WO2018214033A1 - 一种铝硅酸盐玻璃、化学强化玻璃和应用 - Google Patents

一种铝硅酸盐玻璃、化学强化玻璃和应用 Download PDF

Info

Publication number
WO2018214033A1
WO2018214033A1 PCT/CN2017/085567 CN2017085567W WO2018214033A1 WO 2018214033 A1 WO2018214033 A1 WO 2018214033A1 CN 2017085567 W CN2017085567 W CN 2017085567W WO 2018214033 A1 WO2018214033 A1 WO 2018214033A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
oxide
chemically strengthened
aluminosilicate glass
aluminosilicate
Prior art date
Application number
PCT/CN2017/085567
Other languages
English (en)
French (fr)
Inventor
盛秋春
黄义宏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780008240.8A priority Critical patent/CN108698912A/zh
Priority to JP2019565027A priority patent/JP6934074B2/ja
Priority to EP17911096.0A priority patent/EP3611140A4/en
Priority to PCT/CN2017/085567 priority patent/WO2018214033A1/zh
Priority to US16/616,335 priority patent/US11591254B2/en
Publication of WO2018214033A1 publication Critical patent/WO2018214033A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/004Refining agents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present application relates to the field of display technologies, and in particular, to an aluminosilicate glass, a chemically strengthened glass, and an application.
  • cover glass manufacturers of cover glass are also constantly improving the performance of cover glass by improving the glass composition. Some manufacturers add boron or phosphorus to the aluminosilicate glass to meet the performance requirements of the cover glass. Since the boron element and the phosphorus element are relatively active, when applied to the cover glass, the chemical stability is poor, and there are still problems such as low mechanical strength, and it is difficult to satisfy the demand for the glass material of the cover glass.
  • the present application provides an aluminosilicate glass which, after chemical strengthening treatment, can obtain a glass substrate having good mechanical strength and high chemical stability, thereby satisfying the demand for glass materials of the cover glass.
  • the present application provides an aluminosilicate glass that does not contain a B element and a P element, and includes at least silicon oxide, aluminum oxide, an alkali metal oxide, and gallium oxide, wherein The alkali metal oxide is at least one selected from the group consisting of lithium oxide and sodium oxide.
  • silicon oxide and aluminum oxide together form the main body of the aluminosilicate glass network structure, which makes the glass substrate more stable, is not easily corroded by the outside, ensures the hardness and mechanical strength of the glass, and the alkali metal oxide helps to reduce Glass melting temperature, viscosity, energy required for glass melting, and lowering viscosity also help to eliminate bubbles, shorten glass melting and clarification time, and further, when preparing the aluminosilicate glass, the alkali of the glass surface
  • the metal oxide can be exchanged with an alkali metal ion (for example, potassium ion) having a large atomic radius at a high temperature, and is suitable for chemical strengthening.
  • the aluminosilicate glass can be free of boron and phosphorus.
  • the number of meson ions for example, Al 3+ or Ga 3+
  • the modifier ion for example, Li +
  • the role of the neutron in the glass is glass forming, that is, tetracoordinated [AlO] 4 ] or [GaO 4 ]. Therefore, the lithium ion of the original charge balance non-bridged oxidized bond becomes used for charge balance [AlO 4 ] or [GaO 4 ].
  • the non-bridged oxidized bond in the glass is converted into a bridged oxidized bond, and the introduction of [GaO 4 ] increases the network structure of the aluminosilicate glass, which is larger than the tri-coordinated boron and phosphorus elements. , having a better rigid structure, high chemical stability, and the properties of the glass such as mechanical strength and glass transition temperature are increased.
  • the aluminosilicate glass provided by the present application is suitable for chemical strengthening, and after chemical strengthening treatment, A glass substrate having good mechanical strength and high chemical stability can be obtained, so that the demand for the glass material of the cover glass can be satisfied.
  • the mass percentage of the gallium oxide is greater than 0 and less than or equal to 5%.
  • the silicon oxide has a mass percentage of 45 to 75%, and the alumina has a mass percentage of 13 to 25%.
  • Silica is beneficial to the mechanical properties and chemical stability of glass but is not conducive to melting.
  • Alumina contributes to the increase of glass strain point and bending strength, but it is not conducive to molding, and the mass percentage of silica and alumina is controlled. Within the above range, it is advantageous to improve the stability, weather resistance, meltability and moldability of the glass.
  • the alkali metal oxide has a mass percentage of from 3 to 25%.
  • the glass melting temperature, viscosity, energy required for glass melting, and viscosity can be effectively reduced, which helps to eliminate bubbles and shorten glass melting and clarification time. It can also effectively promote the ion exchange between the alkali metal ions in the alkali metal oxide and the alkali metal ions having a large atomic radius, strengthen the chemical strengthening effect, and obtain the cover glass with the desired strengthening property.
  • the aluminosilicate glass further comprises a fining agent.
  • the clarifying agent is capable of pyrolysis (gasification) to generate gas or reduce the viscosity of the glass during the glass melting process, thereby promoting the elimination of bubbles in the glass.
  • the fining agent is selected from the group consisting of tin oxide, sulfur oxides, fluorides, and cerium oxide.
  • the mass percentage of the tin oxide in the aluminosilicate glass is 0.2% or less; when the clarifying agent is sulfur oxide The mass percentage of the sulfur oxide in the aluminosilicate glass is less than or equal to 0.2%; when the fining agent is fluoride, the mass percentage of the fluoride in the aluminosilicate glass is less than or equal to 0.5%; when the clarifying agent is cerium oxide, the mass percentage of the cerium oxide in the aluminosilicate glass is 0.5% or less.
  • the aluminosilicate glass is formed by an overflow down draw process or a float process. Can produce a thin cover glass.
  • the present application provides a chemically strengthened glass obtained by chemically strengthening an aluminosilicate glass as described above. Since the aluminosilicate glass has an alkali metal oxide and can be ion-exchanged for chemical strengthening, the obtained chemically strengthened glass has both the physicochemical properties of the aluminosilicate glass and the mechanical strength and chemical strengthening.
  • the cover glass with good stability, low viscosity, low density, suitable expansion coefficient and high Young's modulus can meet the requirements of the cover glass for the glass material.
  • the compressive stress of the chemically strengthened glass is greater than or equal to 700 MPa.
  • the chemically strengthened glass has a large compressive stress and a high mechanical strength, and can satisfy the demand for the glass material of the cover glass.
  • the compressive stress layer of the chemically strengthened glass has a thickness of between 40 and 100 ⁇ m. After the chemical strengthening treatment, the compressive stress layer of the chemically strengthened glass has a large thickness and a high mechanical strength, and can satisfy the demand for the glass material of the cover glass.
  • the chemically strengthened glass has a Young's modulus of 70 GPa or more.
  • the Young's modulus is within this range and can satisfy the demand for the glass material of the cover glass.
  • the chemically strengthened glass has a density of less than or equal to 2.52 g/cm 3 .
  • the chemically strengthened glass has a low density and can meet the demand for glass materials of the cover glass.
  • the aluminosilicate glass is chemically strengthened by ion exchange.
  • the aluminosilicate glass is ion exchanged with a molten potassium salt.
  • a compressive stress layer can be formed on the surface of the aluminosilicate glass.
  • the ion exchange time is 5-7 h.
  • the chemically strengthened glass as described above is used as a cover glass in a display touch device.
  • the present application provides an aluminosilicate glass which can be chemically strengthened to obtain a glass substrate having good mechanical strength and high chemical stability. Can meet the glass glass material requirements of the cover glass.
  • FIG. 1 is a schematic view showing the addition of an alkali metal oxide to quartz glass to promote depolymerization of a [SiO 4 ] three-dimensional network provided by the present application;
  • FIG. 2 is a schematic diagram of a gallium oxide forming glass network structure provided by the present application.
  • the present application provides an aluminosilicate glass which does not contain a B element and a P element, and at least includes silicon oxide, aluminum oxide, an alkali metal oxide and gallium oxide, wherein The alkali metal oxide is at least one selected from the group consisting of lithium oxide and sodium oxide.
  • Aluminosilicate glass refers to glass containing silica and alumina as the main components, wherein the alumina content can reach more than 20%.
  • silica and alumina together form the main body of the aluminosilicate glass network structure, which makes the glass substrate more stable, is not easily corroded by the outside, and ensures the hardness and mechanical strength of the glass.
  • the alkali metal oxide helps to reduce the glass melting temperature, viscosity, energy required for glass melting, and lowering the viscosity also helps to eliminate bubbles, shorten the glass melting and clarification time, and further, in order to prepare the cover glass that meets the requirements
  • the alkali metal oxide-containing aluminosilicate glass can be ion-exchanged, so that the alkali metal oxide of the glass surface layer can be exchanged with an alkali metal ion (such as potassium ion) having a large atomic radius at a high temperature, in the aluminum
  • an alkali metal ion such as potassium ion
  • the alkali metal oxide is at least one selected from the group consisting of lithium oxide and sodium oxide, and means that the alkali metal oxide may include only lithium oxide or sodium oxide, or may include both lithium oxide and sodium oxide.
  • the aluminosilicate glass does not contain the B element and the P element, and the mass percentage of the B element and the P element in the strict sense is 0, but the B element and the P element are not contained except for the unavoidable impurities. Therefore, any aluminosilicate glass having a mass percentage of the B element and the P element within the allowable range of impurities is within the scope of the present application.
  • the B element and the P element mentioned in the present application mainly mean oxides B 2 O 3 and P 2 O 5 .
  • the aluminosilicate glass does not contain boron and phosphorus, which can improve aluminum
  • the chemical stability of the silicate glass increases the mechanical strength and glass transition temperature of the aluminosilicate glass.
  • the addition of an alkali metal oxide (represented by R 2 O) to the quartz glass depolymerizes the original [SiO 4 ] three-dimensional network and exhibits bonding to a silicon atom.
  • Non-bridged oxygen the alkali metal ion (R + ) is in the cell near the non-bridged oxygen, neutralizing the excess charge, and the addition of the alkali metal oxide R 2 O causes the ratio of oxygen to silicon to increase relatively.
  • Bridge oxygen refers to the oxygen ions in the glass network that are the apex angles shared by the two networked polyhedrons, that is, the oxygen ions that act as "bridges".
  • the oxygen ions that are only bonded to one networked ion and not shared by the two networked polyhedrons are non-bridged; if the number of intermediate ions (such as Al 3+ or Ga 3+ ) is less than the modification
  • a daughter ion for example, Li +
  • the role of the meson in the glass is a glass former, that is, a tetracoordinated [AlO 4 ] or [GaO 4 ] is formed. Therefore, the original charge balance of the non-bridged oxidized Li ions becomes used for charge balance [AlO 4 ] or [GaO 4 ].
  • the non-bridged oxidized bonds in the glass are converted into bridging oxidative bonds, increasing the network structure of the aluminosilicate glass, and the properties of the glass such as mechanical strength and glass transition temperature are increased, and at the same time, due to the tetracoordinated [GaO 4 ]
  • the introduction of the network structure makes the expansion space larger, facilitates the ion exchange of the alkali metal oxide in the network, shortens the ion exchange time, and increases the thickness of the compressive stress and the compressive stress layer, so that the chemically strengthened glass has high mechanical strength.
  • the density is small, which can meet the demand for glass materials of the cover glass.
  • the present application provides an aluminosilicate glass which, after chemical strengthening treatment, can obtain a glass substrate with good mechanical strength and high chemical stability, and can satisfy the cover glass to glass. Material requirements.
  • the mass percentage of the gallium oxide is greater than 0 and less than or equal to 5%. According to a large number of experiments, it is known that the mass percentage of gallium oxide is controlled within the above range, and a cover glass having excellent chemical resistance, low density, suitable expansion coefficient, and high Young's modulus can be obtained.
  • the silicon oxide has a mass percentage of 45 to 75%, and the alumina has a mass percentage of 13 to 25%.
  • Silica is beneficial to the mechanical properties and chemical stability of glass but is not conducive to melting.
  • Alumina contributes to the increase of glass strain point and bending strength, but it is not conducive to molding, and the mass percentage of silica and alumina is controlled. Within the above range, it is advantageous to improve the stability, weather resistance, meltability and moldability of the glass.
  • the alkali metal oxide has a mass percentage of from 3 to 25%.
  • the glass melting temperature, viscosity, energy required for glass melting, and viscosity can be effectively reduced, which helps to eliminate bubbles and shorten glass melting and clarification time. It can also effectively promote the ion exchange between the alkali metal ions in the alkali metal oxide and the alkali metal ions having a large atomic radius, strengthen the chemical strengthening effect, and obtain the cover glass with the desired strengthening property.
  • the alkali metal oxide includes lithium oxide and sodium oxide
  • the mass ratio of the lithium oxide to the sodium oxide is 1:4 to 4:1.
  • the alkali metal ions in the alkali metal oxide are exchanged with a larger basic ion (for example, K + ) in an ion exchange medium (for example, a molten salt bath).
  • a molten salt bath for example, a molten salt bath
  • Three types of ion exchange can be performed: Na + exchange Li + , K + exchange Li + and / or K + exchange Na + .
  • the exchange of Li + by Na + results in a higher surface compressive stress thickness but a lower compressive stress.
  • K + exchange of Li + results in a small compressive stress layer thickness but a large compressive stress
  • K + exchange of Na + results in a medium layer thickness and a medium compressive stress.
  • the compressive stress is proportional to the amount of alkaline ions that are ion exchanged out of the glass. Therefore, the mass percentage of lithium oxide and sodium oxide can directly determine the effect of chemical strengthening. It has been proved by a large number of experiments that the mass ratio of lithium oxide and sodium oxide is controlled within the above range, and a cover glass having desired reinforcing properties can be obtained.
  • the mass percentage of the alkali metal oxide is 3 to 25%, and the mass ratio of the lithium oxide to the sodium oxide is 1:4 to 4:1, when the mass of the alkali metal oxide is 100
  • the mass percentage of the lithium oxide in the glass may be 0.6%, and at this time, the mass percentage of the sodium oxide in the glass may be 2.4%; the lithium oxide is in the glass
  • the mass percentage in the amount may be 2.4%, and in this case, the mass percentage of the sodium oxide in the glass may be 0.6%.
  • the lithium oxide may have a mass percentage of 2% in the glass, and the mass percentage of the sodium oxide in the glass may be 1%.
  • the aluminosilicate glass further comprises a fining agent.
  • the clarifying agent is capable of pyrolysis (gasification) to generate gas or reduce the viscosity of the glass during the glass melting process, thereby promoting the elimination of bubbles in the glass.
  • the fining agent is selected from any one of tin oxide, sulfur oxide, fluoride, and cerium oxide.
  • the volatile oxides such as tin oxide, sulfur oxide and antimony oxide decompose oxygen at a high temperature, and the solubility of oxygen decreases with an increase in temperature, thereby causing a clarification effect, and the fluoride is vaporized in the melting to produce a clarification effect.
  • the fluoride may be ammonium fluoride or potassium fluoride.
  • composition of the clarifying agent is different, and the mass percentage thereof in the aluminosilicate glass is also different.
  • the mass percentage of the tin oxide in the aluminosilicate glass is 0.2% or less; when the clarifying agent is sulfur oxide, the sulfur oxide is in the aluminosilicate The mass percentage of the salt glass is less than or equal to 0.2%; when the clarifying agent is fluoride, the mass percentage of the fluoride in the aluminosilicate glass is less than or equal to 0.5%; when the clarifying agent is cerium oxide The mass percentage of the cerium oxide in the aluminosilicate glass is 0.5% or less.
  • the fining agent is cerium oxide.
  • Cerium oxide is also a chemical decolorizing agent for glass.
  • Lanthanum oxide has a higher oxidation potential, so it is better than traditional clarifying agents.
  • it can also reduce the amount of sodium nitrate in the glass formulation, which can reduce microbubbles, increase transparency, and glass strength. And water resistance. Therefore, the cerium oxide clarifying agent can not only achieve the clarification defoaming effect but also greatly improve the quality of the glass, and has made significant contributions to the environment, and has high economic and social benefits.
  • cerium oxide is used as an anti-ultraviolet agent and an ultraviolet shielding agent. It is added to the glass to prevent aging and sun protection.
  • the aluminosilicate glass is formed by an overflow down draw process or a float process.
  • the surface obtained by the overflow down-draw method has better surface quality and lower cost, and is suitable for small-scale production; while float forming is suitable for the production of large-sized glass, it is necessary to add grinding and polishing equipment to improve the surface quality of the glass, and the cost is relatively high. high.
  • the present application provides a chemically strengthened glass obtained by chemically strengthening an aluminosilicate glass as described above.
  • the present invention provides a chemically strengthened glass. Since the aluminosilicate glass has an alkali metal oxide, it can undergo ion exchange for chemical strengthening, and the obtained chemically strengthened glass has both the physical and chemical properties of the aluminosilicate glass and the By chemical strengthening, a cover glass having high mechanical strength, good chemical stability, low viscosity, low density, suitable expansion coefficient, and high Young's modulus can be obtained, thereby satisfying the demand for glass materials of the cover glass.
  • the aluminosilicate glass is chemically oxidized by ion exchange strengthen.
  • the chemically strengthened glass is mainly composed of glass having a thickness of 3 mm or less, and a high-purity molten potassium salt and lithium ions and sodium ions on the surface of the glass structure are ion-exchanged to form a strengthening layer.
  • the aluminosilicate glass is ion exchanged with a molten potassium salt.
  • a potassium salt can chemically strengthen the aluminosilicate glass to form a compressive stress layer on the surface of the aluminosilicate glass.
  • the specific operation of the ion exchange is not limited.
  • the aluminosilicate glass may be immersed in the molten potassium salt by a dipping method, and the molten potassium salt may be applied to the aluminosilicate glass. s surface.
  • the molten potassium salt may include a sodium salt having a mass percentage of 3% or less, and the potassium salt may be potassium nitrate, potassium chloride or the like.
  • the temperature of the molten potassium salt is between 370 and 460 °C.
  • the expansion space of the network structure is larger, and the ion exchange of the alkali metal oxide in the network is facilitated, and the ion exchange time can be shortened.
  • the ion exchange time is 5-7 h.
  • the chemically strengthened glass has a compressive stress of 700 MPa or more.
  • the compressive stress refers to the stress that resists the compression tendency of the object.
  • the compressive stress of the chemically strengthened glass can be measured by the surface compressive stress meter. After the chemical strengthening treatment, the compressive stress of the chemically strengthened glass is large, and the mechanical strength is high, which can satisfy The need for glass for cover glass.
  • the compressive stress layer of the chemically strengthened glass has a thickness of between 40 and 100 ⁇ m.
  • the compressive stress of the chemically strengthened glass can be measured by a surface compressive stress meter. After the chemical strengthening treatment, the thickness of the compressive stress layer of the chemically strengthened glass is large, and the mechanical strength is high, which can satisfy the demand for the glass material of the cover glass.
  • the chemically strengthened glass has a Young's modulus of 70 GPa or more.
  • a forward strain is generated.
  • the ratio of the positive stress to the forward strain is defined as the Young's modulus of the material.
  • Young's modulus is a physical quantity that describes the ability of a solid material to resist deformation. The Young's modulus of the chemically strengthened glass is within this range, and can satisfy the demand for the glass material of the cover glass.
  • the chemically strengthened glass has a density of 2.52 g/cm 3 or less.
  • the chemically strengthened glass has a low density and can meet the demand for glass materials of the cover glass.
  • the chemically strengthened glass as described above is used as a cover glass in a display touch device.
  • the display screen can be various display screens commonly used in the field of electronic products, for example, it can be a display screen of a liquid crystal television, a tablet computer, a touch screen mobile phone, etc., specifically, it can be used to prepare a cover glass for display screen protection, and can also be used as a glass battery. Cover and so on.
  • the mass percentage of the glass component in each example is shown in Table 1 below.
  • Example 1 Calculate the amount of silicon oxide, aluminum oxide, sodium oxide, lithium oxide, gallium oxide and clarifying agent according to the mass percentage in Example 1 shown in Table 1, weigh them and mix them thoroughly, then add them to the furnace and float.
  • the method is produced, melted and clarified at 1600 ° C for 3 hours, and the molten glass liquid is poured on a stainless steel mold preheated at 300 ° C to form a prescribed plate-shaped glass product, and then the glass is annealed at 630 ° C in an annealing furnace. After an hour, the temperature drop rate of 1 ° C/min was then lowered to 350 ° C and then cooled to room temperature with the furnace.
  • the obtained glass was polished and polished, processed into a glass sample of 50 ⁇ 50 mm size, and subjected to ion exchange treatment for 5 hours in a potassium nitrate molten salt having a temperature of 410° C., and chemically strengthened to cause sodium on the surface of the glass.
  • Lithium ion is ion-exchanged with potassium ions in the above treatment liquid to obtain chemically strengthened glass A.
  • the obtained glass was polished and polished, processed into a 50 ⁇ 50 mm glass sample, and subjected to ion exchange treatment at a temperature of 460° C. for 5 hours in a potassium nitrate molten salt, and subjected to chemical strengthening treatment to cause sodium and lithium ions on the surface of the glass. Ion exchange with potassium ions in the above treatment liquid to obtain chemically strengthened glass B.
  • the amounts of silicon oxide, aluminum oxide, sodium oxide, lithium oxide, gallium oxide and clarifying agent were calculated according to the mass percentage corresponding to Example 3 shown in Table 1, and aluminum silicon was produced according to the float method corresponding to Example 1.
  • Phosphate glass, and the glass obtained by the processing is ground and polished, processed into a glass sample of 50 ⁇ 50 mm size, and ion in a mixed bath salt of potassium nitrate at a temperature of 370 ° C and sodium nitrate having a mass fraction of 3%.
  • the exchange treatment was carried out for 5 hours, and chemical strengthening treatment was performed to ion-exchange the sodium and lithium ions on the surface of the glass with the potassium ions in the treatment liquid to obtain chemically strengthened glass C.
  • the amounts of silicon oxide, aluminum oxide, sodium oxide, lithium oxide, gallium oxide and clarifying agent were calculated with reference to the mass percentage corresponding to Example 4 shown in Table 1, and produced in accordance with the overflow down-draw method corresponding to Example 2.
  • Aluminosilicate glass, and the glass obtained by the processing is ground and polished to be processed into a glass sample of 50 ⁇ 50 mm size, a mixed bath salt of potassium nitrate at a temperature of 410 ° C and sodium nitrate having a mass fraction of 3%.
  • the medium ion exchange treatment was carried out for 7 hours, and chemical strengthening treatment was performed to ion-exchange the sodium and lithium ions on the surface of the glass with the potassium ions in the treatment liquid to obtain chemically strengthened glass D.
  • the amounts of silicon oxide, aluminum oxide, sodium oxide, lithium oxide, gallium oxide and clarifying agent were calculated according to the mass percentage corresponding to Example 5 shown in Table 1, and aluminum silicon was produced according to the float method corresponding to Example 1.
  • Phosphate glass, and the glass obtained by the processing is ground and polished, processed into a glass sample of 50 ⁇ 50 mm size, ion-exchanged for 6 hours in potassium nitrate at 410 ° C, and chemically strengthened to make the glass surface
  • the sodium and lithium ions are ion-exchanged with potassium ions in the above treatment liquid to obtain chemically strengthened glass E.
  • the amounts of silicon oxide, aluminum oxide, sodium oxide, lithium oxide, gallium oxide and clarifying agent were calculated with reference to the mass percentage corresponding to Example 6 shown in Table 1, and were produced according to the overflow down-draw method corresponding to Example 2.
  • Aluminosilicate glass, and the glass obtained by the processing is ground and polished to be processed into a glass sample of 50 ⁇ 50 mm size, a mixed bath salt of potassium nitrate at a temperature of 370 ° C and sodium nitrate having a mass fraction of 3%.
  • the medium ion exchange treatment was carried out for 6 hours, and chemical strengthening treatment was performed to ion-exchange the sodium and lithium ions on the surface of the glass with the potassium ions in the treatment liquid to obtain chemically strengthened glass F.
  • the amounts of silicon oxide, aluminum oxide, sodium oxide, lithium oxide, gallium oxide and clarifying agent were calculated according to the mass percentage corresponding to Example 7 shown in Table 1, and aluminum silicon was produced according to the float method corresponding to Example 1.
  • Phosphate glass, and the glass obtained by processing is polished and polished to be processed into a glass sample of 50 ⁇ 50 mm size.
  • Ion exchange treatment was carried out for 7 hours in a mixed bath salt of potassium nitrate at a temperature of 370 ° C and sodium nitrate having a mass fraction of 2%, and chemical strengthening treatment was carried out to ionize sodium and lithium ions on the surface of the glass and potassium ions in the above treatment liquid. Exchange to obtain chemically strengthened glass G.
  • the amounts of silicon oxide, aluminum oxide, sodium oxide, lithium oxide, gallium oxide and clarifying agent were calculated with reference to the mass percentage corresponding to Example 8 shown in Table 1, and were produced according to the overflow down-draw method corresponding to Example 2.
  • Aluminosilicate glass, and the glass obtained by the processing is ground and polished to be processed into a glass sample of 50 ⁇ 50 mm size, a mixed bath salt of potassium nitrate at a temperature of 460 ° C and sodium nitrate having a mass fraction of 2%.
  • the medium ion exchange treatment was carried out for 5 hours, and chemical strengthening treatment was performed to ion-exchange the sodium and lithium ions on the surface of the glass with the potassium ions in the treatment liquid to obtain chemically strengthened glass H.
  • the chemically strengthened glass A-H obtained in Example 1-8 was subjected to performance test.
  • the density P of the glass is measured by the Archimedes method; the coefficient of thermal expansion is measured by a dilatometer, W is the average expansion coefficient; the Young's modulus is measured by a Young's modulus tester; the surface compressive stress and pressure of the glass after chemical strengthening The thickness of the stress layer was measured using a surface stress meter FSM-6000LE.
  • the obtained chemically strengthened glass has the chemically strengthened glass compared with the existing chemically strengthened glass.
  • the chemically strengthened glass in the prior art has a density of 2.50 g/cm 3 and a thermal expansion coefficient of 75 x 10 -7 /° C.
  • the surface compressive stress is 650 MPa and the compressive stress depth is 35 ⁇ m. Therefore, the chemically strengthened glass can satisfy the demand for the glass material of the cover glass.
  • the present application provides an aluminosilicate glass which, after chemical strengthening treatment, can obtain a glass substrate with good mechanical strength and high chemical stability, and can satisfy the cover glass to glass. Material requirements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

一种铝硅酸盐玻璃、化学强化玻璃和应用。该铝硅酸盐玻璃经化学强化处理后,能够得到机械强度好且化学稳定性高的玻璃基板,从而能够满足盖板玻璃对玻璃材料的需求。该铝硅酸盐玻璃中不含B元素和P元素,而至少包括氧化硅、氧化铝、碱金属氧化物和氧化镓,其中,该碱金属氧化物选自氧化锂和氧化钠中的至少一种。该玻璃用于盖板玻璃的生产制造。

Description

一种铝硅酸盐玻璃、化学强化玻璃和应用 技术领域
本申请涉及显示屏技术领域,尤其涉及一种铝硅酸盐玻璃、化学强化玻璃和应用。
背景技术
近年来,随着移动设备的发展,盖板玻璃的出货率越来越高,尤其是随着现代显示和触摸屏技术科技的发展,先进的平板显示智能产品层出不穷,如手机、液晶电视、液晶显示器、提款机、平面广告媒体机等,很多功能和交易都是通过手指或笔触摸显示屏幕来完成,这就对触摸屏盖板玻璃提出了更高的要求;要求触摸屏盖板玻璃具有高的机械强度、高杨氏模量、低密度、低成本和气泡品质优异等。
盖板玻璃的生产厂商也不断在通过改善玻璃组成来提高盖板玻璃的性能,其中一些生产厂商通过向铝硅酸盐玻璃中添加硼元素或者磷元素以满足对盖板玻璃的性能需求,然而,由于硼元素和磷元素较为活泼,在将其应用于盖板玻璃时,化学稳定性差,且仍然存在机械强度低等问题,难以满足盖板玻璃对玻璃材料的需求。
发明内容
本申请提供了一种铝硅酸盐玻璃,该铝硅酸盐玻璃经化学强化处理后,能够得到机械强度好且化学稳定性高的玻璃基板,从而能够满足盖板玻璃对玻璃材料的需求。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请提供一种铝硅酸盐玻璃,该铝硅酸盐玻璃中不含B元素和P元素,且至少包括氧化硅、氧化铝、碱金属氧化物和氧化镓,其中,该碱金属氧化物选自氧化锂和氧化钠中的至少一种。其中,将氧化硅和氧化铝共同构成铝硅酸盐玻璃网络结构的主体,可以让玻璃基板更稳定,不容易受到外界的侵蚀,保证玻璃的硬度和机械强度,碱金属氧化物有助于降低玻璃熔解温度、黏度、玻璃熔解所需的能量,而且降低黏度也有助于排除气泡,缩短玻璃熔解与澄清时间,进一步地,当将该铝硅酸盐玻璃制备盖板玻璃时,玻璃表层的碱金属氧化物可以在高温下与原子半径较大的碱金属离子(例如钾离子)交换,适合化学强化,通过引入氧化镓,而使该铝硅酸盐玻璃中不含硼元素和磷元素,能够在中间子离子(例如Al3+或Ga3+)的数目少于修饰子离子(例如Li+)时,中间子在玻璃中之角色为玻璃形成子,也就是会形成四配位的[AlO4]或[GaO4]。因此原来电荷平衡非桥接氧化键的锂离子,变成用来电荷平衡[AlO4]或[GaO4]。玻璃中的非桥接氧化键就转化成桥接氧化键,而[GaO4]的引入,增加了铝硅酸盐玻璃的网络结构,与三配位的硼元素和磷元素相比,网络体积较大,具有更好的刚性结构,化学稳定性高,且玻璃的性质如机械强度和玻璃转换温度都会增高,综上,本申请提供的铝硅酸盐玻璃适合化学强化,且经化学强化处理后,能够得到机械强度好且化学稳定性高的玻璃基板,从而能够满足盖板玻璃对玻璃材料的需求。
第一方面的第一种可能的实现方式中,该氧化镓的质量百分含量大于0小于等于5%。将氧化镓的质量百分含量控制在以上范围内,能够获得具有优良的耐化学性、低密度、适宜的膨胀系数、高的杨氏模量的盖板玻璃。
第一方面的第二种可能的实现方式中,该氧化硅的质量百分含量为45~75%,该氧化铝的质量百分含量为13~25%。氧化硅有利于玻璃的机械性能和化学稳定性但不利于熔解,氧化铝有助于玻璃应变点、抗弯强度的增高,但是不利于成型,将氧化硅和氧化铝的质量百分含量控制在上述范围内,有利于提高玻璃的稳定性、耐候性、熔化性和成型性。
第一方面的第三种可能的实现方式中,该碱金属氧化物的质量百分含量为3-25%。将碱金属氧化物的质量百分含量控制在以上范围内,可以有效降低玻璃熔解温度、黏度、玻璃熔解所需的能量,而且降低黏度,有助于排除气泡,缩短玻璃熔解与澄清时间,同时,还能够有效促使碱金属氧化物中的碱金属离子与原子半径较大的碱金属离子发生离子交换,强化化学强化效果,获得理想强化性能的盖板玻璃。
第一方面的第四种可能的实现方式中,该铝硅酸盐玻璃还包括澄清剂。澄清剂能够在玻璃熔制过程中高温分解(气化)产生气体或降低玻璃液粘度,促使玻璃液中气泡消除。
第一方面的第五种可能的实现方式中,该澄清剂选自氧化锡、氧化硫、氟化物和氧化铈中的任意一种。
第一方面的第六种可能的实现方式中,当该澄清剂为氧化锡时,该氧化锡在该铝硅酸盐玻璃中的质量百分含量小于等于0.2%;当该澄清剂为氧化硫时,该氧化硫在该铝硅酸盐玻璃中的质量百分含量小于等于0.2%;当该澄清剂为氟化物时,该氟化物在该铝硅酸盐玻璃中的质量百分含量小于等于0.5%;当该澄清剂为氧化铈时,该氧化铈在该铝硅酸盐玻璃中的质量百分含量小于等于0.5%。
第一方面的第七种可能的实现方式中,该铝硅酸盐玻璃通过溢流下拉法或者浮法成型。能够生产出较薄的盖板玻璃。
第二方面,本申请提供一种化学强化玻璃,通过对如上所述的铝硅酸盐玻璃进行化学强化获得。由于铝硅酸盐玻璃具有碱金属氧化物,能够进行离子交换进行化学强化,所获得的化学强化玻璃既具有铝硅酸盐玻璃所具有的物化性能,又能够通过化学强化获得机械强度高、化学稳定性好、粘度低、密度低、膨胀系数适宜、杨氏模量高的盖板玻璃,从而能够满足盖板玻璃对玻璃材料的需求。
第二方面的第一种可能的实现方式中,该化学强化玻璃的压应力大于等于700MPa。通过化学强化处理后化学强化玻璃的压应力较大,机械强度较高,能够满足盖板玻璃对玻璃材料的需求。
第二方面的第二种可能的实现方式中,该化学强化玻璃的压应力层的厚度在40-100μm之间。通过化学强化处理后化学强化玻璃的压应力层的厚度较大,机械强度较高,能够满足盖板玻璃对玻璃材料的需求。
第二方面的第三种可能的实现方式中,该化学强化玻璃的杨氏模量大于等于70Gpa。该杨氏模量在该范围内,能够满足盖板玻璃对玻璃材料的需求。
第二方面的第四种可能的实现方式中,该化学强化玻璃的密度小于等于2.52g/cm3。该化学强化玻璃的密度较小,能够满足盖板玻璃对玻璃材料的需求。
第二方面的第五种可能的实现方式中,通过离子交换对该铝硅酸盐玻璃进行化学强化。
第二方面的第六种可能的实现方式中,该铝硅酸盐玻璃与熔融的钾盐进行离子交换。能够在该铝硅酸盐玻璃的表面形成压应力层。
第二方面的第七种可能的实现方式中,该离子交换的时间为5-7h。
第三方面,如上所述的化学强化玻璃在显示屏触摸设备中用作盖板玻璃的应用。
本申请为了顺应市场对触摸屏盖板玻璃的需求,提供了一种铝硅酸盐玻璃,该铝硅酸盐玻璃经化学强化处理后,能够得到机械强度好和化学稳定性高的玻璃基板,从而能够满足盖板玻璃对玻璃材料的需求。
附图说明
图1为本申请提供的在石英玻璃中加入碱金属氧化物,促使[SiO4]三度空间网络发生解聚的示意图;
图2为本申请提供的氧化镓形成玻璃网络结构的示意图。
具体实施方式
下面将结合附图,对本申请的实施例进行详细描述。
第一方面,本申请提供一种铝硅酸盐玻璃,该铝硅酸盐玻璃中不含B元素和P元素,而至少包括氧化硅、氧化铝、碱金属氧化物和氧化镓,其中,该碱金属氧化物选自氧化锂和氧化钠中的至少一种。
铝硅酸盐玻璃是指以二氧化硅和氧化铝为主要成分的玻璃,其中氧化铝含量可达20%以上。在铝硅酸盐玻璃中,氧化硅和氧化铝共同构成铝硅酸盐玻璃网络结构的主体,可以让玻璃基板更稳定,不容易受到外界的侵蚀,保证玻璃的硬度和机械强度。
其中,碱金属氧化物有助于降低玻璃熔解温度、黏度、玻璃熔解所需的能量,而且降低黏度也有助于排除气泡,缩短玻璃熔解与澄清时间,进一步地,为了制备满足要求的盖板玻璃,可以对该含有碱金属氧化物的铝硅酸盐玻璃进行离子交换,使得玻璃表层的碱金属氧化物可以在高温下与原子半径较大的碱金属离子(如钾离子)交换,在该铝硅酸盐玻璃的表面形成压应力层,实现化学强化,从而能够满足盖板玻璃的性能需求。
这里,该碱金属氧化物选自氧化锂和氧化纳中的至少一种,是指碱金属氧化物可以只包括氧化锂或者氧化钠,也可以既包括氧化锂又包括氧化钠。
其中,该铝硅酸盐玻璃中不含B元素和P元素并不是严格意义上的B元素和P元素的质量百分含量为0,而是除了不可避免的杂质以外不含有B元素和P元素,因此,B元素和P元素的质量百分含量在杂质允许范围内的任何铝硅酸盐玻璃均在本申请的保护范围之内。
并且,本申请所提到的B元素和P元素主要是指氧化物B2O3和P2O5
通过引入氧化镓,而使该铝硅酸盐玻璃中不含硼元素和磷元素,既能够提高铝 硅酸盐玻璃的化学稳定性,又能够提高铝硅酸盐玻璃的机械强度和玻璃转换温度。
具体的,参见图1,在石英玻璃中加入碱金属氧化物(用R2O来表示),会使原有的[SiO4]三度空间网络发生解聚,出现与一个硅原子键合的非桥氧,碱金属离子(R+)处于非桥氧附近的网穴中,中和过剩电荷,碱金属氧化物R2O的加入使得氧硅比值相对增大。桥氧是指玻璃网络中作为两个成网多面体所共有顶角的氧离子,即起“桥梁”作用的氧离子。反之,仅与一个成网离子相键连,而不被两个成网多面体所共的氧离子则为非桥氧;若中间子离子(例如Al3+或Ga3+)的数目少于修饰子离子(例如Li+)时,参见图2,中间子在玻璃中之角色为玻璃形成子,也就是会形成四配位的[AlO4]或[GaO4]。因此原来电荷平衡非桥接氧化键的Li离子,变成用来电荷平衡[AlO4]或[GaO4]。玻璃中的非桥接氧化键就转化成桥接氧化键,增加了铝硅酸盐玻璃的网络结构,玻璃的性质如机械强度和玻璃转换温度都会增高,同时,由于四配位的[GaO4]的引入,使网络结构的展开空间更大,便于网络中的碱金属氧化物进行离子交换,能够缩短离子交换时间,提高压应力和压应力层的厚度,使得经过化学强化后的玻璃机械强度高、密度小,能够满足盖板玻璃对玻璃材料的需求。
综上所述,本申请提供了一种铝硅酸盐玻璃,该铝硅酸盐玻璃经化学强化处理后,能够得到机械强度好和化学稳定性高的玻璃基板,能够满足盖板玻璃对玻璃材料的需求。
第一方面的一种可能的实现方式中,该氧化镓的质量百分含量大于0小于等于5%。经大量实验可知:将氧化镓的质量百分含量控制在以上范围内,能够获得优良的耐化学性、低密度、适宜的膨胀系数、高的杨氏模量的盖板玻璃。
第一方面的另一种可能的实现方式中,该氧化硅的质量百分含量为45~75%,该氧化铝的质量百分含量为13~25%。氧化硅有利于玻璃的机械性能和化学稳定性但不利于熔解,氧化铝有助于玻璃应变点、抗弯强度的增高,但是不利于成型,将氧化硅和氧化铝的质量百分含量控制在上述范围内,有利于提高玻璃的稳定性、耐候性、熔化性和成型性。
第一方面的再一种可能的实现方式中,该碱金属氧化物的质量百分含量为3-25%。将碱金属氧化物的质量百分含量控制在以上范围内,可以有效降低玻璃熔解温度、黏度、玻璃熔解所需的能量,而且降低黏度,有助于排除气泡,缩短玻璃熔解与澄清时间,同时,还能够有效促使碱金属氧化物中的碱金属离子与原子半径较大的碱金属离子发生离子交换,强化化学强化效果,获得理想强化性能的盖板玻璃。
进一步地,当该碱金属氧化物包括氧化锂和氧化钠时,该氧化锂和氧化钠的质量比为1:4-4:1。这里,在对铝硅酸盐玻璃进行化学强化时,碱金属氧化物中的碱金属离子与离子交换介质(例如,熔盐浴)中的较大碱性离子(例如,K+)进行交换。可以进行三种类型的离子交换:Na+交换Li+、K+交换Li+和/或K+交换Na+。Na+交换Li+导致较高的表面压应力厚度但是低的压应力。K+交换Li+导致小的压应力层厚度但是较大的压应力,以及K+交换Na+导致中等层厚度和中等压缩应力。压应力与离子交换出玻璃的碱性离子的数量成正比。因此,氧化锂与氧化钠的质量百分含量可以直接决定化学强化的效果。通过大量实验证明,将氧化锂和氧化钠的质量比控制在以上范围内,可以获得理想强化性能的盖板玻璃。
示例性的,由于碱金属氧化物的质量百分含量为3-25%,并且该氧化锂和氧化钠的质量比为1:4-4:1,因此,当该碱金属氧化物的质量百分含量为3%时,该氧化锂在该玻璃中的质量百分含量可以为0.6%,这时,该氧化钠在该玻璃中的质量百分含量可以为2.4%;该氧化锂在该玻璃中的质量百分含量可以为2.4%,这时,该氧化钠在该玻璃中的质量百分含量可以为0.6%。该氧化锂在该玻璃中的质量百分含量可以为2%,这时,该氧化钠在该玻璃中的质量百分含量可以为1%。
可选的,该铝硅酸盐玻璃还包括澄清剂。澄清剂能够在玻璃熔制过程中高温分解(气化)产生气体或降低玻璃液粘度,促使玻璃液中气泡消除。
本申请的一示例中,该澄清剂选自氧化锡、氧化硫、氟化物和氧化铈中的任意一种。
其中,氧化锡、氧化硫和氧化铈这些变价氧化物在高温下分解出氧气,氧气的溶解度随温度的升高而降低,从而产生澄清作用,氟化物在熔制中气化而产生澄清作用,其中,该氟化物可以为氟化铵或者氟化钾。这些澄清剂与氧化砷和氧化珶相比毒性较小,澄清效果较好。
这里,该澄清剂的成分不同,其在铝硅酸盐玻璃中的质量百分含量也有所不同。
具体的,当该澄清剂为氧化锡时,该氧化锡在该铝硅酸盐玻璃中的质量百分含量小于等于0.2%;当该澄清剂为氧化硫时,该氧化硫在该铝硅酸盐玻璃中的质量百分含量小于等于0.2%;当该澄清剂为氟化物时,该氟化物在该铝硅酸盐玻璃中的质量百分含量小于等于0.5%;当该澄清剂为氧化铈时,该氧化铈在该铝硅酸盐玻璃中的质量百分含量小于等于0.5%。经过大量实验证明,这些澄清剂的质量百分含量在该范围内时,能够起到较好的澄清作用,获得透明度、机械强度等性能均较优的玻璃。
进一步地,该澄清剂为氧化铈。氧化铈又是玻璃的化学脱色剂,氧化铈具有更高的氧化势,所以比传统的澄清剂更佳,同时在玻璃配方中还可以降低硝酸钠用量,可减轻微泡,增加透明度,玻璃强度和耐水性。所以氧化铈澄清剂既能达到澄清去泡作用又大幅度提高玻璃质量,对环境上作了重大贡献,具有较高的经济效益和社会效益,进一步地,氧化铈作为抗紫外剂,紫外线遮蔽剂添加于玻璃中,能够防止老化、防晒。
可选的,该铝硅酸盐玻璃通过溢流下拉法或者浮法成型。能够生产出较薄的盖板玻璃。其中,溢流下拉法所获得的玻璃的表面质量较好,成本较低,适合小量生产;而浮法成型适合大尺寸玻璃的生产,需要增设研磨抛光设备以提高玻璃的表面质量,成本较高。
第二方面,本申请提供一种化学强化玻璃,通过对如上所述的铝硅酸盐玻璃进行化学强化获得。
本申请提供一种化学强化玻璃,由于铝硅酸盐玻璃具有碱金属氧化物,能够进行离子交换进行化学强化,所获得的化学强化玻璃既具有铝硅酸盐玻璃所具有的物化性能,又能够通过化学强化获得机械强度高、化学稳定性好、粘度低、密度低、膨胀系数适宜、杨氏模量高的盖板玻璃,从而能够满足盖板玻璃对玻璃材料的需求。
第二方面的一种可能的实现方式中,通过离子交换对该铝硅酸盐玻璃进行化学 强化。化学强化玻璃主要以3mm厚度以下的玻璃为主,采用高纯度的熔融钾盐和玻璃结构表面的锂离子和钠离子进行离子交换而形成强化层。
具体的,该铝硅酸盐玻璃与熔融的钾盐进行离子交换。
采用钾盐能够对铝硅酸盐玻璃进行化学强化,从而在铝硅酸盐玻璃的表面形成压应力层。其中,对离子交换的具体操作不做限定,示例性的,可以通过浸渍法将该铝硅酸盐玻璃浸渍于熔融的钾盐中,可以将熔融的钾盐施涂于该铝硅酸盐玻璃的表面。
其中,该熔融的钾盐可以包括质量百分含量小于等于3%以下的钠盐,钾盐可以为硝酸钾、氯化钾等。该熔融的钾盐的温度在370-460℃之间。
由于氧化镓的加入,使网络结构的展开空间更大,便于网络中的碱金属氧化物进行离子交换,能够缩短离子交换时间,本申请的一示例中,该离子交换的时间为5-7h。
本申请的一种可能的示例中,该化学强化玻璃的压应力大于等于700MPa。压应力是指抵抗物体有压缩趋势的应力,该化学强化玻璃的压应力可以采用表面压应力计来进行测量,通过化学强化处理后化学强化玻璃的压应力较大,机械强度较高,能够满足盖板玻璃对玻璃材料的需求。
本申请的另一种可能的示例中,该化学强化玻璃的压应力层的厚度在40-100μm之间。该化学强化玻璃的压应力可以采用表面压应力计来进行测量,通过化学强化处理后化学强化玻璃的压应力层的厚度较大,机械强度较高,能够满足盖板玻璃对玻璃材料的需求。
本申请的另一种可能的示例中,该化学强化玻璃的杨氏模量大于等于70Gpa。弹性材料承受正向应力时会产生正向应变,在形变量没有超过对应材料的一定弹性限度时,定义正向应力与正向应变的比值为这种材料的杨氏模量。杨氏模量是描述固体材料抵抗形变能力的物理量。该化学强化玻璃的杨氏模量在该范围内,能够满足盖板玻璃对玻璃材料的需求。
本申请的又一种可能的示例中,该化学强化玻璃的密度小于等于2.52g/cm3。该化学强化玻璃的密度较小,能够满足盖板玻璃对玻璃材料的需求。
第三方面,如上所述的化学强化玻璃在显示屏触摸设备中用作盖板玻璃的应用。
显示屏可以为电子产品领域常见的各种显示屏,例如可以为液晶电视、平板电脑、触摸屏手机等显示屏,具体地,可以用于制备显示屏保护用盖板玻璃,也可以用作玻璃电池盖等。
以下,将通过实施例对本申请的技术效果进行说明。
如下表1示出了各实施例中的玻璃组分的质量百分含量。
表1
Figure PCTCN2017085567-appb-000001
实施例1
分别按照表1所示的实施例1中的质量百分含量计算氧化硅、氧化铝、氧化钠、氧化锂、氧化镓和澄清剂的用量,称量并充分混合后加入炉窑内,采用浮法方法生产,在1600℃温度下熔化、澄清3小时,将熔融玻璃液倒在预热300℃的不锈钢模具上,成形为规定的板状玻璃制品,然后将玻璃在退火炉中630℃退火10小时,随后1℃/min的降温速度降温到350℃,然后随炉冷却到室温。
将所得到的玻璃进行研磨和抛光,加工成50×50mm的规格的玻璃试样,在温度为410℃的硝酸钾熔盐中离子交换处理5小时,进行化学强化处理,使玻璃表面的钠、锂离子与上述处理液中的钾离子进行离子交换,得到化学强化玻璃A。
实施例2
参照表1所示实施例2所对应的质量百分含量计算氧化硅、氧化铝、氧化钠、氧化锂、氧化镓和澄清剂的用量,称量并充分混合后加入炉窑内熔融,采用溢流法方法生产,在1600℃温度下熔化、澄清3小时,将熔融玻璃液倒在预热300℃的不锈钢模具上,成形为规定的板状玻璃制品,然后将玻璃在退火炉中630℃退火10小时,随后1℃/min的降温速度降温到350℃,然后随炉冷却到室温。
将所得到的玻璃进行研磨和抛光,加工成50×50mm的规格的玻璃试样,在温度460℃硝酸钾熔盐中离子交换处理7小时,进行化学强化处理,使玻璃表面的钠、锂离子与上述处理液中的钾离子进行离子交换,得到化学强化玻璃B。
实施例3
参照表1所示实施例3所对应的质量百分含量计算氧化硅、氧化铝、氧化钠、氧化锂、氧化镓和澄清剂的用量,并按照与实施例1相对应的浮法生产铝硅酸盐玻璃,并将加工所获得的玻璃进行研磨和抛光,加工成50×50mm的规格的玻璃试样,在温度370℃的硝酸钾和质量分数为3%的硝酸钠的混合浴盐中离子交换处理5小时,进行化学强化处理,使玻璃表面的钠、锂离子与上述处理液中的钾离子进行离子交换,得到化学强化玻璃C。
实施例4
参照表1所示实施例4所对应的质量百分含量计算氧化硅、氧化铝、氧化钠、氧化锂、氧化镓和澄清剂的用量,并按照与实施例2相对应的溢流下拉法生产铝硅酸盐玻璃,并将加工所获得的玻璃进行研磨和抛光,加工成50×50mm的规格的玻璃试样,在温度410℃的硝酸钾和质量分数为3%的硝酸钠的混合浴盐中离子交换处理7小时,进行化学强化处理,使玻璃表面的钠、锂离子与上述处理液中的钾离子进行离子交换,得到化学强化玻璃D。
实施例5
参照表1所示实施例5所对应的质量百分含量计算氧化硅、氧化铝、氧化钠、氧化锂、氧化镓和澄清剂的用量,并按照与实施例1相对应的浮法生产铝硅酸盐玻璃,并将加工所获得的玻璃进行研磨和抛光,加工成50×50mm的规格的玻璃试样,在温度410℃的硝酸钾中离子交换处理6小时,进行化学强化处理,使玻璃表面的钠、锂离子与上述处理液中的钾离子进行离子交换,得到化学强化玻璃E。
实施例6
参照表1所示实施例6所对应的质量百分含量计算氧化硅、氧化铝、氧化钠、氧化锂、氧化镓和澄清剂的用量,并按照与实施例2相对应的溢流下拉法生产铝硅酸盐玻璃,并将加工所获得的玻璃进行研磨和抛光,加工成50×50mm的规格的玻璃试样,在温度370℃的硝酸钾和质量分数为3%的硝酸钠的混合浴盐中离子交换处理6小时,进行化学强化处理,使玻璃表面的钠、锂离子与上述处理液中的钾离子进行离子交换,得到化学强化玻璃F。
实施例7
参照表1所示实施例7所对应的质量百分含量计算氧化硅、氧化铝、氧化钠、氧化锂、氧化镓和澄清剂的用量,并按照与实施例1相对应的浮法生产铝硅酸盐玻璃,并将加工所获得的玻璃进行研磨和抛光,加工成50×50mm的规格的玻璃试样, 在温度370℃的硝酸钾和质量分数为2%的硝酸钠的混合浴盐中离子交换处理7小时,进行化学强化处理,使玻璃表面的钠、锂离子与上述处理液中的钾离子进行离子交换,得到化学强化玻璃G。
实施例8
参照表1所示实施例8所对应的质量百分含量计算氧化硅、氧化铝、氧化钠、氧化锂、氧化镓和澄清剂的用量,并按照与实施例2相对应的溢流下拉法生产铝硅酸盐玻璃,并将加工所获得的玻璃进行研磨和抛光,加工成50×50mm的规格的玻璃试样,在温度460℃的硝酸钾和质量分数为2%的硝酸钠的混合浴盐中离子交换处理5小时,进行化学强化处理,使玻璃表面的钠、锂离子与上述处理液中的钾离子进行离子交换,得到化学强化玻璃H。
实验例
将实施例1-8所得到的化学强化玻璃A-H分别进行性能测试。
其中,玻璃的密度P采用阿基米德法测定;热膨胀系数采用膨胀计测量,W表示平均膨胀系数;杨氏模量采用杨氏模量测试仪测定;化学强化后玻璃的表面压应力和压应力层厚度采用表面应力仪FSM-6000LE测定。
测量结果参见表2所示。
表2
Figure PCTCN2017085567-appb-000002
由表2可知:采用本申请提供的玻璃组分制备铝硅酸盐玻璃,而后对铝硅酸盐玻璃进行化学强化处理后,所获得的化学强化玻璃与现有的化学强化玻璃相比,具有较低的密度、适合的热膨胀系数较高的表面压应力和压应力厚度,通常,现有技术中化学强化玻璃的的密度可达到2.50g/cm3,热膨胀系数为75x 10-7/℃,表面压应力为650MPa,压应力深度为35μm,因此,该化学强化玻璃能够满足盖板玻璃对玻璃材料的需求。
综上所述,本申请提供了一种铝硅酸盐玻璃,该铝硅酸盐玻璃经化学强化处理后,能够得到机械强度好和化学稳定性高的玻璃基板,能够满足盖板玻璃对玻璃材料的需求。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (17)

  1. 一种铝硅酸盐玻璃,其特征在于,所述铝硅酸盐玻璃中不含B元素和P元素,而至少包括氧化硅、氧化铝、碱金属氧化物和氧化镓,其中,所述碱金属氧化物选自氧化锂和氧化钠中的至少一种。
  2. 根据权利要求1所述的铝硅酸盐玻璃,其特征在于,
    所述氧化镓的质量百分含量大于0小于等于5%。
  3. 根据权利要求1所述的铝硅酸盐玻璃,其特征在于,
    所述氧化硅的质量百分含量为45~75%,所述氧化铝的质量百分含量为13~25%。
  4. 根据权利要求1所述的铝硅酸盐玻璃,其特征在于,
    所述碱金属氧化物的质量百分含量为3-25%。
  5. 根据权利要求1所述的铝硅酸盐玻璃,其特征在于,
    所述铝硅酸盐玻璃还包括澄清剂。
  6. 根据权利要求5所述的铝硅酸盐玻璃,其特征在于,
    所述澄清剂选自氧化锡、氧化硫、氟化物和氧化铈中的任意一种。
  7. 根据权利要求6所述的铝硅酸盐玻璃,其特征在于,
    当该澄清剂为氧化锡时,该氧化锡在该铝硅酸盐玻璃中的质量百分含量小于等于0.2%;当该澄清剂为氧化硫时,该氧化硫在该铝硅酸盐玻璃中的质量百分含量小于等于0.2%;当该澄清剂为氟化物时,该氟化物在该铝硅酸盐玻璃中的质量百分含量小于等于0.5%;当该澄清剂为氧化铈时,该氧化铈在该铝硅酸盐玻璃中的质量百分含量小于等于0.5%。
  8. 根据权利要求1-7任一项所述的铝硅酸盐玻璃,其特征在于,所述铝硅酸盐玻璃通过溢流下拉法或者浮法成型。
  9. 一种化学强化玻璃,其特征在于,通过对权利要求1-8任一项所述的铝硅酸盐玻璃进行化学强化获得。
  10. 根据权利要求9所述的化学强化玻璃,其特征在于,所述化学强化玻璃的压应力大于等于700MPa。
  11. 根据权利要求9所述的化学强化玻璃,其特征在于,所述化学强化玻璃的压应力层的厚度在40-100μm之间。
  12. 根据权利要求9所述的化学强化玻璃,其特征在于,所述化学强化玻璃的杨氏模量大于70Gpa。
  13. 根据权利要求9所述的化学强化玻璃,其特征在于,所述化学强化玻璃的密度小于等于2.52g/cm3
  14. 根据权利要求9所述的化学强化玻璃,其特征在于,通过离子交换对所述铝硅酸盐玻璃进行化学强化。
  15. 根据权利要求14所述的化学强化玻璃,其特征在于,所述铝硅酸盐玻璃与熔融的钾盐进行离子交换。
  16. 根据权利要求15所述的化学强化玻璃,其特征在于,
    所述离子交换的时间为5-7h。
  17. 如权利要求9-16任一项所述的化学强化玻璃在显示屏触摸设备中用作盖板 玻璃的应用。
PCT/CN2017/085567 2017-05-23 2017-05-23 一种铝硅酸盐玻璃、化学强化玻璃和应用 WO2018214033A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780008240.8A CN108698912A (zh) 2017-05-23 2017-05-23 一种铝硅酸盐玻璃、化学强化玻璃和应用
JP2019565027A JP6934074B2 (ja) 2017-05-23 2017-05-23 アルミノケイ酸ガラス、化学強化ガラス及び用途
EP17911096.0A EP3611140A4 (en) 2017-05-23 2017-05-23 ALUMINOSILICATE GLASS, CHEMICAL REINFORCED GLASS AND APPLICATIONS THEREOF
PCT/CN2017/085567 WO2018214033A1 (zh) 2017-05-23 2017-05-23 一种铝硅酸盐玻璃、化学强化玻璃和应用
US16/616,335 US11591254B2 (en) 2017-05-23 2017-05-23 Aluminosilicate glass, chemically strengthened glass, and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/085567 WO2018214033A1 (zh) 2017-05-23 2017-05-23 一种铝硅酸盐玻璃、化学强化玻璃和应用

Publications (1)

Publication Number Publication Date
WO2018214033A1 true WO2018214033A1 (zh) 2018-11-29

Family

ID=63844091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085567 WO2018214033A1 (zh) 2017-05-23 2017-05-23 一种铝硅酸盐玻璃、化学强化玻璃和应用

Country Status (5)

Country Link
US (1) US11591254B2 (zh)
EP (1) EP3611140A4 (zh)
JP (1) JP6934074B2 (zh)
CN (1) CN108698912A (zh)
WO (1) WO2018214033A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113307492A (zh) * 2021-04-26 2021-08-27 侯硕 一种高透明度玻璃瓶的生产工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102417301A (zh) * 2011-08-22 2012-04-18 河南国控宇飞电子玻璃有限公司 一种玻璃组合物及由其制成的玻璃、制法和用途
CN102548919A (zh) * 2009-09-25 2012-07-04 肖特股份有限公司 具有高耐热性和低加工温度的铝硅酸盐玻璃
CN102584011A (zh) * 2012-03-02 2012-07-18 中国建筑材料科学研究总院 一种铝酸盐玻璃及其制备方法与应用
WO2012166421A2 (en) * 2011-05-31 2012-12-06 Corning Incorporated Ion exchangeable alkali aluminosilicate glass articles
US20140011035A1 (en) * 2011-03-31 2014-01-09 Nippon Sheet Glass Company, Limited Glass composition suitable for chemical strengthening and chemically strengthened glass article

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5839338B2 (ja) 2011-01-18 2016-01-06 日本電気硝子株式会社 強化ガラス板の製造方法
CN104326664B (zh) * 2013-12-31 2017-12-15 东旭科技集团有限公司 一种含有氧化锗和氧化镓的铝硅酸盐玻璃
CN105819684B (zh) * 2016-04-01 2018-06-29 东旭科技集团有限公司 一种玻璃用组合物、铝硼硅酸盐玻璃及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548919A (zh) * 2009-09-25 2012-07-04 肖特股份有限公司 具有高耐热性和低加工温度的铝硅酸盐玻璃
US20140011035A1 (en) * 2011-03-31 2014-01-09 Nippon Sheet Glass Company, Limited Glass composition suitable for chemical strengthening and chemically strengthened glass article
WO2012166421A2 (en) * 2011-05-31 2012-12-06 Corning Incorporated Ion exchangeable alkali aluminosilicate glass articles
CN102417301A (zh) * 2011-08-22 2012-04-18 河南国控宇飞电子玻璃有限公司 一种玻璃组合物及由其制成的玻璃、制法和用途
CN102584011A (zh) * 2012-03-02 2012-07-18 中国建筑材料科学研究总院 一种铝酸盐玻璃及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3611140A4 *

Also Published As

Publication number Publication date
US11591254B2 (en) 2023-02-28
JP6934074B2 (ja) 2021-09-08
EP3611140A1 (en) 2020-02-19
US20200223740A1 (en) 2020-07-16
CN108698912A (zh) 2018-10-23
JP2020520886A (ja) 2020-07-16
EP3611140A4 (en) 2020-04-29

Similar Documents

Publication Publication Date Title
TWI567041B (zh) 用於製造化學強化玻璃之方法
JP5904426B2 (ja) 強化ガラスおよびその製造方法
TWI613171B (zh) 強化玻璃、強化玻璃板及強化用玻璃
TWI457327B (zh) 強化玻璃基板及其製造方法
JP5589252B2 (ja) 強化ガラス基板
JP5839338B2 (ja) 強化ガラス板の製造方法
JP6032468B2 (ja) 強化ガラス基板の製造方法
CN109678341B (zh) 无碱玻璃组合物和无碱玻璃及应用
TW201231428A (en) The reinforcing glass and the reinforcing glass plate
JP2009084075A (ja) 強化ガラス基板及びガラス並びに強化ガラス基板の製造方法
JP2014040370A (ja) 強化ガラス基板の製造方法及び強化ガラス基板
WO2013183716A1 (ja) 強化ガラス及び強化ガラス板並びに強化用ガラス
JP2009084076A (ja) 強化ガラス及び強化ガラス基板、並びにその製造方法
JP2008115071A (ja) 強化ガラス基板
JP2012214356A (ja) カバーガラス及びその製造方法
CN108975688B (zh) 一种玻璃及制备方法
TWI752252B (zh) 化學強化玻璃及化學強化玻璃的製造方法
WO2019080190A1 (zh) 铝硅酸盐玻璃及其制备方法、电子设备
TWI758207B (zh) 具有低鹼金屬含量的硼矽酸鹽玻璃
CN109020196B (zh) 一种易于离子交换的化学强化玻璃
JP5796905B2 (ja) 強化ガラス基板及びガラス並びに強化ガラス基板の製造方法
WO2018214033A1 (zh) 一种铝硅酸盐玻璃、化学强化玻璃和应用
JP5413817B2 (ja) 強化ガラス基板及びガラス並びに強化ガラス基板の製造方法
CN112512981A (zh) 强化玻璃及强化用玻璃
WO2022172813A1 (ja) 強化ガラス板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911096

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017911096

Country of ref document: EP

Effective date: 20191111

Ref document number: 2019565027

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE