WO2018207310A1 - Position measurement method and component - Google Patents

Position measurement method and component Download PDF

Info

Publication number
WO2018207310A1
WO2018207310A1 PCT/JP2017/017867 JP2017017867W WO2018207310A1 WO 2018207310 A1 WO2018207310 A1 WO 2018207310A1 JP 2017017867 W JP2017017867 W JP 2017017867W WO 2018207310 A1 WO2018207310 A1 WO 2018207310A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
angle
image
base
column
Prior art date
Application number
PCT/JP2017/017867
Other languages
French (fr)
Japanese (ja)
Inventor
孝弘 藤岡
宏則 堀切
賢元 池田
Original Assignee
ナルックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナルックス株式会社 filed Critical ナルックス株式会社
Priority to PCT/JP2017/017867 priority Critical patent/WO2018207310A1/en
Priority to JP2017239493A priority patent/JP6989950B2/en
Priority to US15/967,974 priority patent/US10295754B2/en
Priority to CN201810430660.1A priority patent/CN108896276B/en
Priority to CN202111208827.8A priority patent/CN113933030A/en
Priority to DE102018111233.5A priority patent/DE102018111233A1/en
Publication of WO2018207310A1 publication Critical patent/WO2018207310A1/en
Priority to JP2021190918A priority patent/JP7244954B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Definitions

