JP4639808B2 - Measuring apparatus and adjustment method thereof - Google Patents

Measuring apparatus and adjustment method thereof Download PDF

Info

Publication number
JP4639808B2
JP4639808B2 JP2005007969A JP2005007969A JP4639808B2 JP 4639808 B2 JP4639808 B2 JP 4639808B2 JP 2005007969 A JP2005007969 A JP 2005007969A JP 2005007969 A JP2005007969 A JP 2005007969A JP 4639808 B2 JP4639808 B2 JP 4639808B2
Authority
JP
Japan
Prior art keywords
optical
imaging
image
optical image
distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005007969A
Other languages
Japanese (ja)
Other versions
JP2006194783A (en
Inventor
洋 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005007969A priority Critical patent/JP4639808B2/en
Publication of JP2006194783A publication Critical patent/JP2006194783A/en
Application granted granted Critical
Publication of JP4639808B2 publication Critical patent/JP4639808B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、例えばウェハ上に形成される各種パターンのアライメント光学系、位置測定光学系に用いる測定装置及びその調整方法に関する。   The present invention relates to an alignment optical system for various patterns formed on, for example, a wafer, a measurement apparatus used for a position measurement optical system, and an adjustment method thereof.

例えばウェハ上に形成される各種パターンの位置測定光学系は、特許文献1にも開示してあるように、従来、図4に示すように、照明光学系、結像光学系、及び画像処理手段からなる。なお、図4は、従来に係り、各種パターンの位置測定光学系の模式図である。   For example, as disclosed in Patent Document 1, a position measuring optical system for various patterns formed on a wafer is conventionally provided with an illumination optical system, an imaging optical system, and an image processing unit as shown in FIG. Consists of. FIG. 4 is a schematic diagram of a position measuring optical system for various patterns according to the prior art.

照明光学系に於いては、光源(ハロゲンランプ)1のフィラメント像は、光源用第1及び第2リレーレンズ2,3にて、光ファイバ4のファイバ入射端面に投影される。この照明光は、光ファイバ4を介して、照明用第1及び第2リレーレンズ5,6にて、照明開口絞り7に投影される。なお、光ファイバ4の出射端面と、照明用第1リレーレンズ6との間には、光学的拡散板(レモンスキン)20が配置されている。   In the illumination optical system, the filament image of the light source (halogen lamp) 1 is projected onto the fiber entrance end face of the optical fiber 4 by the first and second relay lenses 2 and 3 for the light source. The illumination light is projected onto the illumination aperture stop 7 through the optical fiber 4 by the illumination first and second relay lenses 5 and 6. An optical diffusion plate (lemon skin) 20 is disposed between the emission end face of the optical fiber 4 and the first relay lens 6 for illumination.

その後、照明用第3リレーレンズ8、視野絞り9、及び照明用第4リレーレンズ10を通り、落射プリズム11にて、90度方向に反射され、結像絞り12、第1対物レンズ13を通り、ウェハ14に照明される。なお、ウェハ14は、移動ステージ16上のウェハホルダー15に載置してあり、ウェハ14には、測定対象パターンが形成してある。   Thereafter, the light passes through the third relay lens 8 for illumination, the field stop 9 and the fourth relay lens 10 for illumination, is reflected by the incident prism 11 in the direction of 90 degrees, and passes through the imaging stop 12 and the first objective lens 13. The wafer 14 is illuminated. The wafer 14 is placed on the wafer holder 15 on the moving stage 16, and a measurement target pattern is formed on the wafer 14.

結像光学系に於いては、ウェハ14の測定対象パターンで反射された光は、再び第1対物レンズ13を通り、結像開口絞り12を通り、落射プリズム11、反射ミラー21、及び第2対物レンズ17を通過後、CCDカメラ18の撮像面にて結像する。   In the imaging optical system, the light reflected by the measurement target pattern on the wafer 14 passes again through the first objective lens 13, the imaging aperture stop 12, the incident prism 11, the reflection mirror 21, and the second. After passing through the objective lens 17, an image is formed on the imaging surface of the CCD camera 18.

画像処理手段に於いては、CCDカメラ18の撮像面に投影された測定対象パターン像をデジタル信号に変換後、その画像は、画像処理部19に送られ、測定対象パターンの位置計側か行われる。   In the image processing means, the measurement target pattern image projected on the imaging surface of the CCD camera 18 is converted into a digital signal, and then the image is sent to the image processing unit 19 where the measurement target pattern is placed on the position meter side. Is called.

ところで、上述したような光学顕微鏡を用いた測定装置に於いては、光学系誤差(照明テレセン、結像テレセン、コマ収差)が測定精度に大きく影響する。そのため、これまで精度向上のために、さまざまな調整方法が考えだされてきた。   By the way, in a measuring apparatus using an optical microscope as described above, optical system errors (illumination telecentricity, imaging telecentricity, coma aberration) greatly affect measurement accuracy. Therefore, various adjustment methods have been devised so far to improve accuracy.

例えば、光学系誤差に敏感な照明波長の1/8の段差を有する調整パターンを利用する方法がある。この基準パターンを用いれば、フォーカスオフセット量に対する光学像の対称性の変化から光学系誤差を推測できるため、調整機構部(照明開口絞り7、結像開口絞り12、第2対物レンズ17)を最適な位置に調整することができる。   For example, there is a method of using an adjustment pattern having a step of 1/8 of the illumination wavelength that is sensitive to an optical system error. If this reference pattern is used, the optical system error can be estimated from the change in the symmetry of the optical image with respect to the focus offset amount, so the adjustment mechanism (illumination aperture stop 7, imaging aperture stop 12, and second objective lens 17) is optimal. Can be adjusted to any position.

しかしながら、光学系に含まれる反射系ガラス部品(落射プリズム11、反射ミラー21)等については、これまでその総合精度に対する影響が小さく、問題視されてこなかった。   However, the reflection glass parts (the epi-prism 11 and the reflection mirror 21) included in the optical system have not been regarded as a problem so far because the influence on the overall accuracy is small.

従来、これらの反射系ガラス部品等については、面精度、寸法精度など、部品単体の精度を管理することで、十分な効果が得られていた。
特開2001−317913号公報
Conventionally, with respect to these reflective glass parts and the like, sufficient effects have been obtained by managing the precision of individual parts such as surface precision and dimensional precision.
JP 2001-317913 A

ところが、近年、半導体デバイスの高集積化、記憶容量の増加に伴って、測定装置に要求される精度が飛躍的に厳しくなり、反射系ガラス部品等の精度を無視することができなくなってきた。   However, in recent years, with the higher integration of semiconductor devices and the increase in storage capacity, the accuracy required for measuring devices has become extremely severe, and the accuracy of reflective glass components and the like cannot be ignored.

よって、反射系ガラス部品等に要求される精度が益々高くなり、製造限界に迫っている。   Therefore, the accuracy required for reflective glass parts and the like is becoming higher and the manufacturing limit is approaching.

例えば、落射プリズム11に関しては、反射面精度、ガラス面精度、屈折率誤差、屈折率ムラ、張り合わせガラスの特性差、接着剤の特性(接着層の厚さ)など、全ての要素が測定精度に影響する。反射ミラー21に関しても、同様に反射面精度が測定精度に影響する。   For example, with respect to the epi-illumination prism 11, all factors such as reflection surface accuracy, glass surface accuracy, refractive index error, refractive index unevenness, laminated glass characteristic difference, adhesive property (adhesive layer thickness), and the like are measured accuracy. Affect. Regarding the reflection mirror 21, the accuracy of the reflection surface similarly affects the measurement accuracy.

また、これら反射系ガラス部品等は、光学像面に近く配置される場合は、直接的に光学像の品質(光学像の歪み)に影響し、瞳面付近に配置される場合は、瞳面の品質に影響し、間接的に光学像の品質(光学像の歪み)に影響を及ぼす。   Also, when these reflective glass parts are arranged close to the optical image plane, they directly affect the quality of the optical image (distortion of the optical image), and when placed near the pupil plane, the pupil plane Affects the quality of the image and indirectly affects the quality of the optical image (distortion of the optical image).

例えば、図3(a)は、光学像の状態を示す模式図であり、ウェハ14の位置に、試料(理想格子物体)を載置した時に、CCDカメラ18の撮像面に結像した光学像である。反射系ガラス部品等の面精度の影響により、試料の光学像が歪んでいることが観察される。   For example, FIG. 3A is a schematic diagram showing the state of an optical image, and an optical image formed on the imaging surface of the CCD camera 18 when a sample (ideal lattice object) is placed at the position of the wafer 14. It is. It is observed that the optical image of the sample is distorted due to the influence of surface accuracy of the reflective glass parts and the like.

本発明は、上述したような事情に鑑みてなされたものであって、例えば現状の方式では調整できない反射系ガラス部品等の精度の影響を極力排除して、高集積化や記憶容量の増加の下で、CCDカメラの撮像面に結像する「光学像の歪み」を極力抑えた高精度な測定装置及びその調整方法を提供することを目的とする。   The present invention has been made in view of the circumstances as described above. For example, the influence of accuracy such as reflective glass parts that cannot be adjusted by the current method is eliminated as much as possible, and high integration and increase in storage capacity are achieved. An object of the present invention is to provide a highly accurate measuring apparatus and an adjustment method thereof that can suppress “distortion of an optical image” formed on the imaging surface of a CCD camera as much as possible.

上記の目的を達成するため、本発明の請求項1に係る測定装置は、試料へ照明光を供給するための光源を有する照明光学系と、
前記試料の光学像を観察する結像光学系と、
前記光学像を撮像手段で取り込み画像処理を行う画像処理手段と、を具備した測定装置において、
前記撮像手段の撮像面に結像した前記試料の光学像の歪み量を算出する解析手段と、
前記解析手段の解析結果に基づいて、前記照明光学系又は前記結像光学系の光軸上で、入出射面が平坦であり前記光学像の歪みの要因となる歪み要因光学部品の位置を、前記光学像の位置変化せず、かつ前記入出射面の反射ポイントがずれるように前記入射出面に平行な方向に移動して調整する位置調整機構と、を備えることを特徴とする。
In order to achieve the above object, a measuring apparatus according to claim 1 of the present invention includes an illumination optical system having a light source for supplying illumination light to a sample;
An imaging optical system for observing an optical image of the sample;
An image processing unit that captures the optical image with an imaging unit and performs image processing;
Analyzing means for calculating the distortion amount of the optical image of the sample imaged on the imaging surface of the imaging means;
Based on the analysis result of the analysis means, the position of the distortion factor optical component that has a substantially flat entrance and exit surface and causes distortion of the optical image on the optical axis of the illumination optical system or the imaging optical system. characterized by comprising a position adjusting mechanism for adjusting the no position change of the optical image, and moving in the direction parallel to the entering exit surface so that the reflected point is shifted before entry exit surface.

本発明の請求項に係る測定装置は、前記歪み要因光学部品は、落射プリズム、反射ミラー、指標板、色補正ガラス、及び前記撮像手段の保護面のうち、何れか少なくとも一つであることを特徴とする。 In the measurement apparatus according to claim 2 of the present invention, the distortion factor optical component is at least one of an epi-prism, a reflection mirror, an indicator plate, color correction glass, and a protective surface of the imaging unit. It is characterized by.

本発明の請求項3に係る測定装置の調整方法は、試料へ照明光を供給するための光源を有する照明光学系と、
前記試料の光学像を観察する結像光学系と、
前記光学像を撮像手段で取り込み画像処理を行う画像処理手段と、を具備した測定装置において、
前記撮像手段の撮像面に結像した前記試料の光学像の歪み量を算出する解析工程と、
前記解析工程の解析結果に基づいて、前記照明光学系又は前記結像光学系の光軸上で、入出射面が平坦であり前記光学像の歪みの要因となる歪み要因光学部品の位置を、前記光学像の位置変化せず、かつ前記入出射面の反射ポイントがずれるように前記入射出面に平行な方向に移動して調整する位置調整工程と、を備えることを特徴とする。
An adjustment method for a measuring apparatus according to claim 3 of the present invention includes an illumination optical system having a light source for supplying illumination light to a sample;
An imaging optical system for observing an optical image of the sample;
An image processing unit that captures the optical image with an imaging unit and performs image processing;
An analysis step of calculating a distortion amount of the optical image of the sample imaged on the imaging surface of the imaging means;
Based on the analysis result of the analysis step, the position of the distortion factor optical component that has a substantially flat entrance and exit surface and causes distortion of the optical image on the optical axis of the illumination optical system or the imaging optical system. characterized by comprising a position adjustment step of adjusting the no position change of the optical image, and moving in the direction parallel to the entering exit surface so that the reflected point is shifted before entry exit surface.

本発明の請求項に係る測定装置の調整方法は、前記歪み要因光学部品は、落射プリズム、反射ミラー、指標板、色補正ガラス、及び前記撮像手段の保護面のうち、何れか少なくとも一つであることを特徴とする。 According to a fourth aspect of the present invention, there is provided the measuring apparatus adjustment method, wherein the distortion factor optical component is at least one of an epi-illumination prism, a reflecting mirror, an index plate, color correction glass, and a protective surface of the imaging means. It is characterized by being.

本発明によれば、物体面の検査対象の位置に、試料を載置し、撮像手段の撮像面に結像した試料の光学像の歪み量を算出・解析し、この解析結果に基づいて、照明光学系又は結像光学系の光軸上で、光学像の歪みの要因となる歪み要因光学部品の位置を調整するように構成してあることから、例えば現状の方式では調整できない反射系ガラス部品等の面精度の影響を極力排除して、高集積化や記憶容量の増加の下で、撮像手段の撮像面に結像する「光学像の歪み」を極力抑えた高精度な測定装置を提供することができる。   According to the present invention, the sample is placed at the position to be inspected on the object surface, and the amount of distortion of the optical image of the sample imaged on the imaging surface of the imaging means is calculated and analyzed. Reflective glass that cannot be adjusted by the current method, for example, because it is configured to adjust the position of the distortion factor optical component that causes distortion of the optical image on the optical axis of the illumination optical system or the imaging optical system. A high-precision measuring device that eliminates the effects of surface accuracy of parts, etc. as much as possible, and minimizes the distortion of the optical image that forms an image on the imaging surface of the imaging means with high integration and increased storage capacity. Can be provided.

以下、本発明の実施の形態に係る測定装置及びその調整方法を、図面を参照しつつ説明する。   Hereinafter, a measuring device and an adjustment method thereof according to an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の実施の形態に係り、各種パターンの位置測定光学系の模式図である。   FIG. 1 is a schematic diagram of a position measurement optical system for various patterns according to an embodiment of the present invention.

図2(a)は、位置調整機構の正面図であり、(b)は、その側面図であり、(c)は、その平面図である。   2A is a front view of the position adjusting mechanism, FIG. 2B is a side view thereof, and FIG. 2C is a plan view thereof.

図3(a)は、「光学像の歪み」調整前に於ける光学像の状態を示す模式図であり、(b)は、「光学像の歪み」調整後に於ける光学像の状態を示す模式図である。   FIG. 3A is a schematic diagram showing the state of the optical image before the “distortion of optical image” adjustment, and FIG. 3B shows the state of the optical image after the adjustment of “distortion of optical image”. It is a schematic diagram.

図1に示すように、例えばウェハ上に形成される各種パターンの位置測定光学系は、照明光学系、結像光学系、及び画像処理手段からなる。   As shown in FIG. 1, for example, a position measuring optical system for various patterns formed on a wafer includes an illumination optical system, an imaging optical system, and image processing means.

照明光学系に於いては、光源(ハロゲンランプ)1のフィラメント像は、光源用第1及び第2リレーレンズ2,3にて、光ファイバ4のファイバ入射端面に投影される。この照明光は、光ファイバ4を介して、照明用第1及び第2リレーレンズ5,6にて、照明開口絞り7に投影される。なお、光ファイバ4の出射端面と、照明用第1リレーレンズ6との間には、光学的拡散板(レモンスキン)20が配置されている。   In the illumination optical system, the filament image of the light source (halogen lamp) 1 is projected onto the fiber entrance end face of the optical fiber 4 by the first and second relay lenses 2 and 3 for the light source. The illumination light is projected onto the illumination aperture stop 7 through the optical fiber 4 by the illumination first and second relay lenses 5 and 6. An optical diffusion plate (lemon skin) 20 is disposed between the emission end face of the optical fiber 4 and the first relay lens 6 for illumination.

その後、照明用第3リレーレンズ8、視野絞り9、及び照明用第4リレーレンズ10を通り、落射プリズム11にて、90度方向に反射され、結像絞り12、第1対物レンズ13を通り、ウェハ14に照明される。なお、ウェハ14は、移動ステージ16上のウェハホルダー15に載置してあり、ウェハ14には、測定対象パターンが形成してある。   Thereafter, the light passes through the third relay lens 8 for illumination, the field stop 9 and the fourth relay lens 10 for illumination, is reflected by the incident prism 11 in the direction of 90 degrees, and passes through the imaging stop 12 and the first objective lens 13. The wafer 14 is illuminated. The wafer 14 is placed on the wafer holder 15 on the moving stage 16, and a measurement target pattern is formed on the wafer 14.

結像光学系に於いては、ウェハ14の測定対象パターンで反射された光は、再び第1対物レンズ13を通り、結像開口絞り12を通り、落射プリズム11、反射ミラー21、及び第2対物レンズ17を通過後、CCDカメラ18の撮像面にて結像する。   In the imaging optical system, the light reflected by the measurement target pattern on the wafer 14 passes again through the first objective lens 13, the imaging aperture stop 12, the incident prism 11, the reflection mirror 21, and the second. After passing through the objective lens 17, an image is formed on the imaging surface of the CCD camera 18.

画像処理手段に於いては、CCDカメラ18の撮像面に投影された測定対象パターン像をデジタル信号に変換後、その画像は、画像処理部19に送られ、測定対象パターンの位置計側か行われる。   In the image processing means, the measurement target pattern image projected on the imaging surface of the CCD camera 18 is converted into a digital signal, and then the image is sent to the image processing unit 19 where the measurement target pattern is placed on the position meter side. Is called.

さて、本実施の形態では、落射プリズム11の位置を調整する位置調整機構30と、反射ミラー21の位置を調整する位置調整機構31とが設けてある。   In the present embodiment, a position adjustment mechanism 30 that adjusts the position of the epi-illumination prism 11 and a position adjustment mechanism 31 that adjusts the position of the reflection mirror 21 are provided.

なお、図2に、反射ミラー21のための位置調整機構31を例示するが、落射プリズム11のための位置調整機構30についても同様に構成することができる。また、反射ミラー21の位置調整方向は、反射面に沿った方向であり、一方向であるが、二方向であってもよい。   2 illustrates the position adjusting mechanism 31 for the reflecting mirror 21, but the position adjusting mechanism 30 for the epi-illuminating prism 11 can be configured in the same manner. Further, the position adjustment direction of the reflection mirror 21 is a direction along the reflection surface and is one direction, but may be two directions.

位置調整機構30は、図2に示すように、その基本構成部品は、台座部品51、及び移動テーブル52である。   As shown in FIG. 2, the basic components of the position adjustment mechanism 30 are a pedestal component 51 and a moving table 52.

すなわち、台座部品51に対して、移動テーブル52が一方向に移動できるように構成してあり、この移動テーブル52に、反射ミラー21が装着してある。   That is, the moving table 52 is configured to move in one direction with respect to the pedestal component 51, and the reflecting mirror 21 is attached to the moving table 52.

この移動テーブル52を調整つまみ55により移動することにより、反射ミラー21の反射ポイントをずらして位置調整を行う。反射ミラー21の位置調整後には、固定ビス53により、移動テーブル52を固定する。   By moving the moving table 52 with the adjustment knob 55, the reflection point of the reflection mirror 21 is shifted to adjust the position. After the position of the reflection mirror 21 is adjusted, the moving table 52 is fixed by a fixing screw 53.

次に、本実施の形態では、図3(a)は、ウェハ14の位置に、試料(理想格子物体)を載置した時に、CCDカメラ18の撮像面に結像した試料の光学像である。この図3(a)に示すように、この光学像に、歪みが観察された場合には、以下に示すように、反射系ガラス部品(落射プリズム11、反射ミラー21)の位置を調整して、「光学像の歪み」を極力抑制する。   Next, in the present embodiment, FIG. 3A is an optical image of the sample imaged on the imaging surface of the CCD camera 18 when the sample (ideal lattice object) is placed at the position of the wafer 14. . As shown in FIG. 3A, when distortion is observed in this optical image, the positions of the reflection glass parts (the epi-prism 11 and the reflection mirror 21) are adjusted as shown below. , “Optical image distortion” is suppressed as much as possible.

移動ステージ16上のウェハ14の位置に、その格子形状が予め規定された試料(理想格子物体)を載置すると、この試料の光学像がCCDカメラ18の撮像面に結像される。画像処理部19により、結像した試料の光学像の歪み量を算出・解析する。   When a sample (ideal lattice object) whose lattice shape is defined in advance is placed on the position of the wafer 14 on the moving stage 16, an optical image of this sample is formed on the imaging surface of the CCD camera 18. The image processing unit 19 calculates and analyzes the distortion amount of the optical image of the imaged sample.

この際、光学像が図3(a)に示すような光学像41であった場合には、画像処理部19の解析結果に基づいて、光学像41の歪みの要因となる反射系ガラス部品(落射プリズム11、反射ミラー21)の位置を調整する。その結果、図3(b)に示すような「歪みの少ない」光学像42を捜し出し、この状態で、反射系ガラス部品(落射プリズム11、反射ミラー21)の位置を固定する。これにより「光学像の歪み」を極力抑制することができる。   At this time, when the optical image is an optical image 41 as shown in FIG. 3A, based on the analysis result of the image processing unit 19, a reflective glass component (which causes distortion of the optical image 41) ( The positions of the epi-illumination prism 11 and the reflection mirror 21) are adjusted. As a result, an optical image 42 with “less distortion” as shown in FIG. 3B is searched for, and in this state, the position of the reflective glass component (the epi-prism 11 and the reflective mirror 21) is fixed. Thereby, “distortion of the optical image” can be suppressed as much as possible.

具体的には、CCDカメラ18の撮像面に写し出された試料の光学像を、画像処理部19にて算出・解析を行って、その「光学像の歪み」を定量化する。その数値に対して、許容値内か否かの判定を行う。この定量化及び判定には、所定の評価関数やフローチャートを用いて行うことができる。   Specifically, an optical image of the sample imaged on the imaging surface of the CCD camera 18 is calculated and analyzed by the image processing unit 19 and the “distortion of the optical image” is quantified. It is determined whether or not the numerical value is within an allowable value. This quantification and determination can be performed using a predetermined evaluation function or a flowchart.

判定にて、NGとなった場合(光学像の歪みが大きい場合)には、反射系ガラス部品(落射プリズム11、反射ミラー21)の位置調整を行う。   If the determination is NG (when the distortion of the optical image is large), the position of the reflective glass component (the epi-prism 11 and the reflective mirror 21) is adjusted.

なお、この調整の際、位置調整方向は、光学像位置がずれないように、反射系ガラス部品(落射プリズム11、反射ミラー21)の反射面方向とする。これは、光学像の状態は、厳密にいえば反射面位置に依存するからである。   In this adjustment, the position adjustment direction is the direction of the reflection surface of the reflective glass component (the epi-prism 11 and the reflection mirror 21) so that the optical image position does not shift. This is because the state of the optical image depends strictly on the position of the reflecting surface.

このように、図3(b)のような光学像42を捜し出す作業を、画像処理部19の解析結果を考慮しながら、複数回繰り返し、移動テーブル52の位置を繰り返し調整する。   In this way, the operation of searching for the optical image 42 as shown in FIG. 3B is repeated a plurality of times while considering the analysis result of the image processing unit 19, and the position of the moving table 52 is repeatedly adjusted.

その結果、判定にて、OKとなった場合(光学像の歪みが許容値範囲内となった場合)には、移動テーブル52の位置を固定する。これにより、「光学像の歪み」を極力抑制することができる。   As a result, when the determination is OK (when the distortion of the optical image is within the allowable value range), the position of the moving table 52 is fixed. Thereby, “distortion of the optical image” can be suppressed as much as possible.

以上から、本実施の形態によれば、CCDカメラ18の撮像面に結像した試料の光学像の歪み量を算出・解析し、この解析結果に基づいて、照明光学系又は結像光学系の光軸上で、光学像の歪みの要因となる反射系ガラス部品(落射プリズム11、反射ミラー21)の位置を調整するように構成してあることから、現状の方式では調整できない反射系ガラス部品の面精度の影響を極力排除して、高集積化や記憶容量の増加の下で、CCDカメラ18の撮像面に結像する「光学像の歪み」を極力抑えた高精度な測定装置を提供することができる。   As described above, according to the present embodiment, the distortion amount of the optical image of the sample imaged on the imaging surface of the CCD camera 18 is calculated and analyzed, and based on the analysis result, the illumination optical system or the imaging optical system is calculated. Since it is configured to adjust the position of the reflective glass parts (the incident prism 11 and the reflective mirror 21) that cause distortion of the optical image on the optical axis, the reflective glass parts that cannot be adjusted by the current system Provides a highly accurate measurement device that minimizes the “distortion of the optical image” that forms an image on the imaging surface of the CCD camera 18 with high integration and increased storage capacity. can do.

(変形例)
上述した実施の形態では、反射系ガラス部品(落射プリズム11、反射ミラー21)の位置を調整し、その面精度の影響を排除して、CCDカメラ18の撮像面に結像する「光学像の歪み」を抑制しているが、以下に示すように、光学像の歪みの要因となる他の歪み要因光学部品の位置を調整するように構成してあってもよい。この場合にも、この歪み要因光学部品の位置を調整すれば、その影響を極力排除して、「光学像の歪み」を抑えることができる。
(Modification)
In the above-described embodiment, the position of the reflective glass parts (the epi-prism 11 and the reflective mirror 21) is adjusted, the influence of the surface accuracy is eliminated, and the “image of the optical image” is formed on the imaging surface of the CCD camera 18. Although “distortion” is suppressed, as shown below, the position of another distortion factor optical component that causes distortion of the optical image may be adjusted. Also in this case, if the position of the distortion factor optical component is adjusted, the influence can be eliminated as much as possible, and “distortion of the optical image” can be suppressed.

なお、光学像の歪みの要因となる歪み要因光学部品は、その入出射面が平坦である光学部品に限られる。これは、その入出射面が曲面であるレンズ等の位置を調整すると、照明光学系又は結像光学系の光軸がずれると共に、収差等が出現する虞れがあるからである。   The distortion factor optical component that causes the distortion of the optical image is limited to an optical component having a flat entrance / exit surface. This is because when the position of a lens or the like whose curved surface is curved is adjusted, the optical axis of the illumination optical system or the imaging optical system is shifted, and aberrations may appear.

例えば、1次像の位置に指標板(ガラス板)を配置し、この指標板の光学的下流側にリレー光学レンズ系を介してCCDカメラを配置している場合、CCDカメラの撮像面に、試料(理想格子物体)の共役な2次光学像と共に、指標板が写し出される。この際、指標板の位置を調整すれば、その影響を極力排除して「光学像の歪み」を抑えることができる。   For example, when an index plate (glass plate) is disposed at the position of the primary image and a CCD camera is disposed on the optical downstream side of the index plate via a relay optical lens system, on the imaging surface of the CCD camera, An indicator plate is projected together with a conjugate secondary optical image of the sample (ideal lattice object). At this time, if the position of the index plate is adjusted, the influence can be eliminated as much as possible to suppress “distortion of the optical image”.

また、照明光学系又は結像光学系の光軸上で、例えば第2対物レンズ17とCCDカメラ18との間に色補正レンズを配置している場合、この色補正レンズの傾斜角度を調整してレンズの色収差等を補正し、これによっても、その影響を極力排除して「光学像の歪み」を抑えることができる。   Further, when a color correction lens is disposed between the second objective lens 17 and the CCD camera 18 on the optical axis of the illumination optical system or the imaging optical system, for example, the inclination angle of the color correction lens is adjusted. Thus, it is possible to correct the chromatic aberration of the lens and the like, and to eliminate the influence as much as possible and to suppress “distortion of the optical image”.

さらに、CCDカメラの保護面(保護ガラス)の歪みも、「光学像の歪み」に影響を与える虞れがあることから、CCDカメラを、その保護面(保護ガラス)に沿って移動し、その影響を極力排除して「光学像の歪み」を抑えることができる。   Furthermore, since the distortion of the protective surface (protective glass) of the CCD camera may affect the “distortion of the optical image”, the CCD camera is moved along the protective surface (protective glass). It is possible to suppress the “distortion of the optical image” by eliminating the influence as much as possible.

なお、本発明は、上述した実施の形態に限定されず、平面ガラスからなる光学部品による「光学像の歪み」を対象とするもので、例えば撮像面の保護ガラス、偏光板、色フィルターなどがあり、種々変形可能である。   Note that the present invention is not limited to the above-described embodiment, and is intended for “distortion of an optical image” by an optical component made of flat glass. There are various modifications.

本発明の実施の形態に係り、各種パターンの位置測定光学系の模式図である。It is a schematic diagram of the position measurement optical system of various patterns according to the embodiment of the present invention. (a)は、位置調整機構の正面図であり、(b)は、その側面図であり、(c)は、その平面図である。(A) is a front view of the position adjusting mechanism, (b) is a side view thereof, and (c) is a plan view thereof. (a)は、「光学像の歪み」調整前に於ける光学像の状態を示す模式図であり、(b)は、「光学像の歪み」調整後に於ける光学像の状態を示す模式図である。(A) is a schematic diagram showing the state of the optical image before the “optical image distortion” adjustment, and (b) is a schematic diagram showing the state of the optical image after the “optical image distortion” adjustment. It is. 従来に係り、各種パターンの位置測定光学系の模式図である。It is related and is a schematic diagram of the position measurement optical system of various patterns.

符号の説明Explanation of symbols

1 光源(ハロゲンランプ)
2,3 光源用第1及び第2リレーレンズ
4 光ファイバ
5,6 照明用第1及び第2リレーレンズ
7 照明開口絞り
8 照明用第3リレーレンズ
9 視野絞り
10 照明用第4リレーレンズ
11 落射プリズム
12 結像絞り
13 第1対物レンズ
14 ウェハ
15 ウェハホルダー
16 移動ステージ
17 第2対物レンズ
18 CCDカメラ(撮像手段)
19 画像処理部
20 光学的拡散板(レモンスキン)
21 反射ミラー
30,31 位置調整機構
41 光学像(調整前)
42 光学像(調整後)
51 台座
52 移動テーブル
53 固定ビス
55 調整つまみ
1 Light source (halogen lamp)
DESCRIPTION OF SYMBOLS 2,3 1st and 2nd relay lens for light sources 4 Optical fiber 5,6 1st and 2nd relay lens for illumination 7 Illumination aperture stop 8 3rd relay lens for illumination 9 Field stop 10 4th relay lens 11 for illumination Incident light Prism 12 Imaging diaphragm 13 First objective lens 14 Wafer 15 Wafer holder 16 Moving stage 17 Second objective lens 18 CCD camera (imaging means)
19 Image processor 20 Optical diffuser (lemon skin)
21 Reflection mirror 30, 31 Position adjustment mechanism 41 Optical image (before adjustment)
42 Optical image (after adjustment)
51 Pedestal 52 Moving table 53 Fixed screw 55 Adjustment knob

Claims (4)

試料へ照明光を供給するための光源を有する照明光学系と、
前記試料の光学像を観察する結像光学系と、
前記光学像を撮像手段で取り込み画像処理を行う画像処理手段と、を具備した測定装置において、
前記撮像手段の撮像面に結像した前記試料の光学像の歪み量を算出する解析手段と、
前記解析手段の解析結果に基づいて、前記照明光学系又は前記結像光学系の光軸上で、入出射面が平坦であり前記光学像の歪みの要因となる歪み要因光学部品の位置を、前記光学像の位置変化せず、かつ前記入出射面の反射ポイントがずれるように前記入射出面に平行な方向に移動して調整する位置調整機構と、を備えることを特徴とする測定装置。
An illumination optical system having a light source for supplying illumination light to the sample;
An imaging optical system for observing an optical image of the sample;
An image processing unit that captures the optical image with an imaging unit and performs image processing;
Analyzing means for calculating the distortion amount of the optical image of the sample imaged on the imaging surface of the imaging means;
Based on the analysis result of the analysis means, the position of the distortion factor optical component that has a substantially flat entrance and exit surface and causes distortion of the optical image on the optical axis of the illumination optical system or the imaging optical system. , measured, characterized in that it comprises a position adjusting mechanism for adjusting the no position change of the optical image, and moving in the direction parallel to the entering exit surface so that the reflected point is shifted before entry exit surface apparatus.
前記歪み要因光学部品は、落射プリズム、反射ミラー、指標板、色補正ガラス、及び前記撮像手段の保護面のうち、何れか少なくとも一つであることを特徴とする請求項1に記載の測定装置。   The measuring apparatus according to claim 1, wherein the distortion factor optical component is at least one of an epi-illumination prism, a reflection mirror, an index plate, color correction glass, and a protective surface of the imaging unit. . 試料へ照明光を供給するための光源を有する照明光学系と、
前記試料の光学像を観察する結像光学系と、
前記光学像を撮像手段で取り込み画像処理を行う画像処理手段と、を具備した測定装置において、
前記撮像手段の撮像面に結像した前記試料の光学像の歪み量を算出する解析工程と、
前記解析工程の解析結果に基づいて、前記照明光学系又は前記結像光学系の光軸上で、入出射面が平坦であり前記光学像の歪みの要因となる歪み要因光学部品の位置を、前記光学像の位置変化せず、かつ前記入出射面の反射ポイントがずれるように前記入射出面に平行な方向に移動して調整する位置調整工程と、を備えることを特徴とする測定装置の調整方法。
An illumination optical system having a light source for supplying illumination light to the sample;
An imaging optical system for observing an optical image of the sample;
An image processing unit that captures the optical image with an imaging unit and performs image processing;
An analysis step of calculating a distortion amount of the optical image of the sample imaged on the imaging surface of the imaging means;
Based on the analysis result of the analysis step, the position of the distortion factor optical component that is substantially flat on the optical axis of the illumination optical system or the imaging optical system and causes the distortion of the optical image is determined. , measured, characterized in that it comprises a position adjustment step of adjusting the no position change of the optical image, and moving in the direction parallel to the entering exit surface so that the reflected point is shifted before entry exit surface Device adjustment method.
前記歪み要因光学部品は、落射プリズム、反射ミラー、指標板、色補正ガラス、及び前記撮像手段の保護面のうち、何れか少なくとも一つであることを特徴とする請求項3に記載の測定装置の調整方法。   The measuring apparatus according to claim 3, wherein the distortion factor optical component is at least one of an epi-illumination prism, a reflection mirror, an index plate, color correction glass, and a protective surface of the imaging unit. Adjustment method.
JP2005007969A 2005-01-14 2005-01-14 Measuring apparatus and adjustment method thereof Expired - Fee Related JP4639808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005007969A JP4639808B2 (en) 2005-01-14 2005-01-14 Measuring apparatus and adjustment method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005007969A JP4639808B2 (en) 2005-01-14 2005-01-14 Measuring apparatus and adjustment method thereof

Publications (2)

Publication Number Publication Date
JP2006194783A JP2006194783A (en) 2006-07-27
JP4639808B2 true JP4639808B2 (en) 2011-02-23

Family

ID=36800979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005007969A Expired - Fee Related JP4639808B2 (en) 2005-01-14 2005-01-14 Measuring apparatus and adjustment method thereof

Country Status (1)

Country Link
JP (1) JP4639808B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106919007B (en) * 2017-04-05 2019-01-04 无锡影速半导体科技有限公司 A kind of alignment calibration integrated system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140372A (en) * 1993-11-22 1995-06-02 Nikon Corp Coherent optical device
JPH08101015A (en) * 1994-09-30 1996-04-16 Toshiba Corp Device for evaluating and adjusting optical system unit
JPH09138304A (en) * 1995-11-13 1997-05-27 Hitachi Ltd Mirror in changeable shape
JPH09197231A (en) * 1996-01-22 1997-07-31 Ishikawajima Harima Heavy Ind Co Ltd Supporting device for optical element
JP2000091219A (en) * 1998-09-07 2000-03-31 Canon Inc Position detecting device and aligner using the same
JP2003151879A (en) * 2001-11-12 2003-05-23 Nikon Corp Mark position detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140372A (en) * 1993-11-22 1995-06-02 Nikon Corp Coherent optical device
JPH08101015A (en) * 1994-09-30 1996-04-16 Toshiba Corp Device for evaluating and adjusting optical system unit
JPH09138304A (en) * 1995-11-13 1997-05-27 Hitachi Ltd Mirror in changeable shape
JPH09197231A (en) * 1996-01-22 1997-07-31 Ishikawajima Harima Heavy Ind Co Ltd Supporting device for optical element
JP2000091219A (en) * 1998-09-07 2000-03-31 Canon Inc Position detecting device and aligner using the same
JP2003151879A (en) * 2001-11-12 2003-05-23 Nikon Corp Mark position detector

Also Published As

Publication number Publication date
JP2006194783A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
TWI699523B (en) Optical characteristic measurement apparatus and optical system
US7528954B2 (en) Method of adjusting optical imaging system, positional deviation detecting mark, method of detecting positional deviation, method of detecting position, position detecting device and mark identifying device
JP6132499B2 (en) Inspection apparatus, lithographic apparatus, and device manufacturing method
US12000752B2 (en) Deflectometry measurement system
WO2006028183A1 (en) Lens system adjusting device and lens system adjusting method using it, and production device for imaging device and production method for imaging device
JP6546172B2 (en) Reflective optical element, in particular a measuring arrangement for measuring the optical properties of microlithography
WO2016157291A1 (en) Measuring head and eccentricity measuring device provided with same
JP2006337374A (en) Device and method for improving measurement precision when finding structural data
US5309214A (en) Method for measuring distributed dispersion of gradient-index optical elements and optical system to be used for carrying out the method
JP3994209B2 (en) Optical system inspection apparatus and inspection method, and alignment apparatus and projection exposure apparatus provided with the inspection apparatus
US10754255B2 (en) Exposure apparatus and article manufacturing method
KR20060110809A (en) Measuring apparatus and exposure apparatus having the same
US20150185623A1 (en) Optical device, lithography apparatus and manufacturing method of article
JP2008215833A (en) Apparatus and method for measuring optical characteristics
JP2008026049A (en) Flange focal distance measuring instrument
JP4639808B2 (en) Measuring apparatus and adjustment method thereof
US10976249B1 (en) Reflective pupil relay system
JP2008158125A (en) Lens unit centering device
JPH11297615A (en) Projection aligner and manufacture of semiconductor device using the aligner
TWI770182B (en) Measurement system and measurement method
US20210341281A1 (en) Method and microscope for determining a tilt of a cover slip
Barnes et al. Zero-order imaging of device-sized overlay targets using scatterfield microscopy
JP4701723B2 (en) Measuring apparatus and adjustment method thereof
JP2004281904A (en) Position measuring apparatus, exposure apparatus, and manufacturing method of device
JP2000214047A (en) Inspecting device for optical system, alignment device equipped with this inspecting device, and projection aligner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees