路。例如,写入读出选择电路210可以包括第一控制晶体管CT1和第二控制晶体管CT2;第一控制晶体管CT1的第一端(即,写入读出选择电路的第三端213)电连接到像素电路的信号线140,第一控制晶体管CT1的第二端(即,写入读出选择电路的 第一端211)配置为可电连接到数据驱动电路222;第二控制晶体管CT2的第一端(即,写入读出选择电路的第三端213)电连接到像素电路的信号线140,第二控制晶体管CT2的第二端(即,写入读出选择电路的第二端212)配置为可电连接到触控驱动电路221。
例如,根据具体应用需求,显示面板10还可以包括触控驱动电路221和数据驱动电路222,此时,第一控制晶体管CT1的第二端电连接到数据驱动电路222;第二控制晶体管CT2的第二端电连接到触控驱动电路221。例如,可以通过控制第一控制晶体管CT1和第二控制晶体管CT2的导通和截止使得写入读出选择电路的第一端211与写入读出选择电路的第三端213电连接,或将写入读出选择电路的第二端212和写入读出选择电路的第三端213电连接,也即,可以通过控制第一控制晶体管CT1和第二控制晶体管CT2的导通和截止使得数据驱动电路222与像素电路的信号线140电连接或将触控驱动电路221与像素电路的信号线140电连接。因此,数据驱动电路222可以在显示阶段经由像素电路的信号线140向像素电路的发光控制电路输入显示数据信号;触控驱动电路221可以在光感读取阶段经由像素电路的信号线140读取像素电路的触控探测电路的触控电信号。进而,本公开实施例二提供的显示面板10的像素电路的发光控制电路和触控探测电路可以共用信号线140,由此可以优化像素电路和显示面板10的布局。触控驱动电路221和数据驱动电路222可以采用各种形式,例如二者可以采用单独的半导体芯片实现,或者采用同一个半导体芯片,或者可以具体采用FPGA电路等方式实现。
例如,显示面板10还可以包括电压选择电路230。例如,下面结合图5和图6对本公开实施例二提供的写入读出选择电路210进行详细说明。例如,电压选择电路230可以配置为将像素电路的触控探测电路的输入端161(例如,第一晶体管的第一端)电连接到第一输入电源Vref或第二输入电源Vini。例如,电压选择电路230的具体形式可以根据具体应用需求进行设定,本公开的实施例对此不做具体限定。
例如,本公开实施例二提供的一种电压选择电路230可以实现为如图6所示的电路。例如,如图6所示,电压选择电路230可以包括第三控制晶体管CT3和第四控制晶体管CT4;第三控制晶体管CT3的第一端电连接到像素电路的触控探测电路的输入端161,第三控制晶体管CT3的第二端配置为可电连接到第一输入电源Vref;第四控制晶体管CT4的第一端电连接到像素电 路的触控探测电路的输入端161,第四控制晶体管CT4的第二端配置为可电连接到第二输入电源Vini。例如,第一输入电源Vref和第二输入电源Vini可以为电压源,且第一输入电源Vref输出的第一电压的强度可以大于第二输入电源Vini输出的第二电压的强度。例如,在第三控制晶体管CT3导通、第四控制晶体管CT4截止的情况下,可以向像素电路的触控探测电路的输入端161(例如,第一晶体管的第一端)写入第一电压;在第三控制晶体管CT3截止、第四控制晶体管CT4导通的情况下,可以向像素电路的触控探测电路的输入端161写入第二电压。例如,本公开实施例二提供的一种电压选择电路230可以在无需设置交流电源(例如,电压源)的情况下,向触控探测电路的输入端161写入两种强度不同的电压信号,由此可以更好的利用和兼容现有的显示面板10制造工艺。
需要说明的是,对于该显示面板10的其它组成部分(例如控制装置、图像数据编码/解码装置、行扫描驱动器、列扫描驱动器、时钟电路等)可以采用适用的常规部件,这些是本领域的普通技术人员所应该理解的,在此不做赘述,也不应作为对本发明的限制。
例如,在本实施例中,通过使得显示面板10的至少一个像素单元240包括实施例一提供的任一像素电路,可以使得显示面板10具备触控功能;通过设置写入读出选择电路210,使得像素电路的信号线140可以与数据驱动电路222或触控驱动电路221电连接,由此使得数据驱动电路222可以经由像素电路的信号线140向像素电路的发光控制电路输入显示数据信号,触控驱动电路221可以经由像素电路的信号线140读取像素电路的触控探测电路的触控电信号;通过设置电压选择电路230,可以在无需设置交流电源的情况下,向触控探测电路的输入端161写入两种强度不同的信号(例如,电压信号)。
实施例三
本实施例提供一种显示面板的驱动方法,例如,如图7所示,该显示面板的驱动方法可以包括以下步骤。
步骤S210:在显示阶段EL,经由像素电路的信号线向像素电路的发光控制电路输入显示数据信号,以驱动像素电路发光。
步骤S220:在光感读取阶段R,经由像素电路的信号线读取像素电路的触控探测电路的触控电信号,以判定是否存在触控动作。
上述步骤并没有先后顺序,也并非要求在每个显示阶段都需要伴随一个 光感读取阶段(触控阶段),在满足触控时间精度的情况下,可以为每两个或更多个显示阶段设置一个光感读取阶段,由此减少功耗。
例如,驱动显示面板的时序图可以根据实际需求进行设定,本公开的实施例对此不做具体限定。例如,图8是图7所示的驱动方法的示例性时序图,实施例二的图6示出的第一晶体管T1、位于第一行至第n行的第三晶体管T3、位于第一行至第n行的第五晶体管T5以及第一控制晶体管CT1-第四控制晶体管CT4的控制端分别用G1、G31-G3n、G51-G5n以及CG1-CG4表示。例如,为了清楚起见,图8中示出的光感读取阶段R的时间长度与显示阶段EL的时间长度相等,但本公开的实施例不限于此。例如,根据具体应用需求,光感读取阶段R的时间长度可以等于显示阶段EL的时间长度的二分之一或者少至十分之一。
例如,下面结合图7和图8对显示阶段EL进行详细说明。例如,如图8所示,在显示阶段EL,第一控制晶体管CT1的控制端CG1接收到低电平信号、第二控制晶体管CT2的控制端CG2接收到高电平信号,因此,第一控制晶体管CT1导通,第二控制晶体管CT2截止,由此数据驱动电路可以经由导通的第一控制晶体管CT1和像素电路的信号线向像素电路的发光控制电路输入显示数据信号;与此同时,位于第一行至第n行的第五晶体管T5(图7和图8中未示出,参见图2)的控制端G51-G5n逐行接收低电平信号,由此显示面板的像素单元可以逐行发光。例如,在显示阶段EL,位于第一行至第n行的第三晶体管T3(图7和图8中未示出,参见图2)的控制端G31-G3n均接收到高电平信号,由此第三晶体管T3处于截止状态。
例如,在显示阶段EL的过程中,对于触控探测电路可以包括复位阶段RE和感测阶段SE,该显示面板的驱动方法还可以包括。
步骤S310:在复位阶段RE,向像素电路的触控探测电路的输入端写入第一电压。
步骤S320:在感测阶段SE,向像素电路的触控探测电路的输入端写入第二电压,第二电压小于第一电压。
例如,在复位阶段RE,第三控制晶体管CT3的控制端CG3和第一晶体管T1的控制端G1接收到低电平信号、第四控制晶体管CT4的控制端CG4接收到高电平信号,因此,第三控制晶体管CT3和第一晶体管T1导通,第四控制晶体管CT4截止,由此可以向触控探测电路的输入端写入第一电压, 且第一电压经由导通的第一晶体管T1写入到像素电路中的第一节点,该写入的第一电压使得触控探测电路中的第二晶体管T2处于截止状态。
例如,在感测阶段SE,第三控制晶体管CT3的控制端CG3和第一晶体管T1的控制端G1接收到高电平信号、第四控制晶体管CT4的控制端CG4接收到低电平信号。此时,第三控制晶体管CT3和第一晶体管T1截止,第四控制晶体管CT4导通,因此可以向触控探测电路的输入端写入第二电压。由于第二电压小于第一电压,第一晶体管T1的第一端与第二端之间存在压差,因此第一晶体管T1的漏电流的强度随入射到其上的光线强度的增加而增加,进而第二晶体管T2的控制端的电压随入射到第一晶体管T1上的光线强度的增加而降低。
例如,复位阶段RE和感测阶段SE的设置方式可以根据具体应用需求进行设定,本公开的实施例对此不做具体限定。例如,如图8所示,复位阶段RE和感测阶段SE可以与显示阶段EL并行,复位阶段RE的起始时刻可以位于显示阶段EL的起始时刻,感测阶段SE为显示阶段EL的位于复位阶段RE之后的时间段,此时位于不同行的像素电路的感测阶段SE的开启时间相同。又例如,根据具体应用需求,不同行的像素电路的复位阶段RE的起始时刻的时间以及感测阶段SE的起始时刻的时间还可以不同,例如,在显示阶段EL,可以逐行开启像素电路的触控探测电路的复位阶段RE和感测阶段SE。
例如,下面结合图7和图8对光感读取阶段R进行详细说明。例如,如图8所示,在光感读取阶段R,第一控制晶体管CT1的控制端CG1接收到高电平信号、第二控制晶体管CT2的控制端CG2接收到低电平信号,因此,第一控制晶体管CT1截止,第二控制晶体管CT2导通,由此触控驱动电路可以经由像素电路的信号线和导通的第二控制晶体管CT2读取像素电路的触控探测电路的触控电信号;与此同时,位于第一行至第n行的第三晶体管T3(图7和图8中未示出,参见图2)的控制端G31-G3n逐行接收低电平信号,因此触控驱动电路可以逐行读取像素电路的触控电信号,由此可以确定是否存在触控动作,以及存在触控动作的位置。
例如,如图8所示,在光感读取阶段R,位于第一行至第n行的第五晶体管T5(图7和图8中未示出,参见图2)的控制端G51-G5n均接收高电平信号,因此,第五晶体管T5处于截止状态,此时显示面板不发光。例如,第一晶体管T1的控制端G1和第三控制晶体管CT3的控制端CG3可以接收高 电平信号,第四控制晶体管CT4的控制端CG4可以接收低电平信号,因此,第一晶体管T1和第三控制晶体管CT3截止,第四控制晶体管CT4导通,由此可以向触控探测电路的输入端写入第二电压。
例如,通过将感测阶段SE和光感读取阶段R分离,可以在触控探测电路和发光控制电路共用信号线的情况下、依然可以将感测阶段SE设置在显示阶段EL之中,因此可以在使得触控电信号读取阶段的时间长度最小的情况下、保证触控电信号的强度和信噪比,也即,本公开实施例三提供的驱动方法可以在使用具有电路布局优化的显示面板的情况下保证或提升触控电信号的信噪比。
实施例四
本实施例提供一种显示面板300,例如,该显示面板300的具体结构和工艺流程可以应用在实施例二提供的显示面板10中。例如,如图9所示,该显示面板300包括阵列排布的发光区310和光感区320,下面结合图9和图10对该显示面板300的结构进行详细说明。
例如,发光区310和光感区320的排布方式、面积比例等可以根据具体应用需求进行设定,本公开的实施例对此不做具体限定。例如,如图9所示,光感区320可以设置在行方向上相邻的两个发光区310之间,然而本公开的实施例不限于此。例如,光感区320还可以设置在列方向上相邻的两个发光区310之间,或者相邻的四个发光区310之间。
例如,图10是图9所示的显示面板300的一个像素单元的沿A-A’线的剖面示意图。例如,图10所示的显示面板300的一个像素单元可以包括感光晶体管361(例如,实施例一中的第一晶体管)、驱动晶体管362(例如,实施例一中的第四晶体管)和发光器件363(例如,实施例一中的发光元件)。例如,感光晶体管361位于光感区320,驱动晶体管362和发光器件363位于发光区310。
例如,感光晶体管361为底栅型晶体管,并且可以包括顺次设置的第一栅极金属层343、第一栅绝缘层GI1、半导体层344、钝化层PVX和源极/漏极金属层347。例如,驱动晶体管362为顶栅型晶体管,并且可以包括顺次设置的半导体层344、第二栅绝缘层GI2、第二栅极金属层346、钝化层PVX和源极/漏极金属层347。例如,感光晶体管361和驱动晶体管362的半导体层344、钝化层PVX和源极/漏极金属层347可以同时形成,由此可以简化包含 触控功能显示面板300的工艺流程。例如,发光器件363可以包括顺次设置的阳极层348、有机发光层350和阴极层351。例如,发光器件363与驱动晶体管362之间可以设置平坦层PLN,发光器件363的阳极可以通过平坦层PLN中的过孔H2与驱动晶体管362的源极或漏极电连接。
例如,图10所示的显示面板300的制备工艺可以包括以下步骤。
步骤S310:在衬底基板341上形成第一栅极金属层343,并通过图案化工艺(例如,光刻胶涂布、曝光、显影、刻蚀、剥离等工艺)形成感光晶体管361的栅极。
步骤S320:形成第一栅绝缘层GI1。
步骤S330:形成半导体层344(例如,沉积非晶硅层,并通过低温晶化工艺,实现非晶硅的晶化),并通过图案化工艺形成感光晶体管361和驱动晶体管362的有源层图案。
步骤S340:形成第二栅绝缘层GI2。
步骤S350:形成第二栅极金属层346,并通过图案化工艺形成驱动晶体管362的栅极。
步骤S360:形成钝化层PVX,并通过图案化工艺在钝化层PVX和第二栅绝缘层GI2中形成过孔H1,以暴露感光晶体管361和驱动晶体管362的部分有源层图案。
步骤S370:对感光晶体管361和驱动晶体管362暴露出的部分进行n型掺杂工艺获得n型掺杂区345。
步骤S380:形成源极/漏极金属层347并通过图案化工艺形成感光晶体管361和驱动晶体管362的源极和漏极。
步骤S390:形成平坦化层,并通过图案化工艺(例如,曝光、显影工艺)在平坦层PLN中形成过孔H2,以暴露驱动晶体管362的源极或漏极的部分区域。
步骤S391:形成阳极层348,阳极层348可以通过平坦层PLN中的过孔与驱动晶体管362的源极或漏极电连接,例如,可以通过图案化工艺,使得阳极层348仅存在发光区310,由此可以使得感光晶体管361能够感测入射到其上的光线强度。
步骤S392:形成像素界定层349。
步骤S393:形成有机发光层350。
步骤S394:形成阴极层351(例如,使得该阴极层351透光)。
例如,在步骤S310之前,也即在衬底基板341上形成第一栅极金属层343之前,还可以先在衬底基板341上形成缓冲层342,然后将第一栅极金属层343形成在缓冲层342上。例如,本实施例提供的显示面板300的各层级结构的具体性质和形成方法可以参见有机发光显示器件的制造工艺,在此不再赘述。
例如,为了清楚起见,图10所示的显示面板300仅示出了感光晶体管361、驱动晶体管362和发光器件363。例如,显示面板300的开关晶体管(例如,实施例一中的第二晶体管、第三晶体管、第五晶体管以及第一控制晶体管至第四控制晶体管)的结构和工艺流程可以与驱动晶体管362相同或部分相同,具体制作过程在此不再赘述。例如,对于显示面板300的其它必不可少的组成部分(例如,电容)可以采用适用的常规部件,这些是本领域的普通技术人员所应该理解的,在此不做赘述,也不应作为对本发明的限制。
例如,本公开的实施例四可以利用一套背板流片工艺实现包含触控功能的显示面板,并且可以通过同时形成感光晶体管、驱动晶体管以及开关晶体管的半导体层、钝化层和源极/漏极金属层,简化了包含触控功能显示面板的工艺流程。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。

Claims (16)

  1. 一种像素电路,包括:
    发光元件;
    发光控制电路,与所述发光元件电连接且配置为驱动所述发光元件发光;
    触控探测电路,配置为通过感测入射到其上光线的强弱以用于判定是否存在触控动作;以及
    信号线,配置为与所述发光控制电路的输入端和所述触控探测电路的输出端电连接。
  2. 根据权利要求1所述的像素电路,其中,
    所述触控探测电路包括感光元件,所述感光元件配置为将入射到其上的光线转换为感测电信号。
  3. 根据权利要求2所述的像素电路,其中,
    所述触控探测电路还包括放大电路,所述放大电路配置为放大所述感光元件输出的感测电信号,以提升所述触控探测电路的触控电信号的信噪比。
  4. 根据权利要求3所述的像素电路,其中,
    所述触控探测电路包括第一晶体管、第二晶体管、第三晶体管、第一电容以及第一节点;
    所述第一晶体管为所述感光元件,且所述第一晶体管的第二端电连接到所述第一节点;
    所述放大电路包括所述第二晶体管和所述第一电容,所述第二晶体管的控制端电连接到所述第一节点,所述第二晶体管的第一端电连接到所述第三晶体管的第一端,所述第二晶体管的第二端电连接到所述第一电容的第二端;
    所述第一电容的第一端电连接到所述第一节点;以及
    所述第三晶体管的第二端电连接到所述信号线。
  5. 根据权利要求1-4任一所述的像素电路,其中,所述发光控制电路包括:
    发光驱动电路,配置为可驱动所述发光元件发光;
    发光选择电路,配置为可选择地将数据信号写入到所述发光驱动电路的控制端;以及
    第二电容,配置为存储所述数据信号并将其保持在所述发光驱动电路的控制端。
  6. 根据权利要求5所述的像素电路,其中,
    所述发光控制电路还包括第二节点;
    所述发光驱动电路包括第四晶体管,所述第四晶体管的控制端电连接到所述第二节点,所述第四晶体管的第一端电连接到所述发光元件的第二端,所述第四晶体管的第二端配置为电连接到第一电源端;
    所述发光选择电路包括第五晶体管,所述第五晶体管的第一端电连接到所述信号线的第一端,所述第五晶体管的第二端电连接到所述第二节点;
    所述第二电容的第一端电连接到所述第二节点,所述第二电容的第二端电连接到所述第四晶体管的第二端;以及
    所述发光元件的第一端电连接到第二电源端。
  7. 根据权利要求1-3任一所述的像素电路,其中,
    所述触控探测电路包括第一晶体管,所述发光控制电路包括第四晶体管,所述第一晶体管为底栅型晶体管,所述第四晶体管为顶栅型晶体管,所述第一晶体管和所述第四晶体管的有源层同层形成。
  8. 一种显示面板,包括:
    阵列排列的像素单元和写入读出选择电路;以及
    至少一个所述像素单元包括如权利要求1-7任一所述的像素电路;
    其中,
    所述写入读出选择电路包括第一端、第二端以及第三端,所述第三端电连接到所述像素电路的信号线,所述第一端可电连接至数据驱动电路,所述第二端可电连接至触控驱动电路;
    所述写入读出选择电路配置为可将所述第一端与所述第三端电连接或将所述第二端和所述第三端电连接。
  9. 根据权利要求8所述的显示面板,其中,所述写入读出选择电路配置为:
    在显示阶段将所述第一端与所述第三端电连接,以经由所述像素电路的信号线向所述像素电路的发光控制电路输入显示数据信号;以及
    在光感读取阶段将所述第二端和所述第三端电连接,以经由所述像素电 路的信号线读取所述像素电路的触控探测电路的触控电信号。
  10. 根据权利要求8或9所述的显示面板,其中,
    所述写入读出选择电路包括第一控制晶体管和第二控制晶体管;
    所述第一控制晶体管的第一端电连接到所述像素电路的信号线,所述第一控制晶体管的第二端配置为可电连接到数据驱动电路;
    所述第二控制晶体管的第一端电连接到所述像素电路的信号线,所述第二控制晶体管的第二端配置为可电连接到触控驱动电路。
  11. 根据权利要求10所述的显示面板,还包括触控驱动电路和数据驱动电路,其中,
    所述第一控制晶体管的第二端电连接到数据驱动电路;
    所述第二控制晶体管的第二端电连接到触控驱动电路。
  12. 根据权利要求8-11任一所述的显示面板,还包括电压选择电路,
    其中,所述电压选择电路配置为将所述像素电路的触控探测电路的输入端电连接到第一输入电源或第二输入电源。
  13. 根据权利要求12所述的显示面板,其中,
    所述电压选择电路包括第三控制晶体管和第四控制晶体管;
    所述第三控制晶体管的第一端电连接到所述像素电路的触控探测电路的输入端,所述第三控制晶体管的第二端配置为可电连接到所述第一输入电源;
    所述第四控制晶体管的第一端电连接到所述像素电路的触控探测电路的输入端,所述第四控制晶体管的第二端配置为可电连接到所述第二输入电源。
  14. 根据权利要求8-13任一所述的显示面板,其中,
    至少一列所述像素单元均包括如权利要求1-7任一所述的像素电路且共用同一信号线。
  15. 一种如权利要求8-14任一所述的显示面板的驱动方法,包括:
    在显示阶段,经由所述像素电路的信号线向所述像素电路的发光控制电路输入显示数据信号,以驱动所述像素电路发光;
    在光感读取阶段,经由所述像素电路的信号线读取所述像素电路的触控探测电路的触控电信号,以判定是否存在触控动作。
  16. 根据权利要求15所述的显示面板的驱动方法,所述显示阶段包括复位阶段和感测阶段,所述驱动方法还包括:
    在所述复位阶段,向所述像素电路的触控探测电路的输入端写入第一电压;以及
    在所述感测阶段,向所述像素电路的触控探测电路的输入端写入第二电压,其中所述第二电压小于所述第一电压。
PCT/CN2018/078838 2017-05-22 2018-03-13 像素电路、显示面板及其驱动方法 WO2018214617A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/084,387 US10585514B2 (en) 2017-05-22 2018-03-13 Pixel circuit, display panel and driving method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710364526.1A CN106952612B (zh) 2017-05-22 2017-05-22 像素电路、显示面板及其驱动方法
CN201710364526.1 2017-05-22

Publications (1)

Publication Number Publication Date
WO2018214617A1 true WO2018214617A1 (zh) 2018-11-29

Family

ID=59480036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078838 WO2018214617A1 (zh) 2017-05-22 2018-03-13 像素电路、显示面板及其驱动方法

Country Status (3)

Country Link
US (1) US10585514B2 (zh)
CN (1) CN106952612B (zh)
WO (1) WO2018214617A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106952612B (zh) * 2017-05-22 2019-09-03 京东方科技集团股份有限公司 像素电路、显示面板及其驱动方法
CN109388273B (zh) * 2017-08-14 2020-10-30 京东方科技集团股份有限公司 触控显示面板及其驱动方法、电子装置
CN108682392A (zh) * 2018-05-21 2018-10-19 京东方科技集团股份有限公司 像素电路及其驱动方法、显示面板、制作方法和显示装置
CN108646949B (zh) * 2018-06-04 2024-03-19 京东方科技集团股份有限公司 光电检测电路及方法、阵列基板、显示面板、指纹识别法
CN109192071B (zh) * 2018-10-16 2021-03-23 京东方科技集团股份有限公司 显示面板及其形变感应方法、显示装置
CN109523954B (zh) 2018-12-24 2020-12-22 合肥鑫晟光电科技有限公司 像素单元、显示面板、驱动方法以及补偿控制方法
CN109686301B (zh) * 2019-02-28 2020-10-16 厦门天马微电子有限公司 光感电路及其驱动方法、显示面板和显示装置
KR20210059075A (ko) * 2019-11-13 2021-05-25 삼성디스플레이 주식회사 표시 장치
CN111863892B (zh) * 2020-07-13 2022-08-23 武汉华星光电半导体显示技术有限公司 显示装置及其制备方法
TWI771075B (zh) * 2021-06-23 2022-07-11 友達光電股份有限公司 光感測畫素與具光感測功能的顯示裝置
CN113467642A (zh) * 2021-07-05 2021-10-01 深圳市华星光电半导体显示技术有限公司 光触控检测电路和光触控显示面板
CN115145424A (zh) * 2022-06-28 2022-10-04 上海天马微电子有限公司 感测单元与感测装置
CN117836840A (zh) * 2022-06-30 2024-04-05 京东方科技集团股份有限公司 复合驱动电路、显示面板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100006022A (ko) * 2008-07-08 2010-01-18 엘지디스플레이 주식회사 액정 표시 장치 및 이의 구동 방법
JP2012123399A (ja) * 2012-01-20 2012-06-28 Seiko Epson Corp 電子回路の駆動方法
CN103353814A (zh) * 2013-06-27 2013-10-16 京东方科技集团股份有限公司 一种触控驱动电路、光学式内嵌触摸屏及显示装置
CN103354079A (zh) * 2013-06-26 2013-10-16 京东方科技集团股份有限公司 一种有源矩阵有机发光二极管像素单元电路以及显示面板
CN104217677A (zh) * 2014-07-30 2014-12-17 京东方科技集团股份有限公司 触控显示电路及显示装置
CN106952612A (zh) * 2017-05-22 2017-07-14 京东方科技集团股份有限公司 像素电路、显示面板及其驱动方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI253846B (en) 2005-03-28 2006-04-21 Ind Tech Res Inst Photo-sensing display unit
KR101761580B1 (ko) 2010-09-08 2017-07-27 엘지디스플레이 주식회사 터치 센서를 갖는 표시 장치
CN102063217B (zh) * 2010-11-09 2013-04-03 友达光电股份有限公司 感测装置与相关显示装置
TWI587197B (zh) 2012-06-27 2017-06-11 友達光電股份有限公司 光學式觸控面板及其製造方法以及光學式觸控顯示面板
TWI488091B (zh) 2012-10-09 2015-06-11 Au Optronics Corp 光學式觸控顯示面板
US9459721B2 (en) 2013-06-26 2016-10-04 Chengdu Boe Optoelectronics Technology Co., Ltd. Active matrix organic light emitting diode pixel unit circuit, display panel and electronic product
CN103554079A (zh) 2013-11-20 2014-02-05 天津渤海化工有限责任公司天津碱厂 一种聚甲醛装置中废碱液的回收利用方法
TWI525508B (zh) * 2014-01-17 2016-03-11 友達光電股份有限公司 光感應觸控裝置及方法
TWI560604B (en) * 2014-10-17 2016-12-01 Mstar Semiconductor Inc Touch display device and driving method thereof
CN104392699B (zh) * 2014-12-15 2018-05-01 合肥鑫晟光电科技有限公司 像素电路及其驱动方法、显示面板和显示装置
WO2017052727A1 (en) * 2015-09-25 2017-03-30 Cressputi Research Llc Light sensing display
CN105423911B (zh) 2015-11-09 2018-02-13 哈尔滨工程大学 一种基于光栅离焦的共路数字全息显微装置与方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100006022A (ko) * 2008-07-08 2010-01-18 엘지디스플레이 주식회사 액정 표시 장치 및 이의 구동 방법
JP2012123399A (ja) * 2012-01-20 2012-06-28 Seiko Epson Corp 電子回路の駆動方法
CN103354079A (zh) * 2013-06-26 2013-10-16 京东方科技集团股份有限公司 一种有源矩阵有机发光二极管像素单元电路以及显示面板
CN103353814A (zh) * 2013-06-27 2013-10-16 京东方科技集团股份有限公司 一种触控驱动电路、光学式内嵌触摸屏及显示装置
CN104217677A (zh) * 2014-07-30 2014-12-17 京东方科技集团股份有限公司 触控显示电路及显示装置
CN106952612A (zh) * 2017-05-22 2017-07-14 京东方科技集团股份有限公司 像素电路、显示面板及其驱动方法

Also Published As

Publication number Publication date
US10585514B2 (en) 2020-03-10
US20190278407A1 (en) 2019-09-12
CN106952612B (zh) 2019-09-03
CN106952612A (zh) 2017-07-14

Similar Documents

Publication Publication Date Title
WO2018214617A1 (zh) 像素电路、显示面板及其驱动方法
US11605322B2 (en) Pixel circuit, driving method thereof and display device
WO2018218936A1 (zh) 像素电路及其驱动方法、显示面板
US10679559B2 (en) Display driving unit circuit, driving method, display driving circuit and display device
US10705648B2 (en) Pixel circuit, array substrate, display panel, display device and display driving method
WO2016206274A1 (zh) 内嵌式触摸显示屏、其驱动方法及显示装置
US10943544B2 (en) Organic light emitting display device and driving method thereof
WO2016045301A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
WO2016206224A1 (zh) 一种内嵌式触摸显示屏、其驱动方法及显示装置
WO2019196925A1 (zh) 像素电路单元及驱动方法、显示面板、显示装置
WO2016206251A1 (zh) 一种内嵌式触摸显示屏、其驱动方法及显示装置
WO2015192503A1 (zh) 像素电路及其驱动方法、显示装置
WO2016011707A1 (zh) 像素电路及其驱动方法和显示装置
WO2020192734A1 (zh) 显示驱动电路及其驱动方法、显示面板及显示装置
WO2018032767A1 (zh) 显示基板、显示设备及区域补偿方法
CN109147693B (zh) 具有红外识别的发光二极管显示装置
CN109935183B (zh) 阵列基板、相关电流检测方法、显示面板及显示装置
WO2015196597A1 (zh) 像素电路、显示面板和显示装置
WO2018223767A1 (zh) 像素电路及其驱动方法、显示面板
WO2019109673A1 (zh) 像素电路及其驱动方法、显示面板和显示设备
WO2021169706A1 (zh) 像素电路及其驱动方法、显示装置
CN108803932A (zh) 像素电路、阵列基板、显示面板及其驱动方法
CN114822412B (zh) 显示基板及显示装置
WO2021012430A1 (zh) 像素驱动电路及显示面板
US11605684B2 (en) Array substrate, control method thereof, manufacturing method thereof, display panel and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806497

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.04.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18806497

Country of ref document: EP

Kind code of ref document: A1