  • the present invention relates to a position measuring method based on an image of a measuring apparatus provided with an imaging optical system using coaxial epi-illumination, and a component suitable for the above measuring method.
  • the lens and the optical fiber are aligned on the corresponding surface of the component.
  • the position reference portion which is the provided columnar convex portion is fitted into the concave portion provided in the connector.
  • a measuring device such as a CNC (Computer Numerical Control) image measuring machine (for example, Patent Document 1).
  • An object of the present invention is to provide a position measurement method for obtaining the position of a lens or the like with high accuracy using the position of a position reference portion of a component in an image of a measurement apparatus, and a component suitable for the measurement method described above. It is.
  • the position measurement method observes the position of a position reference portion on a plane and an arbitrary point in an image of a measurement apparatus including an imaging optical system using coaxial incident illumination, and the position This is a position measurement method for determining the position of the arbitrary point on the basis of the position of the reference portion.
  • the position reference portion has a columnar shape at least at the base, and includes a groove having a constant width around the base of the column, the bottom surface of the groove is parallel to the plane, and the outer periphery of the bottom surface of the groove Is provided with an inclined surface that rises from the bottom surface to the bottom surface at an angle ⁇ and reaches the flat surface.
  • the position measuring method of the present invention is a step of determining the position of the base periphery of the column from the position of the outer periphery of the bottom surface of the groove and the position of the reflection image of the outer periphery of the groove in the image of the measuring device. And determining the position of the position reference part from the position of the periphery of the base of the pillar, and determining the position of the arbitrary point with reference to the position of the position reference part.
  • the position of the peripheral edge at the base of the column is determined from the position of the outer peripheral edge of the bottom surface of the groove and the position of the reflected image of the outer peripheral edge. Since the position of the position reference part is determined from the position of the periphery of the base of the pillar, the position measurement error can be greatly reduced as compared with the case of determining the position of the position reference part from the position of the tip of the pillar. Can do.
  • is the opening angle of the imaging optical system, ⁇ and the unit of the angle is ⁇ , Meet.
  • the light beam reflected by the inclined surface does not enter the measuring device. Therefore, it is preferable because the boundary between the bottom surface region and the inclined surface region becomes clear in the image obtained by the measuring apparatus.
  • is the opening angle of the imaging optical system
  • is the unit of angle
  • is Meet.
  • NA is the numerical aperture of the microscope
  • W is the width of the groove
  • L is the length of the column.
  • the position of the arbitrary point is the position of the optical element.
  • the position of the optical element can be determined with high accuracy using the position of the position reference portion as a reference.
  • the component according to the second aspect of the present invention is a component including at least two position reference portions and an optical element on at least one plane.
  • the position reference portion has a columnar shape at least at the base, and includes a groove having a constant width around the base of the column, the bottom surface of the groove is parallel to the plane, and the outer periphery of the bottom surface of the groove Includes an inclined surface that rises from the bottom surface to the bottom surface at an angle ⁇ and reaches the flat surface, and the angle ranges from 20 degrees to 70 degrees.
  • the component according to this aspect is suitable for measuring the position of the optical element with high accuracy based on the position of the position reference unit based on the image of a measurement apparatus including an imaging optical system using coaxial incident illumination. .
  • FIG. 1 is a diagram illustrating a component 100 including a position reference unit 110 according to an embodiment of the present invention.
  • the two position reference parts 110 are substantially cylindrical.
  • the component 100 including the plurality of lenses 150 is connected to, for example, a connector including a plurality of optical fibers.
  • the two position reference parts 110 are used for connecting the component 100 and the connector.
  • the connector may include two concave portions corresponding to the two columnar position reference portions 110, and the position reference portions may be accommodated in the concave portions.
  • FIG. 2 is a view showing a cross section including the central axis of the position reference portion 110 ′ of the conventional component.
  • the measurement of the positions of the plurality of lenses 150 is performed using a measuring device such as a CNC (Computer Numerical Control) image measuring machine.
  • a measuring device such as a CNC (Computer Numerical Control) image measuring machine.
  • the position of the position reference unit 110 ′ is determined by observing the tip end portion of the column surrounded by a circle in FIG. 2 in an image acquired by a measuring apparatus such as an image measuring machine.
  • FIG. 3 is a view showing a cross section including the central axis of the position reference portion 110 of the component 100 according to the embodiment of the present invention.
  • the component 100 according to the embodiment of the present invention is different from the conventional component in that an annular groove 120 is provided around the base of the column 115 of the position reference unit 110.
  • 3 is a diagram showing a cross section of the groove 120 including the central axis of the position reference portion 110.
  • the width of the groove 120 is indicated by W, and the depth of the groove 120 is indicated by D.
  • the bottom surface 121 of the groove 120 is formed in parallel with the plane 101 of the component 100.
  • the roughness of the bottom surface 121 is preferably finished to 30 nm or less.
  • the outer periphery of the bottom surface 121 is provided with an inclined surface 123 that rises from the bottom surface 121 to the bottom surface 121 at a predetermined angle and reaches the surface 101.
  • the bottom surface 121 preferably defines the depth D of the groove 120 so as to form the same plane as the plane on which the lens 150 is disposed.
  • the corners indicated by A1 and A2 are preferably formed such that the cross section does not have a so-called R portion on the arc.
  • FIG. 4 is a diagram showing a measuring apparatus using coaxial epi-illumination used in the measuring method of the present invention.
  • the measuring device may be a CNC image measuring device.
  • the measurement apparatus includes a light source 301, a field lens 303, a half mirror 304, a condenser lens 305, an imaging lens 307, and an image acquisition unit 309.
  • the condenser lens 305, the half mirror 304, and the imaging lens 307 form an imaging optical system of the measuring device.
  • a surface of the component 100 including the position reference unit 110 is denoted by 101.
  • the light from the light source 301 forms an image of the light source at the pupil position of the condenser lens 305 via the field lens 303 and the half mirror 304.
  • Illumination of the surface 101 of the component 100 is performed via the condenser lens 305 using the image of the light source as a light source.
  • the light reflected by the surface 101 of the component 100 passes through the condenser lens 305, passes through the half mirror 304 and the imaging lens 307, and reaches the image acquisition unit 309.
  • FIG. 5 is a diagram showing a path of illumination light and reflected light for imaging of the coaxial epi-illumination of the measurement apparatus.
  • the above path is determined by the aperture angle of the imaging optical system of the measurement apparatus, that is, the aperture angle of the condenser lens 305.
  • chief rays are represented by L1 and L2, and an aperture angle is represented by ⁇ .
  • is represented by a light beam whose angle with the normal of the plane 101 exceeds the opening angle ⁇ is not taken into the measuring device.
  • FIG. 6 is a diagram showing a path of light rays that travel perpendicularly to the bottom surface 121 of the groove 120 in the illumination light and an image of the light rays.
  • the reflected light of the light incident perpendicularly to the bottom surface 121 travels perpendicularly to the bottom surface 121 and therefore reaches the image acquisition unit 309.
  • the reflected light that is perpendicularly incident on the surface 101 also reaches the image acquisition unit 309.
  • the light beam traveling vertically to the bottom surface 121 is reflected by the inclined surface 123, it is further reflected by the side surface of the column 115 and does not reach the image acquisition unit 309.
  • the area of the bottom surface 121 and the plane 101 becomes bright, and the area of the inclined surface 123 becomes dark.
  • the boundary E between the region of the bottom surface 121 and the region of the inclined surface 123 is clearly shown.
  • FIG. 7 is a diagram showing a path of light rays that travel at an angle within a predetermined range with respect to the bottom surface 121 of the groove 120 in the illumination light, and an image of the light rays.
  • the reflected light of the light ray incident on the bottom surface 121 at an angle within the predetermined range is reflected by the bottom surface 121 and the side surfaces of the pillar 115 and then reaches the image acquisition unit 309.
  • the reflected light incident on the surface 101 also reaches the image acquisition unit 309.
  • the light ray traveling at an angle within the predetermined range with respect to the bottom surface 121 is reflected by the inclined surface 123, it is further reflected by the side surface of the column 115 and does not reach the image acquisition unit 309.
  • the reflected image obtained by the light beam reflected by the side surface of the column 115 acquired by the image acquisition unit 309 the area of the bottom surface 121 and the plane 101 becomes bright, and the area of the inclined surface 123 becomes dark.
  • the boundary E ′ between the reflected image in the area of the bottom surface 121 and the reflected image in the area of the inclined surface 123 is clearly shown.
  • FIG. 8 is a diagram showing a path of a light beam for illumination and an image by the light beam.
  • FIG. 8 is a combination of FIGS. 6 and 7.
  • the boundary E ′ is an image obtained by reflection on the side surface of the column 115 of the boundary E between the bottom surface 121 region and the inclined surface 123 region. Therefore, the midpoint of the line segment connecting the point on the boundary E and the corresponding point in the shape of the boundary E ′ corresponds to the position of the point at the periphery of the base of the column 115. In this manner, the position of the base periphery of the pillar 115 can be obtained from the image shown in FIG. A method for obtaining the position of the base periphery of the pillar 115 will be described later.
  • the angle of the inclined surface 123 of the groove 120 with respect to the bottom surface 121 will be described.
  • the unit of angle is degrees.
  • FIG. 9A is a diagram for explaining the relationship between the angle ⁇ of the inclined surface 123 of the groove 120 with respect to the bottom surface 121 and the aperture angle ⁇ of the imaging optical system of the measuring apparatus.
  • ⁇ ⁇ 90- ⁇ Satisfy the relationship. In this case, most of the irradiated light reaches the bottom surface 121 of the groove 120.
  • FIG. 9B is a diagram for explaining the relationship between the angle ⁇ of the inclined surface 123 of the groove 120 with respect to the bottom surface 121 and the aperture angle ⁇ of the imaging optical system of the measuring apparatus.
  • 90- ⁇ ⁇ Satisfy the relationship.
  • some of the irradiated light beams cannot reach the bottom surface 121 of the groove 120 due to vignetting caused by the flat surface 101. Therefore, this state is not preferable from the viewpoint of the efficiency of irradiation.
  • FIG. 10A is a diagram for explaining the relationship between the angle ⁇ of the inclined surface 123 of the groove 120 with respect to the bottom surface 121 and the aperture angle ⁇ of the imaging optical system of the measuring apparatus.
  • ⁇ ⁇ ⁇ Satisfy the relationship In this case, a part of the light beam reflected by the inclined surface 123 enters the measuring device. In this case, the boundary between the region of the bottom surface 121 and the region of the inclined surface 123 becomes unclear in the image obtained by the measuring apparatus. Therefore, this state is not preferable from the viewpoint of measurement by an image.
  • FIG. 10B is a diagram for explaining the relationship between the angle ⁇ of the inclined surface 123 of the groove 120 with respect to the bottom surface 121 and the aperture angle ⁇ of the imaging optical system of the measuring apparatus.
  • Satisfy the relationship.
  • the light beam reflected by the inclined surface 123 does not enter the measuring device. Therefore, the boundary between the region of the bottom surface 121 and the region of the inclined surface 123 becomes clear in the image obtained by the measuring apparatus.
  • the angle ⁇ of the inclined surface 123 of the groove 120 with respect to the bottom surface 121 and the aperture angle ⁇ of the imaging optical system of the measuring device satisfy the following relationship.
  • ⁇ ⁇ ⁇ 90- ⁇ Note that the aperture angle ⁇ of the imaging optical system of the measuring apparatus is generally in the range of 10 degrees to 20 degrees. Therefore, the angle of the inclined surface 123 with respect to the bottom surface 121 is preferably 20 degrees to 70 degrees.
  • FIG. 11 is a diagram for explaining the relationship between the width W of the groove 120 and the length L of the column 115.
  • the following relationship needs to be satisfied with the aperture angle of the imaging optical system of the measuring device as ⁇ . is there.
  • the width W is preferably 0.04 mm or more from the viewpoint of the resolution of the measuring apparatus.
  • FIG. 12 is a flowchart for explaining a measurement method according to an embodiment of the present invention.
  • FIG. 13 is a diagram showing the relationship between the measurement method shown in the flowchart of FIG. 12 and the boundaries E and E ′.
  • step S1010 of FIG. 12 in the image of the measurement apparatus, the boundary E is defined from three points on the outer periphery of the groove 120 of the position reference unit 110, that is, the boundary E between the region of the bottom surface 121 and the region of the inclined surface 123. Determine the circle to be formed.
  • step S1020 in FIG. 12 an axis A passing through the center of the circle is determined.
  • the axis A is the horizontal direction.
  • step S1030 of FIG. 12 on the right side of the circle, the intersections of the axis A, the boundary E, and the boundary E ′ are set as A1 and A1 ′.
  • the boundary E ′ is an image obtained by reflection on the side surface of the column 115 of the boundary E between the bottom surface 121 region and the inclined surface 123 region.
  • step S1040 of FIG. 12 the midpoint of the line segment connecting point A1 and point A1 'is AC1.
  • step S1050 in FIG. 12 on the left side of the circle, intersections of the axis A, the boundary E, and the boundary E ′ are set as A2 and A2 ′.
  • step S1060 of FIG. 12 the midpoint of the line segment connecting point A2 and point A2 'is AC2.
  • step S1070 in FIG. 12 the midpoint of the line segment connecting the points AC1 and AC2 is AC.
  • step S1080 in FIG. 12 an axis B orthogonal to the axis A is determined.
  • step S1090 of FIG. 12 for the axis B, the points BC1, BC2, and BC are obtained according to the procedure from step S1030 to step S1070.
  • step S1100 of FIG. 12 the position of the position reference unit 110 is determined from the point AC and the point BC.
  • the main part of the position reference unit 110 is a cylinder, a point having the coordinates of the point AC in the axis A direction and the point BC in the axis B direction is the center of the cross section perpendicular to the cylinder axis. By setting the position, the position of the position reference unit 110 can be determined.
  • the measurement is performed based on the position of the tip end portion of the column of the position reference portion 110 '. For this reason, the deviation of the reference position is caused by the inclination angle of the column.
  • Table 1 is a table showing the deviation of the reference position with respect to the inclination angle of the column for the conventional part and the part of the present invention.
  • the tilt angle of the column is an angle of the axis in the longitudinal direction of the column with respect to the normal line of the plane 101.
  • the unit of length in Table 1 is millimeter.
  • the column length is 2.67 millimeters.
  • FIG. 14 is a diagram showing the deviation of the reference position with respect to the inclination angle of the column for the conventional part and the part of the present invention.
  • the deviation of the conventional part is indicated by a broken line
  • the deviation of the part of the present invention is indicated by a solid line.
  • the deviation of the reference position due to the inclination angle of the column is greatly reduced.
  • a tolerance of lens position ⁇ 3 micrometers can be realized.
  • FIG. 15 is a diagram showing a component 100A including a position reference portion 110A according to another embodiment of the present invention.
  • the two position reference portions 110A have a quadrangular prism shape.
  • the cross section perpendicular to the longitudinal direction of the position reference portion may be circular or polygonal.
  • the cross section of the column corresponding to the length of L from the root described with reference to FIG. 11 needs to have the same shape. Even if the cross section of the column of the position reference portion is polygonal, the position of the position reference portion can be determined by a measurement method similar to the measurement method shown in FIG.

Abstract

Provided is a position measurement method for highly accurately determining the position of a lens, or the like, using a position reference part of a component. In this position measurement method, the position of a given point in an image of a measurement device provided with an imaging optical system using coaxial epi-illumination is determined using the position of a position reference part as a reference. At least a base part of the position reference part has a columnar shape. A groove of a fixed width is provided around the base of the column 115. The bottom surface 121 of the groove is parallel to a flat surface. An inclined surface 123 that rises from the bottom surface at an angle θ in relation to the bottom surface and reaches the flat surface is provided at the outer circumferential edge of the bottom surface. This method includes, in an image of the measurement device, determining the position of the circumferential edge of the base of the column from the position of the outer circumferential edge E of the bottom surface and the position of a reflected image E' of the outer circumferential edge, determining the position of the position reference part from the position of the circumferential edge of the base of the column, and determining the position of the given point using the position of the position reference part as a reference.

Description

位置測定方法及び部品Position measuring method and parts
 本発明は、同軸落射照明を使用する撮像光学系を備えた測定装置の画像による位置測定方法、及び上記の測定方法に適した部品に関する。 The present invention relates to a position measuring method based on an image of a measuring apparatus provided with an imaging optical system using coaxial epi-illumination, and a component suitable for the above measuring method.
 たとえば、一つの面に複数のレンズが配列された部品と、複数の光ファイバを備えたコネクタと、を結合する際に、レンズと光ファイバとの位置合わせを行うために、部品の当該面に設けた柱状の凸部である位置基準部をコネクタに設けた凹部に勘合させる場合がある。このような場合に、個々のレンズと個々の光ファイバとの位置合わせを行うには、部品の面上の位置基準部と個々のレンズとの間の距離を高い精度で保証する必要がある。そのため、部品の位置基準部と個々のレンズとの間の距離の高精度の測定が必要となる。このような測定は、CNC(Computer Numerical Control)画像測定機などの測定装置を使用して実施される(たとえば、特許文献1)。 For example, when a component having a plurality of lenses arranged on one surface and a connector having a plurality of optical fibers are coupled, the lens and the optical fiber are aligned on the corresponding surface of the component. There is a case where the position reference portion which is the provided columnar convex portion is fitted into the concave portion provided in the connector. In such a case, in order to align the individual lenses and the individual optical fibers, it is necessary to guarantee the distance between the position reference portion on the surface of the component and the individual lenses with high accuracy. Therefore, it is necessary to measure the distance between the position reference portion of the component and each lens with high accuracy. Such a measurement is performed using a measuring device such as a CNC (Computer Numerical Control) image measuring machine (for example, Patent Document 1).
 部品の面上の位置基準部と個々のレンズとの間の距離の測定においては、測定装置の画像において、当該面における柱状の位置基準部の位置を正確に定める必要がある。従来、測定装置の画像において、位置基準部の柱の根元の部分を識別するのは困難であったので、位置基準部の柱の先端の部分を識別し、先端部分の位置から位置基準部の位置を定め、当該位置を基準としてレンズの位置を定めていた。 In measuring the distance between the position reference portion on the surface of the component and each lens, it is necessary to accurately determine the position of the columnar position reference portion on the surface in the image of the measuring apparatus. Conventionally, since it has been difficult to identify the base part of the column of the position reference part in the image of the measuring device, the tip part of the column of the position reference part is identified, and the position of the position reference part is determined from the position of the tip part. The position is determined, and the position of the lens is determined based on the position.
 しかし、たとえば、位置基準部の柱が当該面の法線に対して傾斜していると、測定装置の画像において、位置基準部の柱の根元の位置と先端の位置とのあいだに間隔が生じる。したがって、先端部分の位置から位置基準部の位置を定め、当該位置を基準としてレンズの位置を定めると、上記の間隔に対応する距離の誤差が生じる。 However, for example, if the column of the position reference portion is inclined with respect to the normal line of the surface, an interval is generated between the position of the base of the column of the position reference portion and the position of the tip in the image of the measuring apparatus. . Therefore, when the position of the position reference portion is determined from the position of the tip portion and the position of the lens is determined with reference to the position, an error in distance corresponding to the above-described interval occurs.
 このように、測定装置の画像において、部品の位置基準部の位置を使用して、レンズなどの位置を高い精度で求める位置測定方法、及び上記の測定方法に適した部品は開発されていない。 As described above, a position measuring method for obtaining the position of a lens or the like with high accuracy using the position of the position reference portion of the part in the image of the measuring apparatus and a part suitable for the above measuring method have not been developed.
特開2004-4055号公報Japanese Patent Laid-Open No. 2004-4055
 したがって、測定装置の画像において、部品の位置基準部の位置を使用して、レンズなどの位置を高い精度で求める位置測定方法、及び上記の測定方法に適した部品に対するニーズがある。本発明の課題は、測定装置の画像において、部品の位置基準部の位置を使用して、レンズなどの位置を高い精度で求める位置測定方法、及び上記の測定方法に適した部品を提供することである。 Therefore, there is a need for a position measuring method for obtaining the position of a lens or the like with high accuracy using the position of the position reference portion of the part in the image of the measuring apparatus, and a part suitable for the above measuring method. An object of the present invention is to provide a position measurement method for obtaining the position of a lens or the like with high accuracy using the position of a position reference portion of a component in an image of a measurement apparatus, and a component suitable for the measurement method described above. It is.
 本発明の第1の態様の位置測定方法は、同軸落射照明を使用する撮像光学系を備えた測定装置の画像において、平面上の位置基準部の及び任意の点の位置を観察し、該位置基準部の位置を基準として該任意の点の位置を定める位置測定方法である。該位置基準部は、少なくとも根元の部分が柱状であり、柱の根元の周囲に一定の幅の溝を備え、該溝の底面は該平面に平行であり、該溝の該底面の外側の周縁には、該底面から該底面に対して角度θで立ち上がり、該平面に至る傾斜面を備える。本発明の位置測定方法は、該測定装置の画像において、該溝の該底面の外側の周縁の位置、及び該外側の周縁の反射像の位置から、該柱の根元の周縁の位置を定めるステップと、該柱の根元の周縁の位置から該位置基準部の位置を定めるステップと、該位置基準部の位置を基準として該任意の点の位置を定めるステップと、を含む。 The position measurement method according to the first aspect of the present invention observes the position of a position reference portion on a plane and an arbitrary point in an image of a measurement apparatus including an imaging optical system using coaxial incident illumination, and the position This is a position measurement method for determining the position of the arbitrary point on the basis of the position of the reference portion. The position reference portion has a columnar shape at least at the base, and includes a groove having a constant width around the base of the column, the bottom surface of the groove is parallel to the plane, and the outer periphery of the bottom surface of the groove Is provided with an inclined surface that rises from the bottom surface to the bottom surface at an angle θ and reaches the flat surface. The position measuring method of the present invention is a step of determining the position of the base periphery of the column from the position of the outer periphery of the bottom surface of the groove and the position of the reflection image of the outer periphery of the groove in the image of the measuring device. And determining the position of the position reference part from the position of the periphery of the base of the pillar, and determining the position of the arbitrary point with reference to the position of the position reference part.
 本発明の第1の態様の位置測定方法においては、測定装置の画像において、溝の底面の外側の周縁の位置、及び該外側の周縁の反射像の位置から、柱の根元の周縁の位置を定め、該柱の根元の周縁の位置から位置基準部の位置を定めるので、柱の先端部の位置から位置基準部の位置を定める場合と比較して、位置測定の誤差を大幅に低減することができる。 In the position measuring method according to the first aspect of the present invention, in the image of the measuring apparatus, the position of the peripheral edge at the base of the column is determined from the position of the outer peripheral edge of the bottom surface of the groove and the position of the reflected image of the outer peripheral edge. Since the position of the position reference part is determined from the position of the periphery of the base of the pillar, the position measurement error can be greatly reduced as compared with the case of determining the position of the position reference part from the position of the tip of the pillar. Can do.
 本発明の第1の態様の第1の実施形態の位置測定方法において、該撮像光学系の開口角をφ、角度の単位を度として、θが、
Figure JPOXMLDOC01-appb-M000004
を満たす。
In the position measurement method according to the first embodiment of the first aspect of the present invention, θ is the opening angle of the imaging optical system, φ and the unit of the angle is θ,
Figure JPOXMLDOC01-appb-M000004
Meet.
 上記の関係が満たされると、傾斜面で反射された光線は、測定装置に入射しない。したがって、測定装置による画像において、底面の領域と傾斜面の領域との境界が明確になるので好ましい。 When the above relationship is satisfied, the light beam reflected by the inclined surface does not enter the measuring device. Therefore, it is preferable because the boundary between the bottom surface region and the inclined surface region becomes clear in the image obtained by the measuring apparatus.
 本発明の第1の態様の第2の実施形態の位置測定方法において、該撮像光学系の開口角をφ、角度の単位を度として、θが、
Figure JPOXMLDOC01-appb-M000005
を満たす。
In the position measurement method according to the second embodiment of the first aspect of the present invention, θ is the opening angle of the imaging optical system, φ is the unit of angle, and θ is
Figure JPOXMLDOC01-appb-M000005
Meet.
 上記の関係が満たされると、照射される光線の大部分は、溝の底面に到達するので、照射の効率の観点から好ましい。 When the above relationship is satisfied, most of the irradiated light beam reaches the bottom surface of the groove, which is preferable from the viewpoint of irradiation efficiency.
 本発明の第3の実施形態の位置測定方法において、該顕微鏡の開口数をNA、該溝の幅をW、該柱の長さをLとして、
Figure JPOXMLDOC01-appb-M000006
を満たす。
In the position measurement method according to the third embodiment of the present invention, NA is the numerical aperture of the microscope, W is the width of the groove, and L is the length of the column.
Figure JPOXMLDOC01-appb-M000006
Meet.
 上記の関係が満たされると、溝の底面で反射された光線の大部分が、位置基準部の柱の側面で反射され、測定装置に到達する。 When the above relationship is satisfied, most of the light beam reflected by the bottom surface of the groove is reflected by the side surface of the column of the position reference portion and reaches the measuring device.
 本発明の第1の態様の第3の実施形態の位置測定方法において、該任意の点の位置が光学素子の位置である。 In the position measurement method according to the third embodiment of the first aspect of the present invention, the position of the arbitrary point is the position of the optical element.
 本実施形態によれば、位置基準部の位置を基準として、光学素子の位置を高い精度で定めることができる。 According to this embodiment, the position of the optical element can be determined with high accuracy using the position of the position reference portion as a reference.
 本発明の第2の態様の部品は、少なくとも一つの平面上に少なくとも二つの位置基準部と光学素子とを備えた部品である。該位置基準部は、少なくとも根元の部分が柱状であり、柱の根元の周囲に一定の幅の溝を備え、該溝の底面は該平面に平行であり、該溝の該底面の外側の周縁には、該底面から該底面に対して角度θで立ち上がり、該平面に至る傾斜面を備え、該角度は20度から70度の範囲である。 The component according to the second aspect of the present invention is a component including at least two position reference portions and an optical element on at least one plane. The position reference portion has a columnar shape at least at the base, and includes a groove having a constant width around the base of the column, the bottom surface of the groove is parallel to the plane, and the outer periphery of the bottom surface of the groove Includes an inclined surface that rises from the bottom surface to the bottom surface at an angle θ and reaches the flat surface, and the angle ranges from 20 degrees to 70 degrees.
 本態様による部品は、同軸落射照明を使用する撮像光学系を備えた測定装置の画像により、該位置基準部の位置を基準として、該光学素子の位置を高い精度で測定するのに適している。 The component according to this aspect is suitable for measuring the position of the optical element with high accuracy based on the position of the position reference unit based on the image of a measurement apparatus including an imaging optical system using coaxial incident illumination. .
本発明の一実施形態の、位置基準部を備えた部品を示す図である。It is a figure which shows the components provided with the position reference part of one Embodiment of this invention. 従来の部品の位置基準部の中心軸を含む断面を示す図である。It is a figure which shows the cross section containing the central axis of the position reference part of the conventional components. 本発明の一実施形態の部品の位置基準部の中心軸を含む断面を示す図である。It is a figure which shows the cross section containing the central axis of the position reference part of the components of one Embodiment of this invention. 本発明の測定方法において使用される、同軸落射照明を使用する測定装置を示す図である。It is a figure which shows the measuring apparatus which uses the coaxial epi-illumination used in the measuring method of this invention. 上記の測定装置の同軸落射照明の照明用の光、及び撮像用の反射光の経路を示す図である。It is a figure which shows the path | route of the illumination light of the coaxial epi-illumination of said measuring apparatus, and the reflected light for imaging. 照明用の光のうち溝の底面に垂直に進行する光線の経路及びその光線による画像を示す図である。It is a figure which shows the path | route of the light ray which advances perpendicularly | vertically to the bottom face of a groove | channel among the lights for illumination, and the image by the light ray. 照明用の光のうち溝の底面に対して所定の範囲の角度で進行する光線の経路及びその光線による画像を示す図である。It is a figure which shows the path | route of the light ray which advances at an angle of the predetermined range with respect to the bottom face of a groove | channel among the lights for illumination, and the image by the light ray. 照明用の光の光線の経路及びその光線による画像を示す図である。It is a figure which shows the path | route of the light ray of the light for illumination, and the image by the light ray. 溝の傾斜面の、底面に対する角度θと測定装置の撮像光学系の開口角φとの関係を説明するための図である。It is a figure for demonstrating the relationship between angle (theta) with respect to a bottom face of the inclined surface of a groove | channel, and opening angle (phi) of the imaging optical system of a measuring device. 溝の傾斜面の、底面に対する角度θと測定装置の撮像光学系の開口角φとの関係を説明するための図である。It is a figure for demonstrating the relationship between angle (theta) with respect to a bottom face of the inclined surface of a groove | channel, and opening angle (phi) of the imaging optical system of a measuring device. 溝の傾斜面の、底面に対する角度θと測定装置の撮像光学系の開口角φとの関係を説明するための図である。It is a figure for demonstrating the relationship between angle (theta) with respect to a bottom face of the inclined surface of a groove | channel, and opening angle (phi) of the imaging optical system of a measuring device. 溝の傾斜面の、底面に対する角度θと測定装置の撮像光学系の開口角φとの関係を説明するための図である。It is a figure for demonstrating the relationship between angle (theta) with respect to a bottom face of the inclined surface of a groove | channel, and opening angle (phi) of the imaging optical system of a measuring device. 溝の幅Wと柱115の長さLとの関係を説明するための図である。It is a figure for demonstrating the relationship between the width W of a groove | channel, and the length L of the pillar 115. FIG. 本発明の一実施形態の測定方法を説明するための流れ図である。It is a flowchart for demonstrating the measuring method of one Embodiment of this invention. 図12の流れ図に示した測定方法と境界E及びE’との関係を示す図である。It is a figure which shows the relationship between the measuring method shown to the flowchart of FIG. 12, and the boundary E and E '. 従来の部品及び本発明の部品について、柱の傾斜角度に対する基準位置の偏差を示す図である。It is a figure which shows the deviation of the reference | standard position with respect to the inclination angle of a pillar about the conventional components and the components of this invention. 本発明の他の実施形態の、位置基準部を備えた部品を示す図である。It is a figure which shows the components provided with the position reference part of other embodiment of this invention.
 図1は、本発明の一実施形態の、位置基準部110を備えた部品100を示す図である。部品100の一つの面101には、2個の位置基準部110及び複数のレンズ150が設置されている。2個の位置基準部110は、ほぼ円柱状である。複数のレンズ150を備えた部品100は、たとえば、複数の光ファイバを備えたコネクタに接続される。2個の位置基準部110は、部品100とコネクタとの接続に使用される。たとえば、コネクタが、2個の柱状の位置基準部110に対応する2個の凹部を備えており、位置基準部が凹部に収納されるようにしてもよい。その際に、複数のレンズ150と複数の光ファイバとを、高い精度で位置合わせする必要がある。このため、高い精度での位置合わせを保証するために、複数のレンズ150の位置を、2個の位置基準部110を基準として正確に測定する必要がある。 FIG. 1 is a diagram illustrating a component 100 including a position reference unit 110 according to an embodiment of the present invention. On one surface 101 of the component 100, two position reference portions 110 and a plurality of lenses 150 are installed. The two position reference parts 110 are substantially cylindrical. The component 100 including the plurality of lenses 150 is connected to, for example, a connector including a plurality of optical fibers. The two position reference parts 110 are used for connecting the component 100 and the connector. For example, the connector may include two concave portions corresponding to the two columnar position reference portions 110, and the position reference portions may be accommodated in the concave portions. At that time, it is necessary to align the plurality of lenses 150 and the plurality of optical fibers with high accuracy. For this reason, in order to guarantee alignment with high accuracy, it is necessary to accurately measure the positions of the plurality of lenses 150 with reference to the two position reference units 110.
 図2は、従来の部品の位置基準部110’の中心軸を含む断面を示す図である。 FIG. 2 is a view showing a cross section including the central axis of the position reference portion 110 ′ of the conventional component.
 ここで、複数のレンズ150の位置の測定は、CNC(Computer Numerical Control)画像測定機などの測定装置を使用して実施される。画像測定機などの測定装置で取得した画像において、従来の部品の位置基準部110’の柱の根元部分は、周囲の平面と区別するのが困難である。そこで、画像測定機などの測定装置で取得した画像において、図2において円で囲った、柱の先端部分を観察することにより位置基準部110’の位置を定めている。 Here, the measurement of the positions of the plurality of lenses 150 is performed using a measuring device such as a CNC (Computer Numerical Control) image measuring machine. In an image acquired by a measuring apparatus such as an image measuring machine, it is difficult to distinguish the base portion of the pillar of the position reference portion 110 ′ of the conventional component from the surrounding plane. In view of this, the position of the position reference unit 110 ′ is determined by observing the tip end portion of the column surrounded by a circle in FIG. 2 in an image acquired by a measuring apparatus such as an image measuring machine.
 図3は、本発明の一実施形態の部品100の位置基準部110の中心軸を含む断面を示す図である。本発明の一実施形態の部品100は、位置基準部110の柱115の根元の周囲に環状の溝120を備える点で従来の部品と異なる。図3の円で囲まれた図は、溝120の、位置基準部110の中心軸を含む断面を示す図である。溝120の幅はW、溝120の深さはDで示す。溝120の底面121は、部品100の平面101と平行に形成される。底面121の粗さは、30nm以下に仕上げるのが好ましい。底面121の外側の周縁には、底面121から底面121に対して所定の角度で立ち上がり、面101に至る傾斜面123が備わる。底面121は、レンズ150が配置される平面と同一の平面を形成するように、溝120の深さDを定めるのが好ましい。 FIG. 3 is a view showing a cross section including the central axis of the position reference portion 110 of the component 100 according to the embodiment of the present invention. The component 100 according to the embodiment of the present invention is different from the conventional component in that an annular groove 120 is provided around the base of the column 115 of the position reference unit 110. 3 is a diagram showing a cross section of the groove 120 including the central axis of the position reference portion 110. The width of the groove 120 is indicated by W, and the depth of the groove 120 is indicated by D. The bottom surface 121 of the groove 120 is formed in parallel with the plane 101 of the component 100. The roughness of the bottom surface 121 is preferably finished to 30 nm or less. The outer periphery of the bottom surface 121 is provided with an inclined surface 123 that rises from the bottom surface 121 to the bottom surface 121 at a predetermined angle and reaches the surface 101. The bottom surface 121 preferably defines the depth D of the groove 120 so as to form the same plane as the plane on which the lens 150 is disposed.
 図3において、A1及びA2で示される隅部は、断面が円弧上の部分、いわゆるRを有さないように形成されるのが好ましい。 In FIG. 3, the corners indicated by A1 and A2 are preferably formed such that the cross section does not have a so-called R portion on the arc.
 図4は、本発明の測定方法において使用される、同軸落射照明を使用する測定装置を示す図である。測定装置は、CNC画像測定器であってもよい。測定装置は、光源301と、視野レンズ303と、ハーフミラー304と、コンデンサレンズ305と、結像レンズ307と、画像取得部309と、を含む。コンデンサレンズ305、ハーフミラー304、及び結像レンズ307は、測定装置の撮像光学系を形成する。位置基準部110を備えた部品100の面を101で表す。光源301からの光は、視野レンズ303及びハーフミラー304を介して、コンデンサレンズ305の瞳位置に光源の像を形成する。この光源の像を光源として、コンデンサレンズ305を介して、部品100の面101への照明が実施される。部品100の面101で反射された光は、コンデンサレンズ305を通過した後、ハーフミラー304及び結像レンズ307を通過して画像取得部309に到達する。 FIG. 4 is a diagram showing a measuring apparatus using coaxial epi-illumination used in the measuring method of the present invention. The measuring device may be a CNC image measuring device. The measurement apparatus includes a light source 301, a field lens 303, a half mirror 304, a condenser lens 305, an imaging lens 307, and an image acquisition unit 309. The condenser lens 305, the half mirror 304, and the imaging lens 307 form an imaging optical system of the measuring device. A surface of the component 100 including the position reference unit 110 is denoted by 101. The light from the light source 301 forms an image of the light source at the pupil position of the condenser lens 305 via the field lens 303 and the half mirror 304. Illumination of the surface 101 of the component 100 is performed via the condenser lens 305 using the image of the light source as a light source. The light reflected by the surface 101 of the component 100 passes through the condenser lens 305, passes through the half mirror 304 and the imaging lens 307, and reaches the image acquisition unit 309.
 図5は、上記の測定装置の同軸落射照明の照明用の光、及び撮像用の反射光の経路を示す図である。上記の経路は、上記の測定装置の撮像光学系の開口角、すなわちコンデンサレンズ305の開口角によって定まる。図5において、主光線をL1、L2で表し、開口角をφで表す。反射光のうち、平面101の法線となす角度が開口角φを超える光線は、測定装置に取り込まれない。 FIG. 5 is a diagram showing a path of illumination light and reflected light for imaging of the coaxial epi-illumination of the measurement apparatus. The above path is determined by the aperture angle of the imaging optical system of the measurement apparatus, that is, the aperture angle of the condenser lens 305. In FIG. 5, chief rays are represented by L1 and L2, and an aperture angle is represented by φ. Of the reflected light, a light beam whose angle with the normal of the plane 101 exceeds the opening angle φ is not taken into the measuring device.
 図6は、照明用の光のうち溝120の底面121に垂直に進行する光線の経路及びその光線による画像を示す図である。底面121に垂直に入射する光線の反射光は、底面121に垂直に進行するので画像取得部309に到達する。同様に、面101に垂直に入射する反射光も画像取得部309に到達する。他方、底面121に垂直に進行する光線が、傾斜面123に反射されると、さらに、柱115の側面に反射され画像取得部309に到達することはない。そこで、画像取得部309で取得された画像において、底面121及び平面101の領域は明るくなり、傾斜面123の領域は暗くなる。この結果、上記の画像において、底面121の領域と傾斜面123の領域との境界Eが明確に示される。 FIG. 6 is a diagram showing a path of light rays that travel perpendicularly to the bottom surface 121 of the groove 120 in the illumination light and an image of the light rays. The reflected light of the light incident perpendicularly to the bottom surface 121 travels perpendicularly to the bottom surface 121 and therefore reaches the image acquisition unit 309. Similarly, the reflected light that is perpendicularly incident on the surface 101 also reaches the image acquisition unit 309. On the other hand, when the light beam traveling vertically to the bottom surface 121 is reflected by the inclined surface 123, it is further reflected by the side surface of the column 115 and does not reach the image acquisition unit 309. Therefore, in the image acquired by the image acquisition unit 309, the area of the bottom surface 121 and the plane 101 becomes bright, and the area of the inclined surface 123 becomes dark. As a result, in the above image, the boundary E between the region of the bottom surface 121 and the region of the inclined surface 123 is clearly shown.
 図7は、照明用の光のうち溝120の底面121に対して所定の範囲の角度で進行する光線の経路及びその光線による画像を示す図である。底面121に上記所定の範囲の角度入射する光線の反射光は、底面121及び柱115の側面で反射された後、画像取得部309に到達する。同様に、面101に入射する反射光も画像取得部309に到達する。他方、底面121に対して上記所定の範囲の角度で進行する光線は、傾斜面123に反射されたとしても、さらに、柱115の側面に反射され画像取得部309に到達することはない。そこで、画像取得部309で取得された、柱115の側面で反射された光線による反射像において、底面121及び平面101の領域は明るくなり、傾斜面123の領域は暗くなる。この結果、上記の画像において、底面121の領域の反射像と傾斜面123の領域の反射像との境界E’が明確に示される。 FIG. 7 is a diagram showing a path of light rays that travel at an angle within a predetermined range with respect to the bottom surface 121 of the groove 120 in the illumination light, and an image of the light rays. The reflected light of the light ray incident on the bottom surface 121 at an angle within the predetermined range is reflected by the bottom surface 121 and the side surfaces of the pillar 115 and then reaches the image acquisition unit 309. Similarly, the reflected light incident on the surface 101 also reaches the image acquisition unit 309. On the other hand, even if the light ray traveling at an angle within the predetermined range with respect to the bottom surface 121 is reflected by the inclined surface 123, it is further reflected by the side surface of the column 115 and does not reach the image acquisition unit 309. Therefore, in the reflected image obtained by the light beam reflected by the side surface of the column 115 acquired by the image acquisition unit 309, the area of the bottom surface 121 and the plane 101 becomes bright, and the area of the inclined surface 123 becomes dark. As a result, in the above image, the boundary E ′ between the reflected image in the area of the bottom surface 121 and the reflected image in the area of the inclined surface 123 is clearly shown.
 図8は、照明用の光の光線の経路及びその光線による画像を示す図である。図8は、図6及び図7を組み合わせたものである。図8において、境界E’は、底面121領域と傾斜面123の領域との境界Eの、柱115の側面における反射による像である。そこで、境界Eの上の点とそれに対応する境界E’状の点とを結ぶ線分の中点は、柱115の根元の周縁の点の位置に対応する。このようにして、図8に示す画像から、柱115の根元の周縁の位置を求めることができる。なお、柱115の根元の周縁の位置の求め方については後で説明する。 FIG. 8 is a diagram showing a path of a light beam for illumination and an image by the light beam. FIG. 8 is a combination of FIGS. 6 and 7. In FIG. 8, the boundary E ′ is an image obtained by reflection on the side surface of the column 115 of the boundary E between the bottom surface 121 region and the inclined surface 123 region. Therefore, the midpoint of the line segment connecting the point on the boundary E and the corresponding point in the shape of the boundary E ′ corresponds to the position of the point at the periphery of the base of the column 115. In this manner, the position of the base periphery of the pillar 115 can be obtained from the image shown in FIG. A method for obtaining the position of the base periphery of the pillar 115 will be described later.
 以下において、溝120の傾斜面123の、底面121に対する角度について説明する。本明細書において角度の単位は度である。 Hereinafter, the angle of the inclined surface 123 of the groove 120 with respect to the bottom surface 121 will be described. In this specification, the unit of angle is degrees.
 図9Aは、溝120の傾斜面123の、底面121に対する角度θと測定装置の撮像光学系の開口角φとの関係を説明するための図である。図9Aにおいて、
 θ≦90-φ
の関係を満たす。この場合に、照射される光線の大部分は、溝120の底面121に到達する。
FIG. 9A is a diagram for explaining the relationship between the angle θ of the inclined surface 123 of the groove 120 with respect to the bottom surface 121 and the aperture angle φ of the imaging optical system of the measuring apparatus. In FIG. 9A,
θ ≦ 90-φ
Satisfy the relationship. In this case, most of the irradiated light reaches the bottom surface 121 of the groove 120.
 図9Bは、溝120の傾斜面123の、底面121に対する角度θと測定装置の撮像光学系の開口角φとの関係を説明するための図である。図9Bにおいて、
 90-φ<θ
の関係を満たす。この場合に、照射される光線の一部は、平面101によるケラレによって溝120の底面121に到達することができない。したがって、この状態は照射の効率の観点から好ましくない。
FIG. 9B is a diagram for explaining the relationship between the angle θ of the inclined surface 123 of the groove 120 with respect to the bottom surface 121 and the aperture angle φ of the imaging optical system of the measuring apparatus. In FIG. 9B,
90-φ <θ
Satisfy the relationship. In this case, some of the irradiated light beams cannot reach the bottom surface 121 of the groove 120 due to vignetting caused by the flat surface 101. Therefore, this state is not preferable from the viewpoint of the efficiency of irradiation.
 図10Aは、溝120の傾斜面123の、底面121に対する角度θと測定装置の撮像光学系の開口角φとの関係を説明するための図である。図10Aにおいて、
 φ≧θ
の関係を満たす。この場合に、傾斜面123で反射された光線の一部は、測定装置に入射する。この場合に、測定装置による画像において、底面121の領域と傾斜面123の領域との境界が明確でなくなる。したがって、この状態は、画像による測定の観点から好ましくない。
FIG. 10A is a diagram for explaining the relationship between the angle θ of the inclined surface 123 of the groove 120 with respect to the bottom surface 121 and the aperture angle φ of the imaging optical system of the measuring apparatus. In FIG. 10A,
φ ≧ θ
Satisfy the relationship. In this case, a part of the light beam reflected by the inclined surface 123 enters the measuring device. In this case, the boundary between the region of the bottom surface 121 and the region of the inclined surface 123 becomes unclear in the image obtained by the measuring apparatus. Therefore, this state is not preferable from the viewpoint of measurement by an image.
 図10Bは、溝120の傾斜面123の、底面121に対する角度θと測定装置の撮像光学系の開口角φとの関係を説明するための図である。図10Bにおいて、
 φ<θ
の関係を満たす。この場合に、傾斜面123で反射された光線は、測定装置に入射しない。したがって、測定装置による画像において、底面121の領域と傾斜面123の領域との境界が明確になる。
FIG. 10B is a diagram for explaining the relationship between the angle θ of the inclined surface 123 of the groove 120 with respect to the bottom surface 121 and the aperture angle φ of the imaging optical system of the measuring apparatus. In FIG. 10B,
φ <θ
Satisfy the relationship. In this case, the light beam reflected by the inclined surface 123 does not enter the measuring device. Therefore, the boundary between the region of the bottom surface 121 and the region of the inclined surface 123 becomes clear in the image obtained by the measuring apparatus.
 したがって、溝120の傾斜面123の、底面121に対する角度θと測定装置の撮像光学系の開口角φとは、以下の関係を満たすのが好ましい。
 φ<θ≦90-φ
なお、測定装置の撮像光学系の開口角φは、一般的に10度から20度の範囲である。したがって、底面121に対する傾斜面123の角度は、20度から70度であるのが好ましい。
Therefore, it is preferable that the angle θ of the inclined surface 123 of the groove 120 with respect to the bottom surface 121 and the aperture angle φ of the imaging optical system of the measuring device satisfy the following relationship.
φ <θ ≦ 90-φ
Note that the aperture angle φ of the imaging optical system of the measuring apparatus is generally in the range of 10 degrees to 20 degrees. Therefore, the angle of the inclined surface 123 with respect to the bottom surface 121 is preferably 20 degrees to 70 degrees.
 図11は、溝120の幅Wと柱115の長さLとの関係を説明するための図である。溝120の底面121で反射された光線が、柱115の側面で反射され、測定装置に到達するためには、測定装置の撮像光学系の開口角をφとして、以下の関係が満たされる必要がある。
 W≦L×tanθ
また、幅Wは、測定装置の解像度の観点から0.04mm以上であるのが望ましい。
FIG. 11 is a diagram for explaining the relationship between the width W of the groove 120 and the length L of the column 115. In order for the light beam reflected by the bottom surface 121 of the groove 120 to be reflected by the side surface of the pillar 115 and reach the measuring device, the following relationship needs to be satisfied with the aperture angle of the imaging optical system of the measuring device as φ. is there.
W ≦ L × tanθ
The width W is preferably 0.04 mm or more from the viewpoint of the resolution of the measuring apparatus.
 図12は、本発明の一実施形態の測定方法を説明するための流れ図である。 FIG. 12 is a flowchart for explaining a measurement method according to an embodiment of the present invention.
 図13は、図12の流れ図に示した測定方法と境界E及びE’との関係を示す図である。 FIG. 13 is a diagram showing the relationship between the measurement method shown in the flowchart of FIG. 12 and the boundaries E and E ′.
 図12のステップS1010において、測定装置の画像において、位置基準部110の溝120の外側の周縁、すなわち、底面121の領域と傾斜面123の領域との境界E上の3点から、境界Eを形成する円を定める。 In step S1010 of FIG. 12, in the image of the measurement apparatus, the boundary E is defined from three points on the outer periphery of the groove 120 of the position reference unit 110, that is, the boundary E between the region of the bottom surface 121 and the region of the inclined surface 123. Determine the circle to be formed.
 図12のステップS1020において、上記の円の中心を通る軸Aを定める。ここでは、軸Aを水平方向とする。 In step S1020 in FIG. 12, an axis A passing through the center of the circle is determined. Here, the axis A is the horizontal direction.
 図12のステップS1030において、上記の円の右側において、軸Aと境界E及び境界E’との交点をA1及びA1’とする。上述のように、境界E’は、底面121領域と傾斜面123の領域との境界Eの、柱115の側面における反射による像である。 In step S1030 of FIG. 12, on the right side of the circle, the intersections of the axis A, the boundary E, and the boundary E ′ are set as A1 and A1 ′. As described above, the boundary E ′ is an image obtained by reflection on the side surface of the column 115 of the boundary E between the bottom surface 121 region and the inclined surface 123 region.
 図12のステップS1040において、点A1及び点A1’を結ぶ線分の中点をAC1とする。 In step S1040 of FIG. 12, the midpoint of the line segment connecting point A1 and point A1 'is AC1.
 図12のステップS1050において、上記の円の左側において、軸Aと境界E及び境界E’との交点をA2及びA2’とする。 In step S1050 in FIG. 12, on the left side of the circle, intersections of the axis A, the boundary E, and the boundary E ′ are set as A2 and A2 ′.
 図12のステップS1060において、点A2及び点A2’を結ぶ線分の中点をAC2とする。 In step S1060 of FIG. 12, the midpoint of the line segment connecting point A2 and point A2 'is AC2.
 図12のステップS1070において、点AC1及び点AC2を結ぶ線分の中点をACとする。 In step S1070 in FIG. 12, the midpoint of the line segment connecting the points AC1 and AC2 is AC.
 図12のステップS1080において、軸Aと直交する軸Bを定める。 In step S1080 in FIG. 12, an axis B orthogonal to the axis A is determined.
 図12のステップS1090において、軸Bについて、ステップS1030からステップS1070までの手順にしたがって、点BC1、点BC2及び点BCを求める。 In step S1090 of FIG. 12, for the axis B, the points BC1, BC2, and BC are obtained according to the procedure from step S1030 to step S1070.
 図12のステップS1100において、点AC及び点BCから位置基準部110の位置を定める。本実施形態においては、位置基準部110の主要部は円柱であるので、点ACの軸A方向の座標及び点BCの軸B方向の座標を有する点を、円柱の軸に垂直な断面の中心位置とすることによって、位置基準部110の位置を定めることができる。 In step S1100 of FIG. 12, the position of the position reference unit 110 is determined from the point AC and the point BC. In the present embodiment, since the main part of the position reference unit 110 is a cylinder, a point having the coordinates of the point AC in the axis A direction and the point BC in the axis B direction is the center of the cross section perpendicular to the cylinder axis. By setting the position, the position of the position reference unit 110 can be determined.
 図2を使用して説明した通り、従来の部品においては、位置基準部110’の柱の先端部分の位置を基準として測定を実施していた。このため、柱の傾斜角度により基準位置の偏差が生じる。 As described with reference to FIG. 2, in the conventional part, the measurement is performed based on the position of the tip end portion of the column of the position reference portion 110 '. For this reason, the deviation of the reference position is caused by the inclination angle of the column.
 表1は、従来の部品及び本発明の部品について、柱の傾斜角度に対する基準位置の偏差を示す表である。柱の傾斜角度とは、柱の長手方向の軸の、平面101の法線に対する角度である。表1における長さの単位はミリメータである。柱の長さは、2.67ミリメータである。
Figure JPOXMLDOC01-appb-T000007
Table 1 is a table showing the deviation of the reference position with respect to the inclination angle of the column for the conventional part and the part of the present invention. The tilt angle of the column is an angle of the axis in the longitudinal direction of the column with respect to the normal line of the plane 101. The unit of length in Table 1 is millimeter. The column length is 2.67 millimeters.
Figure JPOXMLDOC01-appb-T000007
 図14は、従来の部品及び本発明の部品について、柱の傾斜角度に対する基準位置の偏差を示す図である。図14において、従来の部品の偏差を破線で示し、本発明の部品の偏差を実線で示す。従来の部品と比較して、本発明の部品においては、柱の傾斜角度による基準位置の偏差が大幅に低減される。本発明によれば、一例として、レンズ位置の公差±3マイクロメータを実現することができる。 FIG. 14 is a diagram showing the deviation of the reference position with respect to the inclination angle of the column for the conventional part and the part of the present invention. In FIG. 14, the deviation of the conventional part is indicated by a broken line, and the deviation of the part of the present invention is indicated by a solid line. Compared with the conventional part, in the part of the present invention, the deviation of the reference position due to the inclination angle of the column is greatly reduced. According to the present invention, as an example, a tolerance of lens position ± 3 micrometers can be realized.
 また、位置基準部110の柱の周縁の位置と溝120の外側の周縁の位置とが同心状に形成されていない場合であっても、図12及び図13に示した測定方法によれば、溝の周縁の位置に起因する誤差を低減することができる。 Further, even if the position of the peripheral edge of the column of the position reference portion 110 and the position of the outer peripheral edge of the groove 120 are not formed concentrically, according to the measurement method shown in FIGS. Errors due to the position of the peripheral edge of the groove can be reduced.
 図15は、本発明の他の実施形態の、位置基準部110Aを備えた部品100Aを示す図である。2個の位置基準部110Aは四角柱状である。一般的に、位置基準部の長手方向に垂直な断面は、円形、または多角形でよい。ただし、図11を使用して説明した根元からLの長さに相当する柱の断面は、同一の形状である必要がある。位置基準部の柱の断面が多角形であっても、図12に示した測定方法と同様の測定方法で位置基準部の位置を定めることができる。 FIG. 15 is a diagram showing a component 100A including a position reference portion 110A according to another embodiment of the present invention. The two position reference portions 110A have a quadrangular prism shape. In general, the cross section perpendicular to the longitudinal direction of the position reference portion may be circular or polygonal. However, the cross section of the column corresponding to the length of L from the root described with reference to FIG. 11 needs to have the same shape. Even if the cross section of the column of the position reference portion is polygonal, the position of the position reference portion can be determined by a measurement method similar to the measurement method shown in FIG.

Claims (6)

  1.  同軸落射照明を使用する撮像光学系を備えた測定装置の画像において、平面上の位置基準部の及び任意の点の位置を観察し、該位置基準部の位置を基準として該任意の点の位置を定める位置測定方法であって、該位置基準部は、少なくとも根元の部分が柱状であり、柱の根元の周囲に一定の幅の溝を備え、該溝の底面は該平面に平行であり、該溝の該底面の外側の周縁には、該底面から該底面に対して角度θで立ち上がり、該平面に至る傾斜面を備え、
     該測定装置の画像において、該溝の該底面の外側の周縁の位置、及び該外側の周縁の反射像の位置から、該柱の根元の周縁の位置を定めるステップと、
     該柱の根元の周縁の位置から該位置基準部の位置を定めるステップと、
     該位置基準部の位置を基準として該任意の点の位置を定めるステップと、を含む位置測定方法。
    In an image of a measuring apparatus equipped with an imaging optical system that uses coaxial epi-illumination, the position of the position reference part on the plane and the position of an arbitrary point are observed, and the position of the arbitrary point with reference to the position of the position reference part Wherein the position reference portion has a columnar shape at least at the base, a groove having a constant width around the base of the column, and the bottom surface of the groove is parallel to the plane. The outer periphery of the bottom surface of the groove has an inclined surface that rises from the bottom surface to the bottom surface at an angle θ and reaches the flat surface,
    In the image of the measuring device, determining the position of the base periphery of the pillar from the position of the outer periphery of the bottom surface of the groove and the position of the reflection image of the outer periphery;
    Determining the position of the position reference portion from the position of the periphery of the base of the pillar;
    Determining a position of the arbitrary point on the basis of the position of the position reference unit.
  2.  該撮像光学系の開口角をφ、角度の単位を度として、θが、
    Figure JPOXMLDOC01-appb-M000001
    を満たす請求項1に記載の位置測定方法。
    The aperture angle of the imaging optical system is φ, the unit of the angle is degrees, and θ is
    Figure JPOXMLDOC01-appb-M000001
    The position measuring method according to claim 1, wherein:
  3.  該撮像光学系の開口角をφ、角度の単位を度として、θが、
    Figure JPOXMLDOC01-appb-M000002
    を満たす請求項1または2に記載の位置測定方法。
    The aperture angle of the imaging optical system is φ, the unit of the angle is degrees, and θ is
    Figure JPOXMLDOC01-appb-M000002
    The position measuring method according to claim 1 or 2, satisfying
  4.  該顕微鏡の開口数をNA、該溝の幅をW、該柱の長さをLとして、
    Figure JPOXMLDOC01-appb-M000003
    を満たす請求項1から3のいずれかに記載の位置測定方法。
    The numerical aperture of the microscope is NA, the width of the groove is W, and the length of the column is L.
    Figure JPOXMLDOC01-appb-M000003
    The position measuring method according to claim 1, wherein:
  5.  該任意の点の位置が光学素子の位置である請求項1から4のいずれかに記載の位置測定方法。 The position measurement method according to any one of claims 1 to 4, wherein the position of the arbitrary point is the position of the optical element.
  6.  少なくとも一つの平面上に少なくとも二つの位置基準部と光学素子とを備えた部品であって、該位置基準部は、少なくとも根元の部分が柱状であり、柱の根元の周囲に一定の幅の溝を備え、該溝の底面は該平面に平行であり、該溝の該底面の外側の周縁には、該底面から該底面に対して角度θで立ち上がり、該平面に至る傾斜面を備え、該角度は20度から70度の範囲である部品。 A component having at least two position reference portions and an optical element on at least one plane, wherein the position reference portion has a columnar shape at least at the base, and a groove having a constant width around the base of the column. A bottom surface of the groove is parallel to the plane, and an outer peripheral edge of the bottom surface of the groove has an inclined surface that rises from the bottom surface to the bottom surface at an angle θ and reaches the plane, Parts whose angle ranges from 20 degrees to 70 degrees.
PCT/JP2017/017867 2017-05-11 2017-05-11 Position measurement method and component WO2018207310A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2017/017867 WO2018207310A1 (en) 2017-05-11 2017-05-11 Position measurement method and component
JP2017239493A JP6989950B2 (en) 2017-05-11 2017-12-14 Position measurement method and parts
US15/967,974 US10295754B2 (en) 2017-05-11 2018-05-01 Position determination method and element
CN201810430660.1A CN108896276B (en) 2017-05-11 2018-05-08 Position measuring method and member
CN202111208827.8A CN113933030A (en) 2017-05-11 2018-05-08 Position measuring unit
DE102018111233.5A DE102018111233A1 (en) 2017-05-11 2018-05-09 POSITION DETERMINATION METHOD AND ELEMENT
JP2021190918A JP7244954B2 (en) 2017-05-11 2021-11-25 Position measurement method and parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/017867 WO2018207310A1 (en) 2017-05-11 2017-05-11 Position measurement method and component

Publications (1)

Publication Number Publication Date
WO2018207310A1 true WO2018207310A1 (en) 2018-11-15

Family

ID=64105577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017867 WO2018207310A1 (en) 2017-05-11 2017-05-11 Position measurement method and component

Country Status (2)

Country Link
JP (1) JP6989950B2 (en)
WO (1) WO2018207310A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317845A (en) * 2006-05-25 2007-12-06 Elpida Memory Inc Manufacturing method of semiconductor device
JP2008216905A (en) * 2007-03-07 2008-09-18 Sony Corp Optical module and manufacturing method of optical waveguide
JP2009145656A (en) * 2007-12-14 2009-07-02 Enplas Corp Optically coupled device and optical module including optically coupled device
JP2014137410A (en) * 2013-01-15 2014-07-28 Furukawa Electric Co Ltd:The Optical module and method for manufacturing optical module
US20140294354A1 (en) * 2013-04-02 2014-10-02 Hon Hai Precision Industry Co., Ltd. Optical connector with alignment device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157144A (en) * 1993-12-10 1995-06-20 Furukawa Electric Co Ltd:The Dimension measuring method for optical part
JP4845333B2 (en) * 2003-04-11 2011-12-28 株式会社リコー Photoelectric conversion element package, manufacturing method thereof, and optical connector
JP2007256372A (en) * 2006-03-20 2007-10-04 Sumitomo Electric Ind Ltd Optical fiber connecting component
WO2014157363A1 (en) * 2013-03-27 2014-10-02 京セラ株式会社 Optical transmission module, photoelectric composite transmission module, and optical connector
JP2014228585A (en) * 2013-05-20 2014-12-08 株式会社フジクラ Method of manufacturing optical module, and optical module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317845A (en) * 2006-05-25 2007-12-06 Elpida Memory Inc Manufacturing method of semiconductor device
JP2008216905A (en) * 2007-03-07 2008-09-18 Sony Corp Optical module and manufacturing method of optical waveguide
JP2009145656A (en) * 2007-12-14 2009-07-02 Enplas Corp Optically coupled device and optical module including optically coupled device
JP2014137410A (en) * 2013-01-15 2014-07-28 Furukawa Electric Co Ltd:The Optical module and method for manufacturing optical module
US20140294354A1 (en) * 2013-04-02 2014-10-02 Hon Hai Precision Industry Co., Ltd. Optical connector with alignment device

Also Published As

Publication number Publication date
JP2018189627A (en) 2018-11-29
JP6989950B2 (en) 2022-01-12

Similar Documents

Publication Publication Date Title
WO2017119118A1 (en) Sample shape measuring method and sample shape measuring apparatus
US20110221879A1 (en) Objective for a dental camera and method for creating an image
JPS61234837A (en) Apparatus for measuring eye refraction
WO2018207310A1 (en) Position measurement method and component
JP7244954B2 (en) Position measurement method and parts
GB2076176A (en) Focusing Optical Apparatus
US4120590A (en) Method for measuring the thickness of transparent articles
US6831792B2 (en) Objective lens, combination of objective lenses, and method for adjusting optical system using objective lens
JPH08166514A (en) Obliquely illuminating device
JPH06174430A (en) Center thickness measuring method and device used for it
KR100342481B1 (en) Image tracking device and method for transverse measurement of an optical fiber
JPH06311965A (en) Cornea shape measuring instrument
JPS6052371B2 (en) Focal position measuring device
CN111982473B (en) Method and device for detecting and adjusting common sphere center of spherical reflector
JP2001091227A (en) Measuring device for lens and measuring method for lens
JP7289780B2 (en) Eccentricity measuring method and eccentricity measuring device
JPS5987336A (en) Lens meter having optical system indicating focusing by coincidence of divided image
JP2768955B2 (en) Lens meter
JP4135133B2 (en) Optical axis correction apparatus and optical instrument system
JP4639808B2 (en) Measuring apparatus and adjustment method thereof
JPS6345530B2 (en)
JPH08210947A (en) Lens meter
US6943901B2 (en) Critical dimension measuring instrument
SU1337042A1 (en) Keratometer
WO2020100287A1 (en) Optical element and method for positioning optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP