WO2018209950A1 - 热管理动力电池模组及电池组 - Google Patents

热管理动力电池模组及电池组 Download PDF

Info

Publication number
WO2018209950A1
WO2018209950A1 PCT/CN2017/116947 CN2017116947W WO2018209950A1 WO 2018209950 A1 WO2018209950 A1 WO 2018209950A1 CN 2017116947 W CN2017116947 W CN 2017116947W WO 2018209950 A1 WO2018209950 A1 WO 2018209950A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
thermal management
power battery
bracket
cell
Prior art date
Application number
PCT/CN2017/116947
Other languages
English (en)
French (fr)
Inventor
江吉兵
冯炎强
苑丁丁
黄国民
刘金成
Original Assignee
惠州亿纬锂能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州亿纬锂能股份有限公司 filed Critical 惠州亿纬锂能股份有限公司
Priority to JP2019521180A priority Critical patent/JP6738963B2/ja
Priority to US16/316,894 priority patent/US11509001B2/en
Priority to EP17910025.0A priority patent/EP3474343A4/en
Priority to KR1020197001355A priority patent/KR102216586B1/ko
Publication of WO2018209950A1 publication Critical patent/WO2018209950A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • H01M50/273Lids or covers for the racks or secondary casings characterised by the material
    • H01M50/278Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to the field of battery technologies, and in particular, to a thermal management power battery module and a battery pack having the battery module.
  • BEVs Electric Electric Vehicles
  • batteries generally use cylindrical power battery modules.
  • cylindrical power battery liquid cooling modules include: wave tube, straight tube plus thermal pad, or glue filling plus cooling water pipe.
  • the principle of various liquid cooling modules is to circulate through the pipeline through the coolant, thereby taking away the heat generated by the battery.
  • various liquid cooling solutions currently have their own defects and deficiencies.
  • the liquid cooling module with wavy tube or straight tube is difficult to process and install the cooling pipeline in the module.
  • the liquid cooling module with wavy tube or straight tube has a large risk of insulation performance of the module.
  • the liquid cooling module adopting the wavy tube or the straight tube has strict requirements on the processing precision of the module and high processing cost of the parts.
  • the liquid cooling module with the glue and the cooling water pipe has high requirements for the glue filling, such as the requirements of viscosity, density and thermal conductivity.
  • the liquid cooling module with glue filling and cooling water pipe has high requirements on the design and processing precision of the structural parts, and there is a large risk of leaking glue during the filling, which makes the production more difficult.
  • the liquid cooling module adopts wavy tube, straight tube or potting glue. After the thermal runaway between the batteries, the battery core can not be directly blocked, and the chain thermal runaway is easy to occur.
  • the present disclosure provides a high performance thermal management power battery module comprising: a plurality of staggered cells; a heat conduction module; a liquid cooling module; and a cell fixing module.
  • the plurality of cells are fixed by a cell fixing module
  • the cell fixing module comprises a cell limiting device and a module supporting device located at two sides of the cell limiting device, wherein the liquid cooling module is integrated in the In the module supporting device, the heat conduction module is in contact with the plurality of cells and the module supporting device.
  • the module supporting device has a hollow cavity, a sidewall of the hollow cavity is provided with a water inlet and a water outlet, and the water inlet and the water outlet are provided with a pipe joint, the hollow The cavity and the pipe joint constitute the liquid cooling module.
  • a plurality of cavity reinforcing members are disposed in the hollow cavity, and the plurality of cavity reinforcing members are disposed in parallel with each other, and two ends of each cavity reinforcing member are respectively connected to the inner wall of the hollow cavity .
  • the module supporting device has a device body and a supporting connecting plate, the hollow cavity is disposed inside the device body, and the supporting connecting plate is located at a side of the device body away from the battery core and The device body is fixedly connected, and the support connecting plate is provided with a plurality of box connecting holes.
  • the battery limiting device includes a cover assembly and a bracket assembly
  • the bracket assembly includes an upper bracket and a lower bracket
  • the upper bracket and the lower bracket are respectively disposed at two ends of the battery core
  • the cover assembly includes an upper cover and a lower cover, the upper cover being located on a side of the upper bracket away from the battery core, and the lower cover being located on a side of the lower bracket away from the battery core.
  • the battery cell and the bracket assembly are bonded by UV glue, and the cover plate assembly and the bracket assembly are both made of a transparent PC material.
  • the heat conduction module is made of thermally conductive graphite, and the heat conduction module surrounds each of the batteries and is connected into a whole. Both ends of the heat conduction module are respectively in contact with the module supporting device.
  • a first limiting protrusion is disposed on a surface of the device body facing the upper bracket, and a second limiting protrusion is disposed toward a surface of the lower bracket, and the upper bracket is disposed with the first a first limiting groove that is engaged with the limiting protrusion, the lower bracket is provided with a second limiting groove that can cooperate with the second limiting protrusion, and the device body passes the first limiting protrusion, The second limiting protrusion, the first limiting groove and the second limiting groove are engaged between the upper bracket and the lower bracket.
  • the upper bracket and the lower bracket are symmetrically disposed with a first core mounting hole, and two ends of the battery core are fixedly mounted on the upper bracket through the first core mounting hole respectively
  • the lower bracket; the upper cover and the lower cover are respectively provided with a second core mounting hole, the second core mounting hole is a counterbore, and the battery core passes through the first The end of the cell mounting hole is located in the counterbore.
  • the present disclosure also provides a thermal management power battery pack comprising a plurality of the above-described thermal management power battery modules, a battery pack limiting device and a battery pack supporting device.
  • the plurality of thermal management power battery modules are disposed in series, and the battery pack limiting device is disposed outside the plurality of thermal management power battery modules, and the battery pack supporting device is integrated with the battery pack liquid cooling module.
  • the liquid cooling module is integrated with the module supporting device to reduce the overall weight and production cost, and at the same time ensure the reliability of the cooling system and the mechanical strength of the module supporting device;
  • the battery core limiting device adopts a four-layer structure, which solves the problem that the cell core strength is inconsistent with the cell height, and has the basis of mechanical automatic production, which can provide higher production capacity;
  • the cell core is fixed by UV glue bonding. It can accurately control the curing time of the glue, realize the controllable process and improve the controllability of the production; use the high thermal conductivity material heat conductive graphite as the heat transfer medium to realize the cooling and equalizing function of the battery cell and improve the core parts. Consistency, improve the service life of the battery core; wrap the battery core in a surrounding manner to achieve isolation between the batteries, avoid the chain reaction caused by thermal runaway, and improve system reliability and safety performance.
  • FIG. 1 is a perspective view of a thermal management power battery module according to an embodiment of the present invention.
  • Figure 2 is an enlarged view of a region I of Figure 1.
  • FIG 3 is a front view of a thermal management power battery module according to an embodiment of the present invention.
  • FIG. 4 is a top plan view of a thermal management power battery module according to an embodiment of the present invention.
  • FIG. 5 is a left side view of the thermal management power battery module according to an embodiment of the present invention.
  • Figure 6 is an enlarged view of a region II in Figure 5.
  • FIG. 7 is a schematic exploded view of a thermal management power battery module according to an embodiment of the present invention.
  • Figure 8 is an enlarged view of a region III in Figure 7.
  • Figure 9 is an enlarged view of a region IV in Figure 7.
  • Figure 10 is an enlarged view of a region V in Figure 7.
  • Figure 11 is a cross-sectional view showing a thermal management power battery module in accordance with an embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing a three-dimensional structure of a module supporting device according to an embodiment of the present invention.
  • Figure 13 is an enlarged view of a region VI in Figure 12 .
  • FIG. 14 is a schematic view showing the assembled state of the battery core and the heat conductive graphite according to the embodiment of the present invention.
  • Figure 15 is an enlarged view of a region VII in Figure 14.
  • 100 battery core; 200, hollow cavity; 201, cavity reinforcement; 300, module support device; 310, device body; 311, limit groove; 312, limit protrusion; 320, support connection plate ;321, box connection hole; 400, thermal graphite; 500, pipe joint; 600, upper bracket; 601, lower bracket; 602, first cell mounting hole; 700, lower cover; 701, upper cover; 702, Two cell mounting holes.
  • connection In the description of the present invention, the terms “connected”, “connected”, and “fixed” are to be understood broadly, and may be, for example, a fixed connection, a detachable connection, or an integral, unless otherwise specifically defined and defined. It can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, which can be the internal connection of two elements or the interaction of two elements.
  • intermediate medium which can be the internal connection of two elements or the interaction of two elements.
  • the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include first and second features, unless otherwise specifically defined and defined. It is not in direct contact but through additional features between them.
  • the first feature "above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature includes the first feature directly below and below the second feature, or merely the first feature level being less than the second feature.
  • a high performance thermal management power battery module includes a plurality of staggered cells 100 , a heat conduction module, a liquid cooling module, and a battery for fixing the battery core 100 .
  • the cell fixing module includes a cell limiting device and a module supporting device 300 located on both sides of the cell limiting device.
  • the liquid cooling module is integrated in the module supporting device 300, and the heat conducting module is simultaneously in contact with the battery cell 100 and the module supporting device 300.
  • the cells 100 are staggered according to the thickness of the heat conduction module, fixed in the cell fixing module, and transferred to the module supporting device 300 through the heat conduction module, and integrated on the module supporting device 300.
  • the liquid cooling module removes heat, thereby lowering the temperature of the battery cell 100, and at the same time, utilizing the high thermal conductivity of the heat conduction module, the temperature of the same row of the battery cells 100 is leveled, and the temperature uniformity of the battery cells 100 is improved.
  • the arrangement between the cells 100 is determined, and the cooling water pipes between the cells 100 are removed, thereby reducing the gap between the cells 100.
  • the separation distance more cells 100 can be arranged in a unit volume, which reduces the weight of the system, improves the specific energy of the liquid cooling system, and improves the cruising range of the vehicle.
  • the liquid cooling module is arranged on both sides to reduce the actual length of the water pipe, reduce the risk of leakage caused by the liquid cooling module, and improve the reliability of the system.
  • the battery element 100 is insulated by a reasonable arrangement of the heat conductive material to avoid the chain reaction of the battery 100 being out of control, thereby improving the safety of the system.
  • the module supporting device 300 of the embodiment has a hollow cavity 200.
  • the side wall of the hollow cavity 200 is provided with a water inlet and a water outlet, and the water inlet and the water outlet are provided with a pipe joint 500.
  • the hollow cavity 200 and the pipe joint 500 constitute the liquid cooling module.
  • a plurality of cavity reinforcements 201 are disposed in the hollow cavity 200, and the cavity reinforcements 201 are disposed in parallel with each other, and the two ends are respectively connected to the inner walls of the hollow cavity 200.
  • the module supporting device 300 has a device body 310 and a supporting connecting plate 320.
  • the hollow cavity 200 is disposed inside the device body 310, and the supporting connecting plate 320 is located at the device body 310 away from the battery core 100.
  • One side is fixedly connected to the device body 310, and the support connecting plate 320 is provided with a plurality of box connecting holes 321 .
  • the module supporting device 300 is processed by using an aluminum alloy material, and the hollow cavity 200 and the cavity reinforcing member 201 and the device body 310 are integrally formed by a production process, which can improve the overall condition while satisfying the cooling demand.
  • the structural strength of the bracket avoids fatigue damage during prolonged use.
  • the pipe joint 500 is brazed at the water inlet and the water outlet of the integrally formed aluminum alloy module supporting device 300. In this solution, an automobile-level quick joint is used to ensure the sealing performance and durability of the system piping.
  • the corresponding box connecting hole 321 is machined on the supporting connecting plate 320, and the battery module is fixed in the box through the box connecting hole 321 and the bolt. Since this method is in surface contact with the fixing of the battery case, the mechanical strength of the plurality of modules after fixing is ensured, and the service life of the module is increased.
  • the battery limiting device includes a cover assembly and a bracket assembly.
  • the bracket assembly includes an upper bracket 600 and a lower bracket 601.
  • the upper bracket 600 and the lower bracket 601 are respectively disposed at two ends of the battery core 100.
  • the cover assembly includes an upper cover 701 and a lower cover 700, the upper cover 701 is located on a side of the upper bracket 600 away from the battery core 100, and the lower cover 700 is located at the lower bracket 601 away from the One side of the battery cell 100.
  • the battery cell 100 and the bracket assembly are bonded by UV glue, and the cover plate assembly and the bracket assembly are all made of a transparent PC material.
  • the cell limiting device described in the present scheme has a four-layer structure, and the four-layer structure is made of a transparent PC material.
  • the purpose of using the transparent PC material is to use ultraviolet glue to fix the intermediate cell 100, and the ultraviolet irradiation can be performed. Through the transparent PC material, the curing of the glue can be effectively realized, and the curing time can be accurately controlled, which is more convenient for the automation of production. By UV glue bonding, it can ensure greater mechanical strength and durability, and improve product reliability.
  • the purpose of adopting the four-layer structure is to fix the battery core 100 and the upper bracket 600 and the bottom by UV glue, thereby better controlling the overall height consistency of the battery core 100, thereby reducing the bottom and top welding busbar equipment. The requirements to automate more quickly.
  • the heat conduction module is made of thermally conductive graphite 400, which surrounds each of the battery cells 100 and is connected in a unit. Both ends of the heat conduction module are respectively in contact with the module supporting device 300.
  • the way of taking away the heat generated by the battery cell 100 is the key to the system design.
  • the graphite composite material with high thermal conductivity is used.
  • the material is wrapped around the surface of the cell 100 and bonded to the surface of the cell 100, and the heat generated by the cell 100 is transmitted to the module supporting device 300 on both sides by the high thermal conductivity thereof, thereby transferring heat. Take away and play a uniform temperature between the cells 100.
  • the battery cells 100 Due to the insulating properties of the materials used, the battery cells 100 are completely isolated from the battery cells 100 in a circumferential manner, thereby isolating the other battery cells 100 after thermal runaway of the single battery cells 100, forming a shield to avoid the battery cells 100. Direct contact leads to a chain reaction, system thermal runaway, and increased safety and reliability of the thermal management system.
  • a limiting protrusion 312 is disposed on the surface of the upper bracket 600 and the lower bracket 601, and the upper bracket 600 and the lower bracket 601 correspond to the limiting protrusion 312.
  • the limiting body groove 311 is disposed, and the device body 310 is engaged between the upper bracket 600 and the lower bracket 601 through the limiting protrusion 312 and the limiting groove 311.
  • the upper bracket 600 and the lower bracket 601 are symmetrically disposed with a first core mounting hole 602, and two ends of the battery core 100 are fixedly installed through the first core mounting hole 602, respectively.
  • the upper bracket 600 and the lower bracket 601. The upper cover 701 and the lower cover 700 are respectively provided with a second core mounting hole 702, the second core mounting hole 702 is a counterbore, and the battery 100 passes through the first core
  • the end of the mounting hole 602 is located in the counterbore.
  • a high performance thermal management power battery pack comprising a plurality of high performance thermal management power battery modules as described above.
  • the plurality of high-performance thermal management power battery modules are connected in series, and the plurality of high-performance thermal management power battery modules are externally provided with a battery pack limiting device and a battery pack supporting device, and the battery pack supporting device is integrated with the battery pack Liquid cooling module.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

一种高性能热管理动力电池模组及包括其的电池组,电池模组包括若干交错排布的电芯(100)、热传导模块、液冷模块以及用于固定电芯(100)的电芯固定模块,所述电芯固定模块包括电芯限位装置以及位于所述电芯限位装置两侧的模组支撑装置(300),所述液冷模块集成在所述模组支撑装置(300)中,所述热传导模块同时与所述电芯(100)以及所述模组支撑装置(300)接触。电池组包括若干串联的上述高性能热管理动力电池模组。将液冷模块与模组支撑装置进行集成,降低整体的重量与生产成本,同时保证冷却系统的可靠性与模组支撑装置的机械强度。

Description

热管理动力电池模组及电池组 技术领域
本发明涉及电池技术领域,尤其涉及一种热管理动力电池模组及具有该电池模组的电池组。
背景技术
电动汽车(Blade Electric Vehicles,BEV)利用蓄电池作为储能动力源,通过电池向电动机提供电能,驱动电动机运转,从而推动汽车行驶。目前,蓄电池通常采用圆柱动力电池模组。
圆柱动力电池液冷模组的常见形式包括:波浪形管、直管外加导热垫片,或者采用灌胶外加冷却水管。各种液冷模组的原理都是通过冷却液在管路中循环,从而将电池产生的热量带走。但是目前的各种液冷方案都存在各自的缺陷与不足。
1、采用波浪形管或直管的液冷模组,其模组内的冷却管路的加工与安装难度大。
2、采用波浪形管或直管的液冷模组,模组的绝缘性能存在较大的风险。
3、采用波浪形管或直管的液冷模组,对模组的加工精度要求严格,零件加工成本高。
4、采用灌胶外加冷却水管的液冷模组,对灌胶胶水的要求高,如粘度、密度、导热系数等的要求严格。
5、采用灌胶外加冷却水管的液冷模组,对结构件的设计及加工精度要求高,灌胶时存在较大的漏胶水的风险,导致生产的难度加大。
6、采用波浪形管、直管或灌封胶的液冷模组,对于电芯之间发生热失控后,电芯直接无法阻隔,容易发生连锁热失控。
发明内容
本公开提供一种高性能热管理动力电池模组,包括:多个交错排布的电芯;热传导模块;液冷模块;以及电芯固定模块。
所述多个电芯被电芯固定模块固定,所述电芯固定模块包括电芯限位装置以及位于所述电芯限位装置两侧的模组支撑装置,所述液冷模块集成在所述模组支撑装置中,所述热传导模块与所述多个电芯以及所述模组支撑装置接触。
可选地,所述模组支撑装置具有空心腔体,所述空心腔体的侧壁上设置有进水口以及出水口,所述进水口与所述出水口处设置有管接头,所述空心腔体与所述管接头组成所述液冷模块。
可选地,所述空心腔体内设置有多个腔体补强件,所述多个腔体补强件相互平行设置,每个腔体补强件两端分别连接所述空心腔体的内壁。
可选地,所述模组支撑装置具有装置本体以及支撑连接板,所述空心腔体设置在所述装置本体内部,所述支撑连接板位于所述装置本体远离所述电芯的一侧与所述装置本体固定连接,所述支撑连接板上设置有多个箱体连接孔。
可选地,所述电芯限位装置包括盖板组件以及支架组件,所述支架组件包括上支架以及下支架,所述上支架与所述下支架分别设置在所述电芯的两端,所述盖板组件包括上面盖以及下面盖,所述上面盖位于所述上支架远离所述电芯的一侧,所述下面盖位于所述下支架远离所述电芯的一侧。
可选地,所述电芯与所述支架组件通过UV胶水粘结,所述盖板组件以及所述支架组件均采用透明PC材料制成。
可选地,所述热传导模块采用导热石墨制成,热传导模块环绕每个所述电芯并连接成一整体,所述热传导模块的两端分别与所述模组支撑装置接触。
可选地,所述装置本体上朝向所述上支架的表面设置有第一限位凸起,朝向所述下支架的表面设置第二有限位凸起,所述上支架设置有可与第一限位凸起配合的第一限位凹槽,所述下支架设置有可与第二限位凸起配合的第二限位凹槽,所述装置本体通过所述第一限位凸起,第二限位凸起,第一限位凹槽以及第二限位凹槽卡接在所述上支架与所述下支架之间。
可选地,所述上支架以及所述下支架上对称的设置有第一电芯安装孔,所述电芯的两端分别穿过所述第一电芯安装孔固定安装在所述上支架以及所述下支架中;所述上面盖以及所述下面盖上分别设置有第二电芯安装孔,所述第二电芯安装孔为沉头孔,所述电芯穿过所述第一电芯安装孔的端部位于所述沉头孔中。
本公开还提供一种热管理动力电池组,包括多个上述的热管理动力电池模组,电池组限位装置和电池组支撑装置。
所述多个热管理动力电池模组串联设置,所述电池组限位装置设置在多个热管理动力电池模组的外部,,所述电池组支撑装置中集成有电池组液冷模块。
根据本公开的热管理动力电池模组及电池组,液冷模块与模组支撑装置集成在一起,降低整体的重量与生产成本,同时保证冷却系统的可靠性与模组支撑装置的机械强度;电芯限位装置采用四层结构,解决了电芯固定强度与电芯高度不一致的问题,具备了机械自动化生产的基础,可以提供更高的生产能力;电芯的固定方式采用UV胶粘结,可以准确地控制胶水固化的时间,实现过程可控化,提高生产的可控性;采用高导热材料导热石墨作为传热介质,实现电池单体的降温与均温功能,提高电芯件的一致性,提高电芯的使用寿命;采用环 绕的方式对电芯进行包裹,实现电芯之间的隔绝,避免热失控引起的连锁反应,提高系统可靠性与安全性能。
附图说明
下面根据附图和实施例对本发明作进一步详细说明。
图1为本发明实施例的热管理动力电池模组的立体示意图。
图2为图1中区域I的放大图。
图3为本发明实施例的热管理动力电池模组主视图。
图4为本发明实施例的热管理动力电池模组俯视图。
图5为本发明实施例的热管理动力电池模组左视图。
图6为图5中区域II的放大图。
图7为本发明实施例的热管理动力电池模组分解状态示意图。
图8为图7中区域III的放大图。
图9为图7中区域IV的放大图。
图10为图7中区域V的放大图。
图11为本发明实施例的热管理动力电池模组剖视图。
图12为本发明实施例所述模组支撑装置立体结构剖视图。
图13为图12中区域VI的放大图。
图14为本发明实施例所述电芯与导热石墨组装状态示意图。
图15为图14中区域VII的放大图。
图中:
100、电芯;200、空心腔体;201、腔体补强件;300、模组支撑装置;310、装置本体;311、限位凹槽;312、限位凸起;320、支撑连接板;321、箱体连 接孔;400、导热石墨;500、管接头;600、上支架;601、下支架;602、第一电芯安装孔;700、下面盖;701、上面盖;702、第二电芯安装孔。
具体实施方式
为使本公开解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将结合附图对本发明实施例的技术方案作进一步的详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
如图1~15所示,于本实施例中,一种高性能热管理动力电池模组,包括若 干交错排布的电芯100、热传导模块、液冷模块以及用于固定电芯100的电芯固定模块。所述电芯固定模块包括电芯限位装置以及位于所述电芯限位装置两侧的模组支撑装置300。所述液冷模块集成在所述模组支撑装置300中,所述热传导模块同时与所述电芯100以及所述模组支撑装置300接触。
本方案中根据热传导模块的厚度将电芯100交错排列,固定在电芯固定模块中,并通过热传导模块将热量传递至模组支撑装置300,并由集成在所述模组支撑装置300上的液冷模块将热量带走,从而降低电芯100的温度,同时利用热传导模块的高导热性,使同一排的电芯100温度被拉平,提高电芯100温度的一致性。
通过液冷模块的集成与热传导模块的使用,以及模组的合理设计,确定了电芯100之间的排布方式,去除电芯100之间的冷却水管,从而缩小了电芯100之间的间隔距离,在单位体积内可以布置更多的电芯100,降低了系统的重量,提高了液冷系统的比能量,提高车辆的续航里程。同时将液冷模块布置在两侧,减少水管的实际长度,降低了因液冷模块带来的渗漏的风险,提高系统的可靠性能。采用合理的导热材料的排布方式,将电芯100进行隔绝,避免电芯100热失控的连锁反应,提高系统的使用安全性。
本实施例中所述模组支撑装置300具有空心腔体200,所述空心腔体200的侧壁上设置有进水口以及出水口,所述进水口与所述出水口处设置有管接头500,所述空心腔体200与所述管接头500组成所述液冷模块。
可选地,所述空心腔体200内设置有若干腔体补强件201,所述腔体补强件201相互平行设置,两端分别连接所述空心腔体200的内壁。所述模组支撑装置300具有装置本体310以及支撑连接板320,所述空心腔体200设置在所述装置本体310内部,所述支撑连接板320位于所述装置本体310远离所述电芯100的一侧 与所述装置本体310固定连接,所述支撑连接板320上设置有若干箱体连接孔321。
所述模组支撑装置300采用铝合金材料加工而成,所述空心腔体200以及所述腔体补强件201与装置本体310通过一道生产工序一体成型,在满足冷却需求的同时可以提高整体支架的结构强度,避免在长时间使用的过程中出现疲劳损坏。在一体成型后的铝合金模组支撑装置300的进水口以及出水口处钎焊所述管接头500,本方案中采用汽车级别的快速接头,从而保证系统管路的密封性能与耐久性。最后在支撑连接板320上机加工对应的箱体连接孔321,通过箱体连接孔321以及螺栓将电池模组固定在箱体中。由于此种方式与电池箱体的固定为面接触,确保多个模组固定后的机械强度,增加模组的使用寿命。
所述电芯限位装置包括盖板组件以及支架组件,所述支架组件包括上支架600以及下支架601,所述上支架600与所述下支架601分别设置在所述电芯100的两端,所述盖板组件包括上面盖701以及下面盖700,所述上面盖701位于所述上支架600远离所述电芯100的一侧,所述下面盖700位于所述下支架601远离所述电芯100的一侧。
所述电芯100与所述支架组件通过UV胶水粘结,所述盖板组件以及所述支架组件均采用透明PC材料制成。
本方案中所述电芯限位装置为四层结构,四层结构均采用透明PC材料制成,使用透明PC材料的目的是在使用UV胶水来固定中间的电芯100后,紫外线的照射可以穿过透明PC材料,从而有效的实现胶水的固化,并且可以准确控制固化时间,更利于生产的自动化。通过UV胶水粘结,能够保证更大的机械强度与耐久性,提高产品的可靠性。采用四层结构的目的是将电芯100与上支架600、下之间先通过UV胶水进行固定、从而更好的控制电芯100整体的高度一致性,从而降低底部与顶部的焊接汇流片设备的要求,更快速实现自动化。
所述热传导模块采用导热石墨400制成,其环绕每个所述电芯100并连接成一整体,所述热传导模块的两端分别与所述模组支撑装置300接触。
在采用液冷方式的电池热管理系统中,将电芯100产生的热量带走的方式是系统设计的关键,本实施例的高性能的热管理系统中,采用具有高导热性能的石墨复合材料作为其中的传热介质,将材料环绕电芯100四周并粘接在电芯100表面,利用其高导热性将电芯100产生的热量传导到两侧的模组支撑装置300上,从而将热量带走,并起到一个电芯100之间的均温作用。由于所使用的材料的绝缘性能,通过环绕方式将电芯100与电芯100彻底隔绝,从而在单颗电芯100发生热失控后与其他电芯100隔绝开,形成一个屏蔽,避免电芯100直接接触从而导致连锁反应,发生系统热失控,增加热管理系统的安全性与可靠性。
所述装置本体310上朝向所述上支架600以及所述下支架601的表面分别设置有限位凸起312,所述上支架600以及所述下支架601上与所述限位凸起312对应的设置有限位凹槽311,所述装置本体310通过所述限位凸起312以及所述限位凹槽311卡接在所述上支架600与所述下支架601之间。
可选地,所述上支架600以及所述下支架601上对称的设置有第一电芯安装孔602,所述电芯100的两端分别穿过所述第一电芯安装孔602固定安装在所述上支架600以及所述下支架601中。所述上面盖701以及所述下面盖700上分别设置有第二电芯安装孔702,所述第二电芯安装孔702为沉头孔,所述电芯100穿过所述第一电芯安装孔602的端部位于所述沉头孔中。
本实施例中还提供一种高性能热管理动力电池组,包括若干如上所述的高性能热管理动力电池模组。所述若干高性能热管理动力电池模组相互串联,所述若干高性能热管理动力电池模组外部设置有电池组限位装置以及电池组支撑装置,所述电池组支撑装置中集成有电池组液冷模块。
于本文的描述中,需要理解的是,术语“上”、“下”、“右”、等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”,仅仅用于在描述上加以区分,并没有特殊的含义。
在本说明书的描述中,参考术语“一实施例”、“示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚器件,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以适当组合,形成本领域技术人员可以理解的其他实施方式。
以上结合具体实施例描述了本发明的技术原理。这些描述只是为了解释本发明的原理,而不能以任何方式解释为对本发明保护范围的限制。基于此处的解释,本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其它具体实施方式,这些方式都将落入本发明的保护范围之内。

Claims (10)

  1. 一种热管理动力电池模组,包括:
    多个交错排布的电芯;
    热传导模块;
    液冷模块;以及
    电芯固定模块,
    其中,所述多个电芯被电芯固定模块固定,所述电芯固定模块包括电芯限位装置以及位于所述电芯限位装置两侧的模组支撑装置,所述液冷模块集成在所述模组支撑装置中,所述热传导模块与所述多个电芯以及所述模组支撑装置接触。
  2. 根据权利要求1所述的热管理动力电池模组,其中,所述模组支撑装置具有空心腔体,所述空心腔体的侧壁上设置有进水口以及出水口,所述进水口与所述出水口处设置有管接头,所述空心腔体与所述管接头组成所述液冷模块。
  3. 根据权利要求2所述的热管理动力电池模组,其中,所述空心腔体内设置有多个腔体补强件,所述多个腔体补强件相互平行设置,每个腔体补强件两端分别连接所述空心腔体的内壁。
  4. 根据权利要求3所述的热管理动力电池模组,其中,所述模组支撑装置具有装置本体以及支撑连接板,所述空心腔体设置在所述装置本体内部,所述支撑连接板位于所述装置本体远离所述电芯的一侧与所述装置本体固定连接,所述支撑连接板上设置有多个箱体连接孔。
  5. 根据权利要求4所述的热管理动力电池模组,其中,所述电芯限位装置包括盖板组件以及支架组件,所述支架组件包括上支架以及下支架,所述上支架与所述下支架分别设置在所述电芯的两端,所述盖板组件包括上面盖以及下面盖,所述上面盖位于所述上支架远离所述电芯的一侧,所述下面盖位于所述下 支架远离所述电芯的一侧。
  6. 根据权利要求5所述的热管理动力电池模组,其中,所述电芯与所述支架组件通过UV胶水粘结,所述盖板组件以及所述支架组件均采用透明PC材料制成。
  7. 根据权利要求1所述的热管理动力电池模组,其中,所述热传导模块采用导热石墨制成,热传导模块环绕每个所述电芯并连接成一整体,所述热传导模块的两端分别与所述模组支撑装置接触。
  8. 根据权利要求5所述的热管理动力电池模组,其中,所述装置本体上朝向所述上支架的表面设置有第一限位凸起,朝向所述下支架的表面设置第二有限位凸起,所述上支架设置有可与第一限位凸起配合的第一限位凹槽,所述下支架设置有可与第二限位凸起配合的第二限位凹槽,所述装置本体通过所述第一限位凸起,第二限位凸起,第一限位凹槽以及第二限位凹槽卡接在所述上支架与所述下支架之间。
  9. 根据权利要求8所述的热管理动力电池模组,其中,所述上支架以及所述下支架上对称的设置有第一电芯安装孔,所述电芯的两端分别穿过所述第一电芯安装孔固定安装在所述上支架以及所述下支架中;所述上面盖以及所述下面盖上分别设置有第二电芯安装孔,所述第二电芯安装孔为沉头孔,所述电芯穿过所述第一电芯安装孔的端部位于所述沉头孔中。
  10. 一种热管理动力电池组,包括多个如权利要求1至9任一项所述的热管理动力电池模组,电池组限位装置和电池组支撑装置,
    其中,所述多个热管理动力电池模组串联设置,所述电池组限位装置设置在多个热管理动力电池模组的外部,,所述电池组支撑装置中集成有电池组液冷模块。
PCT/CN2017/116947 2017-05-16 2017-12-18 热管理动力电池模组及电池组 WO2018209950A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019521180A JP6738963B2 (ja) 2017-05-16 2017-12-18 熱管理動力電池モジュール及電池パック
US16/316,894 US11509001B2 (en) 2017-05-16 2017-12-18 Thermal management power battery assembly and battery pack
EP17910025.0A EP3474343A4 (en) 2017-05-16 2017-12-18 POWER BATTERY MODULE WITH HEAT MANAGEMENT AND BATTERY PACK
KR1020197001355A KR102216586B1 (ko) 2017-05-16 2017-12-18 열관리 동력 전지 모듈 및 전지팩

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710342897.XA CN106935758A (zh) 2017-05-16 2017-05-16 高性能热管理动力电池模组及电池组
CN201710342897.X 2017-05-16

Publications (1)

Publication Number Publication Date
WO2018209950A1 true WO2018209950A1 (zh) 2018-11-22

Family

ID=59430294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116947 WO2018209950A1 (zh) 2017-05-16 2017-12-18 热管理动力电池模组及电池组

Country Status (6)

Country Link
US (1) US11509001B2 (zh)
EP (1) EP3474343A4 (zh)
JP (1) JP6738963B2 (zh)
KR (1) KR102216586B1 (zh)
CN (1) CN106935758A (zh)
WO (1) WO2018209950A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106935758A (zh) * 2017-05-16 2017-07-07 惠州亿纬锂能股份有限公司 高性能热管理动力电池模组及电池组
CN107507940A (zh) * 2017-08-15 2017-12-22 安徽华凯新能源科技有限公司 车用电池包
CN108365157A (zh) * 2018-01-18 2018-08-03 湖南三迅新能源科技有限公司 动力电池冷却系统及装配方法
FR3062521B1 (fr) * 2018-04-10 2023-09-08 Sogefi Air & Cooling Unite de batterie avec des moyens de regulation de la temperature integres au boitier
CN108493506A (zh) * 2018-05-07 2018-09-04 福州鼎烯飞扬科技有限公司 一种新型电池包结构
US20200153057A1 (en) * 2018-11-13 2020-05-14 Rivian Ip Holdings, Llc Battery module with close-pitch cylindrical cells and method of assembly
US20200185798A1 (en) * 2018-12-05 2020-06-11 Nio Usa, Inc. Method and system for joining cells to a battery coldplate
US11652255B2 (en) 2020-09-04 2023-05-16 Beta Air, Llc System and method for high energy density battery module
CN115275494B (zh) * 2022-08-18 2024-05-24 合众新能源汽车股份有限公司 电芯倒置式电池模组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205543147U (zh) * 2016-01-26 2016-08-31 湖南科霸汽车动力电池有限责任公司 一种液冷电池包
CN106328853A (zh) * 2016-11-22 2017-01-11 江苏金坛绿能新能源科技有限公司 具有圆柱形电芯的动力电池总成
CN106410319A (zh) * 2016-10-09 2017-02-15 浙江吉利控股集团有限公司 一种电池托盘集成液冷装置
CN106935758A (zh) * 2017-05-16 2017-07-07 惠州亿纬锂能股份有限公司 高性能热管理动力电池模组及电池组
CN206893653U (zh) * 2017-05-16 2018-01-16 惠州亿纬锂能股份有限公司 高性能热管理动力电池模组及电池组

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160381A (ja) * 1999-12-06 2001-06-12 Next:Kk 電池封体
EP2530778A1 (en) * 2010-01-29 2012-12-05 Panasonic Corporation Cell module
KR20130003390U (ko) * 2010-10-01 2013-06-07 그라프텍 인터내셔널 홀딩스 인코포레이티드 전지 팩용 열 관리 구조물
JP5757502B2 (ja) * 2011-09-27 2015-07-29 古河電気工業株式会社 バッテリ温度調節ユニット及びバッテリ温度調節装置
CN202444034U (zh) * 2012-01-31 2012-09-19 统达能源股份有限公司 散热式电池结构
JP2014022114A (ja) * 2012-07-13 2014-02-03 Sanyo Electric Co Ltd 電源装置及びこの電源装置を備える車両
KR101994280B1 (ko) 2012-07-26 2019-07-01 에스케이하이닉스 주식회사 가변 저항 메모리 장치 및 그 제조 방법
KR101749191B1 (ko) * 2013-05-29 2017-06-20 삼성에스디아이 주식회사 배터리 모듈
KR101608853B1 (ko) * 2013-06-20 2016-04-04 주식회사 엘지화학 이차 전지용 프레임 및 이를 포함하는 배터리 모듈
KR101609232B1 (ko) * 2013-08-28 2016-04-05 주식회사 엘지화학 냉매 유로가 형성된 카트리지를 포함하는 전지모듈
CN106165191B (zh) 2014-04-25 2019-06-18 松下知识产权经营株式会社 电池块
US20160064783A1 (en) * 2014-09-03 2016-03-03 Ford Global Technologies, Llc Traction battery thermal management apparatus and method
US9620830B2 (en) 2014-12-16 2017-04-11 Xinen Technology Hong Kong Company, Ltd. Vehicle battery module with cooling and safety features
KR101750479B1 (ko) 2015-01-13 2017-06-23 주식회사 엘지화학 열전도 부재를 포함하는 전지팩
CN204927378U (zh) * 2015-08-12 2015-12-30 广州橙行智动汽车科技有限公司 一种电芯成组结构
CN106558745B (zh) * 2015-09-29 2019-04-23 格朗吉斯铝业(上海)有限公司 动力电池冷却结构
CN205900640U (zh) * 2016-07-21 2017-01-18 北京新能源汽车股份有限公司 电池模组和具有其的汽车
CN206076322U (zh) * 2016-09-20 2017-04-05 深圳市沃特玛电池有限公司 一种电池模组固定装置
CN106410082A (zh) * 2016-11-01 2017-02-15 法乐第(北京)网络科技有限公司 电池组件及电动汽车

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205543147U (zh) * 2016-01-26 2016-08-31 湖南科霸汽车动力电池有限责任公司 一种液冷电池包
CN106410319A (zh) * 2016-10-09 2017-02-15 浙江吉利控股集团有限公司 一种电池托盘集成液冷装置
CN106328853A (zh) * 2016-11-22 2017-01-11 江苏金坛绿能新能源科技有限公司 具有圆柱形电芯的动力电池总成
CN106935758A (zh) * 2017-05-16 2017-07-07 惠州亿纬锂能股份有限公司 高性能热管理动力电池模组及电池组
CN206893653U (zh) * 2017-05-16 2018-01-16 惠州亿纬锂能股份有限公司 高性能热管理动力电池模组及电池组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3474343A4 *

Also Published As

Publication number Publication date
US11509001B2 (en) 2022-11-22
KR20190020747A (ko) 2019-03-04
JP6738963B2 (ja) 2020-08-12
EP3474343A1 (en) 2019-04-24
US20190386356A1 (en) 2019-12-19
CN106935758A (zh) 2017-07-07
EP3474343A4 (en) 2020-06-17
KR102216586B1 (ko) 2021-02-19
JP2019526158A (ja) 2019-09-12

Similar Documents

Publication Publication Date Title
WO2018209950A1 (zh) 热管理动力电池模组及电池组
WO2017198017A1 (zh) 一种电池箱
CN110323381B (zh) 壳体、动力电池包以及车辆
CN110676421B (zh) 电池模组及电动汽车
CN103151574B (zh) 一种电动汽车电池模组加热装置
WO2019141067A1 (zh) 电池监控单元用安装支架、电池包及汽车
CN108923101B (zh) 一种新型相变热管理动力电池模组
CN109524593A (zh) 多层软包电池模组及系统
CN211017317U (zh) 一种电池箱
CN113690510A (zh) 一种圆柱电池模组的防爆液冷结构
WO2024022031A1 (zh) 飞行器动力电池、飞行器及飞行器动力电池集成供电方法
CN210015934U (zh) 锂离子电池包结构
CN206893653U (zh) 高性能热管理动力电池模组及电池组
CN107910614B (zh) 一种动力电池液冷装置
CN211182299U (zh) 电池包下箱体及电池包
CN207690956U (zh) 一种新能源汽车电池的充电外壳
CN112993474A (zh) 电池包下箱体及电池包
CN218568992U (zh) 一种液冷板组件、电池包以及电动车
CN105932186B (zh) 一种电池箱
CN208111507U (zh) 一种电池箱体结构
CN218849638U (zh) 电池包及电子装置
CN109066007A (zh) 一种基于热管的大规模电池模组集成箱冷却系统
CN219106288U (zh) 液冷电池箱及包含其的电池包
CN220585384U (zh) 一种大容量电池
CN220272632U (zh) 电池及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910025

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521180

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197001355

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017910025

Country of ref document: EP

Effective date: 20190116

NENP Non-entry into the national phase

Ref country code: DE