WO2006028183A1 - Lens system adjusting device and lens system adjusting method using it, and production device for imaging device and production method for imaging device - Google Patents

Lens system adjusting device and lens system adjusting method using it, and production device for imaging device and production method for imaging device Download PDF

Info

Publication number
WO2006028183A1
WO2006028183A1 PCT/JP2005/016546 JP2005016546W WO2006028183A1 WO 2006028183 A1 WO2006028183 A1 WO 2006028183A1 JP 2005016546 W JP2005016546 W JP 2005016546W WO 2006028183 A1 WO2006028183 A1 WO 2006028183A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens system
image sensor
lens
imaging device
holding unit
Prior art date
Application number
PCT/JP2005/016546
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuo Saeki
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2006028183A1 publication Critical patent/WO2006028183A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • G02B27/4255Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application for alignment or positioning purposes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/62Optical apparatus specially adapted for adjusting optical elements during the assembly of optical systems

Definitions

  • the present invention relates to a lens system adjustment device that performs optical axis adjustment of a lens system composed of a plurality of lenses, a lens system adjustment method using the same, an imaging device manufacturing apparatus, and an imaging device manufacturing method.
  • Conventional MTF measuring devices include those listed in JP-A-61-84541. Further, as a conventional optical axis adjusting device, there is one as disclosed in JP-A-6-265766.
  • the MTF is a quantity that comprehensively represents the performance of an imaging system such as a lens. This is the ratio of the amplitude of the image by the lens to the amplitude on the object side when a spatial sine wave is input to the lens. expressed.
  • the actual measurement in the above MTF is performed by detecting the light intensity distribution such as point images, line images, and edge images with the test lens and performing Fourier transform processing.
  • FIG. 1 The actual measurement in the above MTF is performed by detecting the light intensity distribution such as point images, line images, and edge images.
  • a slit 2 is placed on the optical axis and outside the optical axis of the lens 1 to be measured at a position corresponding to the film surface of the camera, and the slit 2 is irradiated with the light source 3 to correspond to the object plane.
  • a slit image is formed on the screen.
  • this slit image is picked up by an image pickup device 4 such as a CCD (Charge Coupled Device) and scanned in a direction perpendicular to the longitudinal direction of the slit image. An intensity distribution as shown is obtained.
  • noise is removed by the signal processing circuit 5 and Fourier transform is performed by the FFT operation circuit 6 to obtain the MTF value for each angle of view as shown in FIG. 15, and the result is displayed on the display unit 7. .
  • the conventional lens system optical axis adjusting device shown in FIG. 16 fixes the first lens system 11 by arranging the first lens system 11 and the second lens system 12 so that their optical axes are in the vertical direction. . After that, the second lens system 12 is finely moved so that the optical axis of the first lens system 11 coincides with the optical axis of the second lens system 12.
  • This lens system optical axis adjusting device includes an irradiation means 13 for irradiating the first lens system 11 and the second lens system 12 with a central ray and three or more annular rays parallel to the central ray, Illuminance generation means 14, fine alignment correction amount generation means 15, and second lens fine movement means 16 are provided.
  • the illuminance generation means 14 receives the central ray and the annular ray that have passed through the first lens system 11 and the second lens system 12, and images formed by the central ray and the annular ray, respectively. A signal corresponding to is generated. At the same time, the brightness of each image is obtained based on the above signal.
  • the fine alignment correction amount generation means 15 obtains the illuminance distribution power of each image obtained by the illuminance generation means 14 as the center of gravity coordinates of the image of the zonal ray and the center coordinates of the image of the center ray. Differential force Determine the fine alignment correction amount according to the amount of on-axis coma.
  • the second lens fine moving means 16 finely moves the second lens system 12 based on the fine alignment correction amount obtained by the fine alignment correction amount generating means 15.
  • the difference between the center position and the center of gravity position is quantitatively measured by calculating the difference between the center coordinates of the center ray and the center of gravity coordinates of the zonal rays as the on-axis frame amount. Then, based on the fine alignment correction amount obtained by the fine alignment correction amount generation means 15 in accordance with the above-mentioned axial coma amount. Then, the second lens system 12 is repeatedly finely moved by the second lens fine moving means 16 so that the optical axis of the first lens system 11 and the optical axis of the second lens system 12 are automatically matched.
  • the conventional MTF measuring apparatus described in Japanese Patent Application Laid-Open No. 61-84541 has the following problems. That is, by arranging the light source 3, the slit 2, and the image sensor 4 for each of a plurality of angles of view, it is possible to calculate MTF values corresponding to the angles of view at a time. However, in that case, there is a problem that the number of components increases. Furthermore, there is a limit to the actual arrangement of the light source 3 and the slit 2, and there is a problem that the MTF evaluation for a large number of angles of view cannot be easily performed.
  • the conventional lens system optical axis adjusting device described in JP-A-6-265766 has the following problems.
  • the lens system optical axis adjusting device confirms whether the optical axes of the first lens system 11 and the second lens system 12 are correctly aligned when the optical axis of the lens system is adjusted. There is no way to do it. Therefore, in the case of a conventional lens system optical axis adjustment device, after the optical axis adjustment of the lens system (optical axis adjustment process), the test lens is further replaced with an MTF measurement device to measure the MTF value. Therefore, it is necessary to check the adjustment defect in the optical axis adjustment process (inspection process), and the simplification of the optical axis adjustment process and the inspection process is desired.
  • the optical axis of the lens system can be adjusted, but the adjustment is performed using the light receiving element 17 for adjustment. Therefore, for example, in the lens system adjustment of a camera lens in which an imaging element such as a digital camera and a lens system are integrated, after the optical axis adjustment of the lens system is performed, an imaging element to be actually used is further used. It is necessary to adjust the position of the lens and the lens system, and in this respect, simplicity is desired. Later, even if an image sensor that is actually fixed as a module is arranged on the image plane 18 and the lens system is adjusted using the image sensor, a plurality of parallel lights can be adjusted at the same incident angle.
  • the optical axis of the lens system cannot be adjusted using the image sensor disposed on the image plane 18, and another lens for guiding the light to the image sensor for the module is required. is there.
  • the problem of the present invention is that the optical axis adjustment of the lens system and the MTF measurement can be continuously performed, and the optical axis of the lens can be accurately adjusted by the light beam corresponding to each angle of view.
  • Lens system adjustment device capable of continuously performing optical axis adjustment of a lens system and position adjustment of an imaging element in a camera lens or the like in which an imaging element and a lens system are integrated, and a lens system using the same An adjustment method, an imaging apparatus manufacturing apparatus, and an imaging apparatus manufacturing method are provided.
  • a lens system adjusting device of the present invention includes:
  • a laser light source unit that generates parallel light rays serving as a reference axis
  • a to-be-adjusted object including a lens system including a plurality of lenses and an image sensor;
  • the moving unit for moving at least one of the lens system and the imaging device, and the output of the imaging device.
  • a movement amount of the lens system or image sensor for positioning the reference beam bundle image and the deflected beam bundle image at a predetermined position on the light receiving surface is calculated, and based on the calculated movement amount.
  • the operation of the moving unit is controlled by the arithmetic control processing unit so that, for example, the image of the reference beam bundle is positioned at the center position on the light receiving surface of the imaging element.
  • the lens system By moving the lens system, it is possible to adjust the eccentricity or tilt of a plurality of lenses constituting the lens system.
  • the center of the substrate By moving the lens system so that the image of the light beam deflected by the diffractive elements arranged on the point object is point-symmetrical with respect to the center of the light receiving surface, a plurality of angles of view are supported.
  • the optical axis of the lens system can be accurately adjusted by the light beam.
  • An optical branching element disposed between the substrate and the object to be adjusted on the reference axis; an aperture disposed between the optical branching element and the object to be adjusted on the reference axis;
  • the light is emitted from the laser light source unit, passes through the opening of the substrate, the light branching element and the aperture, is reflected by the reference surface of the imaging element, passes again through the aperture, and is reflected by the light branching element to the reference.
  • a light detector that detects the light reflected in the direction perpendicular to the axis.
  • the operation of the moving unit is controlled by the arithmetic control processing unit, and for example, the light detected by the photodetector is centered on the light receiving surface of the photodetector.
  • the angle and position between the reference axis and the reference surface of the object to be adjusted are adjusted optimally by moving the imaging device so that it is positioned. That's right.
  • the diameter of the parallel light beam that is deflected by the diffraction element of the substrate and is incident on the lens system, and the diameter of the reference light beam that is incident on the lens system through the opening of the substrate are the lens It is set larger than the diameter of the entrance pupil of the system.
  • the moving unit is configured to move the lens system and the image sensor, and is configured to fix and hold a first lens element constituting a part of the lens system with respect to the reference axis. 1 holding unit,
  • a second holding unit for holding a second lens element constituting the remainder of the lens system;
  • the moving unit that moves the lens system is configured, and a lens element moving mechanism that moves at least one of the first holding unit and the second holding unit is provided.
  • the first lens element and the second lens element constituting the lens system are individually moved by the lens element moving mechanism under the control of the arithmetic control processing unit. be able to. Therefore, the decentration or tilt of the lens system can be precisely adjusted by dividing it into the first and second lens elements.
  • the board is provided with a chart for MTF measurement
  • An illuminating unit that uniformly illuminates the chart from the laser light source unit side is provided, and the arithmetic control processing unit calculates an MTF value of the lens system based on an output of the imaging device related to the chart. Get ready!
  • MTF which is an index of resolving power of the lens system
  • the peak value of the light intensity of the spot formed by collimating the parallel light emitted from the laser light source unit on the light receiving surface of the image sensor by the lens system is obtained.
  • a light amount adjusting means for adjusting the light amount of the laser light source unit according to the peak value is obtained.
  • the light amount of the laser light source unit is adjusted according to the peak value of the light intensity on the light receiving surface of the image sensor, the light condensing spot can increase the energy density. Even when the optical axis is adjusted, the light quantity can be adjusted so that smear does not occur in the image sensor.
  • the present invention is a lens system adjustment method using the lens system adjustment device, wherein the operation of the moving unit is controlled by the arithmetic control processing unit to open the opening of the substrate. Moving the image sensor so that the image of the reference beam bundle that has passed is positioned at the center of the light receiving surface of the image sensor;
  • the movement of the moving mechanism is controlled so that the condensing spot by the first lens element and the second lens element of the reference beam bundle that has passed through the opening of the substrate is positioned at the center of the light receiving surface of the image sensor. Moving at least one of the first holding unit and the second holding unit;
  • the operation of the lens element moving mechanism is controlled by the arithmetic control processing unit, and the condensed spot by the first lens element and the second lens element of the light beam deflected through the diffraction element of the substrate is deflected.
  • Moving at least one of the first holding unit and the second holding unit so as to be arranged at a predetermined position on the light receiving surface of the image sensor;
  • the operation of the moving unit is controlled by the arithmetic control processing unit, and the image sensor is moved so that the image of the reference beam bundle is positioned at the center of the light receiving surface of the image sensor.
  • the relative position between the reference axis and the reference surface of the object to be adjusted can be adjusted to be optimum.
  • the operation of the lens element moving mechanism is controlled by the arithmetic control processing unit so that the focused spot of the reference beam bundle by the first lens element and the second lens element is the center of the light receiving surface of the image sensor. Since at least one of the first holding unit and the second holding unit is moved so as to be positioned at the position, the eccentricity or tilt of the plurality of lens elements constituting the lens system can be adjusted by a simple method.
  • the operation of the lens element moving mechanism is controlled by the arithmetic control processing unit, so that a condensed spot of the deflected light bundle by the first lens element and the second lens element is a light receiving surface of the image sensor. At least one of the first holding unit and the second holding unit is moved so as to be arranged at a predetermined position above. Therefore, the optical axis of the lens system can be adjusted with high accuracy using light beams corresponding to a plurality of angles of view.
  • the present invention is also a lens system adjustment method using the lens system adjustment device, wherein the operation of the moving unit is controlled by the arithmetic control processing unit, and an image of a reference beam bundle that has passed through the opening of the substrate. Moving the image sensor so that is positioned at the center of the light receiving surface of the image sensor;
  • the movement of the moving mechanism is controlled so that the condensing spot by the first lens element and the second lens element of the reference beam bundle that has passed through the opening of the substrate is positioned at the center of the light receiving surface of the image sensor. Moving at least one of the first holding unit and the second holding unit;
  • the operation of the lens element moving mechanism is controlled by the arithmetic control processing unit, and the condensed spot by the first lens element and the second lens element of the light beam deflected through the diffraction element of the substrate is deflected.
  • Moving at least one of the first holding unit and the second holding unit so as to be arranged at a predetermined position on the light receiving surface of the image sensor;
  • the operation of the lens element moving mechanism is controlled by the arithmetic control processing unit, and an image of the light of the illumination means force that has passed through the MTF measurement chart of the substrate is formed on the light receiving surface of the image sensor.
  • the lens system and the image sensor are fixed with respect to the reference axis;
  • the operation of the moving unit is controlled by the arithmetic control processing unit, and the image sensor is arranged so that the image of the reference beam bundle is positioned at the center of the light receiving surface of the image sensor. Since it is moved, the relative position between the reference axis and the reference surface of the object to be adjusted can be adjusted to be optimal. Further, the operation of the lens element moving mechanism is controlled by the arithmetic control processing unit so that the focused spot of the reference beam bundle by the first lens element and the second lens element is the center of the light receiving surface of the image sensor.
  • the eccentricity or tilt of the plurality of lens elements constituting the lens system can be adjusted by a simple method. Further, the operation of the lens element moving mechanism is controlled by the arithmetic control processing unit, so that a condensed spot of the deflected light bundle by the first lens element and the second lens element is a light receiving surface of the image sensor. Since at least one of the first holding unit and the second holding unit is moved so as to be arranged at a predetermined position on the upper side, the optical axis of the lens system is accurately adjusted by light beams corresponding to a plurality of angles of view. Can be adjusted.
  • the calculation control processing unit calculates the MTF value of the lens system. Since it is fixed with respect to the reference axis, the lens system is decentered! /, After the tilt adjustment and the optical axis adjustment of the lens system are completed, the MTF, which is an index of the resolving power of the lens system, is subsequently continued. It can be measured. Therefore, the optical axis position adjustment process of the lens system and the image sensor, the optical axis adjustment process of the lens system, and the inspection process of the lens system can be integrated. Furthermore, when the difference between the obtained MTF value and the design value (target value) is large, it becomes possible to adjust the optical axis of the lens system again, reducing the incidence of defective products. You can.
  • the present invention is an apparatus for manufacturing an imaging apparatus including a lens system having a plurality of lens forces and an imaging element,
  • An image sensor holding unit that holds the image sensor and adjusts the optical axis of the image sensor to coincide with a reference axis by moving the image sensor;
  • the optical axis of the lens system While holding the lens system and moving the lens system, the optical axis of the lens system A lens system holding unit that adjusts the optical axis of the image sensor to coincide with the optical axis of the image sensor, and based on the output from the image sensor, the amount of deviation of the optical axis of the image sensor from the reference axis and the lens The amount of deviation of the optical axis of the system from the optical axis of the image sensor is calculated, and the operations of the image sensor holding unit and the lens system holding unit are controlled based on the calculated amount of deviation, while the optical axis is An arithmetic control processing unit that calculates the MTF value of the lens system after adjustment and evaluates the calculated MTF value;
  • a fixing unit that fixes the lens system to the image sensor
  • the optical axis adjustment of the lens system and the MTF evaluation can be continuously performed by the calculation * control by the calculation control processing unit. Therefore, the optical axis adjustment process and the inspection process for the lens system can be integrated, and the manufacturing process of the imaging device can be simplified and the manufacturing cost can be reduced. Furthermore, M, which is an index of resolving power of the above lens system
  • a plurality of parallel light beams are generated by deflecting a part of the parallel light beams from the laser light source and generating a parallel light beam whose angle with the reference axis is an angle corresponding to the angle of view of the lens system and entering the lens system.
  • the light source part containing is provided.
  • the plurality of parallel light beams having different angles with respect to the reference axis are simultaneously incident on the lens system by the plurality of diffraction elements, the light beams are collected through the lens system.
  • the emitted light beam is focused on the image plane without being focused at a single point. Therefore, a lens for separating the light beam collected at one point is not necessary.
  • An image pickup device that forms an image pickup apparatus integrally with the lens system can be used as it is as an image pickup device for optical axis adjustment.
  • the lens optical axis can be adjusted with high accuracy by light beams corresponding to a plurality of angles of view.
  • a pattern for MTF measurement is formed on the diffraction element.
  • the MTF value can be calculated using the diffraction element without the need to provide the MTF measurement slit or chart separately from the diffraction element. Therefore, it is possible to efficiently perform the MTF evaluation of the lens system by continuously adjusting the optical axis of the lens system, which does not require extra optical adjustment of the inspection system.
  • the fixed part is a fixed part
  • An adhesive supply section for supplying an ultraviolet curable adhesive
  • an ultraviolet irradiation section for irradiating the ultraviolet curable adhesive with ultraviolet rays.
  • the present invention is a method of manufacturing an imaging device including a lens system having a plurality of lens forces and an imaging element,
  • the light from the light source is imaged on the light receiving surface of the image sensor through the lens system with the optical axis adjusted to calculate the MTF value of the lens system, and the calculated MTF value is evaluated.
  • MTF calculation 'evaluation process
  • a lens system fixing step for fixing the lens system to the imaging device It is characterized by having! / Speak.
  • the optical axis adjustment and MTF evaluation of the lens system can be performed continuously. Therefore, the optical axis adjustment process and the inspection process for the lens system can be integrated, and the manufacturing process of the imaging device can be simplified and the manufacturing cost can be reduced.
  • a plurality of diffractive elements disposed between the laser light source and the lens system deflect some of the parallel light rays from the laser light source, and the angle with the reference axis corresponds to the angle of view of the lens system.
  • a parallel light beam that is an angle is generated and incident on the lens system.
  • the lens optical axis can be adjusted with high accuracy by light beams corresponding to a plurality of angles of view.
  • a pattern for MTF measurement is formed on the diffraction element.
  • light from the light source that has passed through the pattern for MTF measurement is used.
  • the MTF value can be calculated using the diffraction element without the need to provide the MTF measurement slit or chart separately from the diffraction element. Therefore, the optical axis adjustment of the above lens system without the need for extra optical adjustment of the inspection system In this way, MTF evaluation of the above lens system can be performed efficiently.
  • the operation of the moving unit is controlled by the arithmetic control processing unit, and the image of the reference beam is positioned at a predetermined position on the light receiving surface of the image sensor. Since the lens system is moved as described above, for example, by positioning the image of the reference beam at the center position on the light receiving surface, it is possible to adjust the eccentricity or tilt of the lenses constituting the lens system. it can.
  • the operation of the moving unit is controlled by the arithmetic control processing unit so that the image of the light beam deflected by the diffraction element of the substrate is positioned at a predetermined position on the light receiving surface of the imaging element.
  • the image of the light beam deflected by the diffraction element arranged in a point object with respect to the center of the substrate is arranged so as to be symmetric with respect to the center of the light receiving surface.
  • the resolving power of the lens system is continuously processed by the arithmetic control processing unit. Since the MTF, which is an index of measurement, is measured, the optical axis position adjustment process between the lens system and the image sensor, the optical axis adjustment process of the lens system, and the inspection process of the lens system can be integrated. Furthermore, when the difference between the obtained MTF value and the design value (target value) is large, the optical axis of the lens system can be adjusted again, and the incidence of defective products can be reduced.
  • MTF which is an index of measurement
  • FIG. 1 is a schematic configuration diagram of a lens system adjusting device according to the present invention.
  • FIG. 2 is a plan view of the substrate in FIG.
  • FIG. 3 is a diagram showing a state when the lens system adjustment device shown in FIG. 1 makes a right angle between a reference surface of a lens system and a reference axis.
  • FIG. 4 is a diagram showing a state when the optical axis position adjustment between the lens system and the image sensor is performed by the lens system adjusting device shown in FIG. 1.
  • FIG. 5 Shows how the optical axis of a lens system is adjusted by the lens system adjusting device shown in Fig. 1. It is a figure.
  • FIG. 6 is a diagram showing a state in which the lens system after adjustment of the optical axis and the image sensor are fixed with an adhesive or the like.
  • FIG. 7 is a diagram showing an image on the image sensor before adjustment of the second lens element.
  • FIG. 8 is a diagram showing an image on the image sensor during adjustment of the second lens element.
  • FIG. 9 is a diagram showing an image on the image sensor when adjustment of the second lens element is completed.
  • FIG. 10 is a diagram showing directions when obtaining the intensity distribution of the image of the slit in FIG.
  • FIG. 11A is a diagram showing a radial intensity distribution and MTF in FIG.
  • FIG. 11B is a diagram showing the radial intensity distribution and MTF in FIG.
  • FIG. 12A is a diagram showing the intensity distribution and MTF in the tangential direction in FIG.
  • FIG. 12B is a diagram showing the intensity distribution in the tangential direction and MTF in FIG.
  • FIG. 13 is a schematic configuration diagram of a conventional MTF measuring apparatus.
  • FIG. 14 is a diagram showing an intensity distribution obtained by the MTF measuring apparatus shown in FIG.
  • FIG. 15 is a diagram showing MTF values based on the intensity distribution shown in FIG.
  • FIG. 16 is a schematic configuration diagram of a conventional optical axis adjusting device.
  • FIG. 1 is a schematic configuration diagram of the lens system adjusting apparatus according to the present embodiment.
  • This lens system adjusting device is roughly configured by a light source 21, a lens system 22, a substrate 24, an image sensor 25, a holding unit 26, a first moving mechanism 27, and an arithmetic control processing unit 28.
  • the light source 21 has a laser element and generates a parallel light beam serving as a reference axis A.
  • the lens system 22 includes a plurality of lenses and is an adjustment target.
  • the substrate 24 is disposed between the light source 21 and the lens system 22 and a plurality of diffractive elements 23 that allow the parallel light obtained by deflecting part of the parallel light generated by the light source 21 to enter the lens system 22. Is provided.
  • the holding unit 26 is disposed after the lens system 22 on the reference axis A, and holds an image sensor 25 that is a CCD or the like that receives light from the light source 21.
  • the image sensor 25 is integrated with the lens system 22 after adjustment.
  • a camera lens such as a digital camera is constructed.
  • the first moving mechanism 27 moves the image sensor 25 together with the holding unit 26.
  • the arithmetic control processing unit 28 calculates an optical evaluation value of the lens system 22 based on the output of the image sensor 25. Further, a control amount for controlling the movement of the image sensor 25 is calculated, and a control signal based on this control amount is generated and output to the first moving mechanism 27.
  • FIG. 2 is a plan view of the substrate 24.
  • the diffractive element 23 is formed on the substrate 24 so as to be point-symmetric at a position corresponding to the angle of view of the lens system 22, for example, in a ring shape.
  • an opening 29 is formed in the central portion of the diffraction element 23 arranged in a circle so as to allow the light from the light source 21 to pass therethrough and generate a parallel light beam serving as a reference axis A (hereinafter referred to as a reference light beam).
  • the diffractive elements 23 are arranged so that the angle of the diffracted light with respect to the reference axis A is an angle corresponding to the angle of view of the lens system 22. Further, the arrangement is taken into consideration so that unnecessary diffracted light does not enter the lens system 22.
  • the size of the aperture 29 that generates the reference beam serving as the reference axis A and the size of the diffractive element 23 arranged corresponding to the angle of view of the lens system 22 are determined by the incidence of the lens system 22.
  • the diameter of each parallel light incident on the pupil is set to be larger than the entrance pupil of the lens system 22.
  • a slit 30 for MTF measurement is provided at a position on the substrate 24 corresponding to the angle of view for inspecting the MTF.
  • the slit 30 may have any shape as long as it can measure the MTF value, such as a point image, a line image, and an edge image.
  • a crosshair composed of two straight lines parallel to the two directions is used. The tangential and radial directions are as shown in FIG.
  • the slit 30 for MTF measurement is illuminated from the side of the light source 21 that generates parallel light by, for example, an illumination device (not shown) such as a white LED (light emitting diode) or a halogen lamp. .
  • the illumination device is set so that the intensity of light transmitted through each slit 30 is uniform.
  • the diffraction element 23, the opening 29, and the The area excluding the lit 30 is configured so that the parallel light from the light source 21 is not transmitted and unnecessary light does not enter the lens system 22! RU
  • the optical branching element 31 and the aperture 32 arranged on the reference axis A In order to make a right angle between the reference axis A and the reference plane of the lens system 22, the optical branching element 31 and the aperture 32 arranged on the reference axis A, And a photodetector 33 that detects the reflected light that is irradiated by the light source 21 and reflected by the reference plane of the lens system 22 and the light branching element 31. Further, as shown in FIG. 3, in order to make a right angle between the reference axis A and the reference plane of the lens system 22, the optical branching element 31 and the aperture 32 arranged on the reference axis A, And a photodetector 33 that detects the reflected light that is irradiated by the light source 21 and reflected by the reference plane of the lens system 22 and the light branching element 31. Further, as shown in FIG.
  • a second holding unit 35 that holds the remaining lens elements (hereinafter referred to as second lens elements) 40 of the lens system 22 and a second moving mechanism 36 that moves the second holding unit 35 are provided.
  • the arithmetic control processing unit 28 calculates a control amount for controlling the movement of the second holding unit 35, generates a control signal based on this control amount, and outputs it to the second moving mechanism 36.
  • a mechanical shutter (hereinafter referred to as a mechanical shutter) 37 is arranged, or an IR (infrared) cut filter, a low-pass filter, or the like filter 38 on the image sensor 25. Need to be placed.
  • FIGS. 3 to 6 show an optical axis adjustment procedure by the lens system adjustment device.
  • 7 to 9 show a condensing spot and a cross-shaped slit image formed on the image sensor 25.
  • FIG. 10 to 12 show the MTF calculation method by this lens system adjusting device.
  • the optical axis adjustment method and MTF measurement method using this lens system adjustment apparatus will be described in detail with reference to FIGS.
  • FIGS. 3 to 6 show a procedure for adjusting the position of the lens system 22 and the image sensor 25 using the present lens system adjusting apparatus, and a procedure for adjusting the optical axis of the lens system 22.
  • one of the reference light beams emitted from the light source 21 and passed through the half mirror as the light branching element 31 and the opening 29 disposed at the center of the substrate 24 on which the diffraction element 23 is formed. (Hereinafter referred to as the central axis ray) passes through the aperture 32, reaches the image sensor 25, is reflected by the cover glass (not shown) of the image sensor 25, and passes through the aperture 32 again.
  • the first moving mechanism 27 Adjust the tilt angle ⁇ and the tilt angle ⁇ with respect to the X axis.
  • the output from the image sensor 33 is input to the arithmetic control processing unit 28, and the arithmetic control processing unit 28 causes the center of the image sensor 33 of the central axis ray to be centered.
  • the amount of displacement in the Z-axis direction and the amount of displacement in the Y-axis direction are obtained, and the tilt angle ⁇ relative to the Y-axis is calculated based on the amount of displacement in the Z-axis direction.
  • the tilt angle ⁇ with respect to the X axis is calculated based on the amount of deviation.
  • a control signal based on the calculated tilt angles ⁇ and ⁇ is generated and output to the first moving mechanism 27.
  • the arithmetic control processor 28 determines the amount of deviation of the central force of the image sensor 25 in the XY axis direction with respect to the central axis light beam as the reference axis A in the XY axis direction.
  • the amount of movement in the XY-axis direction is calculated based on this amount of deviation.
  • a control signal based on the calculated movement amount is generated and output to the first movement mechanism 27. Then, the image sensor 25 is moved in the X and Y directions by the first moving mechanism 27, and the position of the image sensor 25 is adjusted so that the reference axis A and the center of the light receiving surface of the image sensor 25 coincide.
  • the angle and position between the reference plane of the lens system 22 (the surface of the image sensor 25) and the reference axis (reference axis A) of the present lens system adjusting device are adjusted in advance.
  • a parallel plate composed of a filter 38 such as an IR cut filter or a low-pass filter is attached to the surface of the image sensor 25, the reflected light of the surface force of the parallel plate is used to You may adjust the angle and position.
  • the first lens element 39 constituting the lens system 22 is fixed by the first holding unit 34 while holding the state of the image sensor 25 after adjustment.
  • the first moving mechanism 27 moves the image sensor 25 in the + Z direction or so that the central axis light beam that has passed through the opening 29 and the aperture 32 of the substrate 24 is condensed on the image sensor 25. Shift in Z direction.
  • the arithmetic control processing unit 28 calculates the illuminance of the image of the central axis ray based on the signal from the image sensor 25, and moves the image sensor 25 in the + Z direction or the ⁇ Z direction by a predetermined length while moving the image sensor 25 above. Try to find the position where the calculated illuminance is maximum. Alternatively, find the position where the spot diameter of the image of the central axis ray is minimized. You can do it.
  • the central axis light beam incident on the first lens element 39 is slightly shifted from the center of the image sensor 25. It will be condensed at the position.
  • the first moving mechanism 27 is used to make the image blur symmetric.
  • the tilt angles ⁇ and ⁇ of 25 are adjusted, and further, the adjustment in the XY directions is performed so that the light reaching the image sensor 25 is positioned at the center of the image sensor 25. At that time, the lowering of the light condensing with respect to the image sensor 25 is corrected by shifting in the Z direction at any time.
  • the arithmetic control processing unit 28 first calculates an illuminance distribution on the image sensor 25 with reference to the center of the center axis ray image and the illuminance at the center, and the calculated illuminance distribution is uniform.
  • the tilt angles ⁇ and ⁇ of the image pickup device 25 are calculated, and a control signal based on the calculated tilt angles ⁇ and ⁇ is output to the first moving mechanism 27.
  • a control signal for positioning the center of the center axis ray image at the center of the image sensor 25 is generated and output to the first moving mechanism 27.
  • the aperture 32 is removed, and the remaining second lens element 40 constituting the lens system 22 is fixed by the second holding unit 35.
  • the second holding unit 35 is shifted in the XYZ direction by the second moving mechanism 36 while adjusting the position in the Z direction of the image sensor 25 so that the focused spot is imaged on the image sensor 25 by the structure 27. Adjust the tilt angle.
  • the image on the image sensor 25 changes as shown in FIGS. 7 and 8 show a case where the first lens element 39 of the lens system 22 and the second lens element 40 to be adjusted are relatively decentered or tilted.
  • FIG. 7 is before the adjustment of the second lens element 40
  • FIG. 8 is the adjustment of the second lens element 40.
  • the positions of the condensing spot 42 of the reference light beam that has passed through the opening 29 of the substrate 24 and the center 41 of the image sensor 25 are shifted.
  • the converging spot 42 of the reference beam coincides with the center 41 of the image sensor 25 as shown in FIG.
  • the arithmetic control processing unit 28 corresponds to the amount of deviation between the condensing spot 42 on the image sensor 25 and the center 41 of the image sensor 25.
  • a control signal for positioning the condensing spot 42 of the reference beam at the center of the image sensor 25 is generated and output to the second moving mechanism 36.
  • the light beam is incident on the lens system 22 corresponding to each angle of view that has been deflected by passing through each diffraction element 23 on the substrate 24 to form a group of focused spots 43 on the image sensor 25.
  • the This group of focused spots 43 is made point-symmetric with respect to the focused spot 42 of the central ray as shown in FIG. 9 by performing XYZ adjustment and tilt angle adjustment of the second lens element 40. Be placed.
  • the arithmetic control processing unit 28 calculates the center of gravity of the group of the condensing spots 43 based on the illuminance distribution of the condensing spot 43 on the image sensor 25, and positions the calculated center of gravity in the condensing spot 42. This control signal is generated and output to the second moving mechanism 36.
  • the second lens element 40 is adjusted as shown in FIG. 9, the force between the first lens element 39 and the second lens element 40 of the lens system 22 composed of a plurality of lenses is substantially decentered. It is adjusted so that there is no default. Furthermore, the image sensor 25 is also adjusted to an optimum position with respect to the lens system 22.
  • the second lens system 40 and the image sensor 25 in the lens system 22 are not fixed until the next MTF inspection process is completed.
  • the measurement of the MTF value is performed using a cross-shaped slit 30 formed on the substrate 24 on which the diffraction element 23 is formed and illuminated uniformly from the light source side.
  • the lens system 22 after the optical axes of the first and second lens elements 39 and 40 and the image sensor 25 are adjusted as described above is used for the slit 30 on the light receiving surface of the image sensor 25.
  • the lens system 22 is focused on the surface of the substrate 24 so that the illuminance of the image is maximized, and the cross-shaped slit 30 is formed on the image sensor 25.
  • the image 44 of the cross-shaped slit 30 is formed on the light receiving surface of the image sensor 25.
  • the arithmetic control processing unit 28 makes a cross-shaped slit as shown in FIG.
  • the intensity distribution is obtained in the radial direction and the tangential direction at the dotted line portion in 30 images 44, and the intensity distribution as shown in FIGS. 11A and 12A is obtained. Then, by performing Fourier transform on this intensity distribution, the MTF value is simply measured as shown in FIGS. 11B and 12B.
  • the lens elements 39 and 40 of the lens system 22 after the optical axis adjustment and the image sensor 25 are fixed with an adhesive 45 or the like. If there is a problem with the MTF value, the second holding unit 35 is controlled by the second moving mechanism 36 based on the difference between the target MTF value and the calculated MTF value, and the lens system 22 is again detected. The optical axis adjustment is performed as described above.
  • the first and second lens elements 39, 40 and the image sensor 25 are fixed by, for example, supplying an ultraviolet curable adhesive as an adhesive 45 from an adhesive supply unit (not shown). This is performed by irradiating ultraviolet rays by an ultraviolet irradiation unit (not shown).
  • Reference numeral 46 denotes an ND filter disposed between the light source 21 and the substrate 24.
  • the optical axis position adjustment step between the lens system 22 and the image pickup device 25 configured by a plurality of lenses, the optical axis adjustment step of the lens system 22, and the inspection step of the lens system 22 using the MTF. Can be continuously performed by the same lens system adjusting device. Moreover, the occurrence of defective products can be reduced by performing the optical axis adjustment step again based on the result of the inspection step.
  • the movement of the 25 and the second holding unit 35 is performed by a control signal generated by the arithmetic control processing unit 28 based on the outputs from the imaging elements 25 and 33. Therefore, the optical axis position adjustment between the lens system 22 and the image sensor 25, the optical axis adjustment of the lens system 22, and the inspection of the lens system 22 can be performed automatically and continuously.
  • the image sensor 25 is moved via the holding unit 26 to the image sensor 25 that constitutes a camera lens such as a digital camera after being adjusted.
  • a first moving mechanism 27 is provided.
  • the light source 21, the aperture 29, the light branching element 31, the aperture 32, and the photodetector 33 are used, and the central axis light beam is
  • the angle and position of the image sensor 25 are adjusted by the first moving mechanism 27 so that the center of the light detector 33 and the center of the photodetector 33 are aligned. Accordingly, the angle and position between the reference plane of the lens system 22 (the surface of the imaging element 25) and the reference axis (reference axis A) of the adjusting device can be adjusted in advance.
  • the first lens element 39 of the lens system 22 composed of a plurality of lenses is fixed by the first holding unit 34, and the image blur is symmetric with respect to the center of the image sensor 25.
  • the imaging device 25 is moved by the first moving mechanism 27 so that the central axis light beam is collected at the center of the imaging device 25. Therefore, the optical axis adjustment and the position adjustment between the lens system 22 and the image pickup device 25 that constitute a camera lens such as a digital camera can be automatically performed continuously after adjustment.
  • a substrate 24 on which a diffraction element 23 is formed so as to be point-symmetrical at a position corresponding to each angle of view of the lens system 22 is disposed between the light source 21 and the first lens element 39.
  • the second lens element 40 constituting the lens system 22 is fixed by the second holding unit 35, and the converging spot 42 of the reference beam coincides with the center 41 of the image sensor 25, so that each diffraction element of the substrate 24 is
  • the second holding unit 35 is moved by the second moving mechanism 36 so that the group of converging spots 43 of the light beams deflected corresponding to each angle of view by 23 is point-symmetrical with respect to the center 41 of the image sensor 25. I try to move it. Therefore, the optical axis of the lens system 22 can be adjusted with high accuracy by light rays corresponding to a plurality of angles of view.
  • a cross-shaped slit 30 is imaged on the image sensor 25 with the focal point of the lens system 22 with the optical axis adjusted being adjusted to the surface of the substrate 24.
  • the MTF value is measured by obtaining the intensity distribution in the radial direction and the tangential direction in the image 44 of the cross-shaped slit 30 by the arithmetic control processing unit 28, and Fourier transforming this intensity distribution. ing. Therefore, following the optical axis adjustment of the lens system 22, the MTF value, which is an index of the resolving power of the lens system 22, can be measured automatically and easily. Furthermore, when the measurement result of the MTF value is bad, the optical axis adjustment of the lens system 22 can be performed again based on the measurement result of the MTF value. Therefore, the incidence of defective products can be reduced.
  • the calculation control processing unit 28 receives the signal from the image sensor 25. Based on the output signal, the peak value of the light intensity of the converging spots 42 and 43 formed by collimating the parallel light beam from the light source 21 on the image sensor 25 by the lens system 22 is obtained, and according to the above peak value.
  • a function as the light amount adjusting means for adjusting the light amount of the light source can be provided. By doing so, it is possible to control the amount of light so that smear does not occur in the image sensor 25 even when the optical axis is adjusted, even if the light spot has a high energy density.
  • the MTF measurement slit 30 is provided on the substrate 24 separately from the diffraction element 23 as an MTF measurement pattern.
  • the MTF measurement pattern can also be formed on the diffraction element 23.
  • the configuration of the substrate 24 is simplified because it is not necessary to provide a slit or chart for MTF measurement separately from the diffraction element 23.
  • the MTF can be measured using the diffraction element 23, and the optical adjustment at the time of MTF measurement is eliminated, and the MTF measurement can be performed efficiently following the optical axis adjustment of the lens system 22. it can.
  • an image sensor 25 that forms a camera lens such as a digital camera integrally with the lens system 22 after the adjustment is used.
  • an image sensor dedicated for adjustment is used.
  • the lens system 22 is composed of two lens elements, the first lens element 39 and the second lens element 40, but is composed of three or more lens elements.
  • the optical axis of the lens system can be adjusted in the same manner.
  • the lens element closest to the imaging element 25 may be held by the second holding unit 35 to adjust the position and angle.
  • the light source 21, the substrate 24, the holding unit 26, the first moving mechanism 27, the calculation control processing unit 28, the first holding unit 34, the second holding unit 35, and the second movement The lens system adjusting device that is schematically configured by the mechanism 36 and performs optical adjustment on the lens system 22 and the image sensor 25 has been described.
  • the above lens system adjusting device is integrated with the lens system 22 and the image sensor 25, which will later be integrated into a digital camera or the like. Therefore, it can be regarded as a manufacturing apparatus of the imaging apparatus.

Abstract

A substrate (24) is formed with diffraction elements (23) at positions corresponding to respective angles of view of a lens system (22) so as to be point-symmetric, and is disposed between a light source (21) and the first lens element (39) of the lens system (22). The second lens element (40) of the lens system (22) is fixed by a second holding unit (35), and the second holding unit (35) is moved by a second moving mechanism (36) so that the condensing spot of a reference ray of light agrees with the center of an imaging element (25) and a group of condensing spots of rays of light deflected in association with respective angles of view by respective diffraction elements (23) of the substrate (24) are point-symmetric with respect to the center of the imaging element (25). Thus, rays of light corresponding to a plurality of angles of view are used to accurately adjust the light axis of the lens system (22).

Description

明 細 書  Specification
レンズ系調整装置およびそれを用いたレンズ系調整方法、並びに、撮像 装置の製造装置および撮像装置の製造方法  LENS SYSTEM ADJUSTING DEVICE, LENS SYSTEM ADJUSTING METHOD USING THE SAME, IMAGING DEVICE MANUFACTURING DEVICE, AND IMAGING DEVICE MANUFACTURING METHOD
技術分野  Technical field
[0001] この発明は、複数のレンズから成るレンズ系の光軸調整等を行うレンズ系調整装置 およびそれを用いたレンズ系調整方法、並びに、撮像装置の製造装置および撮像 装置の製造方法に関する。  The present invention relates to a lens system adjustment device that performs optical axis adjustment of a lens system composed of a plurality of lenses, a lens system adjustment method using the same, an imaging device manufacturing apparatus, and an imaging device manufacturing method.
背景技術  Background art
[0002] 近年、コンパクトデジタルカメラや携帯電話用カメラの高機能化によるレンズ要素の 小型化、および、非球面の採用増加によって、上記デジタルカメラや携帯電話用カメ ラのカメラレンズに対する要求精度は年々厳しくなつており、レンズ単体の加工精度 向上だけでなぐ複数のレンズで成るレンズ系の光軸調整が必須となってきて 、る。 また、レンズ系の光軸調整と同時に、光学レンズの解像力を表す指標として一般的 に用いられて ヽる MTF (空間周波数特性)を用いて調整後のレンズ系の結像性能を 測定して光軸調整の結果を確認し、合否を判定する必要がある。  [0002] In recent years, the required accuracy of camera lenses for the above-mentioned digital cameras and mobile phone cameras has been increasing year by year due to the downsizing of lens elements due to higher functionality of compact digital cameras and mobile phone cameras and the increased adoption of aspherical surfaces. It is becoming strict, and the optical axis adjustment of a lens system consisting of a plurality of lenses is essential only by improving the processing accuracy of a single lens. At the same time as the adjustment of the optical axis of the lens system, the imaging performance of the adjusted lens system is measured using MTF (spatial frequency characteristics), which is generally used as an index representing the resolving power of the optical lens. It is necessary to check the result of the axis adjustment and determine pass / fail.
[0003] 従来の MTF測定装置としては、特開昭 61 -84541号公報に挙げるようなものがあ る。また、従来の光軸調整装置としては、特開平 6-265766号公報に挙げるようなも のがある。  [0003] Conventional MTF measuring devices include those listed in JP-A-61-84541. Further, as a conventional optical axis adjusting device, there is one as disclosed in JP-A-6-265766.
[0004] ここで、上記 MTF装置測定について、図 13〜図 15に従って説明する。レンズ等の 結像系の性能を総合的に表す量としては上記 MTFがあり、これは空間的な正弦波 をレンズに入力した場合における上記レンズによる像の振幅と物体側の振幅との比 で表される。上記 MTFにおける実際の測定は、被検レンズによって点像,線像および エッジ像等の光強度分布を検出し、フーリエ変換処理を行うことによって測定する。 図 13において、例えば、カメラのフィルム面に相当する位置における被検レンズ 1の 光軸上と光軸外とにスリット 2を置き、このスリット 2を光源 3で照射して物体面に相当 する面にスリット像を結像させる。そして、このスリット像を CCD (電荷結合素子)等の 撮像素子 4で撮像し、上記スリット像の長手方向に直交する方向に走査して、図 14に 示すような強度分布を得る。そして、信号処理回路 5によってノイズ除去し、 FFT演算 回路 6でフーリエ変換することによって、図 15に示すような各画角に対する MTF値が 得られ、その結果が表示部 7に表示されるのである。 [0004] Here, the MTF apparatus measurement will be described with reference to FIGS. The MTF is a quantity that comprehensively represents the performance of an imaging system such as a lens. This is the ratio of the amplitude of the image by the lens to the amplitude on the object side when a spatial sine wave is input to the lens. expressed. The actual measurement in the above MTF is performed by detecting the light intensity distribution such as point images, line images, and edge images with the test lens and performing Fourier transform processing. In FIG. 13, for example, a slit 2 is placed on the optical axis and outside the optical axis of the lens 1 to be measured at a position corresponding to the film surface of the camera, and the slit 2 is irradiated with the light source 3 to correspond to the object plane. A slit image is formed on the screen. Then, this slit image is picked up by an image pickup device 4 such as a CCD (Charge Coupled Device) and scanned in a direction perpendicular to the longitudinal direction of the slit image. An intensity distribution as shown is obtained. Then, noise is removed by the signal processing circuit 5 and Fourier transform is performed by the FFT operation circuit 6 to obtain the MTF value for each angle of view as shown in FIG. 15, and the result is displayed on the display unit 7. .
[0005] 次に、従来のレンズ系光軸調整装置について図 16に従って説明する。図 16に示 す従来のレンズ系光軸調整装置は、第 1レンズ系 11と第 2レンズ系 12とをそれらの 光軸が鉛直方向になるように配置して第 1レンズ系 11を固定する。そうした後に、第 2 レンズ系 12を微動させて第 1レンズ系 11の光軸と第 2レンズ系 12の光軸とを一致さ ·¾:るものである。 Next, a conventional lens system optical axis adjusting device will be described with reference to FIG. The conventional lens system optical axis adjusting device shown in FIG. 16 fixes the first lens system 11 by arranging the first lens system 11 and the second lens system 12 so that their optical axes are in the vertical direction. . After that, the second lens system 12 is finely moved so that the optical axis of the first lens system 11 coincides with the optical axis of the second lens system 12.
[0006] このレンズ系光軸調整装置は、上記第 1レンズ系 11および第 2レンズ系 12に中心 光線とこの中心光線に平行な 3本以上の輪帯光線とを照射する照射手段 13と、照度 生成手段 14と、微調心補正量生成手段 15と、第 2レンズ微動手段 16とを備えている 。上記照度生成手段 14は、第 1レンズ系 11および第 2レンズ系 12を通過した上記中 心光線と上記輪帯光線とを受光して、上記中心光線および輪帯光線によって夫々形 成された像に対応する信号を生成する。それと共に、上記信号に基づいて各像の照 度を求める。また、微調心補正量生成手段 15は、照度生成手段 14によって求めら れた各像の照度の分布力も輪帯光線の像の重心座標と中心光線の像の中心座標と を求め、両座標の差力 得られる軸上コマ量に応じて微調心補正量を求める。また、 第 2レンズ微動手段 16は、微調心補正量生成手段 15によって求められた上記微調 心補正量に基づ 、て、第 2レンズ系 12を微動させる。  [0006] This lens system optical axis adjusting device includes an irradiation means 13 for irradiating the first lens system 11 and the second lens system 12 with a central ray and three or more annular rays parallel to the central ray, Illuminance generation means 14, fine alignment correction amount generation means 15, and second lens fine movement means 16 are provided. The illuminance generation means 14 receives the central ray and the annular ray that have passed through the first lens system 11 and the second lens system 12, and images formed by the central ray and the annular ray, respectively. A signal corresponding to is generated. At the same time, the brightness of each image is obtained based on the above signal. Further, the fine alignment correction amount generation means 15 obtains the illuminance distribution power of each image obtained by the illuminance generation means 14 as the center of gravity coordinates of the image of the zonal ray and the center coordinates of the image of the center ray. Differential force Determine the fine alignment correction amount according to the amount of on-axis coma. The second lens fine moving means 16 finely moves the second lens system 12 based on the fine alignment correction amount obtained by the fine alignment correction amount generating means 15.
[0007] 以上の構成において、上記第 1レンズ系 11と第 2レンズ系 12との光軸が一致してい ない場合には、平行な中心光線と 3本以上の輪帯光線とが第 1レンズ系 11および第 2レンズ系 12を通過することによって、上記中心光線の通過する中心位置と輪帯光 線の重心位置との間にずれが生ずる。そこで、照度生成手段 14における受光素子 1 7の受光面において中心光線および輪帯光線によって夫々形成された各像の照度 を求め、微調心補正量生成手段 15によって上記各像の照度の分布力 得られる中 心光線の中心座標と輪帯光線の重心座標との差を軸上コマ量として算出することに よって、上記中心位置と重心位置とのずれを定量的に測定する。そして、微調心補 正量生成手段 15によって上記軸上コマ量に応じて求められた微調心補正量に基づ いて、第 2レンズ微動手段 16によって第 2レンズ系 12を繰り返し微動させて、第 1レン ズ系 11の光軸と第 2レンズ系 12の光軸とを自動的に一致させるのである。 [0007] In the above configuration, when the optical axes of the first lens system 11 and the second lens system 12 do not coincide with each other, the parallel central ray and three or more annular rays are the first lens. By passing through the system 11 and the second lens system 12, a deviation occurs between the center position through which the central ray passes and the position of the center of gravity of the annular light beam. Therefore, the illuminance of each image formed by the central ray and the zonal ray on the light receiving surface of the light receiving element 17 in the illuminance generation means 14 is obtained, and the fineness correction amount generation means 15 obtains the illuminance distribution power of each image. The difference between the center position and the center of gravity position is quantitatively measured by calculating the difference between the center coordinates of the center ray and the center of gravity coordinates of the zonal rays as the on-axis frame amount. Then, based on the fine alignment correction amount obtained by the fine alignment correction amount generation means 15 in accordance with the above-mentioned axial coma amount. Then, the second lens system 12 is repeatedly finely moved by the second lens fine moving means 16 so that the optical axis of the first lens system 11 and the optical axis of the second lens system 12 are automatically matched.
[0008] し力しながら、特開昭 61 -84541号公報に記載された従来の MTF測定装置には、 以下のような問題がある。すなわち、複数の画角毎に光源 3とスリット 2と撮像素子 4と を配置することによって、一度に複数の画角に対応した MTF値を算出することも可 能ではある。ところが、その場合には、構成要素が多くなつてしまうという問題がある。 さらに、光源 3およびスリット 2の実際の配置には限度があり、多数の画角に対する M TF評価を簡便に行うことができな 、と 、う問題もある。  [0008] However, the conventional MTF measuring apparatus described in Japanese Patent Application Laid-Open No. 61-84541 has the following problems. That is, by arranging the light source 3, the slit 2, and the image sensor 4 for each of a plurality of angles of view, it is possible to calculate MTF values corresponding to the angles of view at a time. However, in that case, there is a problem that the number of components increases. Furthermore, there is a limit to the actual arrangement of the light source 3 and the slit 2, and there is a problem that the MTF evaluation for a large number of angles of view cannot be easily performed.
[0009] また、特開平 6-265766号公報に記載された従来のレンズ系光軸調整装置には、 以下のような問題がある。すなわち、上記レンズ系光軸調整装置では、レンズ系の光 軸の調整を行った際に、正しく第 1レンズ系 11と第 2レンズ系 12との光軸が一致して いる力否かを確認する術がない。そこで、従来のレンズ系光軸調整装置の場合には 、レンズ系の光軸調整を行った (光軸調整工程)後に、さらに被検レンズを MTF測定 装置に付け替えて、 MTF値を測定することによって光軸調整工程の調整不具合の 確認を行う (検査工程)必要があり、光軸調整工程と検査工程との簡略ィヒが望まれて いる。  [0009] Further, the conventional lens system optical axis adjusting device described in JP-A-6-265766 has the following problems. In other words, the lens system optical axis adjusting device confirms whether the optical axes of the first lens system 11 and the second lens system 12 are correctly aligned when the optical axis of the lens system is adjusted. There is no way to do it. Therefore, in the case of a conventional lens system optical axis adjustment device, after the optical axis adjustment of the lens system (optical axis adjustment process), the test lens is further replaced with an MTF measurement device to measure the MTF value. Therefore, it is necessary to check the adjustment defect in the optical axis adjustment process (inspection process), and the simplification of the optical axis adjustment process and the inspection process is desired.
[0010] また、上記従来のレンズ系光軸調整装置においては、レンズ系の光軸調整は行え るものの、調整用の受光素子 17を用いて調整を行っている。そのために、例えば、デ ジタルカメラのような撮像素子とレンズ系とが一体になつているカメラレンズのレンズ 系調整においては、レンズ系の光軸調整を行った後、さらに実際に使用する撮像素 子とレンズ系との位置調整を行う必要があり、この点につ 、ても簡略ィ匕が望まれて ヽ る。尚、後に、実際にモジュールとして固定する撮像素子を像面 18に配置し、その撮 像素子を利用してレンズ系の調整を行なうとしても、複数本の平行光を同一入射角 で被調整レンズ系に入射して ヽるので、像面 18では集光スポットは略一点に絞られ る。したがって、そのままでは、像面 18に配置した撮像素子を利用してレンズ系の光 軸調整を行なうことができず、上記モジュール用の撮像素子に光を導く別のレンズが 必要になると言う問題がある。  In the conventional lens system optical axis adjustment device, the optical axis of the lens system can be adjusted, but the adjustment is performed using the light receiving element 17 for adjustment. Therefore, for example, in the lens system adjustment of a camera lens in which an imaging element such as a digital camera and a lens system are integrated, after the optical axis adjustment of the lens system is performed, an imaging element to be actually used is further used. It is necessary to adjust the position of the lens and the lens system, and in this respect, simplicity is desired. Later, even if an image sensor that is actually fixed as a module is arranged on the image plane 18 and the lens system is adjusted using the image sensor, a plurality of parallel lights can be adjusted at the same incident angle. Since the light is incident on the system, the focused spot on the image plane 18 is reduced to one point. Therefore, as it is, the optical axis of the lens system cannot be adjusted using the image sensor disposed on the image plane 18, and another lens for guiding the light to the image sensor for the module is required. is there.
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0011] そこで、この発明の課題は、レンズ系の光軸調整と MTFの測定とを連続して行うこ とができ、各画角に対応した光線によってレンズの光軸を精度よく調整でき、撮像素 子とレンズ系とが一体になつているカメラレンズ等におけるレンズ系の光軸調整と撮 像素子の位置調整とを連続して行うことができるレンズ系調整装置およびそれを用い たレンズ系調整方法、並びに、撮像装置の製造装置および撮像装置の製造方法を 提供することにある。 Therefore, the problem of the present invention is that the optical axis adjustment of the lens system and the MTF measurement can be continuously performed, and the optical axis of the lens can be accurately adjusted by the light beam corresponding to each angle of view. Lens system adjustment device capable of continuously performing optical axis adjustment of a lens system and position adjustment of an imaging element in a camera lens or the like in which an imaging element and a lens system are integrated, and a lens system using the same An adjustment method, an imaging apparatus manufacturing apparatus, and an imaging apparatus manufacturing method are provided.
課題を解決するための手段  Means for solving the problem
[0012] 上記課題を解決するため、この発明のレンズ系調整装置は、 In order to solve the above problems, a lens system adjusting device of the present invention includes:
基準軸となる平行光線を発生するレーザ光源部と、  A laser light source unit that generates parallel light rays serving as a reference axis;
複数のレンズから成るレンズ系および撮像素子を含む被調整物と、  A to-be-adjusted object including a lens system including a plurality of lenses and an image sensor;
上記レーザ光源部と被調整物との間に配置されると共に、上記レーザ光源部から の平行光線の一部を偏向して上記基準軸との角度が上記レンズ系の画角に応じた 角度である平行光線束を生成して上記レンズ系に入射させる複数の回折素子と、中 心部に位置して上記レーザ光源部からの平行光線の一部を通過させて上記基準軸 としての基準光線束を生成して上記レンズ系に入射させる開口とが形成された基板と 上記レンズ系および撮像素子のうちの少なくとも何れか一方を移動させる移動部と 上記撮像素子の出力に基づいて、上記撮像素子の受光面上における所定の位置 に上記基準光線束の像と上記偏向された光線束の像とを位置させるための上記レン ズ系あるいは撮像素子の移動量を算出し、この算出した移動量に基づいて上記移動 部の動作を制御する演算制御処理部と  It is arranged between the laser light source section and the object to be adjusted, and deflects a part of the parallel light beam from the laser light source section so that the angle with the reference axis is an angle corresponding to the angle of view of the lens system. A plurality of diffractive elements that generate a certain parallel beam bundle and enter the lens system, and a reference beam bundle as the reference axis by passing a part of the parallel beam from the laser light source unit located at the center part On the basis of the output of the imaging device, the moving unit for moving at least one of the lens system and the imaging device, and the output of the imaging device. A movement amount of the lens system or image sensor for positioning the reference beam bundle image and the deflected beam bundle image at a predetermined position on the light receiving surface is calculated, and based on the calculated movement amount. The above moving part An arithmetic control unit for controlling the operation
を備えたことを特徴として!/ヽる。  It is characterized by having! / Speak.
[0013] 上記構成によれば、上記演算制御処理部によって上記移動部の動作を制御して、 例えば上記撮像素子の受光面上における中心の位置に上記基準光線束の像が位 置するように上記レンズ系を移動させることによって、上記レンズ系を構成する複数の レンズの偏心あるいはチルトを調整することができる。さらに、例えば上記基板の中心 に対して点対象に配列された回折素子によって偏向された光線束の像が上記受光 面の中心に対して点対称となるように上記レンズ系を移動させることによって、複数の 画角に対応した光線によって上記レンズ系の光軸を精度良く調整することができる。 [0013] According to the above configuration, the operation of the moving unit is controlled by the arithmetic control processing unit so that, for example, the image of the reference beam bundle is positioned at the center position on the light receiving surface of the imaging element. By moving the lens system, it is possible to adjust the eccentricity or tilt of a plurality of lenses constituting the lens system. Further, for example, the center of the substrate By moving the lens system so that the image of the light beam deflected by the diffractive elements arranged on the point object is point-symmetrical with respect to the center of the light receiving surface, a plurality of angles of view are supported. The optical axis of the lens system can be accurately adjusted by the light beam.
[0014] また、 1実施の形態のレンズ系調整装置では、  [0014] Further, in the lens system adjusting device of one embodiment,
上記基準軸上における上記基板と被調整物との間に配置された光分岐素子と、 上記基準軸上における上記光分岐素子と被調整物との間に配置されたアパーチャ と、  An optical branching element disposed between the substrate and the object to be adjusted on the reference axis; an aperture disposed between the optical branching element and the object to be adjusted on the reference axis;
上記レーザ光源部から出射されると共に、上記基板の開口,光分岐素子およびアバ 一チヤを通過して上記撮像素子の基準面で反射され、再度上記アパーチャを通過し て上記光分岐素子によって上記基準軸に直交する方向に反射された光を検出する 光検出器を  The light is emitted from the laser light source unit, passes through the opening of the substrate, the light branching element and the aperture, is reflected by the reference surface of the imaging element, passes again through the aperture, and is reflected by the light branching element to the reference. A light detector that detects the light reflected in the direction perpendicular to the axis.
備えている。  I have.
[0015] この実施の形態によれば、上記演算制御処理部によって上記移動部の動作を制 御して、例えば上記光検出器によって検出された光が上記光検出器の受光面の中 心に位置するように上記撮像素子を移動させることによって、上記レンズ系の光軸調 整に先立って、上記基準軸と上記被調整物の基準面との角度および位置が最適に なるよう〖こ調整することがでさる。  [0015] According to this embodiment, the operation of the moving unit is controlled by the arithmetic control processing unit, and for example, the light detected by the photodetector is centered on the light receiving surface of the photodetector. Prior to the optical axis adjustment of the lens system, the angle and position between the reference axis and the reference surface of the object to be adjusted are adjusted optimally by moving the imaging device so that it is positioned. That's right.
[0016] また、 1実施の形態のレンズ系調整装置では、 [0016] Further, in the lens system adjusting device of one embodiment,
上記基板の回折素子によって偏向されて上記レンズ系に入射される上記平行光線 束の直径、および、上記基板の開口を通過して上記レンズ系に入射される上記基準 光線束の直径は、上記レンズ系の入射瞳の直径よりも大きく設定されている。  The diameter of the parallel light beam that is deflected by the diffraction element of the substrate and is incident on the lens system, and the diameter of the reference light beam that is incident on the lens system through the opening of the substrate are the lens It is set larger than the diameter of the entrance pupil of the system.
[0017] この実施の形態によれば、上記レンズ系の入射瞳中心と上記基準軸とを一致させ る際の調整精度を緩和することが可能になる。 [0017] According to this embodiment, it is possible to relax the adjustment accuracy when the entrance pupil center of the lens system and the reference axis coincide with each other.
[0018] また、 1実施の形態のレンズ系調整装置では、 [0018] Further, in the lens system adjusting device of one embodiment,
上記移動部は、上記レンズ系と上記撮像素子とを移動させるようになっており、 上記基準軸に対して、上記レンズ系の一部を構成する第 1レンズ要素を固定して保 持する第 1保持ユニットと、  The moving unit is configured to move the lens system and the image sensor, and is configured to fix and hold a first lens element constituting a part of the lens system with respect to the reference axis. 1 holding unit,
上記レンズ系の残りを構成する第 2レンズ要素を保持する第 2保持ユニットと、 上記レンズ系を移動させる上記移動部を構成すると共に、上記第 1保持ユニットお よび第 2保持ユニットの少なくとも一方を移動させるレンズ要素移動機構を 備えている。 A second holding unit for holding a second lens element constituting the remainder of the lens system; The moving unit that moves the lens system is configured, and a lens element moving mechanism that moves at least one of the first holding unit and the second holding unit is provided.
[0019] この実施の形態によれば、上記演算制御処理部による制御の下に、レンズ要素移 動機構によって、上記レンズ系を構成する上記第 1レンズ要素および第 2レンズ要素 を個別に移動させることができる。したがって、上記レンズ系の偏心あるいはチルトを 第 1,第 2レンズ要素に分けて精密に調整することができる。  According to this embodiment, the first lens element and the second lens element constituting the lens system are individually moved by the lens element moving mechanism under the control of the arithmetic control processing unit. be able to. Therefore, the decentration or tilt of the lens system can be precisely adjusted by dividing it into the first and second lens elements.
[0020] また、 1実施の形態のレンズ系調整装置では、  [0020] Further, in the lens system adjusting device of one embodiment,
上記基板には、 MTF測定用のチャートが設けられると共に、  The board is provided with a chart for MTF measurement,
上記レーザ光源部側から上記チャートを一様に照明する照明手段を備えて、 上記演算制御処理部は、上記チャートに関する上記撮像素子の出力に基づいて、 上記レンズ系の MTF値を算出するようになって!/、る。  An illuminating unit that uniformly illuminates the chart from the laser light source unit side is provided, and the arithmetic control processing unit calculates an MTF value of the lens system based on an output of the imaging device related to the chart. Get ready!
[0021] この実施の形態によれば、上記レンズ系の偏心あるいはチルトの調整および上記レ ンズ系の光軸調整が終了した後に、続けて、上記レンズ系の解像力の指標である M TFを測定できる。したがって、得られた MTF値と設計値 (目標値)との差の値が大き い場合には、再度上記レンズ系の光軸調整を行うことが可能になり、不良品の発生 率を低減することができる。  [0021] According to this embodiment, after the adjustment of the eccentricity or tilt of the lens system and the optical axis adjustment of the lens system are completed, MTF, which is an index of resolving power of the lens system, is continuously measured. it can. Therefore, if the difference between the obtained MTF value and the design value (target value) is large, it becomes possible to adjust the optical axis of the lens system again, reducing the incidence of defective products. be able to.
[0022] また、 1実施の形態のレンズ系調整装置では、  [0022] Further, in the lens system adjusting device of one embodiment,
上記撮像素子の出力に基づ!、て、上記レーザ光源部から出射された平行光線が 上記レンズ系によって上記撮像素子の受光面上に集光されて形成されたスポットの 光強度のピーク値を求め、上記ピーク値に応じて上記レーザ光源部の光量を調節す る光量調整手段を備えて ヽる。  Based on the output of the image sensor, the peak value of the light intensity of the spot formed by collimating the parallel light emitted from the laser light source unit on the light receiving surface of the image sensor by the lens system is obtained. A light amount adjusting means for adjusting the light amount of the laser light source unit according to the peak value is obtained.
[0023] この実施の形態によれば、上記撮像素子の受光面上における光強度のピーク値に 応じて上記レーザ光源部の光量が調節されるので、エネルギー密度が高くなるような 集光スポットであっても、上記光軸調整時に撮像素子にぉ 、てスミアが発生しな!、よ うに上記光量を調整することができる。  [0023] According to this embodiment, since the light amount of the laser light source unit is adjusted according to the peak value of the light intensity on the light receiving surface of the image sensor, the light condensing spot can increase the energy density. Even when the optical axis is adjusted, the light quantity can be adjusted so that smear does not occur in the image sensor.
[0024] また、この発明は、上記レンズ系調整装置を用いたレンズ系調整方法であって、 上記演算制御処理部によって上記移動部の動作を制御して、上記基板の開口を 通過した基準光線束の像が上記撮像素子の受光面の中心に位置するように、上記 撮像素子を移動させる工程と、 [0024] Further, the present invention is a lens system adjustment method using the lens system adjustment device, wherein the operation of the moving unit is controlled by the arithmetic control processing unit to open the opening of the substrate. Moving the image sensor so that the image of the reference beam bundle that has passed is positioned at the center of the light receiving surface of the image sensor;
上記第 1保持ユニットによって上記第 1レンズ要素を上記基準軸に対して固定して 保持する一方、上記第 2保持ユニットによって上記第 2レンズ要素を保持する工程と 上記演算制御処理部によって上記レンズ要素移動機構の動作を制御して、上記基 板の開口を通過した基準光線束の上記第 1レンズ要素および上記第 2レンズ要素に よる集光スポットが上記撮像素子の受光面の中心に位置するように、上記第 1保持ュ ニットおよび第 2保持ユニットの少なくとも一方を移動させる工程と、  A step of holding the first lens element fixed to the reference axis by the first holding unit while holding the second lens element by the second holding unit; and the lens element by the arithmetic control processing unit. The movement of the moving mechanism is controlled so that the condensing spot by the first lens element and the second lens element of the reference beam bundle that has passed through the opening of the substrate is positioned at the center of the light receiving surface of the image sensor. Moving at least one of the first holding unit and the second holding unit;
上記演算制御処理部によって上記レンズ要素移動機構の動作を制御して、上記基 板の回折素子を通過して偏向された光線束の上記第 1レンズ要素および上記第 2レ ンズ要素による集光スポットが、上記撮像素子の受光面上における所定の位置に配 列されるように、上記第 1保持ユニットおよび第 2保持ユニットの少なくとも上記一方を 移動させる工程と、  The operation of the lens element moving mechanism is controlled by the arithmetic control processing unit, and the condensed spot by the first lens element and the second lens element of the light beam deflected through the diffraction element of the substrate is deflected. Moving at least one of the first holding unit and the second holding unit so as to be arranged at a predetermined position on the light receiving surface of the image sensor;
上記レンズ系および撮像素子を上記基準軸に対して固定する工程と  Fixing the lens system and the image sensor with respect to the reference axis;
を含むことを特徴として 、る。 It is characterized by including.
上記構成によれば、上記演算制御処理部によって上記移動部の動作を制御して、 上記基準光線束の像が上記撮像素子の受光面の中心に位置するように、上記撮像 素子を移動させるので、上記基準軸と上記被調整物の基準面との相対位置が最適 になるように調整することができる。さらに、上記演算制御処理部によって上記レンズ 要素移動機構の動作を制御して、上記基準光線束の上記第 1レンズ要素および上 記第 2レンズ要素による集光スポットが上記撮像素子の受光面の中心に位置するよう に、上記第 1保持ユニットおよび第 2保持ユニットの少なくとも一方を移動させるので、 上記レンズ系を構成する複数のレンズ要素の偏心あるいはチルトを簡便な方法で調 整することができる。さらに、上記演算制御処理部によって上記レンズ要素移動機構 の動作を制御して、上記偏向された光線束の上記第 1レンズ要素および上記第 2レ ンズ要素による集光スポットが上記撮像素子の受光面上における所定の位置に配列 されるように、上記第 1保持ユニットおよび第 2保持ユニットの少なくとも上記一方を移 動させるので、複数の画角に対応した光線によって上記レンズ系の光軸を精度良く 調整することができる。 According to the above configuration, the operation of the moving unit is controlled by the arithmetic control processing unit, and the image sensor is moved so that the image of the reference beam bundle is positioned at the center of the light receiving surface of the image sensor. The relative position between the reference axis and the reference surface of the object to be adjusted can be adjusted to be optimum. Further, the operation of the lens element moving mechanism is controlled by the arithmetic control processing unit so that the focused spot of the reference beam bundle by the first lens element and the second lens element is the center of the light receiving surface of the image sensor. Since at least one of the first holding unit and the second holding unit is moved so as to be positioned at the position, the eccentricity or tilt of the plurality of lens elements constituting the lens system can be adjusted by a simple method. Further, the operation of the lens element moving mechanism is controlled by the arithmetic control processing unit, so that a condensed spot of the deflected light bundle by the first lens element and the second lens element is a light receiving surface of the image sensor. At least one of the first holding unit and the second holding unit is moved so as to be arranged at a predetermined position above. Therefore, the optical axis of the lens system can be adjusted with high accuracy using light beams corresponding to a plurality of angles of view.
また、この発明は、上記レンズ系調整装置を用いたレンズ系調整方法であって、 上記演算制御処理部によって上記移動部の動作を制御して、上記基板の開口を 通過した基準光線束の像が上記撮像素子の受光面の中心に位置するように、上記 撮像素子を移動させる工程と、  The present invention is also a lens system adjustment method using the lens system adjustment device, wherein the operation of the moving unit is controlled by the arithmetic control processing unit, and an image of a reference beam bundle that has passed through the opening of the substrate. Moving the image sensor so that is positioned at the center of the light receiving surface of the image sensor;
上記第 1保持ユニットによって上記第 1レンズ要素を上記基準軸に対して固定して 保持する一方、上記第 2保持ユニットによって上記第 2レンズ要素を保持する工程と 上記演算制御処理部によって上記レンズ要素移動機構の動作を制御して、上記基 板の開口を通過した基準光線束の上記第 1レンズ要素および上記第 2レンズ要素に よる集光スポットが上記撮像素子の受光面の中心に位置するように、上記第 1保持ュ ニットおよび第 2保持ユニットの少なくとも一方を移動させる工程と、  A step of holding the first lens element fixed to the reference axis by the first holding unit while holding the second lens element by the second holding unit; and the lens element by the arithmetic control processing unit. The movement of the moving mechanism is controlled so that the condensing spot by the first lens element and the second lens element of the reference beam bundle that has passed through the opening of the substrate is positioned at the center of the light receiving surface of the image sensor. Moving at least one of the first holding unit and the second holding unit;
上記演算制御処理部によって上記レンズ要素移動機構の動作を制御して、上記基 板の回折素子を通過して偏向された光線束の上記第 1レンズ要素および上記第 2レ ンズ要素による集光スポットが、上記撮像素子の受光面上における所定の位置に配 列されるように、上記第 1保持ユニットおよび第 2保持ユニットの少なくとも上記一方を 移動させる工程と、  The operation of the lens element moving mechanism is controlled by the arithmetic control processing unit, and the condensed spot by the first lens element and the second lens element of the light beam deflected through the diffraction element of the substrate is deflected. Moving at least one of the first holding unit and the second holding unit so as to be arranged at a predetermined position on the light receiving surface of the image sensor;
上記演算制御処理部によって上記レンズ要素移動機構の動作を制御して、上記基 板の MTF測定用のチャートを通過した上記照明手段力 の光の像が上記撮像素子 の受光面上に結像されるように、上記第 1保持ユニットおよび第 2保持ユニットを移動 させる工程と、  The operation of the lens element moving mechanism is controlled by the arithmetic control processing unit, and an image of the light of the illumination means force that has passed through the MTF measurement chart of the substrate is formed on the light receiving surface of the image sensor. The step of moving the first holding unit and the second holding unit,
上記演算制御処理部によって、上記チャートの像に関する上記撮像素子の出力に 基づいて、 MTF値を算出する工程と、  A step of calculating an MTF value by the arithmetic control processing unit based on an output of the imaging element relating to the image of the chart;
上記算出された上記レンズ系の MTF値と目標とする MTF値との差が所定の範囲 内である場合には、上記レンズ系および撮像素子を上記基準軸に対して固定するェ 程と  When the difference between the calculated MTF value of the lens system and the target MTF value is within a predetermined range, the lens system and the image sensor are fixed with respect to the reference axis;
を含むことを特徴として 、る。 [0027] 上記構成によれば、上記演算制御処理部によって上記移動部の動作を制御して、 上記基準光線束の像が上記撮像素子の受光面の中心に位置するように、上記撮像 素子を移動させるので、上記基準軸と上記被調整物の基準面との相対位置が最適 になるように調整することができる。さらに、上記演算制御処理部によって上記レンズ 要素移動機構の動作を制御して、上記基準光線束の上記第 1レンズ要素および上 記第 2レンズ要素による集光スポットが上記撮像素子の受光面の中心に位置するよう に、上記第 1保持ユニットおよび第 2保持ユニットの少なくとも一方を移動させるので、 上記レンズ系を構成する複数のレンズ要素の偏心あるいはチルトを簡便な方法で調 整することができる。さらに、上記演算制御処理部によって上記レンズ要素移動機構 の動作を制御して、上記偏向された光線束の上記第 1レンズ要素および上記第 2レ ンズ要素による集光スポットが上記撮像素子の受光面上における所定の位置に配列 されるように、上記第 1保持ユニットおよび第 2保持ユニットの少なくとも上記一方を移 動させるので、複数の画角に対応した光線によって上記レンズ系の光軸を精度良く 調整することができる。 It is characterized by including. [0027] According to the above configuration, the operation of the moving unit is controlled by the arithmetic control processing unit, and the image sensor is arranged so that the image of the reference beam bundle is positioned at the center of the light receiving surface of the image sensor. Since it is moved, the relative position between the reference axis and the reference surface of the object to be adjusted can be adjusted to be optimal. Further, the operation of the lens element moving mechanism is controlled by the arithmetic control processing unit so that the focused spot of the reference beam bundle by the first lens element and the second lens element is the center of the light receiving surface of the image sensor. Since at least one of the first holding unit and the second holding unit is moved so as to be positioned at the position, the eccentricity or tilt of the plurality of lens elements constituting the lens system can be adjusted by a simple method. Further, the operation of the lens element moving mechanism is controlled by the arithmetic control processing unit, so that a condensed spot of the deflected light bundle by the first lens element and the second lens element is a light receiving surface of the image sensor. Since at least one of the first holding unit and the second holding unit is moved so as to be arranged at a predetermined position on the upper side, the optical axis of the lens system is accurately adjusted by light beams corresponding to a plurality of angles of view. Can be adjusted.
[0028] 力!]えて、上記演算制御処理部によって上記レンズ系の MTF値を算出し、この算出 された MTF値と目標 MTF値との差が所定の範囲内である場合には、上記レンズ系 および撮像素子を上記基準軸に対して固定するので、上記レンズ系の偏心ある!/、は チルトの調整および上記レンズ系の光軸調整が終了した後に、続けて、上記レンズ 系の解像力の指標である MTFを測定できる。したがって、上記レンズ系と撮像素子 との光軸'位置調整工程とレンズ系の光軸調整工程とレンズ系の検査工程とを集約 化できる。さらに、得られた MTF値と設計値 (目標値)との差の値が大きい場合には、 再度上記レンズ系の光軸調整を行うことが可能になり、不良品の発生率を低減するこ とができるのである。  [0028] Power! If the difference between the calculated MTF value and the target MTF value is within a predetermined range, the calculation control processing unit calculates the MTF value of the lens system. Since it is fixed with respect to the reference axis, the lens system is decentered! /, After the tilt adjustment and the optical axis adjustment of the lens system are completed, the MTF, which is an index of the resolving power of the lens system, is subsequently continued. It can be measured. Therefore, the optical axis position adjustment process of the lens system and the image sensor, the optical axis adjustment process of the lens system, and the inspection process of the lens system can be integrated. Furthermore, when the difference between the obtained MTF value and the design value (target value) is large, it becomes possible to adjust the optical axis of the lens system again, reducing the incidence of defective products. You can.
[0029] また、この発明は、複数のレンズ力も成るレンズ系と撮像素子とを備えた撮像装置 の製造装置であって、  [0029] Further, the present invention is an apparatus for manufacturing an imaging apparatus including a lens system having a plurality of lens forces and an imaging element,
上記撮像素子を保持すると共に、上記撮像素子を移動させて、上記撮像素子の光 軸を基準軸に一致させるように調整する撮像素子保持部と、  An image sensor holding unit that holds the image sensor and adjusts the optical axis of the image sensor to coincide with a reference axis by moving the image sensor;
上記レンズ系を保持すると共に、上記レンズ系を移動させて、上記レンズ系の光軸 を上記撮像素子の光軸に一致させるように調整するレンズ系保持部と、 上記撮像素子からの出力に基づ!、て、上記撮像素子の光軸の上記基準軸からの ずれ量および上記レンズ系の光軸の上記撮像素子の光軸からのずれ量を算出し、こ の算出されたずれ量に基づいて上記撮像素子保持部およびレンズ系保持部の動作 を制御する一方、上記光軸が調整された後の上記レンズ系の MTF値を算出し、この 算出された MTF値を評価する演算制御処理部と、 While holding the lens system and moving the lens system, the optical axis of the lens system A lens system holding unit that adjusts the optical axis of the image sensor to coincide with the optical axis of the image sensor, and based on the output from the image sensor, the amount of deviation of the optical axis of the image sensor from the reference axis and the lens The amount of deviation of the optical axis of the system from the optical axis of the image sensor is calculated, and the operations of the image sensor holding unit and the lens system holding unit are controlled based on the calculated amount of deviation, while the optical axis is An arithmetic control processing unit that calculates the MTF value of the lens system after adjustment and evaluates the calculated MTF value;
上記演算制御処理部による上記 MTF値の評価結果が可であれば、上記レンズ系 を上記撮像素子に対して固定する固定部と  If the evaluation result of the MTF value by the arithmetic control processing unit is acceptable, a fixing unit that fixes the lens system to the image sensor
を備えたことを特徴として!/ヽる。  It is characterized by having! / Speak.
[0030] 上記構成によれば、上記演算制御処理部による演算 *制御によって、上記レンズ系 の光軸調整と MTF評価とを連続して行うことができる。したがって、上記レンズ系に 対する光軸調整工程と検査工程とを集約化でき、撮像装置の製造工程を簡略ィ匕して 製造コストの削減を図ることができる。さらに、上記レンズ系の解像力の指標である M[0030] According to the above configuration, the optical axis adjustment of the lens system and the MTF evaluation can be continuously performed by the calculation * control by the calculation control processing unit. Therefore, the optical axis adjustment process and the inspection process for the lens system can be integrated, and the manufacturing process of the imaging device can be simplified and the manufacturing cost can be reduced. Furthermore, M, which is an index of resolving power of the above lens system
TFの評価結果が可であるレンズ系のみを固定することができる一方、 MTFの評価 結果が否である場合には光軸の再調整を行うことが可能になり、不良品の発生率を 低減することができる。さら〖こ、光軸の再調整を行っても MTFの評価結果が否である 場合には上記レンズ系を固定しないので、上記撮像素子やレンズ系の再利用するこ とも可能になる。 Only lens systems with acceptable TF evaluation results can be fixed. On the other hand, if the MTF evaluation result is negative, the optical axis can be readjusted, reducing the incidence of defective products. can do. Furthermore, even if the optical axis is readjusted, if the MTF evaluation result is negative, the lens system is not fixed, so that the image sensor and lens system can be reused.
[0031] また、 1実施の形態の撮像装置の製造装置では、 [0031] Further, in the imaging apparatus manufacturing apparatus of one embodiment,
レーザ光源と、  A laser light source;
上記レーザ光源からの平行光線の一部を偏向して上記基準軸との角度が上記レン ズ系の画角に応じた角度である平行光線束を生成して上記レンズ系に入射させる複 数の回折素子と  A plurality of parallel light beams are generated by deflecting a part of the parallel light beams from the laser light source and generating a parallel light beam whose angle with the reference axis is an angle corresponding to the angle of view of the lens system and entering the lens system. With diffraction elements
を含む光源部を備えている。  The light source part containing is provided.
[0032] この実施の形態によれば、上記複数の回折素子によって、上記基準軸との角度が 異なる複数の平行光線が同時に上記レンズ系に入射されるので、上記レンズ系を通 過して集光された光ビームは、像面上で 1点に集光されずに分離して集光される。し たがって、 1点に集光された光ビームを分離するためのレンズを必要とはせず、上記 レンズ系と一体となって撮像装置を構成する撮像素子をそのまま光軸調整用の撮像 素子として使用することができる。さらに、複数の画角に対応した光線によって上記レ ンズ系の光軸を精度良く調整することができる。 [0032] According to this embodiment, since the plurality of parallel light beams having different angles with respect to the reference axis are simultaneously incident on the lens system by the plurality of diffraction elements, the light beams are collected through the lens system. The emitted light beam is focused on the image plane without being focused at a single point. Therefore, a lens for separating the light beam collected at one point is not necessary. An image pickup device that forms an image pickup apparatus integrally with the lens system can be used as it is as an image pickup device for optical axis adjustment. Furthermore, the lens optical axis can be adjusted with high accuracy by light beams corresponding to a plurality of angles of view.
[0033] また、 1実施の形態の撮像装置の製造装置では、  [0033] In the imaging device manufacturing apparatus according to one embodiment,
上記回折素子に、 MTF測定用のパターンが形成されている。  A pattern for MTF measurement is formed on the diffraction element.
[0034] この実施の形態によれば、上記 MTF測定用のスリットやチャートを上記回折素子と は別に設ける必要が無ぐ上記回折素子を用いて MTF値を算出することができる。 したがって、余計な検査系の光学調整を行う必要がなぐ上記レンズ系の光軸調整 に弓 Iき続 、て効率良く上記レンズ系の MTF評価を行うことができる。 [0034] According to this embodiment, the MTF value can be calculated using the diffraction element without the need to provide the MTF measurement slit or chart separately from the diffraction element. Therefore, it is possible to efficiently perform the MTF evaluation of the lens system by continuously adjusting the optical axis of the lens system, which does not require extra optical adjustment of the inspection system.
[0035] また、 1実施の形態の撮像装置の製造装置では、 [0035] Further, in the imaging apparatus manufacturing apparatus of one embodiment,
上記固定部は、  The fixed part is
紫外線硬化性接着剤を供給する接着剤供給部と、  An adhesive supply section for supplying an ultraviolet curable adhesive;
上記紫外線硬化性接着剤に対して紫外線を照射する紫外線照射部と を含んでいる。  And an ultraviolet irradiation section for irradiating the ultraviolet curable adhesive with ultraviolet rays.
[0036] この実施の形態によれば、上記 MTFの評価結果が可であるレンズ系の固定を、紫 外線硬化性接着剤とそれに対する紫外線照射とによって、速やかに行うことができる  [0036] According to this embodiment, it is possible to quickly fix the lens system for which the MTF evaluation result is acceptable, by using the ultraviolet ray curable adhesive and the ultraviolet ray irradiation thereto.
[0037] また、この発明は、複数のレンズ力も成るレンズ系と撮像素子とを備えた撮像装置 の製造方法であって、 [0037] Further, the present invention is a method of manufacturing an imaging device including a lens system having a plurality of lens forces and an imaging element,
基準軸上にある光源からの光を受光した上記撮像素子からの出力に基づ!、て、上 記レンズ系の光軸の上記撮像素子の光軸からのずれ量を求め、この求められたずれ 量に基づいて上記レンズ系を移動させて上記レンズ系の光軸を上記撮像素子の光 軸に一致させる光軸調整工程と、  Based on the output from the image sensor that received light from the light source on the reference axis, the amount of deviation of the optical axis of the lens system from the optical axis of the image sensor was obtained, and this was obtained. An optical axis adjustment step of moving the lens system based on the amount of deviation to align the optical axis of the lens system with the optical axis of the imaging element;
上記光源からの光を、上記光軸が調整されたレンズ系を介して上記撮像素子の受 光面上に結像させて上記レンズ系の MTF値を算出し、この算出された MTF値を評 価する MTF算出'評価工程と、  The light from the light source is imaged on the light receiving surface of the image sensor through the lens system with the optical axis adjusted to calculate the MTF value of the lens system, and the calculated MTF value is evaluated. MTF calculation 'evaluation process,
上記 MTF値の評価結果が可であれば、上記レンズ系を上記撮像素子に対して固 定するレンズ系固定工程と を備えたことを特徴として!/ヽる。 If the evaluation result of the MTF value is acceptable, a lens system fixing step for fixing the lens system to the imaging device; It is characterized by having! / Speak.
[0038] 上記構成によれば、上記レンズ系の光軸調整と MTF評価とを連続して行うことがで きる。したがって、上記レンズ系に対する光軸調整工程と検査工程とを集約化でき、 撮像装置の製造工程を簡略ィ匕して製造コストの削減を図ることができる。さらに、上 記レンズ系の解像力の指標である MTFの評価結果が可であるレンズ系のみを固定 することができると共に、 MTFの評価結果が否である場合には光軸の再調整を行う ことが可能になり、不良品の発生率を低減することができる。さらに、光軸の再調整を 行っても MTFの評価結果が否である場合には上記レンズ系を固定しないので、上 記撮像素子やレンズ系の再利用することも可能になる。  [0038] According to the above configuration, the optical axis adjustment and MTF evaluation of the lens system can be performed continuously. Therefore, the optical axis adjustment process and the inspection process for the lens system can be integrated, and the manufacturing process of the imaging device can be simplified and the manufacturing cost can be reduced. In addition, it is possible to fix only the lens system for which the MTF evaluation result, which is an index of the resolving power of the lens system, is acceptable, and readjust the optical axis if the MTF evaluation result is negative. It is possible to reduce the occurrence rate of defective products. Furthermore, if the MTF evaluation result is negative even if the optical axis is readjusted, the lens system is not fixed, so that the image sensor and lens system can be reused.
[0039] また、 1実施の形態の撮像装置の製造方法では、  [0039] Further, in the manufacturing method of the imaging device according to one embodiment,
上記光軸調整工程では、  In the optical axis adjustment step,
上記光源としてレーザ光源を用い、  Using a laser light source as the light source,
上記レーザ光源とレンズ系との間に配置された複数の回折素子によって、上記レー ザ光源からの平行光線の一部を偏向して上記基準軸との角度が上記レンズ系の画 角に応じた角度である平行光線束を生成して上記レンズ系に入射させる。  A plurality of diffractive elements disposed between the laser light source and the lens system deflect some of the parallel light rays from the laser light source, and the angle with the reference axis corresponds to the angle of view of the lens system. A parallel light beam that is an angle is generated and incident on the lens system.
[0040] この実施の形態によれば、上記複数の回折素子によって、上記基準軸との角度が 異なる複数の平行光線が同時に上記レンズ系に入射されるので、上記レンズ系を通 過して集光された光ビームは、像面上で 1点に集光されずに分離して集光される。し たがって、 1点に集光された光ビームを分離するためのレンズを必要とはせず、上記 レンズ系と一体となって撮像装置を構成する撮像素子をそのまま光軸調整用の撮像 素子として使用することができる。さらに、複数の画角に対応した光線によって上記レ ンズ系の光軸を精度良く調整することができる。  [0040] According to this embodiment, since the plurality of parallel light beams having different angles with respect to the reference axis are simultaneously incident on the lens system by the plurality of diffraction elements, the light beams are collected through the lens system. The emitted light beam is focused on the image plane without being focused at a single point. Therefore, a lens for separating the light beam condensed at one point is not required, and the image sensor that forms the image pickup apparatus integrally with the lens system is used as it is for adjusting the optical axis. Can be used as Furthermore, the lens optical axis can be adjusted with high accuracy by light beams corresponding to a plurality of angles of view.
[0041] また、 1実施の形態の撮像装置の製造方法では、  [0041] In the manufacturing method of the imaging device according to one embodiment,
上記回折素子には MTF測定用のパターンが形成されており、上記 MTF算出-評 価工程では、上記 MTF測定用のパターンを通過した上記光源からの光を用いる。  A pattern for MTF measurement is formed on the diffraction element. In the MTF calculation-evaluation step, light from the light source that has passed through the pattern for MTF measurement is used.
[0042] この実施の形態によれば、上記 MTF測定用のスリットやチャートを上記回折素子と は別に設ける必要が無ぐ上記回折素子を用いて MTF値を算出することができる。 したがって、余計な検査系の光学調整を行う必要がなぐ上記レンズ系の光軸調整 に弓 Iき続 、て効率良く上記レンズ系の MTF評価を行うことができる。 [0042] According to this embodiment, the MTF value can be calculated using the diffraction element without the need to provide the MTF measurement slit or chart separately from the diffraction element. Therefore, the optical axis adjustment of the above lens system without the need for extra optical adjustment of the inspection system In this way, MTF evaluation of the above lens system can be performed efficiently.
発明の効果  The invention's effect
[0043] 以上より明らかなように、この発明によれば、演算制御処理部によって移動部の動 作を制御して、撮像素子の受光面上における所定の位置に基準光線束の像が位置 するようにレンズ系を移動させるので、例えば上記受光面上における中心の位置に 上記基準光線束の像を位置させることによって、上記レンズ系を構成する複数のレン ズの偏心あるいはチルトを調整することができる。  As apparent from the above, according to the present invention, the operation of the moving unit is controlled by the arithmetic control processing unit, and the image of the reference beam is positioned at a predetermined position on the light receiving surface of the image sensor. Since the lens system is moved as described above, for example, by positioning the image of the reference beam at the center position on the light receiving surface, it is possible to adjust the eccentricity or tilt of the lenses constituting the lens system. it can.
[0044] さらに、上記演算制御処理部によって上記移動部の動作を制御して、上記撮像素 子の受光面上における所定の位置に基板の回折素子によって偏向された光線束の 像が位置するようにレンズ系を移動させるので、例えば上記基板の中心に対して点 対象に配列された上記回折素子によって偏向された光線束の像を上記受光面の中 心に対して点対称となるように配列させることによって、複数の画角に対応した光線 によって上記レンズ系の光軸を精度良く調整することができる。  [0044] Further, the operation of the moving unit is controlled by the arithmetic control processing unit so that the image of the light beam deflected by the diffraction element of the substrate is positioned at a predetermined position on the light receiving surface of the imaging element. For example, the image of the light beam deflected by the diffraction element arranged in a point object with respect to the center of the substrate is arranged so as to be symmetric with respect to the center of the light receiving surface. By doing so, the optical axis of the lens system can be adjusted with high accuracy by light rays corresponding to a plurality of angles of view.
[0045] また、 1実施の形態によれば、上記レンズ系の偏心あるいはチルトの調整および上 記レンズ系の光軸調整が終了した後に、続けて、上記演算制御処理部によって上記 レンズ系の解像力の指標である MTFを測定するので、上記レンズ系と撮像素子との 光軸'位置調整工程とレンズ系の光軸調整工程とレンズ系の検査工程とを集約化で きる。さらに、得られた MTF値と設計値 (目標値)との差の値が大きい場合には、再度 上記レンズ系の光軸調整を行うことができ、不良品の発生率を低減することができる 図面の簡単な説明  [0045] According to one embodiment, after the adjustment of the decentering or tilting of the lens system and the optical axis adjustment of the lens system are completed, the resolving power of the lens system is continuously processed by the arithmetic control processing unit. Since the MTF, which is an index of measurement, is measured, the optical axis position adjustment process between the lens system and the image sensor, the optical axis adjustment process of the lens system, and the inspection process of the lens system can be integrated. Furthermore, when the difference between the obtained MTF value and the design value (target value) is large, the optical axis of the lens system can be adjusted again, and the incidence of defective products can be reduced. Brief Description of Drawings
[0046] [図 1]この発明のレンズ系調整装置における概略構成図である。 FIG. 1 is a schematic configuration diagram of a lens system adjusting device according to the present invention.
[図 2]図 1における基板の平面図である。  FIG. 2 is a plan view of the substrate in FIG.
[図 3]図 1に示すレンズ系調整装置によってレンズ系の基準面と基準軸との直角出し を行う際の様子を示す図である。  FIG. 3 is a diagram showing a state when the lens system adjustment device shown in FIG. 1 makes a right angle between a reference surface of a lens system and a reference axis.
[図 4]図 1に示すレンズ系調整装置によってレンズ系と撮像素子との光軸'位置調整 を行う際の様子を示す図である。  FIG. 4 is a diagram showing a state when the optical axis position adjustment between the lens system and the image sensor is performed by the lens system adjusting device shown in FIG. 1.
[図 5]図 1に示すレンズ系調整装置によってレンズ系の光軸調整を行う際の様子を示 す図である。 [Fig. 5] Shows how the optical axis of a lens system is adjusted by the lens system adjusting device shown in Fig. 1. It is a figure.
[図 6]光軸調整後のレンズ系と撮像素子とを接着剤等によって固定した状態を示す 図である。  FIG. 6 is a diagram showing a state in which the lens system after adjustment of the optical axis and the image sensor are fixed with an adhesive or the like.
[図 7]第 2レンズ要素の調整前における撮像素子上の像を示す図である。  FIG. 7 is a diagram showing an image on the image sensor before adjustment of the second lens element.
[図 8]第 2レンズ要素の調整中における撮像素子上の像を示す図である。  FIG. 8 is a diagram showing an image on the image sensor during adjustment of the second lens element.
[図 9]第 2レンズ要素の調整完了における撮像素子上の像を示す図である。  FIG. 9 is a diagram showing an image on the image sensor when adjustment of the second lens element is completed.
[図 10]図 9におけるスリットの像の強度分布を求める際の方向を示す図である。  FIG. 10 is a diagram showing directions when obtaining the intensity distribution of the image of the slit in FIG.
[図 11A]図 10におけるラジアル方向への強度分布と MTFとを示す図である。  FIG. 11A is a diagram showing a radial intensity distribution and MTF in FIG.
[図 11B]図 10におけるラジアル方向への強度分布と MTFとを示す図である。  FIG. 11B is a diagram showing the radial intensity distribution and MTF in FIG.
[図 12A]図 10におけるタンジェンシャル方向への強度分布と MTFとを示す図である  FIG. 12A is a diagram showing the intensity distribution and MTF in the tangential direction in FIG.
[図 12B]図 10におけるタンジェンシャル方向への強度分布と MTFとを示す図である FIG. 12B is a diagram showing the intensity distribution in the tangential direction and MTF in FIG.
[図 13]従来の MTF測定装置の概略構成図である。 FIG. 13 is a schematic configuration diagram of a conventional MTF measuring apparatus.
[図 14]図 13に示す MTF測定装置によって得られた強度分布を示す図である。  FIG. 14 is a diagram showing an intensity distribution obtained by the MTF measuring apparatus shown in FIG.
[図 15]図 14に示す強度分布に基づく MTF値を示す図である。  FIG. 15 is a diagram showing MTF values based on the intensity distribution shown in FIG.
[図 16]従来の光軸調整装置の概略構成図である。  FIG. 16 is a schematic configuration diagram of a conventional optical axis adjusting device.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0047] 以下、この発明を図示の実施の形態により詳細に説明する。図 1は、本実施の形態 のレンズ系調整装置における概略構成図である。  Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. FIG. 1 is a schematic configuration diagram of the lens system adjusting apparatus according to the present embodiment.
[0048] 本レンズ系調整装置は、光源 21,レンズ系 22,基板 24,撮像素子 25,保持部 26,第 1 移動機構 27および演算制御処理部 28で概略構成されている。光源 21は、レーザ素 子を有して、基準軸 Aとなる平行光線を発生する。レンズ系 22は、複数のレンズで構 成されると共に、調整の対象となる。基板 24は、光源 21とレンズ系 22との間に配置さ れると共に、光源 21で発生した平行光線の一部を偏向して得られた平行光をレンズ 系 22に入射させる複数の回折素子 23が設けられている。保持部 26は、基準軸 A上 におけるレンズ系 22の後に配置されて、光源 21からの光を受光する CCD等で成る 撮像素子 25を保持する。尚、この撮像素子 25は、調整後にレンズ系 22と一体にな つて、デジタルカメラ等のカメラレンズを構成する。第 1移動機構 27は、撮像素子 25 を保持部 26と共に移動させる。演算制御処理部 28は、撮像素子 25の出力に基づい て、レンズ系 22の光学的評価値を算出する。さらに、撮像素子 25の移動を制御する ための制御量を算出し、この制御量に基づく制御信号を生成して第 1移動機構 27に 出力する。 This lens system adjusting device is roughly configured by a light source 21, a lens system 22, a substrate 24, an image sensor 25, a holding unit 26, a first moving mechanism 27, and an arithmetic control processing unit 28. The light source 21 has a laser element and generates a parallel light beam serving as a reference axis A. The lens system 22 includes a plurality of lenses and is an adjustment target. The substrate 24 is disposed between the light source 21 and the lens system 22 and a plurality of diffractive elements 23 that allow the parallel light obtained by deflecting part of the parallel light generated by the light source 21 to enter the lens system 22. Is provided. The holding unit 26 is disposed after the lens system 22 on the reference axis A, and holds an image sensor 25 that is a CCD or the like that receives light from the light source 21. The image sensor 25 is integrated with the lens system 22 after adjustment. Thus, a camera lens such as a digital camera is constructed. The first moving mechanism 27 moves the image sensor 25 together with the holding unit 26. The arithmetic control processing unit 28 calculates an optical evaluation value of the lens system 22 based on the output of the image sensor 25. Further, a control amount for controlling the movement of the image sensor 25 is calculated, and a control signal based on this control amount is generated and output to the first moving mechanism 27.
[0049] 図 2は、上記基板 24の平面図である。図 2に示すように、基板 24には、回折素子 2 3が、レンズ系 22の画角に対応した位置に点対称となるように、例えば輪帯状に配置 されて形成されている。さらに、円形に配置された回折素子 23の中央部には、光源 2 1からの光を通過させて基準軸 Aとなる平行光線 (以下、基準光線と言う)を生成する 開口 29が形成されている。尚、回折素子 23は、その回折光における基準軸 Aとの角 度がレンズ系 22の画角に応じた角度になるように配列されている。また、不要な回折 光がレンズ系 22に入射しな 、ように、配置が考慮されて 、る。  FIG. 2 is a plan view of the substrate 24. As shown in FIG. 2, the diffractive element 23 is formed on the substrate 24 so as to be point-symmetric at a position corresponding to the angle of view of the lens system 22, for example, in a ring shape. In addition, an opening 29 is formed in the central portion of the diffraction element 23 arranged in a circle so as to allow the light from the light source 21 to pass therethrough and generate a parallel light beam serving as a reference axis A (hereinafter referred to as a reference light beam). Yes. The diffractive elements 23 are arranged so that the angle of the diffracted light with respect to the reference axis A is an angle corresponding to the angle of view of the lens system 22. Further, the arrangement is taken into consideration so that unnecessary diffracted light does not enter the lens system 22.
[0050] 尚、上記基準軸 Aとなる基準光線を生成する開口 29の大きさ、および、レンズ系 22 の画角に対応して配置された回折素子 23の大きさは、レンズ系 22の入射瞳に入射 する各平行光の直径が、レンズ系 22の入射瞳よりも大きくなるように設定されている。 これによつて、レンズ系 22の入射瞳中心と本レンズ系調整装置の基準軸とを一致さ せる際の調整精度を緩和することが可能になる。  [0050] The size of the aperture 29 that generates the reference beam serving as the reference axis A and the size of the diffractive element 23 arranged corresponding to the angle of view of the lens system 22 are determined by the incidence of the lens system 22. The diameter of each parallel light incident on the pupil is set to be larger than the entrance pupil of the lens system 22. As a result, it is possible to relax the adjustment accuracy when the center of the entrance pupil of the lens system 22 and the reference axis of the present lens system adjustment device are matched.
[0051] さら〖こ、上記基板 24における上記 MTFを検査する画角に対応した位置には、 MT F測定用のスリット 30が設けられている。このスリット 30は、点像,線像およびエッジ像 等の一般的に MTF値を測定する事が可能なものであればどの様な形状でも構わな い。本実施の形態の場合には、タンジュンシャル方向およびラジアル方向の MTF値 測定を前提として 、るため、上記両方向に対して平行な 2本の直線で成る十字線を 用いている。上記タンジェンシャル方向およびラジアル方向は、図 2に示す通りである  In addition, a slit 30 for MTF measurement is provided at a position on the substrate 24 corresponding to the angle of view for inspecting the MTF. The slit 30 may have any shape as long as it can measure the MTF value, such as a point image, a line image, and an edge image. In the case of the present embodiment, since the MTF values in the tangential and radial directions are assumed to be measured, a crosshair composed of two straight lines parallel to the two directions is used. The tangential and radial directions are as shown in FIG.
[0052] また、上記 MTF測定用のスリット 30は、平行光線を発生する光源 21側から、例え ば、白色 LED (発光ダイオード)やハロゲンランプ等の照明装置 (図示せず)によって 照明されている。その際に、上記照明装置は、各スリット 30を透過する光の強度が一 様となるように設定されている。また、基板 24における回折素子 23,開口 29およびス リット 30を除く領域には、光源 21からの平行光が透過しないようにマスキング処理が 施されて、不要な光がレンズ系 22に入射しな 、ように構成されて!、る。 [0052] The slit 30 for MTF measurement is illuminated from the side of the light source 21 that generates parallel light by, for example, an illumination device (not shown) such as a white LED (light emitting diode) or a halogen lamp. . At this time, the illumination device is set so that the intensity of light transmitted through each slit 30 is uniform. In addition, the diffraction element 23, the opening 29, and the The area excluding the lit 30 is configured so that the parallel light from the light source 21 is not transmitted and unnecessary light does not enter the lens system 22! RU
[0053] また、図 3に示すように、上記基準軸 Aとレンズ系 22の基準面との直角出しを行うた めに、基準軸 A上に配置された光分岐素子 31およびアパーチャ 32と、光源 21によ つて照射されてレンズ系 22の基準面および光分岐素子 31で反射した反射光を検出 する光検出器 33とを、備えている。さらに、図 1に示すように、レンズ系 22を構成する 一部のレンズ要素 (以下、第 1レンズ要素と言う) 39を基準軸 Aに対して固定して保持 する第 1保持ユニット 34と、レンズ系 22の残りのレンズ要素 (以下、第 2レンズ要素と 言う) 40を保持する第 2保持ユニット 35と、第 2保持ユニット 35を移動させる第 2移動 機構 36とを、備えている。そして、演算制御処理部 28は、第 2保持ユニット 35の移動 を制御するための制御量を算出し、この制御量に基づく制御信号を生成して第 2移 動機構 36に出力するようになって 、る。  Further, as shown in FIG. 3, in order to make a right angle between the reference axis A and the reference plane of the lens system 22, the optical branching element 31 and the aperture 32 arranged on the reference axis A, And a photodetector 33 that detects the reflected light that is irradiated by the light source 21 and reflected by the reference plane of the lens system 22 and the light branching element 31. Further, as shown in FIG. 1, a first holding unit 34 that holds a part of lens elements (hereinafter referred to as a first lens element) 39 constituting the lens system 22 fixedly with respect to a reference axis A, A second holding unit 35 that holds the remaining lens elements (hereinafter referred to as second lens elements) 40 of the lens system 22 and a second moving mechanism 36 that moves the second holding unit 35 are provided. Then, the arithmetic control processing unit 28 calculates a control amount for controlling the movement of the second holding unit 35, generates a control signal based on this control amount, and outputs it to the second moving mechanism 36. And
[0054] また、上記レンズ系 22の設計に応じて、メカニカルシャッター (以下、メカシャッター と言う) 37を配置したり、撮像素子 25上に IR (赤外線)カットフィルタやローノ スフィルタ 等のフィルタ 38を配置したりする必要がある。  [0054] Further, according to the design of the lens system 22, a mechanical shutter (hereinafter referred to as a mechanical shutter) 37 is arranged, or an IR (infrared) cut filter, a low-pass filter, or the like filter 38 on the image sensor 25. Need to be placed.
[0055] 図 3〜図 6は、本レンズ系調整装置による光軸調整手順を示す。また、図 7〜図 9は 、撮像素子 25上に形成された集光スポットおよび十字型のスリット像を示す。また、 図 10〜図 12は、本レンズ系調整装置による MTF算出方法を示す。以下、図 3〜図 12に従って、本レンズ系調整装置を用いた光軸調整方法および MTF測定方法に ついて詳細に説明する。  3 to 6 show an optical axis adjustment procedure by the lens system adjustment device. 7 to 9 show a condensing spot and a cross-shaped slit image formed on the image sensor 25. FIG. 10 to 12 show the MTF calculation method by this lens system adjusting device. Hereinafter, the optical axis adjustment method and MTF measurement method using this lens system adjustment apparatus will be described in detail with reference to FIGS.
[0056] 図 3〜図 6は、本レンズ系調整装置を用いたレンズ系 22と撮像素子 25との位置調 整手順と、レンズ系 22の光軸調整手順とを示して 、る。  FIGS. 3 to 6 show a procedure for adjusting the position of the lens system 22 and the image sensor 25 using the present lens system adjusting apparatus, and a procedure for adjusting the optical axis of the lens system 22.
[0057] 図 3において、先ず、基準軸 Aと撮像素子 25とが直交し、且つ、基準軸 Aと撮像素 子 25の中心とがー致するように調整を行う。  In FIG. 3, first, adjustment is performed so that the reference axis A and the image sensor 25 are orthogonal to each other and the reference axis A and the center of the image sensor 25 are aligned.
[0058] 具体的には、上記光源 21から放射され、回折素子 23が形成された基板 24の中心 部に配置された開口 29および光分岐素子 31としてのハーフミラーを通過した基準光 線の一部 (以下、中心軸光線と言う)が、アパーチャ 32を通過して撮像素子 25に到達 し、撮像素子 25のカバーガラス (図示せず)で反射されて再度アパーチャ 32を通過し 、 ハーフミラー 31で基準軸 Aと直交する方向へ反射されて光軸調整用の光検出器 3 3としての撮像素子で検出されるように、第 1移動機構 27によって撮像素子 25の Y軸 に対するあおり角 Θおよび X軸に対するあおり角 φを調整する。この場合、図示して は ヽな 、が、撮像素子 33からの出力は演算制御処理部 28に入力されるようになつ ており、演算制御処理部 28によって上記中心軸光線の撮像素子 33の中心力もの Z 軸方向へのずれ量と Y軸方向へのずれ量とが求められ、 Z軸方向へのずれ量に基づ いて Y軸に対するあおり角 Θが算出される一方、 Y軸方向へのずれ量に基づいて X 軸に対するあおり角 φが算出される。そして、算出されたあおり角 θ , φに基づく制御 信号が生成されて、第 1移動機構 27に出力されるのである。 Specifically, one of the reference light beams emitted from the light source 21 and passed through the half mirror as the light branching element 31 and the opening 29 disposed at the center of the substrate 24 on which the diffraction element 23 is formed. (Hereinafter referred to as the central axis ray) passes through the aperture 32, reaches the image sensor 25, is reflected by the cover glass (not shown) of the image sensor 25, and passes through the aperture 32 again. Reflected in the direction perpendicular to the reference axis A by the half mirror 31 and detected by the image sensor as the optical axis adjusting photodetector 33, the first moving mechanism 27 Adjust the tilt angle Θ and the tilt angle φ with respect to the X axis. In this case, although not shown in the figure, the output from the image sensor 33 is input to the arithmetic control processing unit 28, and the arithmetic control processing unit 28 causes the center of the image sensor 33 of the central axis ray to be centered. The amount of displacement in the Z-axis direction and the amount of displacement in the Y-axis direction are obtained, and the tilt angle Θ relative to the Y-axis is calculated based on the amount of displacement in the Z-axis direction. The tilt angle φ with respect to the X axis is calculated based on the amount of deviation. Then, a control signal based on the calculated tilt angles θ and φ is generated and output to the first moving mechanism 27.
[0059] 次に、上記撮像素子 25からの信号に基づいて、演算制御処理部 28によって、基 準軸 Aである上記中心軸光線の撮像素子 25の中心力 の XY軸方向へのずれ量が 求められ、このずれ量に基づいて XY軸方向への移動量が算出される。さらに、算出 された移動量に基づく制御信号が生成されて第 1移動機構 27に出力される。そして 、第 1移動機構 27によって撮像素子 25が XY方向に移動されて、基準軸 Aと撮像素 子 25における受光面の中心とがー致するように撮像素子 25の位置が調整される。こ うして、レンズ系 22の基準面 (撮像素子 25の表面)と本レンズ系調整装置の基準軸( 基準軸 A)との角度と位置とが予め調整されるのである。尚、撮像素子 25の表面に IR カットフィルタやローパスフィルタ等のフィルタ 38で成る平行平板が取り付けられてい る場合には、上記平行平板の表面力ゝらの反射光を用いて、撮像素子 25の角度や位 置の調整を行ってもよい。  [0059] Next, based on the signal from the image sensor 25, the arithmetic control processor 28 determines the amount of deviation of the central force of the image sensor 25 in the XY axis direction with respect to the central axis light beam as the reference axis A in the XY axis direction. The amount of movement in the XY-axis direction is calculated based on this amount of deviation. Further, a control signal based on the calculated movement amount is generated and output to the first movement mechanism 27. Then, the image sensor 25 is moved in the X and Y directions by the first moving mechanism 27, and the position of the image sensor 25 is adjusted so that the reference axis A and the center of the light receiving surface of the image sensor 25 coincide. In this way, the angle and position between the reference plane of the lens system 22 (the surface of the image sensor 25) and the reference axis (reference axis A) of the present lens system adjusting device are adjusted in advance. When a parallel plate composed of a filter 38 such as an IR cut filter or a low-pass filter is attached to the surface of the image sensor 25, the reflected light of the surface force of the parallel plate is used to You may adjust the angle and position.
[0060] 次に、図 4に示すように、調整後における撮像素子 25の状態を保持したまま、第 1 保持ユニット 34によって、レンズ系 22を構成する第 1レンズ要素 39を固定する。そし て、第 1移動機構 27によって、基板 24の開口 29およびアパーチャ 32を通過した上 記中心軸光線が撮像素子 25上に集光されるように、撮像素子 25を +Z方向あるい は— Z方向にシフトさせる。この場合、演算制御処理部 28は、撮像素子 25からの信 号によって中心軸光線の像の照度を算出し、撮像素子 25を +Z方向あるいは— Z方 向に所定長ずつ移動させながら、上記算出された照度が最大となる位置を探し出す ようにする。あるいは、上記中心軸光線の像のスポット径が最小になる位置を探し出 してちよい。 Next, as shown in FIG. 4, the first lens element 39 constituting the lens system 22 is fixed by the first holding unit 34 while holding the state of the image sensor 25 after adjustment. Then, the first moving mechanism 27 moves the image sensor 25 in the + Z direction or so that the central axis light beam that has passed through the opening 29 and the aperture 32 of the substrate 24 is condensed on the image sensor 25. Shift in Z direction. In this case, the arithmetic control processing unit 28 calculates the illuminance of the image of the central axis ray based on the signal from the image sensor 25, and moves the image sensor 25 in the + Z direction or the −Z direction by a predetermined length while moving the image sensor 25 above. Try to find the position where the calculated illuminance is maximum. Alternatively, find the position where the spot diameter of the image of the central axis ray is minimized. You can do it.
[0061] 固定された上記第 1レンズ要素 39にレンズ偏心やチルトがある場合には、第 1レン ズ要素 39に入射された上記中心軸光線は、撮像素子 25の中心部ではなく若干ず れた位置に集光されることになる。その場合、結像性能の観点から上記中心軸光線 が撮像素子 25に直角に入射することが重要であるため、第 1移動機構 27を用いて、 像のぼけ方が対称となるように撮像素子 25のあおり角 θ , φの調整を行い、さらに、 撮像素子 25まで到達した光が撮像素子 25の中心に位置するように XY方向への調 整を行う。その際に、随時、士 Z方向にもシフトさせて撮像素子 25に対する集光の低 下を修正する。この場合、演算制御処理部 28は、先ず、撮像素子 25上における上 記中心軸光線の像の中心とこの中心の照度を基準とする照度分布を算出し、この算 出した照度分布を一様にするための撮像素子 25のあおり角 θ , φを算出し、算出し たあおり角 θ , φに基づく制御信号を第 1移動機構 27に出力する。次に、上記中心 軸光線の像の中心を撮像素子 25の中心に位置させるための制御信号を生成して第 1移動機構 27に出力するのである。  [0061] When the fixed first lens element 39 has lens decentering or tilting, the central axis light beam incident on the first lens element 39 is slightly shifted from the center of the image sensor 25. It will be condensed at the position. In that case, since it is important that the central axis ray is incident on the image sensor 25 at a right angle from the viewpoint of image forming performance, the first moving mechanism 27 is used to make the image blur symmetric. The tilt angles θ and φ of 25 are adjusted, and further, the adjustment in the XY directions is performed so that the light reaching the image sensor 25 is positioned at the center of the image sensor 25. At that time, the lowering of the light condensing with respect to the image sensor 25 is corrected by shifting in the Z direction at any time. In this case, the arithmetic control processing unit 28 first calculates an illuminance distribution on the image sensor 25 with reference to the center of the center axis ray image and the illuminance at the center, and the calculated illuminance distribution is uniform. The tilt angles θ and φ of the image pickup device 25 are calculated, and a control signal based on the calculated tilt angles θ and φ is output to the first moving mechanism 27. Next, a control signal for positioning the center of the center axis ray image at the center of the image sensor 25 is generated and output to the first moving mechanism 27.
[0062] 次に、図 5に示すように、上記アパーチャ 32を除去すると共に、レンズ系 22を構成 する残りの第 2レンズ要素 40を第 2保持ユニット 35によって固定し、随時、第 1移動機 構 27によって撮像素子 25上に集光スポットが結像されるように撮像素子 25の Z方向 の位置を調整しながら、第 2移動機構 36によって第 2保持ユニット 35を XYZ方向に シフトすると共に、あおり角を調整する。その場合における撮像素子 25上の像は、図 7〜図 9に示すように変化する。図 7および図 8は、レンズ系 22の第 1レンズ要素 39と 調整の対象となる第 2レンズ要素 40とが相対的に偏心あるいはチルトしている場合を 示している。但し、図 7は第 2レンズ要素 40の調整前であり、図 8は第 2レンズ要素 40 の調整中である。  Next, as shown in FIG. 5, the aperture 32 is removed, and the remaining second lens element 40 constituting the lens system 22 is fixed by the second holding unit 35. The second holding unit 35 is shifted in the XYZ direction by the second moving mechanism 36 while adjusting the position in the Z direction of the image sensor 25 so that the focused spot is imaged on the image sensor 25 by the structure 27. Adjust the tilt angle. In this case, the image on the image sensor 25 changes as shown in FIGS. 7 and 8 show a case where the first lens element 39 of the lens system 22 and the second lens element 40 to be adjusted are relatively decentered or tilted. However, FIG. 7 is before the adjustment of the second lens element 40, and FIG. 8 is the adjustment of the second lens element 40.
[0063] 図 7においては、上記基板 24の開口 29を通過した上記基準光線の集光スポット 42 と撮像素子 25の中心 41との位置がずれている。しかしながら、第 2レンズ要素 40の X YZ調整およびあおり角調整を行うことによって、図 9に示すように、基準光線の集光 スポット 42が撮像素子 25の中心 41に一致する。この場合、演算制御処理部 28は、 撮像素子 25上における集光スポット 42と撮像素子 25の中心 41とのずれ量に応じて 上記基準光線の集光スポット 42を撮像素子 25の中心に位置させるための制御信号 を生成して第 2移動機構 36に出力する。 In FIG. 7, the positions of the condensing spot 42 of the reference light beam that has passed through the opening 29 of the substrate 24 and the center 41 of the image sensor 25 are shifted. However, by performing XYZ adjustment and tilt angle adjustment of the second lens element 40, the converging spot 42 of the reference beam coincides with the center 41 of the image sensor 25 as shown in FIG. In this case, the arithmetic control processing unit 28 corresponds to the amount of deviation between the condensing spot 42 on the image sensor 25 and the center 41 of the image sensor 25. A control signal for positioning the condensing spot 42 of the reference beam at the center of the image sensor 25 is generated and output to the second moving mechanism 36.
[0064] さらに、上記基板 24における各回折素子 23を通過して偏向された各画角に対応し て光線は、レンズ系 22に入射されて撮像素子 25上に集光スポット 43の群を形成す る。この集光スポット 43の群は、第 2レンズ要素 40の XYZ調整およびあおり角調整を 行うことによって、図 9に示すように、中心光線の集光スポット 42に対して点対称とな るように配置される。その場合、演算制御処理部 28は、撮像素子 25上における集光 スポット 43の照度分布に基づいて集光スポット 43の群の重心を算出し、この算出した 重心を集光スポット 42に位置させるための制御信号を生成して第 2移動機構 36に出 力するのである。 [0064] Further, the light beam is incident on the lens system 22 corresponding to each angle of view that has been deflected by passing through each diffraction element 23 on the substrate 24 to form a group of focused spots 43 on the image sensor 25. The This group of focused spots 43 is made point-symmetric with respect to the focused spot 42 of the central ray as shown in FIG. 9 by performing XYZ adjustment and tilt angle adjustment of the second lens element 40. Be placed. In that case, the arithmetic control processing unit 28 calculates the center of gravity of the group of the condensing spots 43 based on the illuminance distribution of the condensing spot 43 on the image sensor 25, and positions the calculated center of gravity in the condensing spot 42. This control signal is generated and output to the second moving mechanism 36.
[0065] したがって、図 9に示すように上記第 2レンズ要素 40を調整すれば、複数のレンズ で構成されたレンズ系 22の第 1レンズ要素 39と第 2レンズ要素 40と力 略偏心ゃチ ルトがないように調整されていることになる。さらに、撮像素子 25についても、レンズ 系 22に対して最適な位置に調整されていることになる。  Therefore, if the second lens element 40 is adjusted as shown in FIG. 9, the force between the first lens element 39 and the second lens element 40 of the lens system 22 composed of a plurality of lenses is substantially decentered. It is adjusted so that there is no default. Furthermore, the image sensor 25 is also adjusted to an optimum position with respect to the lens system 22.
[0066] 尚、図 7〜図 9においては、上記各集光スポット 42,43を簡易的に全て丸印で表示 している。し力しながら、実際は、レンズチルトや偏心等による光学収差が発生するた めに、集光スポット 42,43は丸にはならな!ヽ。  In FIGS. 7 to 9, all the focused spots 42 and 43 are simply indicated by circles. However, in reality, the optical spots due to lens tilt, decentration, etc. are generated, so the condensing spots 42 and 43 do not become round!
[0067] また、図 9に示す段階では仮調整中であるため、次の MTF検査工程が終了するま ではレンズ系 22における第 2レンズ系 40および撮像素子 25は固定しないでおく。  In addition, since temporary adjustment is being performed at the stage shown in FIG. 9, the second lens system 40 and the image sensor 25 in the lens system 22 are not fixed until the next MTF inspection process is completed.
[0068] 次に、上記 MTF値を測定する方法について説明する。この MTF値の測定は、回 折素子 23が形成された基板 24上に形成されて光源側より一様に照明される十字型 のスリット 30を用いて行われる。  [0068] Next, a method for measuring the MTF value will be described. The measurement of the MTF value is performed using a cross-shaped slit 30 formed on the substrate 24 on which the diffraction element 23 is formed and illuminated uniformly from the light source side.
[0069] 先ず、上述したようにして上記第 1,第 2レンズ要素 39,40および撮像素子 25の光軸 が調整された後のレンズ系 22を、撮像素子 25の受光面上におけるスリット 30の像の 照度が最大になるように光軸上を移動させて基板 24の表面にレンズ系 22の焦点を 合わせ、撮像素子 25上に十字型のスリット 30を結像させる。この状態においては、図 9に示すように、十字型のスリット 30の像 44が撮像素子 25の受光面上に結像されて いる。そうした後、演算制御処理部 28によって、図 10に示すように、十字型のスリット 30の像 44における点線部分で、ラジアル方向およびタンジェンシャル方向に強度分 布を求めて、図 11Aおよび図 12Aに示すような強度分布を得る。そして、この強度分 布をフーリエ変換することによって、図 11Bおよび図 12Bに示すように、簡易的に M TF値を測定するのである。 First, the lens system 22 after the optical axes of the first and second lens elements 39 and 40 and the image sensor 25 are adjusted as described above is used for the slit 30 on the light receiving surface of the image sensor 25. The lens system 22 is focused on the surface of the substrate 24 so that the illuminance of the image is maximized, and the cross-shaped slit 30 is formed on the image sensor 25. In this state, as shown in FIG. 9, the image 44 of the cross-shaped slit 30 is formed on the light receiving surface of the image sensor 25. After that, the arithmetic control processing unit 28 makes a cross-shaped slit as shown in FIG. The intensity distribution is obtained in the radial direction and the tangential direction at the dotted line portion in 30 images 44, and the intensity distribution as shown in FIGS. 11A and 12A is obtained. Then, by performing Fourier transform on this intensity distribution, the MTF value is simply measured as shown in FIGS. 11B and 12B.
[0070] この段階で、特に上記 MTF値に問題がなければ (つまり、算出 MTF値と目的とす る MTF値との差の値が許容範囲内にあれば)、図 6に示すように、光軸調整後のレン ズ系 22の各レンズ要素 39,40と撮像素子 25とを、接着剤 45等によって固定する。ま た、上記 MTF値に問題があれば、目的とする MTF値と算出 MTF値との差の値に 基づいて、第 2移動機構 36によって第 2保持ユニット 35が制御されて、再度レンズ系 22の光軸調整が上述のようにして行われる。  [0070] At this stage, if there is no particular problem with the MTF value (that is, if the difference between the calculated MTF value and the target MTF value is within the allowable range), as shown in FIG. The lens elements 39 and 40 of the lens system 22 after the optical axis adjustment and the image sensor 25 are fixed with an adhesive 45 or the like. If there is a problem with the MTF value, the second holding unit 35 is controlled by the second moving mechanism 36 based on the difference between the target MTF value and the calculated MTF value, and the lens system 22 is again detected. The optical axis adjustment is performed as described above.
[0071] 尚、上記第 1,第 2レンズ要素 39,40と撮像素子 25との固定は、例えば、接着剤供 給部 (図示せず)から接着剤 45として紫外線硬化性接着剤を供給し、紫外線照射部( 図示せず)によって紫外線を照射することによって行われる。また、 46は、光源 21と 基板 24との間に配置された NDフィルタである。  [0071] The first and second lens elements 39, 40 and the image sensor 25 are fixed by, for example, supplying an ultraviolet curable adhesive as an adhesive 45 from an adhesive supply unit (not shown). This is performed by irradiating ultraviolet rays by an ultraviolet irradiation unit (not shown). Reference numeral 46 denotes an ND filter disposed between the light source 21 and the substrate 24.
[0072] こうして、複数のレンズで構成されたレンズ系 22と撮像素子 25との光軸'位置調整 工程と、レンズ系 22の光軸調整工程と、上記 MTFを用いたレンズ系 22の検査工程 とを、連続して同じレンズ系調整装置によって行うことができる。また、上記検査工程 での結果に基づいて上記光軸調整工程を再度行うことによって、不良品の発生を低 減することができる。  [0072] Thus, the optical axis position adjustment step between the lens system 22 and the image pickup device 25 configured by a plurality of lenses, the optical axis adjustment step of the lens system 22, and the inspection step of the lens system 22 using the MTF. Can be continuously performed by the same lens system adjusting device. Moreover, the occurrence of defective products can be reduced by performing the optical axis adjustment step again based on the result of the inspection step.
[0073] また、その際における上記第 1移動機構 27および第 2移動機構 36による撮像素子  [0073] In addition, the image pickup device by the first moving mechanism 27 and the second moving mechanism 36 at that time
25および第 2保持ユニット 35の移動は、撮像素子 25,33からの出力に基づいて演算 制御処理部 28によって生成された制御信号によって行われる。したがって、レンズ系 22と撮像素子 25との光軸'位置調整とレンズ系 22の光軸調整とレンズ系 22の検査 とを、自動的に連続して行うことができるのである。  The movement of the 25 and the second holding unit 35 is performed by a control signal generated by the arithmetic control processing unit 28 based on the outputs from the imaging elements 25 and 33. Therefore, the optical axis position adjustment between the lens system 22 and the image sensor 25, the optical axis adjustment of the lens system 22, and the inspection of the lens system 22 can be performed automatically and continuously.
[0074] 以上のごとぐ本実施の形態においては、調整後にレンズ系 22と一体になつてデジ タルカメラ等のカメラレンズを構成する撮像素子 25に、保持部 26を介して撮像素子 2 5を移動させる第 1移動機構 27を設けている。そして、図 3に示すように、光源 21,開 口 29,光分岐素子 31,アパーチャ 32および光検出器 33を用いて、上記中心軸光線 と光検出器 33の中心とがー致するように第 1移動機構 27によって撮像素子 25の角 度および位置を調整するようにしている。したがって、レンズ系 22の基準面 (撮像素 子 25の表面)と調整装置の基準軸 (基準軸 A)との角度と位置とを予め調整することが できる。 In the present embodiment as described above, the image sensor 25 is moved via the holding unit 26 to the image sensor 25 that constitutes a camera lens such as a digital camera after being adjusted. A first moving mechanism 27 is provided. Then, as shown in FIG. 3, the light source 21, the aperture 29, the light branching element 31, the aperture 32, and the photodetector 33 are used, and the central axis light beam is The angle and position of the image sensor 25 are adjusted by the first moving mechanism 27 so that the center of the light detector 33 and the center of the photodetector 33 are aligned. Accordingly, the angle and position between the reference plane of the lens system 22 (the surface of the imaging element 25) and the reference axis (reference axis A) of the adjusting device can be adjusted in advance.
[0075] また、複数のレンズで構成されるレンズ系 22の第 1レンズ要素 39を第 1保持ュ-ッ ト 34によって固定し、像のぼけ方が撮像素子 25の中心に対して対称となって、上記 中心軸光線が撮像素子 25の中心に集光されるように、第 1移動機構 27によって撮 像素子 25を移動させるようにしている。したがって、調整後に一体になつてデジタル カメラ等のカメラレンズを構成するレンズ系 22と撮像素子 25との光軸調整および位 置調整を、連続して自動的に行うことができる。  [0075] In addition, the first lens element 39 of the lens system 22 composed of a plurality of lenses is fixed by the first holding unit 34, and the image blur is symmetric with respect to the center of the image sensor 25. Thus, the imaging device 25 is moved by the first moving mechanism 27 so that the central axis light beam is collected at the center of the imaging device 25. Therefore, the optical axis adjustment and the position adjustment between the lens system 22 and the image pickup device 25 that constitute a camera lens such as a digital camera can be automatically performed continuously after adjustment.
[0076] また、上記レンズ系 22の各画角に応じた位置に点対称となるように回折素子 23が 形成された基板 24を、光源 21と第 1レンズ要素 39との間に配置している。そして、レ ンズ系 22を構成する第 2レンズ要素 40を第 2保持ユニット 35によって固定すると共に 、上記基準光線の集光スポット 42が撮像素子 25の中心 41に一致し、基板 24の各回 折素子 23によって各画角に対応して偏向された光線の集光スポット 43の群が撮像 素子 25の中心 41に対して点対称になるように、第 2移動機構 36によって第 2保持ュ ニット 35を移動させるようにしている。したがって、複数の画角に対応した光線によつ てレンズ系 22の光軸を精度良く調整することができる。  [0076] Further, a substrate 24 on which a diffraction element 23 is formed so as to be point-symmetrical at a position corresponding to each angle of view of the lens system 22 is disposed between the light source 21 and the first lens element 39. Yes. Then, the second lens element 40 constituting the lens system 22 is fixed by the second holding unit 35, and the converging spot 42 of the reference beam coincides with the center 41 of the image sensor 25, so that each diffraction element of the substrate 24 is The second holding unit 35 is moved by the second moving mechanism 36 so that the group of converging spots 43 of the light beams deflected corresponding to each angle of view by 23 is point-symmetrical with respect to the center 41 of the image sensor 25. I try to move it. Therefore, the optical axis of the lens system 22 can be adjusted with high accuracy by light rays corresponding to a plurality of angles of view.
[0077] また、光軸が調整された上記レンズ系 22の焦点を基板 24の表面に合わせて、撮像 素子 25上に十字型のスリット 30を結像させる。そして、演算制御処理部 28によって、 十字型のスリット 30の像 44におけるラジアル方向およびタンジェンシャル方向への強 度分布を求め、この強度分布をフーリエ変換することによって、上記 MTF値を測定 するようにしている。したがって、レンズ系 22の光軸調整に続いて、レンズ系 22の解 像力の指標である MTF値を自動的に簡単に測定することができる。さらに、上記 MT F値の測定結果が悪 、場合には、上記 MTF値の測定結果に基づ 、てレンズ系 22 の光軸調整を再度行うことができる。したがって、不良品の発生率を低減できるので ある。  In addition, a cross-shaped slit 30 is imaged on the image sensor 25 with the focal point of the lens system 22 with the optical axis adjusted being adjusted to the surface of the substrate 24. Then, the MTF value is measured by obtaining the intensity distribution in the radial direction and the tangential direction in the image 44 of the cross-shaped slit 30 by the arithmetic control processing unit 28, and Fourier transforming this intensity distribution. ing. Therefore, following the optical axis adjustment of the lens system 22, the MTF value, which is an index of the resolving power of the lens system 22, can be measured automatically and easily. Furthermore, when the measurement result of the MTF value is bad, the optical axis adjustment of the lens system 22 can be performed again based on the measurement result of the MTF value. Therefore, the incidence of defective products can be reduced.
[0078] 尚、上記実施の形態においては、上記演算制御処理部 28に、撮像素子 25からの 出力信号に基づいて、光源 21からの平行光線がレンズ系 22によって撮像素子 25上 に集光されて形成された集光スポット 42,43の光強度のピーク値を求め、上記ピーク 値に応じて光源の光量を調節する上記光量調整手段としての機能を持たせることが できる。そうすることによって、エネルギー密度が高くなる集光スポットであっても、光 軸調整時に撮像素子 25においてスミアが発生しないように光量を制御することが可 會 になる。 In the above-described embodiment, the calculation control processing unit 28 receives the signal from the image sensor 25. Based on the output signal, the peak value of the light intensity of the converging spots 42 and 43 formed by collimating the parallel light beam from the light source 21 on the image sensor 25 by the lens system 22 is obtained, and according to the above peak value. A function as the light amount adjusting means for adjusting the light amount of the light source can be provided. By doing so, it is possible to control the amount of light so that smear does not occur in the image sensor 25 even when the optical axis is adjusted, even if the light spot has a high energy density.
[0079] また、上記実施の形態においては、 MTF測定用のパターンとして、基板 24に回折 素子 23とは別に MTF測定用のスリット 30を設けている。し力しながら、上記 MTF測 定用のパターンは、回折素子 23に形成することも可能である。こうした場合には、回 折素子 23とは別に MTF測定用のスリットやチャートを設ける必要がなぐ基板 24の 構成が簡単になる。さらに、回折素子 23を用いて MTFの測定を行うことができ、 MT F測定時の光学的調整を無くして、レンズ系 22の光軸調整に引き続 、て効率良く M TF測定を行うことができる。  In the above-described embodiment, the MTF measurement slit 30 is provided on the substrate 24 separately from the diffraction element 23 as an MTF measurement pattern. However, the MTF measurement pattern can also be formed on the diffraction element 23. In such a case, the configuration of the substrate 24 is simplified because it is not necessary to provide a slit or chart for MTF measurement separately from the diffraction element 23. Furthermore, the MTF can be measured using the diffraction element 23, and the optical adjustment at the time of MTF measurement is eliminated, and the MTF measurement can be performed efficiently following the optical axis adjustment of the lens system 22. it can.
[0080] また、上記実施の形態においては、各種調整に用いる撮像素子として、調整後に レンズ系 22と一体になつてデジタルカメラ等のカメラレンズを構成する撮像素子 25を 用いている。し力しながら、調整専用の撮像素子を用いても差し支えない。但し、そ の場合は、レンズ系 22の光軸調整および MTF値の測定が終了した後に、カメラレン ズを構成する撮像素子とレンズ系 22との位置調整を行う必要がある。  [0080] In the above-described embodiment, as an image sensor used for various adjustments, an image sensor 25 that forms a camera lens such as a digital camera integrally with the lens system 22 after the adjustment is used. However, there is no problem even if an image sensor dedicated for adjustment is used. However, in that case, after the optical axis adjustment of the lens system 22 and the measurement of the MTF value are completed, it is necessary to adjust the position of the imaging system and the lens system 22 constituting the camera lens.
[0081] また、上記実施の形態においては、上記レンズ系 22を第 1レンズ要素 39と第 2レン ズ要素 40との 2つのレンズ要素で構成しているが、 3以上のレンズ要素で構成されて いる場合も同様にしてレンズ系の光軸調整を行うことができる。その場合にも、最も撮 像素子 25に近い側のレンズ要素を第 2保持ユニット 35によって保持して、位置およ び角度を調整すればよい。  [0081] In the above embodiment, the lens system 22 is composed of two lens elements, the first lens element 39 and the second lens element 40, but is composed of three or more lens elements. In this case, the optical axis of the lens system can be adjusted in the same manner. Even in this case, the lens element closest to the imaging element 25 may be held by the second holding unit 35 to adjust the position and angle.
[0082] また、上記実施の形態においては、上記光源 21,基板 24,保持部 26,第 1移動機構 27,演算制御処理部 28,第 1保持ユニット 34,第 2保持ユニット 35および第 2移動機構 36で概略構成されてレンズ系 22および撮像素子 25に対する光学的調整を行うレン ズ系調整装置について述べてきた。ところが、上記レンズ系調整装置は、後に一体と なってデジタルカメラ等の撮像装置を構成するレンズ系 22および撮像素子 25に対し て光学的調整を行うのであるから、上記撮像装置の製造装置であると見なすこともで きる。 In the above embodiment, the light source 21, the substrate 24, the holding unit 26, the first moving mechanism 27, the calculation control processing unit 28, the first holding unit 34, the second holding unit 35, and the second movement The lens system adjusting device that is schematically configured by the mechanism 36 and performs optical adjustment on the lens system 22 and the image sensor 25 has been described. However, the above lens system adjusting device is integrated with the lens system 22 and the image sensor 25, which will later be integrated into a digital camera or the like. Therefore, it can be regarded as a manufacturing apparatus of the imaging apparatus.

Claims

請求の範囲 The scope of the claims
[1] 基準軸 (A)となる平行光線を発生するレーザ光源部 (21)と、  [1] A laser light source unit (21) that generates parallel light rays serving as a reference axis (A),
複数のレンズから成るレンズ系 (22)および撮像素子 (25)を含む被調整物と、 上記レーザ光源部 (21)と被調整物との間に配置されると共に、上記レーザ光源部( 21)からの平行光線の一部を偏向して上記基準軸 (A)との角度が上記レンズ系 (22) の画角に応じた角度である平行光線束を生成して上記レンズ系 (22)に入射させる複 数の回折素子 (23)と、中心部に位置して上記レーザ光源部 (21)からの平行光線の 一部を通過させて上記基準軸 (A)としての基準光線束を生成して上記レンズ系 (22) に入射させる開口 (29)とが形成された基板 (24)と、  A to-be-adjusted object including a lens system (22) and an image sensor (25) comprising a plurality of lenses, and disposed between the laser light source part (21) and the to-be-adjusted object, and the laser light source part (21) A part of the parallel light beam from the beam is deflected to generate a parallel light beam whose angle with the reference axis (A) is an angle corresponding to the angle of view of the lens system (22) to the lens system (22). A plurality of incident diffractive elements (23) and a part of the parallel light beam from the laser light source part (21) located at the center part are allowed to pass through to generate a reference beam bundle as the reference axis (A). A substrate (24) formed with an aperture (29) to be incident on the lens system (22),
上記レンズ系 (22)および撮像素子 (25)のうちの少なくとも何れか一方を移動させる 移動部 (27,36)と、  A moving unit (27, 36) for moving at least one of the lens system (22) and the image sensor (25);
上記撮像素子 (25)の出力に基づいて、上記撮像素子 (25)の受光面上における所 定の位置に上記基準光線束の像 (42)と上記偏向された光線束の像 (43)とを位置さ せるための上記レンズ系 (22)あるいは撮像素子 (25)の移動量を算出し、この算出し た移動量に基づいて上記移動部 (27, 36)の動作を制御する演算制御処理部 (28)と を備えたことを特徴とするレンズ系調整装置。  Based on the output of the image sensor (25), the image (42) of the reference beam bundle and the image (43) of the deflected beam bundle at a predetermined position on the light receiving surface of the image sensor (25) Is calculated by calculating the amount of movement of the lens system (22) or image sensor (25) for positioning the image sensor and controlling the operation of the moving unit (27, 36) based on the calculated amount of movement. A lens system adjusting device comprising: a section (28).
[2] 請求項 1に記載のレンズ系調整装置にお!、て、 [2] In the lens system adjusting device according to claim 1,!
上記基準軸 (A)上における上記基板 (24)と被調整物との間に配置された光分岐素 子 (31)と、  An optical branching element (31) disposed between the substrate (24) and the object to be adjusted on the reference axis (A);
上記基準軸 (A)上における上記光分岐素子 (31)と被調整物との間に配置されたァ パーチヤ (32)と、  An aperture (32) disposed between the optical branching element (31) and the object to be adjusted on the reference axis (A);
上記レーザ光源部 (21)から出射されると共に、上記基板 (24)の開口 (29),光分岐素 子 (31)およびアパーチャ (32)を通過して上記撮像素子 (25)の基準面で反射され、再 度上記アパーチャ (32)を通過して上記光分岐素子 (31)によって上記基準軸 (A)に直 交する方向に反射された光を検出する光検出器 (33)を  It is emitted from the laser light source section (21) and passes through the opening (29), the optical branching element (31), and the aperture (32) of the substrate (24), and then passes through the reference plane of the image sensor (25). A photodetector (33) for detecting the light reflected and reflected again in the direction perpendicular to the reference axis (A) by the optical branching element (31) after passing through the aperture (32) again.
備えたことを特徴とするレンズ系調整装置。  A lens system adjustment device comprising:
[3] 請求項 1に記載のレンズ系調整装置にお!、て、 [3] In the lens system adjusting device according to claim 1,!
上記基板 (24)の回折素子 (23)によって偏向されて上記レンズ系 (22)に入射される 上記平行光線束の直径、および、上記基板 (24)の開口 (29)を通過して上記レンズ系 (22)に入射される上記基準光線束の直径は、上記レンズ系 (22)の入射瞳の直径より も大きく設定されて ヽることを特徴とするレンズ系調整装置。 The light is deflected by the diffraction element (23) of the substrate (24) and is incident on the lens system (22). The diameter of the parallel light beam and the diameter of the reference light beam that passes through the opening (29) of the substrate (24) and enters the lens system (22) are the entrance pupil of the lens system (22). Lens system adjusting device characterized in that it is set larger than the diameter of the lens.
[4] 請求項 1に記載のレンズ系調整装置にお!、て、 [4] In the lens system adjusting device according to claim 1,!
上記移動部 (27,36)は、上記レンズ系 (22)と上記撮像素子 (25)とを移動させるよう になっており、  The moving unit (27, 36) is configured to move the lens system (22) and the imaging device (25).
上記基準軸 (A)に対して、上記レンズ系 (22)の一部を構成する第 1レンズ要素 (39) を固定して保持する第 1保持ユニット (34)と、  A first holding unit (34) for fixing and holding a first lens element (39) constituting a part of the lens system (22) with respect to the reference axis (A);
上記レンズ系 (22)の残りを構成する第 2レンズ要素 (40)を保持する第 2保持ユニット (35)と、  A second holding unit (35) for holding the second lens element (40) constituting the remainder of the lens system (22);
上記レンズ系 (22)を移動させる上記移動部 (36)を構成すると共に、上記第 1保持ュ ニット (34)および第 2保持ユニット (35)の少なくとも一方を移動させるレンズ要素移動 機構を  The moving part (36) for moving the lens system (22) constitutes a lens element moving mechanism for moving at least one of the first holding unit (34) and the second holding unit (35).
備えたことを特徴とするレンズ系調整装置。  A lens system adjustment device comprising:
[5] 請求項 4に記載のレンズ系調整装置にぉ 、て、 [5] The lens system adjusting apparatus according to claim 4, wherein
上記基板 (24)には、 MTF測定用のチャート (30)が設けられると共に、  The substrate (24) is provided with a chart (30) for MTF measurement,
上記レーザ光源部 (21)側力 上記チャート (30)を一様に照明する照明手段を備え て、  The laser light source section (21) side force comprises illumination means for uniformly illuminating the chart (30),
上記演算制御処理部 (28)は、上記チャート (30)に関する上記撮像素子 (25)の出力 に基づ 、て、上記レンズ系 (22)の MTF値を算出するようになって!/、る  The arithmetic control processing unit (28) calculates the MTF value of the lens system (22) based on the output of the imaging device (25) with respect to the chart (30).
ことを特徴とするレンズ系調整装置。  A lens system adjusting device.
[6] 請求項 1に記載のレンズ系調整装置にお!、て、 [6] In the lens system adjusting device according to claim 1,!
上記撮像素子 (25)の出力に基づいて、上記レーザ光源部 (21)から出射された平行 光線が上記レンズ系 (22)によって上記撮像素子 (25)の受光面上に集光されて形成 されたスポット (42,43)の光強度のピーク値を求め、上記ピーク値に応じて上記レー ザ光源部 (21)の光量を調節する光量調整手段を備えたことを特徴とするレンズ系調 整装置。  Based on the output of the image sensor (25), the parallel light beam emitted from the laser light source section (21) is condensed and formed on the light receiving surface of the image sensor (25) by the lens system (22). Lens system adjustment characterized by comprising a light amount adjusting means for obtaining a peak value of the light intensity of the spot (42, 43) and adjusting the light amount of the laser light source section (21) according to the peak value. apparatus.
[7] 請求項 4に記載のレンズ系調整装置を用いたレンズ系調整方法であって、 上記演算制御処理部 (28)によって上記移動部 (27)の動作を制御して、上記基板 (2 4)の開口 (29)を通過した基準光線束の像 (42)が上記撮像素子 (25)の受光面の中心 に位置するように、上記撮像素子 (25)を移動させる工程と、 [7] A lens system adjustment method using the lens system adjustment device according to claim 4, The operation of the moving unit (27) is controlled by the arithmetic control processing unit (28), and the image (42) of the reference beam passing through the opening (29) of the substrate (24) is converted into the image sensor (25). ) Moving the image sensor (25) so as to be positioned at the center of the light receiving surface of
上記第 1保持ユニット (34)によって上記第 1レンズ要素 (39)を上記基準軸 (A)に対し て固定して保持する一方、上記第 2保持ユニット (35)によって上記第 2レンズ要素 (40 腿持する工程と、  The first lens unit (39) is fixedly held with respect to the reference axis (A) by the first holding unit (34), while the second lens element (40 is fixed by the second holding unit (35). The process of holding the thigh,
上記演算制御処理部 (28)によって上記レンズ要素移動機構の動作を制御して、上 記基板 (24)の開口 (29)を通過した基準光線束の上記第 1レンズ要素 (39)および上 記第 2レンズ要素 (40)による集光スポット (42)が上記撮像素子 (25)の受光面の中心 に位置するように、上記第 1保持ユニット (34)および第 2保持ユニット (35)の少なくとも 一方を移動させる工程と、  The operation of the lens element moving mechanism is controlled by the arithmetic control processor (28), and the first lens element (39) of the reference beam bundle that has passed through the opening (29) of the substrate (24) and the above. At least one of the first holding unit (34) and the second holding unit (35) so that the condensing spot (42) by the second lens element (40) is positioned at the center of the light receiving surface of the image sensor (25). Moving one of them;
上記演算制御処理部 (28)によって上記レンズ要素移動機構の動作を制御して、上 記基板 (24)の回折素子 (23)を通過して偏向された光線束の上記第 1レンズ要素 (39) および上記第 2レンズ要素 (40)による集光スポット (43)力 上記撮像素子 (25)の受光 面上における所定の位置に配列されるように、上記第 1保持ユニット (34)および第 2 保持ユニット (35)の少なくとも上記一方を移動させる工程と、  The operation of the lens element moving mechanism is controlled by the arithmetic control processing unit (28), and the first lens element (39) of the light bundle deflected through the diffraction element (23) of the substrate (24) is used. ) And the condensing spot (43) force by the second lens element (40) The first holding unit (34) and the second holding unit (34) are arranged so as to be arranged at predetermined positions on the light receiving surface of the image sensor (25). Moving at least one of the holding units (35);
上記レンズ系 (22)および撮像素子 (25)を上記基準軸 (A)に対して固定する工程と を含むことを特徴とするレンズ系調整方法。  Fixing the lens system (22) and the image sensor (25) with respect to the reference axis (A).
請求項 5に記載のレンズ系調整装置を用いたレンズ系調整方法であって、 上記演算制御処理部 (28)によって上記移動部 (27)の動作を制御して、上記基板 (2 4)の開口 (29)を通過した基準光線束の像 (42)が上記撮像素子 (25)の受光面の中心 に位置するように、上記撮像素子 (25)を移動させる工程と、  A lens system adjustment method using the lens system adjustment apparatus according to claim 5, wherein the operation of the moving unit (27) is controlled by the arithmetic control processing unit (28), and the substrate (24) Moving the image sensor (25) so that the image (42) of the reference beam bundle that has passed through the aperture (29) is positioned at the center of the light receiving surface of the image sensor (25);
上記第 1保持ユニット (34)によって上記第 1レンズ要素 (39)を上記基準軸 (A)に対し て固定して保持する一方、上記第 2保持ユニット (35)によって上記第 2レンズ要素 (40 腿持する工程と、  The first lens unit (39) is fixedly held with respect to the reference axis (A) by the first holding unit (34), while the second lens element (40 is fixed by the second holding unit (35). The process of holding the thigh,
上記演算制御処理部 (28)によって上記レンズ要素移動機構の動作を制御して、上 記基板 (24)の開口 (29)を通過した基準光線束の上記第 1レンズ要素 (39)および上 記第 2レンズ要素 (40)による集光スポット (42)が上記撮像素子 (25)の受光面の中心 に位置するように、上記第 1保持ユニット (34)および第 2保持ユニット (35)の少なくとも 一方を移動させる工程と、 The operation of the lens element moving mechanism is controlled by the arithmetic control processor (28), and the first lens element (39) of the reference beam bundle that has passed through the opening (29) of the substrate (24) and the above. The condensing spot (42) by the second lens element (40) is the center of the light receiving surface of the image sensor (25). Moving at least one of the first holding unit (34) and the second holding unit (35) so as to be positioned at
上記演算制御処理部 (28)によって上記レンズ要素移動機構の動作を制御して、上 記基板 (24)の回折素子 (23)を通過して偏向された光線束の上記第 1レンズ要素 (39) および上記第 2レンズ要素 (40)による集光スポット (43)力 上記撮像素子 (25)の受光 面上における所定の位置に配列されるように、上記第 1保持ユニット (34)および第 2 保持ユニット (35)の少なくとも上記一方を移動させる工程と、  The operation of the lens element moving mechanism is controlled by the arithmetic control processing unit (28), and the first lens element (39) of the light bundle deflected through the diffraction element (23) of the substrate (24) is used. ) And the condensing spot (43) force by the second lens element (40) The first holding unit (34) and the second holding unit (34) are arranged so as to be arranged at predetermined positions on the light receiving surface of the image sensor (25). Moving at least one of the holding units (35);
上記演算制御処理部 (28)によって上記レンズ要素移動機構の動作を制御して、上 記基板 (24)の MTF測定用のチャート (30)を通過した上記照明手段からの光の像 (4 4)が上記撮像素子 (25)の受光面上に結像されるように、上記第 1保持ユニット (34)お よび第 2保持ユニット (35)を移動させる工程と、  The operation of the lens element moving mechanism is controlled by the arithmetic control processing unit (28), and an image of light from the illumination means (44) passing through the MTF measurement chart (30) of the substrate (24) (44) ) Moving the first holding unit (34) and the second holding unit (35) so that an image is formed on the light receiving surface of the imaging device (25),
上記演算制御処理部 (28)によって、上記チャート (30)の像 (44)に関する上記撮像 素子 (25)の出力に基づ 、て、 MTF値を算出する工程と、  A step of calculating an MTF value by the arithmetic control processor (28) based on the output of the imaging device (25) relating to the image (44) of the chart (30);
上記算出された上記レンズ系 (22)の MTF値と目標とする MTF値との差が所定の 範囲内である場合には、上記レンズ系 (22)および撮像素子 (25)を上記基準軸 (A)に 対して固定する工程と  When the difference between the calculated MTF value of the lens system (22) and the target MTF value is within a predetermined range, the lens system (22) and the image sensor (25) are connected to the reference axis ( A process for fixing to A)
を含むことを特徴とするレンズ系調整方法。  A lens system adjustment method comprising:
[9] 複数のレンズから成るレンズ系 (22)と撮像素子 (25)とを備えた撮像装置の製造装 置であって、 [9] An apparatus for manufacturing an imaging device including a lens system (22) composed of a plurality of lenses and an imaging device (25),
上記撮像素子 (25)を保持すると共に、上記撮像素子 (25)を移動させて、上記撮像 素子 (25)の光軸を基準軸 (A)に一致させるように調整する撮像素子保持部 (26,27)と 上記レンズ系 (22)を保持すると共に、上記レンズ系 (22)を移動させて、上記レンズ 系 (22)の光軸を上記撮像素子 (25)の光軸に一致させるように調整するレンズ系保持 部 (34,35, 36)と、  An image sensor holding unit (26) that holds the image sensor (25) and adjusts the optical axis of the image sensor (25) to coincide with the reference axis (A) by moving the image sensor (25). 27) and the lens system (22), and the lens system (22) is moved so that the optical axis of the lens system (22) matches the optical axis of the image sensor (25). Lens system holder (34, 35, 36) to be adjusted,
上記撮像素子 (25)からの出力に基づいて、上記撮像素子 (25)の光軸の上記基準 軸 (A)からのずれ量および上記レンズ系 (22)の光軸の上記撮像素子 (25)の光軸から のずれ量を算出し、この算出されたずれ量に基づいて上記撮像素子保持部 (26,27) およびレンズ系保持部 (34,35,36)の動作を制御する一方、上記光軸が調整された 後の上記レンズ系 (22)の MTF値を算出し、この算出された MTF値を評価する演算 制御処理部 (28)と、 Based on the output from the image sensor (25), the amount of deviation of the optical axis of the image sensor (25) from the reference axis (A) and the image sensor (25) of the optical axis of the lens system (22) The amount of deviation from the optical axis of the image sensor is calculated, and based on the calculated amount of deviation, the image sensor holding unit (26, 27) And the lens system holding unit (34, 35, 36), while calculating the MTF value of the lens system (22) after the optical axis is adjusted, and evaluating the calculated MTF value. Arithmetic control processor (28),
上記演算制御処理部 (28)による上記 MTF値の評価結果が可であれば、上記レン ズ系 (22)を上記撮像素子 (25)に対して固定する固定部と  If the evaluation result of the MTF value by the arithmetic control processing unit (28) is acceptable, a fixing unit for fixing the lens system (22) to the image sensor (25)
を備えたことを特徴とする撮像装置の製造装置。  An apparatus for manufacturing an imaging device, comprising:
[10] 請求項 9に記載の撮像装置の製造装置において、 [10] The apparatus for manufacturing an imaging device according to claim 9,
レーザ光源 (21)と、  A laser light source (21),
上記レーザ光源 (21)からの平行光線の一部を偏向して上記基準軸 (A)との角度が 上記レンズ系 (22)の画角に応じた角度である平行光線束を生成して上記レンズ系 (2 2)に入射させる複数の回折素子 (23)と  A part of the parallel light beam from the laser light source (21) is deflected to generate a parallel light beam whose angle with the reference axis (A) is an angle corresponding to the angle of view of the lens system (22). A plurality of diffraction elements (23) incident on the lens system (2 2) and
を含む光源部を備えたことを特徴とする撮像装置の製造装置。  An imaging device manufacturing apparatus comprising a light source unit including:
[11] 請求項 10に記載の撮像装置の製造装置において、 [11] In the imaging device manufacturing apparatus according to claim 10,
上記回折素子に、 MTF測定用のパターンが形成されていることを特徴とする撮像 装置の製造装置。  An apparatus for manufacturing an imaging device, wherein a pattern for MTF measurement is formed on the diffraction element.
[12] 請求項 9に記載の撮像装置の製造装置において、 [12] In the apparatus for manufacturing an imaging device according to claim 9,
上記固定部は、  The fixed part is
紫外線硬化性接着剤を供給する接着剤供給部と、  An adhesive supply section for supplying an ultraviolet curable adhesive;
上記紫外線硬化性接着剤に対して紫外線を照射する紫外線照射部と  An ultraviolet irradiation unit for irradiating the ultraviolet curable adhesive with ultraviolet rays;
を含んで!/、ることを特徴とする撮像装置の製造装置。  An apparatus for manufacturing an imaging device, characterized by comprising:
[13] 複数のレンズから成るレンズ系 (22)と撮像素子 (25)とを備えた撮像装置の製造方 法であって、 [13] A method of manufacturing an imaging device including a lens system (22) composed of a plurality of lenses and an imaging device (25),
基準軸 (A)上にある光源 (21)からの光を受光した上記撮像素子 (25)力 の出力に 基づ 、て、上記レンズ系 (22)の光軸の上記撮像素子 (25)の光軸力 のずれ量を求 め、この求められたずれ量に基づいて上記レンズ系 (22)を移動させて上記レンズ系( 22)の光軸を上記撮像素子 (25)の光軸に一致させる光軸調整工程と、  Based on the output of the imaging device (25) force that received light from the light source (21) on the reference axis (A), the imaging device (25) of the optical axis of the lens system (22) The amount of deviation of the optical axis force is obtained, and the lens system (22) is moved based on the obtained amount of deviation, so that the optical axis of the lens system (22) matches the optical axis of the imaging device (25). An optical axis adjustment step to be performed;
上記光源 (21)からの光を、上記光軸が調整されたレンズ系 (22)を介して上記撮像 素子 (25)の受光面上に結像させて上記レンズ系 (22)の MTF値を算出し、この算出さ れた MTF値を評価する MTF算出 ·評価工程と、 The light from the light source (21) is imaged on the light receiving surface of the image sensor (25) via the lens system (22) with the optical axis adjusted, and the MTF value of the lens system (22) is obtained. Calculate this calculated MTF calculation to evaluate the measured MTF value
上記 MTF値の評価結果が可であれば、上記レンズ系 (22)を上記撮像素子 (25)に 対して固定するレンズ系固定工程と  If the evaluation result of the MTF value is acceptable, a lens system fixing step for fixing the lens system (22) to the image sensor (25);
を備えたことを特徴とする撮像装置の製造方法。  An image pickup apparatus manufacturing method comprising:
[14] 請求項 13に記載の撮像装置の製造方法において、 [14] In the manufacturing method of the imaging device according to claim 13,
上記光軸調整工程では、  In the optical axis adjustment step,
上記光源 (21)としてレーザ光源を用い、  Using a laser light source as the light source (21),
上記レーザ光源とレンズ系 (22)との間に配置された複数の回折素子 (23)によって、 上記レーザ光源からの平行光線の一部を偏向して上記基準軸 (A)との角度が上記レ ンズ系 (22)の画角に応じた角度である平行光線束を生成して上記レンズ系 (22)に入 射させる  A plurality of diffractive elements (23) arranged between the laser light source and the lens system (22) deflect some of the parallel rays from the laser light source so that the angle with the reference axis (A) is A parallel light flux having an angle corresponding to the angle of view of the lens system (22) is generated and incident on the lens system (22).
ことを特徴とする撮像装置の製造方法。  A method for manufacturing an imaging device.
[15] 請求項 14に記載の撮像装置の製造方法において、 [15] In the manufacturing method of the imaging device according to claim 14,
上記回折素子には MTF測定用のパターンが形成されており、上記 MTF算出-評 価工程では、上記 MTF測定用のパターンを通過した上記光源からの光を用いること を特徴とする撮像装置の製造方法。  A pattern for MTF measurement is formed on the diffraction element, and light from the light source that has passed through the MTF measurement pattern is used in the MTF calculation-evaluation process. Method.
PCT/JP2005/016546 2004-09-10 2005-09-08 Lens system adjusting device and lens system adjusting method using it, and production device for imaging device and production method for imaging device WO2006028183A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-263799 2004-09-10
JP2004263799A JP3766835B2 (en) 2004-09-10 2004-09-10 Lens system adjusting device and lens system adjusting method using the same

Publications (1)

Publication Number Publication Date
WO2006028183A1 true WO2006028183A1 (en) 2006-03-16

Family

ID=36036464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016546 WO2006028183A1 (en) 2004-09-10 2005-09-08 Lens system adjusting device and lens system adjusting method using it, and production device for imaging device and production method for imaging device

Country Status (3)

Country Link
JP (1) JP3766835B2 (en)
CN (1) CN101019057A (en)
WO (1) WO2006028183A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507014A (en) * 2007-12-10 2011-03-03 サイテック コーポレイション Apparatus, method for calibrating a microscope and stage comprising a calibration device
WO2017154945A1 (en) * 2016-03-10 2017-09-14 パナソニックIpマネジメント株式会社 Optical inspection device, lens, and optical inspection method
US11415410B2 (en) * 2017-10-17 2022-08-16 Goertek Inc. Method and apparatus of optical module assembly
WO2023044209A1 (en) * 2021-09-16 2023-03-23 Banner Engineering Corp. Lens alignment system with multiple degrees of freedom

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4780205B2 (en) * 2009-02-23 2011-09-28 カシオ計算機株式会社 Imaging device, angle of view adjustment method, and program
CN101571450B (en) * 2009-06-11 2011-01-19 成都方程式电子有限公司 Optical fingerprint sensor laboratory table
DE102012016337B4 (en) 2012-08-20 2018-03-15 Jos. Schneider Optische Werke Gmbh Method for determining an optical quality of a photo module
KR101609850B1 (en) * 2014-03-24 2016-04-08 주식회사 나무가 Light source indused system and method for adjusting lens optical axis
US10375383B2 (en) 2014-04-17 2019-08-06 SZ DJI Technology Co., Ltd. Method and apparatus for adjusting installation flatness of lens in real time
JP6283943B2 (en) * 2014-06-26 2018-02-28 株式会社カツラ・オプト・システムズ Image sensor position measuring method and light projection device used in the method
EP4180852A1 (en) * 2015-10-30 2023-05-17 Ningbo Sunny Opotech Co., Ltd. Adjustable optical lens and camera module and manufacturing method and applications thereof
CN105445888B (en) 2015-12-21 2020-04-03 宁波舜宇光电信息有限公司 Adjustable optical lens, camera module and calibration method thereof
CN105657388A (en) * 2015-12-30 2016-06-08 广东威创视讯科技股份有限公司 Method for adjusting position of back projector and back projector
CN108732712B (en) * 2018-05-25 2020-09-15 歌尔股份有限公司 Optical path adjusting method and optical path adjusting device
CN109116505A (en) * 2018-07-24 2019-01-01 深圳睿晟自动化技术有限公司 The optical axis bearing calibration of camera lens
US11183810B2 (en) * 2018-12-18 2021-11-23 Sharp Kabushiki Kaisha Light source module and light source device including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050146A (en) * 1998-07-30 2000-02-18 Minolta Co Ltd Image pickup unit
JP2001013388A (en) * 1999-06-29 2001-01-19 Canon Inc Optical axis adjustment method for lens system and optical axis adjustment device for lens system
JP2003066300A (en) * 2001-08-29 2003-03-05 Sony Corp Device for manufacturing objective lens and method for manufacturing objective lens
JP2003307661A (en) * 2002-04-16 2003-10-31 Fuji Photo Film Co Ltd Lens eccentricity adjusting method
JP2004163865A (en) * 2002-09-25 2004-06-10 Sony Corp Lens aligning mechanism, lens device and image pickup device
JP2005086659A (en) * 2003-09-10 2005-03-31 Sony Corp Camera module manufacturing method and assembling apparatus employing the method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050146A (en) * 1998-07-30 2000-02-18 Minolta Co Ltd Image pickup unit
JP2001013388A (en) * 1999-06-29 2001-01-19 Canon Inc Optical axis adjustment method for lens system and optical axis adjustment device for lens system
JP2003066300A (en) * 2001-08-29 2003-03-05 Sony Corp Device for manufacturing objective lens and method for manufacturing objective lens
JP2003307661A (en) * 2002-04-16 2003-10-31 Fuji Photo Film Co Ltd Lens eccentricity adjusting method
JP2004163865A (en) * 2002-09-25 2004-06-10 Sony Corp Lens aligning mechanism, lens device and image pickup device
JP2005086659A (en) * 2003-09-10 2005-03-31 Sony Corp Camera module manufacturing method and assembling apparatus employing the method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507014A (en) * 2007-12-10 2011-03-03 サイテック コーポレイション Apparatus, method for calibrating a microscope and stage comprising a calibration device
WO2017154945A1 (en) * 2016-03-10 2017-09-14 パナソニックIpマネジメント株式会社 Optical inspection device, lens, and optical inspection method
CN108291854A (en) * 2016-03-10 2018-07-17 松下知识产权经营株式会社 Optical detection device, lens and optical inspection
JPWO2017154945A1 (en) * 2016-03-10 2018-08-02 パナソニックIpマネジメント株式会社 Optical inspection apparatus, lens, and optical inspection method
EP3428604A4 (en) * 2016-03-10 2019-05-08 Panasonic Intellectual Property Management Co., Ltd. Optical inspection device, lens, and optical inspection method
US10386266B2 (en) 2016-03-10 2019-08-20 Panasonic Intellectual Property Management Co., Ltd. Optical inspection device having a mirror for reflecting light rays, a method of producing a lens using the optical inspection device, and an optical inspection method using the optical inspection device
US11415410B2 (en) * 2017-10-17 2022-08-16 Goertek Inc. Method and apparatus of optical module assembly
WO2023044209A1 (en) * 2021-09-16 2023-03-23 Banner Engineering Corp. Lens alignment system with multiple degrees of freedom

Also Published As

Publication number Publication date
JP2006078849A (en) 2006-03-23
JP3766835B2 (en) 2006-04-19
CN101019057A (en) 2007-08-15

Similar Documents

Publication Publication Date Title
WO2006028183A1 (en) Lens system adjusting device and lens system adjusting method using it, and production device for imaging device and production method for imaging device
JP2924344B2 (en) Projection exposure equipment
KR100604120B1 (en) Aberration measuring instrument and measuring method, projection exposure apparatus provided with the instrument and device-manufacturing method using the measuring method, and exposure method
JP2021521418A (en) Local telecentricity and focus optimization for overlay weighing
KR101640914B1 (en) Focus position adjusting method and inspecting method
JP5084327B2 (en) Eccentricity inspection device and eccentricity adjustment device
WO2003088329A1 (en) Reticle and optical characteristic measuring method
JP6150490B2 (en) Detection apparatus, exposure apparatus, and device manufacturing method using the same
KR102638498B1 (en) Light source device, illumination apparatus, exposure apparatus, and method for manufacturing article
JP2005274925A (en) Focusing method and focusing device
TW201107905A (en) Measurement apparatus, exposure apparatus, and device fabrication method
JPWO2019199585A5 (en)
WO2019159427A1 (en) Camera module adjustment device and camera module adjustment method
KR20050085408A (en) Instrument for testing solid-state imaging device
JP3994209B2 (en) Optical system inspection apparatus and inspection method, and alignment apparatus and projection exposure apparatus provided with the inspection apparatus
KR20030040033A (en) Apparatus for detecting mark position
KR101826127B1 (en) optical apparatus for inspecting pattern image of semiconductor wafer
US6823599B1 (en) Alignment structure and method for multiple field camera
JP2001013388A (en) Optical axis adjustment method for lens system and optical axis adjustment device for lens system
JP2008158125A (en) Lens unit centering device
JPH0949781A (en) Inspecting device for optical system and projection exposure apparatus with the inspecting device
KR101679941B1 (en) Imprint device, and device manufacturing method
JPH104055A (en) Automatic focusing device and manufacture of device using it
CN114726995B (en) Detection method and detection system
JP4639808B2 (en) Measuring apparatus and adjustment method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580030613.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase