WO2019159427A1 - Camera module adjustment device and camera module adjustment method - Google Patents

Camera module adjustment device and camera module adjustment method Download PDF

Info

Publication number
WO2019159427A1
WO2019159427A1 PCT/JP2018/037710 JP2018037710W WO2019159427A1 WO 2019159427 A1 WO2019159427 A1 WO 2019159427A1 JP 2018037710 W JP2018037710 W JP 2018037710W WO 2019159427 A1 WO2019159427 A1 WO 2019159427A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera module
lens
light
unit
image sensor
Prior art date
Application number
PCT/JP2018/037710
Other languages
French (fr)
Japanese (ja)
Inventor
啓一 本屋
務 大下
Original Assignee
株式会社カツラ・オプト・システムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カツラ・オプト・システムズ filed Critical 株式会社カツラ・オプト・システムズ
Priority to JP2019527930A priority Critical patent/JP6729960B2/en
Publication of WO2019159427A1 publication Critical patent/WO2019159427A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies

Definitions

  • the present invention relates to a camera module adjustment device and a camera module adjustment method.
  • a camera module is a component in which a substrate on which an image sensor is mounted and an imaging lens unit are integrated, and it is a digital camera as well as various portable electronic devices with a camera function (for example, a mobile phone, a mobile phone, etc.). Type PC, PDA, etc.).
  • a camera module it is known to hold the lens unit while adjusting the focus on the imaging surface of the image sensor, and to fix the lens unit and the substrate together as the focus is adjusted. ing.
  • JP-A-2003-315650 Patent Document 1
  • JP-A-2002-267923 Patent Document 2
  • a test chart chart paper having a chart portion.
  • MTF Modulation Transfer Function
  • Patent Document 3 discloses an AF driving device having a driving unit such as a VCM (voice coil motor) or a stepping motor for moving the position of an imaging lens of an AF (autofocus) lens unit to be inspected, and an AF lens.
  • a driving unit such as a VCM (voice coil motor) or a stepping motor for moving the position of an imaging lens of an AF (autofocus) lens unit to be inspected, and an AF lens.
  • a measurement lens disposed on the upper side of the unit 1 a measurement sensor as an imaging sensor disposed on the upper side of the AF lens unit, a reference chart disposed on the lower side of the AF lens unit, and a measurement Based on image data of the reference chart from the sensor, an AF driving device that calculates the MTF (for example, optical characteristics and resolution of the lens) for the input current value to the AF lens unit 1 and inspects the resolution of the measurement lens
  • MTF for example, optical characteristics and resolution of the lens
  • the AF lens unit characteristic inspection apparatus described in Patent Document 3 allows light such as a halogen lamp to enter through a reference chart, and causes the imaging sensor to detect a light spot (image data) emitted from the imaging lens. . Then, the MTF calculation device calculates the input current value ⁇ MTF value based on the image data from the measurement sensor corresponding to the input current value from the AF drive control circuit, and the MTF peak value sets the reference value (threshold value). The resolution of the lens can be inspected depending on whether or not it exceeds.
  • Patent Document 4 discloses a chart unit, a collector unit, and a collector unit for adjusting the position of the element unit with respect to the photographing lens (lens unit) and fixing the element unit to the lens unit after adjustment.
  • a camera module manufacturing apparatus that includes an optical unit, a lens positioning plate, a lens holding mechanism, an element moving mechanism, an adhesive supplier, an ultraviolet lamp, and a control unit that controls them.
  • FIG. 1 an example of a schematic diagram of a conventional camera module adjustment apparatus 100 is shown in FIG.
  • the chart image is illuminated by a transmissive chart (test chart, pattern) 102 using an illumination unit 101.
  • the chart image reflected by the half mirror 103 is converted into parallel rays by a collimator lens (collimation lens) 104 and enters the camera module 105. Further, the chart image is formed on the image sensor 105 b by the lens 105 a of the camera module 105.
  • a collimator lens collimator lens
  • the chart image on the image sensor 105b is converted into an electric signal by the image sensor 105b, and the electric signal is input to the control unit 106 (for example, a computer). And the control part 106 converts the electric signal into digital data, and displays it on the display part 106a (for example, monitor).
  • the control unit 106 for example, a computer
  • the control part 106 converts the electric signal into digital data, and displays it on the display part 106a (for example, monitor).
  • an operator (inspector) inspecting the camera module 105 adjusts the distance between the lens 105a of the camera module 105 and the image sensor 105b so that the display unit 106a is in focus.
  • the camera module adjustment apparatus 100 has an autocollimator function by using the image sensor 107 and the collimator lens 104 that can observe the camera module. Then, by displaying the output of the image sensor 107 on a monitor (not shown), it is possible to adjust the angle of irradiation light irradiated to the camera module, set conditions, and the like.
  • the display unit needs to display a test chart image using an electrical signal obtained by converting a test chart captured by the image sensor.
  • image height is an index indicating the height of the image from the center of the captured image.
  • the “image height” is the distance (distance) between the edge of the image (eg, the peripheral part, the position farthest from the image center) and the center of the image in the direction perpendicular to the optical axis of the camera module. Point to.
  • the present invention has been made under the circumstances as described above, and an object of the present invention is to drive an image sensor to capture an image of a test chart when adjusting the distance between the lens of the camera module and the image sensor. It is an object of the present invention to provide a camera module adjustment apparatus and a camera module adjustment method that do not have any.
  • a camera module adjustment device and a camera module adjustment method for a camera module that can adjust the distance between the lens and the imaging element in a camera module in which a wide-angle lens (including a fisheye lens) is used as a lens.
  • a wide-angle lens including a fisheye lens
  • the object of the camera module adjustment device is a camera module adjustment device having a light source unit, a camera module, a photographing unit, and a control unit, wherein the light source unit is a light source and outputs light emitted from the light source. And a first collimator lens that converts the first light incident from the pinhole into a first parallel light beam, and the pinhole includes the first collimator lens.
  • the first collimator lens is disposed at a position approximately away from the focal length of the first collimator lens, and the camera module forms a first light spot on which the first parallel light beam is condensed by the lens and the lens.
  • the first imaging element wherein the imaging unit has converted the second light reflected by the first imaging element into substantially parallel by the lens.
  • the unit includes a calculation unit that calculates a focus evaluation value for the second light spot based on the image signal, and a display unit that displays the second light spot
  • the control unit includes: A distance between the lens and the first image sensor along a direction perpendicular to the light receiving surface of the first image sensor is determined based on a focus evaluation value, and the camera module is determined based on the distance. This is achieved by making adjustments.
  • a camera module adjustment device wherein the camera module includes a lens holding unit that holds the lens, the lens holding unit is moved in the direction, and the lens is based on the distance.
  • the camera module includes a lens holding unit that holds the lens, the lens holding unit is moved in the direction, and the lens is based on the distance.
  • a lens holding and moving unit that moves the holding unit to the camera module adjustment position, or by deflecting the first parallel light beam and irradiating the camera module, without deflecting the second parallel light beam.
  • the beam splitter is a half mirror or a non-deflection beam splitter
  • the lens is a wide-angle lens or a fish-eye lens
  • the second light is the first image sensor.
  • the ultraviolet curable resin is applied in a gap between the said lens holding portion first imaging element, by irradiating ultraviolet rays to the ultraviolet curing resin is more effectively achieved.
  • the object of the camera module adjustment method is a camera module adjustment method including a light source unit, a camera module, a photographing unit, a control unit, and a lens holding and driving unit, wherein the light source unit is a pinhole.
  • the light emitted from the light source is converted into the first light
  • the first collimator lens converts the first light incident from the pinhole into the first parallel light beam
  • the pinhole is The first collimated lens is disposed at a position substantially away from the collimator lens by the focal length of the first collimator lens
  • the first parallel light beam is condensed on the light receiving surface of the first image sensor of the camera module by the lens of the camera module.
  • the first light spot thus formed is formed on the first image sensor, and the photographing unit has the second light reflected by the first image sensor on the first light spot.
  • the second collimated light beam converted into substantially parallel by the lens is condensed on the second image sensor by the second collimator lens, and the second light spot condensed by the second collimator lens is collected.
  • the second imaging element generates a photoelectrically converted image signal
  • the control unit calculates a focus evaluation value for the second light spot based on the image signal by the calculation unit
  • the display unit displays the second light spot, and the control unit, based on the focus evaluation value, the lens along the direction perpendicular to the light receiving surface of the first image sensor and the first This is achieved by determining the distance from the image pickup device and adjusting the camera module based on the distance.
  • the lens holding unit holds the lens
  • the lens holding unit is moved in the direction
  • the lens holding unit driving unit moves the distance.
  • the first parallel light beam is deflected to irradiate the camera module
  • the second parallel light beam is By moving straight without deflecting, or when the beam splitter is a half mirror or a non-deflecting beam splitter, or the lens is a wide-angle lens or a fisheye lens
  • the second light is the first imaging element By reflecting the light from the reflection type diffraction grating on the light receiving surface, or the camera module.
  • an ultraviolet effect resin is applied to the gap between the lens holding portion and the first tsuzo element, and the ultraviolet curable resin is irradiated with ultraviolet rays, which is achieved more effectively. .
  • the camera module adjustment device and the camera module adjustment method according to the present invention when adjusting the distance between the lens of the camera module and the image pickup device, it is not necessary to drive the image pickup device and image the test chart. An excellent effect can be achieved.
  • route of another embodiment of the camera module adjustment apparatus which concerns on this invention. It is a figure which shows the mode of diffraction of the 1st-order diffracted light (m 1) in the light-receiving surface of an image pick-up element in another embodiment of the camera module adjustment apparatus which concerns on this invention.
  • the light incident from the light source through the pinhole is converted into parallel rays by the collimator lens, and the parallel rays are condensed by the lens of the camera module lens.
  • a light spot is formed on the image pickup device of the camera module, and the light reflected by the image pickup device is converted into a substantially parallel parallel light beam by the lens, and the parallel light beam is collected by the collimator lens of the photographing unit.
  • An image signal obtained by photoelectrically converting the light spot is generated by the imaging device of the photographing unit, and based on the image signal, the focus evaluation value obtained by calculating the focus evaluation value for the light spot is determined.
  • FIG. 1 A schematic diagram of a camera module adjustment device of a camera module according to an embodiment of the present invention is shown in FIG.
  • the optical axis direction of the camera module 15 is set as the Z axis.
  • the X-axis is provided in a direction perpendicular to the Z-axis
  • the Y-axis is a direction perpendicular to the X-axis and the Z-axis, that is, a direction perpendicular to the paper surface (for example, a direction perpendicular from the top to the bottom of the paper surface).
  • the camera module adjustment device 10 of the camera module by providing a pinhole (through hole) 12 on the emission side of the light source 11, a light source that emits a light beam having an image height is obtained.
  • the light beam that has passed through the pinhole 12 is converted into a parallel light beam by a collimator lens 13 having a focal length f 1 . Further, the parallel light beam reflected by the half mirror 14 enters the camera module 15.
  • the camera module 15 includes a lens 15a having a focal length f 2, and the image pickup device 15b that are spaced apart at a point approximately the focal length f 2 from the lens 15a, a lens holding portion 15c for holding the lens 15a It is configured.
  • a plurality of pixels are arranged in a matrix on the light receiving surface of the image sensor 15b.
  • the parallel light rays incident on the camera module 15 are imaged as light spots on the light receiving surface of the image sensor 15b by the lens 15a. Subsequently, the light spot is reflected by the light receiving surface of the image sensor 15b and converted into parallel rays again by the lens 15a.
  • the parallel rays pass through the half mirror 14 and form an image as a light spot on the image sensor 17 by the lens collimator 16 having the focal length f 3 .
  • the image sensor 17 outputs an image signal obtained by photoelectrically converting the image of the light spot to the control unit 18.
  • the calculating part 18a of the control part 18 memorize
  • the in-focus evaluation value is a numerical value indicating the degree to which the lens 15a is focused (focused) on the image sensor 15b.
  • the calculation unit 18 b of the control unit 18 outputs the movement amount of the lens holding unit to the driving unit 19 a of the lens holding driving unit 19.
  • the driving unit 19a moves the lens holding and coupling unit 19b along the Z-axis direction (direction perpendicular to the light receiving surface of the image sensor 15b) based on the movement amount. Since the lens holding unit 15c is coupled to the lens holding coupling unit 19b, the lens holding unit 15b moves in the Z-axis direction in conjunction with the movement amount of the lens holding coupling unit 19b.
  • FIG. 3 shows a state in which a plurality of pixels arranged on the light receiving surface of the image sensor 15b are arranged in a matrix.
  • a window glass for example, a filter, a protective film, or a protective layer
  • the light beam incident on the pinhole 12 is a coherent light beam (for example, a laser beam)
  • the light imaged by the image sensor 17 due to the diffraction phenomenon caused by the interval between the pixels of the image sensor 15b.
  • the image of the pixel of the image sensor 15b is formed more clearly in the spot.
  • the diameter (hole) of the pinhole 12 is designed so that, when an image is formed on the light receiving surface of the image sensor 17, light rays are irradiated to a plurality of pixels of the image sensor 15 b.
  • the irradiation position of the light beam changes the diffraction of the reflected light, and as a result, the image of the pixel inside the light spot is unstable. Because it becomes.
  • the diameter of the hole of the pinhole 12 is ⁇ a
  • the diameter of the light spot on the light receiving surface of the image sensor 15 b is ⁇ b
  • the focal length of the collimator lens 13 is f 1 and the focal length of the lens 15b is f 2 .
  • ⁇ b can be expressed as follows:
  • the diameter of the light spot on the light receiving surface of the image sensor 17 is ⁇ c
  • the focal length of the collimator lens 16 on the imaging side is f 3
  • ⁇ c can be expressed as shown in Equation 2.
  • the distance between adjacent pixels of the image sensor 15b is d
  • the size of the pixel image of the image sensor 15b formed on the light receiving surface of the image sensor 17 is d '.
  • the diameter ⁇ a of the pinhole 12 of the camera module (inspection target) 15 is 1.0 [mm]
  • the focal length f 1 of the collimator lens 13 on the light source side is 27 [mm]
  • the focal length f 2 of the lens is 2.5 [mm]
  • the focal length f 3 of the collimator lens 16 on the imaging side is 27 [mm]
  • the pixel interval 5 [ ⁇ m] of the imaging element 15b of the camera module 15 is set to 92 [ ⁇ m] (0.092 [mm]).
  • the diameter ⁇ c of the light spot imaged by the image sensor 17 can be estimated as 994 [ ⁇ m] (0.994 [mm]) from Equation 2.
  • the collimator lens 13 the light obtained by reducing the width of the light of the pinhole diameter phi a, is focused as a light spot on the image sensor surface of the camera module. Further, the collimator lens 16 can enlarge the light spot on the light receiving surface of the image sensor 17.
  • the cell image of the light receiving surface of the image sensor 17 can be observed on the display unit (monitor) 18b.
  • the camera module adjustment device 10 is initialized (step S11).
  • the camera module 15 is installed at a predetermined position with respect to the camera module adjustment device (step S12).
  • the light source 11 is turned on to irradiate the camera module 15 with light rays (step S13).
  • control unit 18 takes in the light spot on which the pinhole image is formed on the light receiving surface of the image sensor 15b of the camera module 15 by using the image sensor 17 (step S14). Then, the lens holding / driving unit 19 moves the lens holding unit 15 by a distance corresponding to a predetermined moving distance ⁇ D (step S15).
  • step S16 it is determined whether or not the movement distance of the lens holding portion 15 in the Z-axis direction has reached a predetermined maximum distance Dmax (step S16).
  • step S16 If it is determined NO in step S16, the process returns to step S14. If the determination is Yes in step S16, the process proceeds to step S17 described later.
  • the calculation unit 18a of the control unit 18 determines the distance (focal length) between the lens 15a and the image sensor 15b of the module 15 based on the relationship between the moving distance and the focus evaluation value (step S17).
  • control part 18 moves the lens holding part 15c to a camera module adjustment position (focus position) using the lens holding drive part 19 (step S18).
  • an adhesive is applied between the lens holding portion 15c and the image sensor 15b (step S19). And an ultraviolet-ray is irradiated to an adhesive agent and an adhesive agent (ultraviolet curable resin) is hardened (step S20).
  • Another embodiment of the present invention is a camera module adjustment device that can adjust the distance between a lens and an image sensor in a camera module in which the wide-angle lens 22 is used as a lens.
  • FIG. 5 is a schematic diagram showing a light beam path between a camera module in which the wide-angle lens 22 is used and a module adjustment device according to the present invention.
  • the light incident on the wide angle lens 22 is received on the light receiving surface of the image sensor at a position where the image height of the lens is high. Because of reflection (regular reflection), the light does not enter the module adjustment device again and does not return to the module adjustment device side.
  • a plurality of pixels 23a are arranged in a lattice.
  • a grating-like structure is a reflective diffraction grating structure.
  • An image sensor 23 typified by a CCD image sensor or a CMOS image sensor has a reflective surface with a fine periodic structure. Due to such a structure, this reflecting surface acts in the same manner as a reflective diffraction grating.
  • high-order diffracted light is generated (generated) by reflected light that is periodically repeated in intensity.
  • the diffraction order is m
  • the distance between adjacent pixels of the image sensor is d
  • the wavelength of the light beam is ⁇ .
  • the diffracted light is diffracted from each pixel (marked surface) at a diffraction angle ⁇ m of the order m in accordance with the order m and the wavelength ⁇ .
  • Equation 4 the incident angle ⁇ i and the diffraction angle ⁇ m in Equation 4 will be described.
  • the incident angle ⁇ i is positive (plus), and the diffraction angle ⁇ m is negative (minus). To do.
  • the incident angle ⁇ i and the diffraction angle ⁇ m are both positive (plus) if they are on the same side with respect to the surface normal of the image sensor 23.
  • Equation 4 the order m is an integer. That is, the order m is allowed to take values of 0, ⁇ 1, ⁇ 2,.
  • both the incident angle ⁇ i and the diffraction angle ⁇ m are allowed to be positive (plus).
  • the incident angle ⁇ i and the diffraction angle ⁇ m are both positive (plus)
  • the higher-order diffracted light is diffracted in the direction in which the incident light is incident.
  • FIG. 7 shows a state of reflection of the zero-order light and diffraction of the diffracted light (m ⁇ 0) on the light receiving surface of the image sensor 23.
  • the diffracted light of the order m ′ can be diffracted so as to return toward the camera module adjusting device 20. It is conceivable that.
  • the diffraction angle ⁇ m depends on the wavelength ⁇ .
  • a white light source is suitable for the light source unit (not shown) of the camera module adjustment device 20.
  • the light beam reflected from the light spot formed on the light receiving surface of the image sensor of the camera module is detected using the image sensor of the camera module adjustment device, and the camera is adjusted so that the light spot is in focus. It has been explained that the camera module is adjusted so that the distance between the module lens and the image sensor is the same.
  • control unit of the camera module adjustment device calculates a focus evaluation value of the light spot.
  • the contrast of the light spot may be used in addition to MTF (resolution, etc.) as described above.
  • a contrast transfer function value (hereinafter referred to as CTF value) may be used as the focus evaluation value.
  • the CTF value is a value representing the contrast of the image with respect to the spatial frequency of the light spot, and can be regarded as being in focus when the CTF value is high.
  • the present invention is not limited to the MTF value, resolution, or CTF value, and various evaluation methods and evaluation values that can evaluate the degree of focus can be used for measuring the focus position. . Further, the positional relationship between the lens of the camera module and the image sensor is adjusted only once, but may be repeated a plurality of times.
  • the lens may be moved or the image sensor may be moved in adjusting the positional relationship between the lens of the camera module and the image sensor. Further, when the lens of the camera module is incorporated in a lens barrel or the like, the lens barrel itself may be moved to focus.
  • a parallel beam is deflected using a half mirror as a beam splitter.
  • a beam splitter a cube type beam splitter or a plate type beam splitter may be used.
  • a prism or the like may be used.

Abstract

[Problem] To provide a camera module adjustment device and a camera module adjustment method, wherein when adjusting the distance between a camera module lens and an image capturing element, the image capturing element is driven and an image of a test chart is not captured. [Solution] According to the present invention, a light spot, on which parallel light beams are focused by a lens of a camera module, is formed on an image capturing element of the camera module. An image signal is generated by an image capturing element of an image capturing unit by being photoelectrically converted from a light spot on which parallel light beams are focused by a collimator lens of the image capturing unit, wherein the parallel light beams are converted, from the light reflected by the light spot in the image capturing element, to be approximately parallel by means of a lens. An adjustment of the camera module is performed on the basis of the distance between the image capturing element and the lens of the camera module, said distance being determined on the basis of a focus evaluation value calculated for the light spot on the basis of the image signal.

Description

カメラモジュール調整装置及びカメラモジュール調整方法Camera module adjustment apparatus and camera module adjustment method
 本発明は、カメラモジュール調整装置及びカメラモジュール調整方法に関する。 The present invention relates to a camera module adjustment device and a camera module adjustment method.
 従来から、カメラモジュールなどの画像入力装置の製造工程において、CCD(Charge Coupled Devices)やCMOS(Complementary Metal Oxide Semiconductor)等で構成される撮像素子とレンズユニットとのフォーカス調整が行われている。 2. Description of the Related Art Conventionally, in an image input device manufacturing process such as a camera module, focus adjustment between an image sensor and a lens unit composed of a CCD (Charge Coupled Devices), a CMOS (Complementary Metal Oxide Semiconductor), or the like has been performed.
 カメラモジュールは、撮像素子が実装された基板と撮像用のレンズユニットとを一体化した部品であって、デジタルカメラは勿論のこと、カメラ機能付きの各種携帯型電子機器(例えば、携帯電話、携帯型PC、PDA等)に搭載されている。カメラモジュールを製造する際には、撮像素子の撮像面にフォーカスの調整をしながらレンズユニットを保持し、フォーカスの調整がなされた状態でレンズユニットと基板とを一体として固定化することが知られている。 A camera module is a component in which a substrate on which an image sensor is mounted and an imaging lens unit are integrated, and it is a digital camera as well as various portable electronic devices with a camera function (for example, a mobile phone, a mobile phone, etc.). Type PC, PDA, etc.). When manufacturing a camera module, it is known to hold the lens unit while adjusting the focus on the imaging surface of the image sensor, and to fix the lens unit and the substrate together as the focus is adjusted. ing.
 そのような技術については、例えば、特開2003-315650号公報(特許文献1)、及び特開2002-267923号公報(特許文献2)には、チャート部を有するテストチャート(チャート紙)を用い、レンズユニットを移動させながら、テストチャートを撮像し、撮像されたデータからMTF(Modulation Transfer Function)を算出することによって、最適なフォーカス位置を検出する技術が開示されている。 With regard to such a technique, for example, JP-A-2003-315650 (Patent Document 1) and JP-A-2002-267923 (Patent Document 2) use a test chart (chart paper) having a chart portion. A technique for detecting an optimum focus position by capturing a test chart while moving the lens unit and calculating MTF (Modulation Transfer Function) from the captured data is disclosed.
 また、カメラモジュールの特性を検査するには、特開2012-149928号公報(特許文献3)に開示されているようなAFレンズユニットの特性検査装置が知られている。そして、特許文献3には、検査対象のAF(オートフォーカス)レンズユニットの撮像レンズの位置を移動させるためのVCM(ボイスコイルモータ)やステッピングモータなどの駆動部を持つAF駆動装置と、AFレンズユニット1の上側に配置される測定レンズと、AFレンズユニットの上側に対向して配置された撮像センサとしての測定センサと、AFレンズユニットの下側に対向して配置された基準チャートと、測定センサからの基準チャートの画像データに基づいて、AFレンズユニット1への入力電流値に対するMTF(例えば、レンズの光学特性、解像度等)を演算して、測定レンズの解像度を検査するAF駆動装置のAF駆動を制御するAF駆動制御回路と、を備えているAFレンズユニットの特性検査装置が開示されている。また、特許文献3に記載されたAFレンズユニットの特性検査装置は、基準チャートを介してハロゲンランプなどの光を入射させ、撮像レンズから出射される光スポット(画像データ)を撮像センサで検出させる。そして、MTF演算装置は、AF駆動制御回路からの入力電流値に対応した測定センサからの画像データに基づいて、入力電流値-MTF値を演算して、MTFピーク値が基準値(閾値)を超えているか否かによって、レンズの解像度の検査を行うことができる。 In order to inspect the characteristics of the camera module, an AF lens unit characteristic inspection apparatus as disclosed in JP 2012-149928 A (Patent Document 3) is known. Patent Document 3 discloses an AF driving device having a driving unit such as a VCM (voice coil motor) or a stepping motor for moving the position of an imaging lens of an AF (autofocus) lens unit to be inspected, and an AF lens. A measurement lens disposed on the upper side of the unit 1, a measurement sensor as an imaging sensor disposed on the upper side of the AF lens unit, a reference chart disposed on the lower side of the AF lens unit, and a measurement Based on image data of the reference chart from the sensor, an AF driving device that calculates the MTF (for example, optical characteristics and resolution of the lens) for the input current value to the AF lens unit 1 and inspects the resolution of the measurement lens An AF lens unit characteristic inspection apparatus including an AF drive control circuit for controlling AF drive is disclosed. . In addition, the AF lens unit characteristic inspection apparatus described in Patent Document 3 allows light such as a halogen lamp to enter through a reference chart, and causes the imaging sensor to detect a light spot (image data) emitted from the imaging lens. . Then, the MTF calculation device calculates the input current value−MTF value based on the image data from the measurement sensor corresponding to the input current value from the AF drive control circuit, and the MTF peak value sets the reference value (threshold value). The resolution of the lens can be inspected depending on whether or not it exceeds.
 さらに、特開2010-021985号公報(特許文献4)には、撮影レンズ(レンズユニット)に対する素子ユニットの位置を調整し、調整後に素子ユニットをレンズユニットに固定するために、チャートユニットと、集光ユニットと、レンズ位置決めプレートと、レンズ保持機構と、素子移動機構と、接着剤供給器と、紫外線ランプと、これらを制御する制御部から構成されているカメラモジュール製造装置が開示されている。 Further, Japanese Patent Laid-Open No. 2010-021985 (Patent Document 4) discloses a chart unit, a collector unit, and a collector unit for adjusting the position of the element unit with respect to the photographing lens (lens unit) and fixing the element unit to the lens unit after adjustment. There is disclosed a camera module manufacturing apparatus that includes an optical unit, a lens positioning plate, a lens holding mechanism, an element moving mechanism, an adhesive supplier, an ultraviolet lamp, and a control unit that controls them.
 ここで、従来のカメラモジュール調整装置100の模式図の一例を図1に示す。図1に示すように、カメラモジュール調整装置100において、チャート像は、照明部101を用いて、透過型のチャート(テストチャート、パターン)102が照らし出される。 Here, an example of a schematic diagram of a conventional camera module adjustment apparatus 100 is shown in FIG. As shown in FIG. 1, in the camera module adjustment apparatus 100, the chart image is illuminated by a transmissive chart (test chart, pattern) 102 using an illumination unit 101.
 そして、ハーフミラー103によって、反射されたチャート像は、コリメータレンズ(コリメーションレンズ)104によって、平行光線に変換され、カメラモジュール105に入射する。更に、チャート像は、カメラモジュール105のレンズ105aによって、撮像素子105bの上に結像する。 The chart image reflected by the half mirror 103 is converted into parallel rays by a collimator lens (collimation lens) 104 and enters the camera module 105. Further, the chart image is formed on the image sensor 105 b by the lens 105 a of the camera module 105.
 次に、撮像素子105b上のチャート像は、撮像素子105bによって電気信号に変換されて、電気信号は制御部106(例えば、コンピュータ)に入力される。そして、制御部106は、その電気信号をデジタルデータに変換し、表示部106a(例えば、モニター)に表示する。 Next, the chart image on the image sensor 105b is converted into an electric signal by the image sensor 105b, and the electric signal is input to the control unit 106 (for example, a computer). And the control part 106 converts the electric signal into digital data, and displays it on the display part 106a (for example, monitor).
 最後に、カメラモジュール105を検査する操作員(検査員)は、表示部106aのピントが合うように、カメラモジュール105のレンズ105aと撮像素子105bとの間隔を調整する。 Finally, an operator (inspector) inspecting the camera module 105 adjusts the distance between the lens 105a of the camera module 105 and the image sensor 105b so that the display unit 106a is in focus.
 なお、カメラモジュール調整装置100は、カメラモジュールを観察できる撮像素子107及びコリメータレンズ104を用いることによって、オートコリメータ機能を有する。そして、撮像素子107の出力をモニター(図示しない)に表示することよって、カメラモジュールに照射する照射光の角度の調整、及び条件出し等を行うことができる。 The camera module adjustment apparatus 100 has an autocollimator function by using the image sensor 107 and the collimator lens 104 that can observe the camera module. Then, by displaying the output of the image sensor 107 on a monitor (not shown), it is possible to adjust the angle of irradiation light irradiated to the camera module, set conditions, and the like.
特開2003-315650号公報JP 2003-315650 A 特開2002-267923号公報JP 2002-267923 A 特開2012-149928号公報JP 2012-149928 A 特開2010-021985号公報JP 2010-021985
 従来のようなカメラモジュール調整装置及びカメラモジュール調整方法では、調整すべきカメラモジュールの撮像素子を用いて、テストチャート(例えば、チャート紙)を撮像する必要があった。また、撮像素子が撮像したテストチャートを変換した電気信号を用いて、表示部はテストチャート像を表示する必要がある。 In the conventional camera module adjustment apparatus and camera module adjustment method, it was necessary to image a test chart (for example, chart paper) using the image sensor of the camera module to be adjusted. In addition, the display unit needs to display a test chart image using an electrical signal obtained by converting a test chart captured by the image sensor.
 さらに、近年、カメラモジュールにおけるレンズとして、広角レンズ又は魚眼レンズが、採用されるような傾向にある。この傾向に伴い、高い像高のカメラモジュールにおけるレンズと撮像素子との間隔(ピント)を調整することが必要となってきた。なお、本願明細書において「像高」とは、撮像した画像の中心から像の高さを示す指標である。言い換えると、「像高」は、カメラモジュールの光軸に対して垂直な方向における、画像の端部(例えば、周辺部、画像中心より最も離れた位置)と画像の中心との間隔(距離)を指す。 Furthermore, in recent years, wide-angle lenses or fish-eye lenses tend to be employed as lenses in camera modules. With this trend, it has become necessary to adjust the distance (focus) between the lens and the image sensor in the camera module having a high image height. In the present specification, “image height” is an index indicating the height of the image from the center of the captured image. In other words, the “image height” is the distance (distance) between the edge of the image (eg, the peripheral part, the position farthest from the image center) and the center of the image in the direction perpendicular to the optical axis of the camera module. Point to.
 また、携帯電話機等に用いられる量産形のカメラモジュールは、短時間で一定の品質を満たす製品を大量に生産しなければならない。しかしながら、上記特許文献1~4に記載されたような発明では、低価格の量産形カメラモジュールの製造に適用することが困難と考えられる。 Also, mass-produced camera modules used for mobile phones and the like must produce a large number of products that satisfy a certain quality in a short time. However, it is considered difficult to apply the inventions described in Patent Documents 1 to 4 to manufacture a low-cost mass-produced camera module.
 本発明は、上述のような事情よりなされたものであり、本発明の目的は、カメラモジュールのレンズと撮像素子との間隔を調整する際、撮像素子を駆動して、テストチャートを撮像することがないカメラモジュール調整装置、及びカメラモジュール調整方法を提供することにある。 The present invention has been made under the circumstances as described above, and an object of the present invention is to drive an image sensor to capture an image of a test chart when adjusting the distance between the lens of the camera module and the image sensor. It is an object of the present invention to provide a camera module adjustment apparatus and a camera module adjustment method that do not have any.
 特に、広角レンズ(魚眼レンズを含むもの)がレンズとして用いられるカメラモジュールにおける、レンズと撮像素子との間隔を調整することができるようなカメラモジュールのカメラモジュール調整装置、及びカメラモジュール調整方法を提供することにある。 In particular, a camera module adjustment device and a camera module adjustment method for a camera module that can adjust the distance between the lens and the imaging element in a camera module in which a wide-angle lens (including a fisheye lens) is used as a lens. There is.
 本発明に係るカメラモジュール調整装置の上記目的は、光源部、カメラモジュール、撮影部、及び制御部を有するカメラモジュール調整装置であって、前記光源部は、光源と、前記光源の出射光を第1の光に変換するピンホールと、前記ピンホールから入射された前記第1の光を第1の平行光線に変換する第1のコリメータレンズを備え、前記ピンホールは、前記第1のコリメータレンズから前記第1のコリメータレンズの略焦点距離離れた位置に配置され、前記カメラモジュールは、レンズと、前記レンズによって、前記第1の平行光線が集光された、第1の光スポットが形成される第1の撮像素子と、を備え、前記撮影部は、前記第1の光スポットが前記第1の撮像素子で反射した第2の光を、前記レンズによって略平行に変換された第2の平行光線を集光する第2のコリメータレンズと、前記第2のコリメータレンズによって集光された第2の光スポットを光電変換した画像信号を生成する第2の撮像素子を備え、前記制御部は、前記画像信号に基づいて、前記第2の光スポットについての合焦評価値を演算する演算部と、前記第2の光スポットを表示する表示部とを備え、前記制御部は、前記合焦評価値に基づいて、前記第1の撮像素子の受光面に垂直な方向に沿った、前記レンズと前記第1の撮像素子との距離を決定し、前記距離に基づいて、前記カメラモジュールの調整を行うことにより達成される。 The object of the camera module adjustment device according to the present invention is a camera module adjustment device having a light source unit, a camera module, a photographing unit, and a control unit, wherein the light source unit is a light source and outputs light emitted from the light source. And a first collimator lens that converts the first light incident from the pinhole into a first parallel light beam, and the pinhole includes the first collimator lens. The first collimator lens is disposed at a position approximately away from the focal length of the first collimator lens, and the camera module forms a first light spot on which the first parallel light beam is condensed by the lens and the lens. The first imaging element, wherein the imaging unit has converted the second light reflected by the first imaging element into substantially parallel by the lens. A second collimator lens that condenses the two parallel rays, and a second imaging device that generates an image signal obtained by photoelectrically converting the second light spot collected by the second collimator lens, and the control The unit includes a calculation unit that calculates a focus evaluation value for the second light spot based on the image signal, and a display unit that displays the second light spot, and the control unit includes: A distance between the lens and the first image sensor along a direction perpendicular to the light receiving surface of the first image sensor is determined based on a focus evaluation value, and the camera module is determined based on the distance. This is achieved by making adjustments.
 また、本発明に係るカメラモジュール調整装置の上記目的は、前記カメラモジュールは、前記レンズを保持するレンズ保持部を備え、前記レンズ保持部を前記方向に移動させ、前記距離に基づいて、前記レンズ保持部をカメラモジュール調整位置に移動させるレンズ保持移動部を備えることにより、或いは前記第1の平行光線を偏向して、前記カメラモジュールに照射し、前記第2の平行光線を、偏向させずに直進させるビームスプリッタを備えることにより、或いは前記ビームスプリッタは、ハーフミラー又は無偏向ビームスプリッタであることにより、或いは前記レンズを広角レンズ又は魚眼レンズとし、前記第2の光は、前記第1の撮像素子の前記受光面の反射型回折格子によって反射することにより、或いは前記カメラモジュール調整位置を固定するため、前記レンズ保持部と前記第1の撮像素子との間隙に紫外線硬化樹脂を塗布し、前記紫外線硬化樹脂に紫外線を照射することにより、より効果的に達成される。 According to another aspect of the present invention, there is provided a camera module adjustment device, wherein the camera module includes a lens holding unit that holds the lens, the lens holding unit is moved in the direction, and the lens is based on the distance. By providing a lens holding and moving unit that moves the holding unit to the camera module adjustment position, or by deflecting the first parallel light beam and irradiating the camera module, without deflecting the second parallel light beam. By providing a straight beam splitter, or the beam splitter is a half mirror or a non-deflection beam splitter, or the lens is a wide-angle lens or a fish-eye lens, and the second light is the first image sensor. By reflecting with a reflection type diffraction grating on the light receiving surface, or the camera module To fix the integer position, the ultraviolet curable resin is applied in a gap between the said lens holding portion first imaging element, by irradiating ultraviolet rays to the ultraviolet curing resin is more effectively achieved.
 また、本発明に係るカメラモジュール調整方法の上記目的は、光源部、カメラモジュール、撮影部、制御部、及びレンズ保持駆動部を有するカメラモジュール調整方法であって、前記光源部は、ピンホールによって、光源の出射光を第1の光に変換し、前記第1のコリメータレンズによって、ピンホールから入射された第1の光を第1の平行光線に変換し、前記ピンホールは、前記第1のコリメータレンズから前記第1のコリメータレンズの略焦点距離離れた位置に配置され、前記カメラモジュールのレンズによって、前記第1の平行光線が前記カメラモジュールの第1の撮像素子の受光面に集光された第1の光スポットが、前記第1の撮像素子に形成され、前記撮影部は、前記第1の光スポットが前記第1の撮像素子で反射した第2の光を前記レンズによって略平行に変換された第2の平行光線を、第2のコリメータレンズによって、第2の撮像素子に集光し、前記第2のコリメータレンズによって集光された第2の光スポットを、前記第2の撮像素子によって、光電変換した画像信号を生成し、前記制御部は、演算部によって、前記画像信号に基づいて、前記第2の光スポットについての合焦評価値を演算し、表示部によって、前記第2の光スポットを表示し、前記制御部は、前記合焦評価値に基づいて、前記第1の撮像素子の受光面に垂直な方向に沿った前記レンズと前記第1の撮像素子との距離を決定し、前記距離に基づいて、前記カメラモジュールの調整を行うことより達成される。 The object of the camera module adjustment method according to the present invention is a camera module adjustment method including a light source unit, a camera module, a photographing unit, a control unit, and a lens holding and driving unit, wherein the light source unit is a pinhole. The light emitted from the light source is converted into the first light, the first collimator lens converts the first light incident from the pinhole into the first parallel light beam, and the pinhole is The first collimated lens is disposed at a position substantially away from the collimator lens by the focal length of the first collimator lens, and the first parallel light beam is condensed on the light receiving surface of the first image sensor of the camera module by the lens of the camera module. The first light spot thus formed is formed on the first image sensor, and the photographing unit has the second light reflected by the first image sensor on the first light spot. The second collimated light beam converted into substantially parallel by the lens is condensed on the second image sensor by the second collimator lens, and the second light spot condensed by the second collimator lens is collected. The second imaging element generates a photoelectrically converted image signal, and the control unit calculates a focus evaluation value for the second light spot based on the image signal by the calculation unit, The display unit displays the second light spot, and the control unit, based on the focus evaluation value, the lens along the direction perpendicular to the light receiving surface of the first image sensor and the first This is achieved by determining the distance from the image pickup device and adjusting the camera module based on the distance.
 また、本発明に係るカメラモジュール調整方法の上記目的は、前記カメラモジュールにおいて、レンズ保持部が前記レンズを保持し、前記レンズ保持部を前記方向に移動させ、レンズ保持部駆動部によって、前記距離に基づいて、前記レンズ保持部をカメラモジュール調整位置に移動させることにより、或いはビームスプリッタによって、前記第1の平行光線を偏向して、前記カメラモジュールに照射し、前記第2の平行光線は、偏向させずに直進させることにより、或いは前記ビームスプリッタは、ハーフミラー又は無偏向ビームスプリッタであることにより、或いは前記レンズを広角レンズ又は魚眼レンズとし、前記第2の光は、前記第1の撮像素子の前記受光面の反射型回折格子によって反射することにより、或いは前記カメラモジュール調整位置を固定する為、前記レンズ保持部と前記第1のサツゾウ素子との間隙に紫外線効果樹脂を塗布し、前記紫外線硬化樹脂に紫外線を照射することにより、より効果的に達成される。 In the camera module adjustment method according to the present invention, in the camera module, the lens holding unit holds the lens, the lens holding unit is moved in the direction, and the lens holding unit driving unit moves the distance. Based on the above, by moving the lens holding unit to the camera module adjustment position or by a beam splitter, the first parallel light beam is deflected to irradiate the camera module, and the second parallel light beam is By moving straight without deflecting, or when the beam splitter is a half mirror or a non-deflecting beam splitter, or the lens is a wide-angle lens or a fisheye lens, and the second light is the first imaging element By reflecting the light from the reflection type diffraction grating on the light receiving surface, or the camera module. In order to fix the lens adjustment position, an ultraviolet effect resin is applied to the gap between the lens holding portion and the first tsuzo element, and the ultraviolet curable resin is irradiated with ultraviolet rays, which is achieved more effectively. .
 本発明に係るカメラモジュール調整装置、及びカメラモジュール調整方法によれば、カメラモジュールのレンズと撮像素子との間隔を調整する際、撮像素子を駆動して、テストチャートを撮像することを必要としないという優れた効果を奏し得る。 According to the camera module adjustment device and the camera module adjustment method according to the present invention, when adjusting the distance between the lens of the camera module and the image pickup device, it is not necessary to drive the image pickup device and image the test chart. An excellent effect can be achieved.
従来のカメラモジュール調整装置の模式図である。It is a schematic diagram of the conventional camera module adjustment apparatus. 本発明に係るカメラモジュール調整装置の一実施形態の模式図である。It is a schematic diagram of one Embodiment of the camera module adjustment apparatus which concerns on this invention. カメラモジュールの撮像素子の画素が撮像された画像の具体例を示す図である。It is a figure which shows the specific example of the image by which the pixel of the image pick-up element of the camera module was imaged. 本発明に係るカメラモジュール調整装置が行う工程を示すフローチャートである。It is a flowchart which shows the process which the camera module adjustment apparatus which concerns on this invention performs. 本発明に係るカメラモジュール調整装置の別の実施形態の光線経路を示す図である。It is a figure which shows the light beam path | route of another embodiment of the camera module adjustment apparatus which concerns on this invention. 本発明に係るカメラモジュール調整装置の別の実施形態において、撮像素子の受光面における1次回折光(m=1)の回折の様子を示す図である。It is a figure which shows the mode of diffraction of the 1st-order diffracted light (m = 1) in the light-receiving surface of an image pick-up element in another embodiment of the camera module adjustment apparatus which concerns on this invention. 本発明に係るカメラモジュール調整装置の別の実施形態において、撮像素子の受光面における回折光(m<0)の回折の様子を示す図である。It is a figure which shows the mode of diffraction of the diffracted light (m <0) in the light-receiving surface of an image pick-up element in another embodiment of the camera module adjustment apparatus which concerns on this invention. 本発明に係るカメラモジュール調整装置の別の実施形態において、撮像素子の受光面における回折光(m'<0)の回折の様子を示す図である。It is a figure which shows the mode of diffraction of the diffracted light (m '<0) in the light-receiving surface of an image pick-up element in another embodiment of the camera module adjustment apparatus which concerns on this invention.
 本発明に係るカメラモジュール調整装置、及びカメラモジュール調整方法では、ピンホールを通して光源から入射された光をコリメータレンズによって平行光線に変換し、カメラモジュールレンズのレンズによって、その平行光線が集光された光スポットが、カメラモジュールの撮像素子に形成され、その光スポットが撮像素子で反射した光が、レンズによって略平行の平行光線に変換され、その平行光線を撮影部のコリメータレンズによって集光された光スポットが光電変換された画像信号を、撮影部の撮像素子によって生成し、画像信号に基づいて、光スポットについての合焦評価値を演算した合焦評価値に基づいて決定した、カメラモジュールの撮像素子とレンズとの距離に基づいて、カメラモジュール調整を行うことによって、カメラモジュールの撮像素子を駆動して、テストチャートを撮像する工程なしにカメラモジュール調整を行うことができるという優れた効果が得られる。 In the camera module adjustment device and the camera module adjustment method according to the present invention, the light incident from the light source through the pinhole is converted into parallel rays by the collimator lens, and the parallel rays are condensed by the lens of the camera module lens. A light spot is formed on the image pickup device of the camera module, and the light reflected by the image pickup device is converted into a substantially parallel parallel light beam by the lens, and the parallel light beam is collected by the collimator lens of the photographing unit. An image signal obtained by photoelectrically converting the light spot is generated by the imaging device of the photographing unit, and based on the image signal, the focus evaluation value obtained by calculating the focus evaluation value for the light spot is determined. By adjusting the camera module based on the distance between the image sensor and the lens, the camera By driving the imaging element of La module, it has excellent effect that it is possible to perform the camera module adjustment without steps to image a test chart obtained.
 以下、図に基づいて本発明の実施形態を説明する。本発明の一実施形態におけるカメラモジュールのカメラモジュール調整装置の模式図を図2に示す。なお、本発明の実施形態では、カメラモジュール15の光軸方向をZ軸と設定する。また、X軸は、Z軸に垂直な方向に設けられ、Y軸は、X軸とZ軸に垂直な方向、すなわち紙面に垂直な方向(例えば、紙面の上から下に向けて垂直な向き)に設けられる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. A schematic diagram of a camera module adjustment device of a camera module according to an embodiment of the present invention is shown in FIG. In the embodiment of the present invention, the optical axis direction of the camera module 15 is set as the Z axis. The X-axis is provided in a direction perpendicular to the Z-axis, and the Y-axis is a direction perpendicular to the X-axis and the Z-axis, that is, a direction perpendicular to the paper surface (for example, a direction perpendicular from the top to the bottom of the paper surface). ).
 先ず、カメラモジュール15のカメラモジュール調整装置10において、光源11の出射側にピンホール(貫通孔)12を設けることによって、像高のある光線を照射する光源が得られる。そして、ピンホール12を通った光線は、焦点距離f1を有するコリメータレンズ13によって、平行光線に変換される。更に、ハーフミラー14によって、反射された平行光線は、カメラモジュール15に入射する。 First, in the camera module adjustment device 10 of the camera module 15, by providing a pinhole (through hole) 12 on the emission side of the light source 11, a light source that emits a light beam having an image height is obtained. The light beam that has passed through the pinhole 12 is converted into a parallel light beam by a collimator lens 13 having a focal length f 1 . Further, the parallel light beam reflected by the half mirror 14 enters the camera module 15.
 また、カメラモジュール15は、焦点距離f2を有するレンズ15aと、レンズ15aから略焦点距離f2の地点に離れて配置されている撮像素子15bと、レンズ15aを保持するレンズ保持部15cとで構成されている。なお、撮像素子15bの受光面には、複数の画素がマトリクス状に配列されている。 In addition, the camera module 15 includes a lens 15a having a focal length f 2, and the image pickup device 15b that are spaced apart at a point approximately the focal length f 2 from the lens 15a, a lens holding portion 15c for holding the lens 15a It is configured. A plurality of pixels are arranged in a matrix on the light receiving surface of the image sensor 15b.
 そして、カメラモジュール15に入射した平行光線は、レンズ15aによって、撮像素子15bの受光面の上に光スポットとして結像する。続いて、その光スポットは、撮像素子15bの受光面によって反射され、レンズ15aによって、再び平行光線に変換される。該平行光線は、ハーフミラー14を透過し、焦点距離f3を有するレンズコリメータ16によって、撮像素子17の上に光スポットとして結像する。 The parallel light rays incident on the camera module 15 are imaged as light spots on the light receiving surface of the image sensor 15b by the lens 15a. Subsequently, the light spot is reflected by the light receiving surface of the image sensor 15b and converted into parallel rays again by the lens 15a. The parallel rays pass through the half mirror 14 and form an image as a light spot on the image sensor 17 by the lens collimator 16 having the focal length f 3 .
 次に、撮像素子17は、光スポットの画像を光電変換した画像信号を制御部18に出力する。そして、制御部18の演算部18aは、画像信号に基づいて演算した合焦評価値を記憶する。なお、合焦評価値は、レンズ15aが撮像素子15b上でフォーカス(ピント)が合った度合を示す数値である。 Next, the image sensor 17 outputs an image signal obtained by photoelectrically converting the image of the light spot to the control unit 18. And the calculating part 18a of the control part 18 memorize | stores the focus evaluation value calculated based on the image signal. The in-focus evaluation value is a numerical value indicating the degree to which the lens 15a is focused (focused) on the image sensor 15b.
 次に、制御部18の演算部18bは、レンズ保持駆動部19の駆動部19aにレンズ保持部の移動量を出力する。 Next, the calculation unit 18 b of the control unit 18 outputs the movement amount of the lens holding unit to the driving unit 19 a of the lens holding driving unit 19.
 そして、駆動部19aは、移動量に基づいて、レンズ保持結合部19bをZ軸方向(撮像素子15bの受光面に垂直な方向)に沿って移動させる。レンズ保持部15cが、レンズ保持結合部19bと結合していることにより、レンズ保持部15bは、レンズ保持結合部19bの移動量に連動して、Z軸方向に移動する。 Then, the driving unit 19a moves the lens holding and coupling unit 19b along the Z-axis direction (direction perpendicular to the light receiving surface of the image sensor 15b) based on the movement amount. Since the lens holding unit 15c is coupled to the lens holding coupling unit 19b, the lens holding unit 15b moves in the Z-axis direction in conjunction with the movement amount of the lens holding coupling unit 19b.
 ここで、カメラモジュール15のカメラモジュール調整の工程において、レンズ15aが撮像素子15b上でフォーカス(ピント)が合った場合において、撮像素子17が撮像した光スポットの様子を図3に示す。図3には、撮像素子15bの受光面に配列された複数の画素が、マトリクス状に配列されている様子が示されている。 Here, in the camera module adjustment process of the camera module 15, when the lens 15a is focused on the image sensor 15b, the state of the light spot imaged by the image sensor 17 is shown in FIG. FIG. 3 shows a state in which a plurality of pixels arranged on the light receiving surface of the image sensor 15b are arranged in a matrix.
 また、撮像素子15bの画素の像と、カメラモジュール15のレンズ15aと撮像素子との間に配置された窓ガラス(例えば、フィルタ、保護膜、又は保護層)等に形成された反射像とは、明確に識別することができる。 The image of the pixel of the image sensor 15b and the reflected image formed on a window glass (for example, a filter, a protective film, or a protective layer) disposed between the lens 15a of the camera module 15 and the image sensor. Can be clearly identified.
 特に、ピンホール12に入射する光線が、干渉性を有する光線(例えば、レーザ光)とした場合には、撮像素子15bの画素の間隔に起因する回折現象により、撮像素子17で結像した光スポットの内部に、撮像素子15bの画素の像がより鮮明に結像する。なお、撮像素子17の受光面で結像した際、撮像素子15bの複数の画素に、光線が照射されるように、ピンホール12の直径(孔)は設計されることが好適である。その理由は、光線の直径(幅)が、撮像素子15bの画素サイズ以下である場合、光線の照射位置が、反射光の回折を変化させ、その結果、光スポット内部の画素の像が不安定になるためである。 In particular, when the light beam incident on the pinhole 12 is a coherent light beam (for example, a laser beam), the light imaged by the image sensor 17 due to the diffraction phenomenon caused by the interval between the pixels of the image sensor 15b. The image of the pixel of the image sensor 15b is formed more clearly in the spot. Note that it is preferable that the diameter (hole) of the pinhole 12 is designed so that, when an image is formed on the light receiving surface of the image sensor 17, light rays are irradiated to a plurality of pixels of the image sensor 15 b. The reason is that when the diameter (width) of the light beam is equal to or smaller than the pixel size of the image sensor 15b, the irradiation position of the light beam changes the diffraction of the reflected light, and as a result, the image of the pixel inside the light spot is unstable. Because it becomes.
 次に、ピンホール像に起因する光スポットの直径を算出する方法を説明する。 Next, a method for calculating the diameter of the light spot caused by the pinhole image will be described.
 先ず、ピンホール12の孔の直径をφa、撮像素子15bの受光面上の光スポットの直径をφbとする。また、コリメータレンズ13の焦点距離をf1、レンズ15bの焦点距離をf2とする。 First, the diameter of the hole of the pinhole 12 is φ a , and the diameter of the light spot on the light receiving surface of the image sensor 15 b is φ b . The focal length of the collimator lens 13 is f 1 and the focal length of the lens 15b is f 2 .
 φbは、数1のように表すことができる。 φ b can be expressed as follows:
Figure JPOXMLDOC01-appb-M000001
 また、撮像素子17に受光面上の光スポットの直径をφc、撮像側のコリメータレンズ16の焦点距離をf3とし、φcは数2のように表すことができる。
Figure JPOXMLDOC01-appb-M000001
Further, the diameter of the light spot on the light receiving surface of the image sensor 17 is φ c , the focal length of the collimator lens 16 on the imaging side is f 3, and φ c can be expressed as shown in Equation 2.
Figure JPOXMLDOC01-appb-M000002
 更に、撮像素子15bの隣接する画素同士の間隔をd、撮像素子17の受光面で結像された撮像素子15bの画素像のサイズをd’として、dとd’の関係は数3のように表すことができる。
Figure JPOXMLDOC01-appb-M000002
Further, the distance between adjacent pixels of the image sensor 15b is d, and the size of the pixel image of the image sensor 15b formed on the light receiving surface of the image sensor 17 is d '. Can be expressed as
Figure JPOXMLDOC01-appb-M000003
 例えば、カメラモジュール(検査対象)15のピンホール12の孔の直径φaを1.0[mm]、光源側のコリメータレンズ13の焦点距離f1を27[mm]、レンズの焦点距離f2を2.5[mm]、撮像側のコリメータレンズ16の焦点距離f3を27[mm]、カメラモジュール15の撮像素子15bの画素間隔5[μm]、及び撮影画像の光スポットの直径、すなわちφbを92[μm](0.092[mm])と設定する。
Figure JPOXMLDOC01-appb-M000003
For example, the diameter φa of the pinhole 12 of the camera module (inspection target) 15 is 1.0 [mm], the focal length f 1 of the collimator lens 13 on the light source side is 27 [mm], and the focal length f 2 of the lens is 2.5 [mm], the focal length f 3 of the collimator lens 16 on the imaging side is 27 [mm], the pixel interval 5 [μm] of the imaging element 15b of the camera module 15, and the diameter of the light spot of the captured image, that is, φ b is set to 92 [μm] (0.092 [mm]).
 これらの設定に基づいて、数2より、撮像素子17で撮像された光スポットの直径φcは、994[μm](0.994[mm])と見積もることができる。 Based on these settings, the diameter φ c of the light spot imaged by the image sensor 17 can be estimated as 994 [μm] (0.994 [mm]) from Equation 2.
 そして、コリメータレンズ13によって、ピンホール径φaの光の幅を縮小した光を、カメラモジュールの撮像素子面に光スポットとして結像する。更に、コリメータレンズ16によって、撮像素子17の受光面で、その光スポットを拡大することができる。 Then, by the collimator lens 13, the light obtained by reducing the width of the light of the pinhole diameter phi a, is focused as a light spot on the image sensor surface of the camera module. Further, the collimator lens 16 can enlarge the light spot on the light receiving surface of the image sensor 17.
 このようにして、撮像素子17の受光面のセル像を表示部(モニター)18bで観察することができる。 Thus, the cell image of the light receiving surface of the image sensor 17 can be observed on the display unit (monitor) 18b.
 次に、上記のカメラモジュール調整装置10が行うカメラモジュール調整の工程について、図4のフローチャートを用いて説明する。 Next, the camera module adjustment process performed by the camera module adjustment apparatus 10 will be described with reference to the flowchart of FIG.
 先ず、カメラモジュール調整装置10の初期化を行う(ステップS11)。次に、カメラモジュール15をカメラモジュール調整装置に対して、所定の位置に設置する(ステップS12)。 First, the camera module adjustment device 10 is initialized (step S11). Next, the camera module 15 is installed at a predetermined position with respect to the camera module adjustment device (step S12).
 そして、光源11を点灯して、カメラモジュール15に光線を照射する(ステップS13)。 Then, the light source 11 is turned on to irradiate the camera module 15 with light rays (step S13).
 次に、カメラモジュール15の撮像素子15bの受光面上にピンホール像が結像した光スポットを、撮像素子17を用いて、制御部18が取り込む(ステップS14)。そして、レンズ保持駆動部19が、レンズ保持部15を所定の移動距離分ΔDの相当する距離を移動させる(ステップS15)。 Next, the control unit 18 takes in the light spot on which the pinhole image is formed on the light receiving surface of the image sensor 15b of the camera module 15 by using the image sensor 17 (step S14). Then, the lens holding / driving unit 19 moves the lens holding unit 15 by a distance corresponding to a predetermined moving distance ΔD (step S15).
 次に、レンズ保持部15のZ軸方向の移動距離が所定の最大距離Dmaxに達したか否かを判断する(ステップS16)。 Next, it is determined whether or not the movement distance of the lens holding portion 15 in the Z-axis direction has reached a predetermined maximum distance Dmax (step S16).
 ステップS16において、判断がNoであれば、ステップS14に戻る。また、ステップS16において、判断がYesであれば、後述のステップS17に進む。 If it is determined NO in step S16, the process returns to step S14. If the determination is Yes in step S16, the process proceeds to step S17 described later.
 次に、制御部18の演算部18aが、移動距離と合焦評価値との関係に基づいて、モジュール15のレンズ15aと撮像素子15bとの距離(焦点距離)を決定する(ステップS17)。 Next, the calculation unit 18a of the control unit 18 determines the distance (focal length) between the lens 15a and the image sensor 15b of the module 15 based on the relationship between the moving distance and the focus evaluation value (step S17).
 そして、制御部18は、レンズ保持駆動部19を用いて、カメラモジュール調整位置(焦点位置)にレンズ保持部15cを移動させる(ステップS18)。 And the control part 18 moves the lens holding part 15c to a camera module adjustment position (focus position) using the lens holding drive part 19 (step S18).
 次に、レンズ保持部15cと撮像素子15bとの間に接着剤を塗布する(ステップS19)。そして、紫外線を接着剤に照射し、接着剤(紫外線硬化樹脂)を硬化させる(ステップS20)。 Next, an adhesive is applied between the lens holding portion 15c and the image sensor 15b (step S19). And an ultraviolet-ray is irradiated to an adhesive agent and an adhesive agent (ultraviolet curable resin) is hardened (step S20).
 終わりに、カメラモジュール15を取り出す(ステップS21)。 Finally, the camera module 15 is taken out (step S21).
 次に、本発明の別の実施形態について説明する。 Next, another embodiment of the present invention will be described.
 本発明の別の実施形態は、広角レンズ22がレンズとして用いられるカメラモジュールにおける、レンズと撮像素子との間隔を調整することができるようなカメラモジュール調整装置である。 Another embodiment of the present invention is a camera module adjustment device that can adjust the distance between a lens and an image sensor in a camera module in which the wide-angle lens 22 is used as a lens.
 先ず、広角レンズ22が用いられるカメラモジュールと本発明に係るモジュール調整装置との光線経路を示す模式図を図5に示す。図5に示すように、広角レンズ22によって撮像素子23の受光面でフォーカス(ピント)を合わせる場合、レンズの像高の高い位置では、広角レンズ22に入射した光線は、撮像素子の受光面で反射(正反射)するため、モジュール調整装置に再度入射せず、モジュール調整装置側に戻ってこない。 First, FIG. 5 is a schematic diagram showing a light beam path between a camera module in which the wide-angle lens 22 is used and a module adjustment device according to the present invention. As shown in FIG. 5, when focusing is performed on the light receiving surface of the image sensor 23 by the wide angle lens 22, the light incident on the wide angle lens 22 is received on the light receiving surface of the image sensor at a position where the image height of the lens is high. Because of reflection (regular reflection), the light does not enter the module adjustment device again and does not return to the module adjustment device side.
 そして、撮像素子23の受光面は、複数の画素23aが格子(マトリクス)状に配置されている。このような格子状の構造は、反射型回折格子構造となっている。CCD型撮像素子やCMOS型撮像素子に代表される撮像素子23は、微細な周期構造を持つ反射面を有している。そのような構造のため、この反射面が反射型回折格子と同様の作用をする。 And on the light receiving surface of the image sensor 23, a plurality of pixels 23a are arranged in a lattice. Such a grating-like structure is a reflective diffraction grating structure. An image sensor 23 typified by a CCD image sensor or a CMOS image sensor has a reflective surface with a fine periodic structure. Due to such a structure, this reflecting surface acts in the same manner as a reflective diffraction grating.
 先ず、撮像素子23の受光面の垂線に対して入射角θiで、光線が入射した場合、光線の大部分は、反射角-θiで0次光として反射する。しかし、その光線の一部は、回折光として、回折角θmで1次回折し、その光の様子を図6に示す。 First, when a light beam is incident at an incident angle θ i with respect to the normal to the light receiving surface of the image sensor 23, most of the light beam is reflected as zero-order light at a reflection angle −θ i . However, a part of the light beam is first-order diffracted at a diffraction angle θ m as diffracted light, and the state of the light is shown in FIG.
 さらに、周期的に強弱が繰り返される反射光によって、高次の回折光が発生(生成)する。 Furthermore, high-order diffracted light is generated (generated) by reflected light that is periodically repeated in intensity.
 ここで、回折の次数をm、撮像素子の隣接する画素同士の間隔をd、光線の波長をλとする。回折光は、次数m、及び波長λに応じて、次数mの回折角θmで、各画素(刻線面)から回折する。 Here, it is assumed that the diffraction order is m, the distance between adjacent pixels of the image sensor is d, and the wavelength of the light beam is λ. The diffracted light is diffracted from each pixel (marked surface) at a diffraction angle θ m of the order m in accordance with the order m and the wavelength λ.
 そして、間隔d、波長λ、次数m、入射角θi、及び回折角θmの関係は、数4のように表すことができる。 The relationship among the distance d, the wavelength λ, the order m, the incident angle θ i , and the diffraction angle θ m can be expressed as in Expression 4.
Figure JPOXMLDOC01-appb-M000004
 ここで、数4における入射角θi、及び回折角θmについて説明する。
Figure JPOXMLDOC01-appb-M000004
Here, the incident angle θ i and the diffraction angle θ m in Equation 4 will be described.
 先ず、入射光及び回折光が、撮像素子23の表面垂線に対して、互いに反対側にあれば、入射角θiは、正(プラス)、とし、回折角θmは、負(マイナス)とする。また、撮像素子23の表面垂線に対して、互いに同じ側であれば、入射角θi、及び回折角θm、は、両方とも正(プラス)である。 First, if incident light and diffracted light are on opposite sides of the surface normal of the image sensor 23, the incident angle θ i is positive (plus), and the diffraction angle θ m is negative (minus). To do. In addition, the incident angle θ i and the diffraction angle θ m are both positive (plus) if they are on the same side with respect to the surface normal of the image sensor 23.
 なお、数4において、m=0の場合、反射角θm=0は、間隔d及び波長λに依存せず、-θiである。 In Equation 4, when m = 0, the reflection angle θ m = 0 is −θ i without depending on the distance d and the wavelength λ.
 また、数4において、次数mは整数である。すなわち、次数mは、0、±1、±2、・・・の値を取ることが許される。 Also, in Equation 4, the order m is an integer. That is, the order m is allowed to take values of 0, ± 1, ± 2,.
 そして、次数mが大きい高次の回折光である場合には、入射角θi、及び回折角θm、は、両方とも正(プラス)であることが許されると考えられる。そうすると、入射角θi、及び回折角θm、は、両方とも正(プラス)である場合には、高次の回折光は、入射光が入射した方向に回折すると考えられる。 In the case of high-order diffracted light having a large order m , it is considered that both the incident angle θ i and the diffraction angle θ m are allowed to be positive (plus). Then, when the incident angle θ i and the diffraction angle θ m are both positive (plus), it is considered that the higher-order diffracted light is diffracted in the direction in which the incident light is incident.
 ここで、撮像素子23の受光面における0次光の反射、及び回折光(m<0)の回折の様子を図7に示す。 Here, FIG. 7 shows a state of reflection of the zero-order light and diffraction of the diffracted light (m <0) on the light receiving surface of the image sensor 23.
 更に、カメラモジュール21の撮像素子23に入射する光線の波長λを調整(最適化)することによって、次数m’の回折光がカメラモジュール調整装置20に向けて戻るように、回折させることが可能と考えられる。 Further, by adjusting (optimizing) the wavelength λ of the light beam incident on the image sensor 23 of the camera module 21, the diffracted light of the order m ′ can be diffracted so as to return toward the camera module adjusting device 20. it is conceivable that.
 しかし、零以外の整数(m≠0)の場合には、回折角θmは、波長λに依存する。 However, in the case of an integer other than zero (m ≠ 0), the diffraction angle θ m depends on the wavelength λ.
 この回折角θm(λ)の波長依存性を利用するため、カメラモジュール調整装置20の光源部(図示はしない)は白色光の光源が好適である。 In order to utilize the wavelength dependency of the diffraction angle θm (λ), a white light source is suitable for the light source unit (not shown) of the camera module adjustment device 20.
 本発明の実施形態では、カメラモジュールの撮像素子の受光面に形成された光スポットから反射した光線を、カメラモジュール調整装置の撮像素子を用いて検出し、光スポットのピントが合うように、カメラモジュールのレンズと撮像素子との距離を合わせるようにして、カメラモジュールの調整を行うことを説明した。 In the embodiment of the present invention, the light beam reflected from the light spot formed on the light receiving surface of the image sensor of the camera module is detected using the image sensor of the camera module adjustment device, and the camera is adjusted so that the light spot is in focus. It has been explained that the camera module is adjusted so that the distance between the module lens and the image sensor is the same.
 そして、光スポットのピントの程度を評価するためには、カメラモジュール調整装置の制御部は、光スポットの合焦評価値を計算するようにすることが好適である。 In order to evaluate the degree of focus of the light spot, it is preferable that the control unit of the camera module adjustment device calculates a focus evaluation value of the light spot.
 カメラモジュール調整装置の制御部が算出する合焦評価値は、例えば、上述したようにMTF(解像度等)の他、光スポットのコントラストを用いても良い。 As the focus evaluation value calculated by the control unit of the camera module adjustment device, for example, the contrast of the light spot may be used in addition to MTF (resolution, etc.) as described above.
 さらに、合焦評価値として、コントラスト伝達関数値(Contrast Transfer Function:以下、CTF値と呼ぶ)を用いても良い。なお、CTF値とは、光スポットの空間周波数に対する像のコントラストを表す値であり、CTF値が高いときに合焦しているとみなすことができる。 Further, a contrast transfer function value (hereinafter referred to as CTF value) may be used as the focus evaluation value. The CTF value is a value representing the contrast of the image with respect to the spatial frequency of the light spot, and can be regarded as being in focus when the CTF value is high.
 そして、本発明は、MTF値、解像度、又はCTF値等に限定されるものではなく、合焦度合を評価することができる様々な評価方法、評価値を合焦位置の測定に用いることができる。また、カメラモジュールのレンズと撮像素子との位置関係調整を1回だけ行うようにしたが、複数回繰り返してもよい。 The present invention is not limited to the MTF value, resolution, or CTF value, and various evaluation methods and evaluation values that can evaluate the degree of focus can be used for measuring the focus position. . Further, the positional relationship between the lens of the camera module and the image sensor is adjusted only once, but may be repeated a plurality of times.
 さらに、上記各実施形態では、カメラモジュールのレンズと撮像素子の位置関係調整において、レンズを移動するようにしても、また撮像素子を移動するようにしてもよい。また、カメラモジュールのレンズが鏡筒等に組み込まれているような場合には、該鏡筒自体を移動させて、ピントを合わせても良い。 Further, in each of the above embodiments, the lens may be moved or the image sensor may be moved in adjusting the positional relationship between the lens of the camera module and the image sensor. Further, when the lens of the camera module is incorporated in a lens barrel or the like, the lens barrel itself may be moved to focus.
 また、本発明の実施形態では、ビームスプリッタとして、ハーフミラーを用いて、平行光線を偏向させることを示した。ビームスプリッタとして、キューブ型ビームスプリッタ、プレート型ビームスプリッタでも良い。また、ハーフミラーの他にも、例えば、プリズム等を用いても良い。 In the embodiment of the present invention, it has been shown that a parallel beam is deflected using a half mirror as a beam splitter. As the beam splitter, a cube type beam splitter or a plate type beam splitter may be used. In addition to the half mirror, for example, a prism or the like may be used.
10、20、100   カメラモジュール調整装置
11          光源
12          ピンホール
13          コリメータレンズ
14          ハーフミラー
15、21、105   カメラモジュール
15a         レンズ
15b         撮像素子
15c         レンズ保持部
16          コリメータレンズ
17          撮像素子
18          制御部
18a         演算部
18b         表示部
19          レンズ保持駆動部
19a         駆動部
19b         レンズ保持結合部
22          広角レンズ
23          撮像素子
23a         画素
101         照明部
102         チャート
103         ハーフミラー
104         コリメータレンズ
105a        レンズ
105b        撮像素子
106         制御部
107         撮像素子
 
10, 20, 100 Camera module adjustment device 11 Light source 12 Pinhole 13 Collimator lens 14 Half mirror 15, 21, 105 Camera module 15a Lens 15b Image sensor 15c Lens holding unit 16 Collimator lens 17 Image sensor 18 Control unit 18a Calculation unit 18b Display Unit 19 lens holding driving unit 19a driving unit 19b lens holding coupling unit 22 wide angle lens 23 imaging device 23a pixel 101 illumination unit 102 chart 103 half mirror 104 collimator lens 105a lens 105b imaging device 106 control unit 107 imaging device

Claims (12)

  1. 光源部、カメラモジュール、撮影部、及び制御部を有するカメラモジュール調整装置であって、
    前記光源部は、光源と、前記光源の出射光を第1の光に変換するピンホールと、前記ピンホールから入射された前記第1の光を第1の平行光線に変換する第1のコリメータレンズを備え、
    前記ピンホールは、前記第1のコリメータレンズから前記第1のコリメータレンズの略焦点距離離れた位置に配置され、
    前記カメラモジュールは、レンズと、前記レンズによって、前記第1の平行光線が集光された、第1の光スポットが形成される第1の撮像素子と、を備え、
    前記撮影部は、前記第1の光スポットが前記第1の撮像素子で反射した第2の光を、前記レンズによって略平行に変換された第2の平行光線を集光する第2のコリメータレンズと、前記第2のコリメータレンズによって集光された第2の光スポットを光電変換した画像信号を生成する第2の撮像素子を備え、
    前記制御部は、前記画像信号に基づいて、前記第2の光スポットについての合焦評価値を演算する演算部と、前記第2の光スポットを表示する表示部とを備え、
    前記制御部は、前記合焦評価値に基づいて、前記第1の撮像素子の受光面に垂直な方向に沿った、前記レンズと前記第1の撮像素子との距離を決定し、
    前記距離に基づいて、前記カメラモジュールの調整を行うことを特徴とするカメラモジュール調整装置。
    A camera module adjustment device having a light source unit, a camera module, a photographing unit, and a control unit,
    The light source unit includes a light source, a pinhole that converts light emitted from the light source into first light, and a first collimator that converts the first light incident from the pinhole into a first parallel light beam. With a lens,
    The pinhole is disposed at a position approximately away from the first collimator lens by a substantially focal length of the first collimator lens,
    The camera module includes: a lens; and a first imaging element in which a first light spot is formed by collecting the first parallel light beam by the lens;
    The imaging unit is configured to collect a second collimator lens that condenses a second parallel beam obtained by converting the second light reflected by the first imaging element into a substantially parallel shape by the lens. And a second imaging element that generates an image signal obtained by photoelectrically converting the second light spot collected by the second collimator lens,
    The control unit includes a calculation unit that calculates a focus evaluation value for the second light spot based on the image signal, and a display unit that displays the second light spot.
    The controller determines a distance between the lens and the first image sensor along a direction perpendicular to a light receiving surface of the first image sensor based on the focus evaluation value;
    A camera module adjustment apparatus that adjusts the camera module based on the distance.
  2. 前記カメラモジュールは、前記レンズを保持するレンズ保持部を備え、
    前記レンズ保持部を前記方向に移動させ、前記距離に基づいて、前記レンズ保持部をカメラモジュール調整位置に移動させるレンズ保持移動部を備える請求項1に記載のカメラモジュール調整装置。
    The camera module includes a lens holding unit that holds the lens,
    The camera module adjustment device according to claim 1, further comprising: a lens holding / moving unit that moves the lens holding unit in the direction and moves the lens holding unit to a camera module adjustment position based on the distance.
  3. 前記第1の平行光線を偏向して、前記カメラモジュールに照射し、前記第2の平行光線を、偏向させずに直進させるビームスプリッタを備える請求項1又は2に記載のカメラモジュール調整装置。 3. The camera module adjustment device according to claim 1, further comprising a beam splitter that deflects the first parallel light beam to irradiate the camera module, and causes the second parallel light beam to travel straight without being deflected. 4.
  4. 前記ビームスプリッタは、ハーフミラー又は無偏向ビームスプリッタである請求項3に記載のカメラモジュール調整装置。 The camera module adjustment device according to claim 3, wherein the beam splitter is a half mirror or a non-deflection beam splitter.
  5. 前記レンズを広角レンズ又は魚眼レンズとし、
    前記第2の光は、前記第1の撮像素子の前記受光面の反射型回折格子によって反射する請求項1乃至4のいずれかに記載のカメラモジュール調整装置。
    The lens is a wide-angle lens or fisheye lens,
    5. The camera module adjustment device according to claim 1, wherein the second light is reflected by a reflective diffraction grating on the light receiving surface of the first image sensor. 6.
  6. 前記カメラモジュール調整位置を固定するため、前記レンズ保持部と前記第1の撮像素子との間隙に紫外線硬化樹脂を塗布し、前記紫外線硬化樹脂に紫外線を照射する請求項1乃至5のいずれかに記載のカメラモジュール調整装置。 6. The ultraviolet curable resin is applied to a gap between the lens holding portion and the first image sensor to fix the camera module adjustment position, and the ultraviolet curable resin is irradiated with ultraviolet rays. The camera module adjustment apparatus as described.
  7. 光源部、カメラモジュール、撮影部、制御部、及びレンズ保持駆動部を有するカメラモジュール調整方法であって、
    前記光源部は、ピンホールによって、光源の出射光を第1の光に変換し、前記第1のコリメータレンズによって、ピンホールから入射された第1の光を第1の平行光線に変換し、
    前記ピンホールは、前記第1のコリメータレンズから前記第1のコリメータレンズの略焦点距離離れた位置に配置され、
    前記カメラモジュールのレンズによって、前記第1の平行光線が前記カメラモジュールの第1の撮像素子の受光面に集光された第1の光スポットが、前記第1の撮像素子に形成され、
    前記撮影部は、前記第1の光スポットが前記第1の撮像素子で反射した第2の光を前記レンズによって略平行に変換された第2の平行光線を、第2のコリメータレンズによって、第2の撮像素子に集光し、前記第2のコリメータレンズによって集光された第2の光スポットを、前記第2の撮像素子によって、光電変換した画像信号を生成し、
    前記制御部は、演算部によって、前記画像信号に基づいて、前記第2の光スポットについての合焦評価値を演算し、表示部によって、前記第2の光スポットを表示し、
    前記制御部は、前記合焦評価値に基づいて、前記第1の撮像素子の受光面に垂直な方向に沿った前記レンズと前記第1の撮像素子との距離を決定し、前記距離に基づいて、前記カメラモジュールの調整を行うことを特徴とするカメラモジュール調整方法。
    A camera module adjustment method including a light source unit, a camera module, a photographing unit, a control unit, and a lens holding and driving unit,
    The light source unit converts light emitted from the light source to first light by a pinhole, and converts first light incident from the pinhole to a first parallel light by the first collimator lens,
    The pinhole is disposed at a position approximately away from the first collimator lens by a substantially focal length of the first collimator lens,
    A first light spot in which the first parallel light beam is condensed on the light receiving surface of the first image sensor of the camera module is formed on the first image sensor by the lens of the camera module.
    The imaging unit uses a second collimator lens to convert a second parallel light obtained by converting the second light reflected by the first imaging element into a substantially parallel state by the lens. An image signal obtained by photoelectrically converting the second light spot collected by the second image sensor and the second light spot collected by the second collimator lens by the second image sensor;
    The control unit calculates a focus evaluation value for the second light spot based on the image signal by the calculation unit, and displays the second light spot by the display unit,
    The controller determines a distance between the lens and the first image sensor along a direction perpendicular to a light receiving surface of the first image sensor based on the focus evaluation value, and based on the distance. And adjusting the camera module.
  8. 前記カメラモジュールにおいて、レンズ保持部が前記レンズを保持し、
    前記レンズ保持部を前記方向に移動させ、
    レンズ保持部駆動部によって、前記距離に基づいて、前記レンズ保持部をカメラモジュール調整位置に移動させる請求項7に記載のカメラモジュール調整方法。
    In the camera module, a lens holding unit holds the lens,
    Moving the lens holding part in the direction;
    The camera module adjustment method according to claim 7, wherein the lens holding unit driving unit moves the lens holding unit to a camera module adjustment position based on the distance.
  9. ビームスプリッタによって、前記第1の平行光線を偏向して、前記カメラモジュールに照射し、前記第2の平行光線は、偏向させずに直進させる請求項7に記載のカメラモジュール調整方法。 The camera module adjustment method according to claim 7, wherein the first parallel light beam is deflected by a beam splitter to irradiate the camera module, and the second parallel light beam goes straight without being deflected.
  10. 前記ビームスプリッタは、ハーフミラー又は無偏向ビームスプリッタである請求項9に記載のカメラモジュール調整方法。 The camera module adjustment method according to claim 9, wherein the beam splitter is a half mirror or a non-deflection beam splitter.
  11. 前記レンズを広角レンズ又は魚眼レンズとし、
    前記第2の光は、前記第1の撮像素子の前記受光面の反射型回折格子によって反射する請求項7乃至10のいずれかに記載のカメラモジュール調整方法。
    The lens is a wide-angle lens or fisheye lens,
    The camera module adjustment method according to claim 7, wherein the second light is reflected by a reflective diffraction grating on the light receiving surface of the first image sensor.
  12. 前記カメラモジュール調整位置を固定するため、前記レンズ保持部と前記第1の撮像素子との間隙に紫外線硬化樹脂を塗布し、前記紫外線硬化樹脂に紫外線を照射する請求項7乃至11のいずれかに記載のカメラモジュール調整方法。
     
    12. The ultraviolet curable resin is applied to a gap between the lens holding unit and the first image sensor to fix the camera module adjustment position, and the ultraviolet curable resin is irradiated with ultraviolet rays. The camera module adjustment method described.
PCT/JP2018/037710 2018-02-13 2018-10-10 Camera module adjustment device and camera module adjustment method WO2019159427A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019527930A JP6729960B2 (en) 2018-02-13 2018-10-10 Camera module adjusting device and camera module adjusting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018023411 2018-02-13
JP2018-023411 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019159427A1 true WO2019159427A1 (en) 2019-08-22

Family

ID=67618559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037710 WO2019159427A1 (en) 2018-02-13 2018-10-10 Camera module adjustment device and camera module adjustment method

Country Status (3)

Country Link
JP (1) JP6729960B2 (en)
TW (1) TW201935058A (en)
WO (1) WO2019159427A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021116285A1 (en) * 2019-12-10 2021-06-17 AIXEMTEC GmbH Device, method, and use of the device for adjusting, assembling and/or testing an electro-optical system
CN112995363A (en) * 2019-12-02 2021-06-18 中兴通讯股份有限公司 Electronic device
CN114640791A (en) * 2022-01-27 2022-06-17 浙江大华技术股份有限公司 Lens angle adjusting method and device, computer equipment and camera

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113055553B (en) * 2019-12-26 2022-11-25 晋城三赢精密电子有限公司 Automatic focusing test method and device for camera module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177334A (en) * 2002-11-28 2004-06-24 Fujitsu Ltd Position adjusting method of multistage lens, lens assembling device, and lens inspection device
JP2005017728A (en) * 2003-06-26 2005-01-20 Nikon Corp Adjustment method and evaluation method for imaging optical system
JP2006165883A (en) * 2004-12-06 2006-06-22 Pioneer Electronic Corp Focus adjusting device and focus adjusting method
JP2016184083A (en) * 2015-03-26 2016-10-20 日立マクセル株式会社 Lens unit and camera module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177334A (en) * 2002-11-28 2004-06-24 Fujitsu Ltd Position adjusting method of multistage lens, lens assembling device, and lens inspection device
JP2005017728A (en) * 2003-06-26 2005-01-20 Nikon Corp Adjustment method and evaluation method for imaging optical system
JP2006165883A (en) * 2004-12-06 2006-06-22 Pioneer Electronic Corp Focus adjusting device and focus adjusting method
JP2016184083A (en) * 2015-03-26 2016-10-20 日立マクセル株式会社 Lens unit and camera module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112995363A (en) * 2019-12-02 2021-06-18 中兴通讯股份有限公司 Electronic device
WO2021116285A1 (en) * 2019-12-10 2021-06-17 AIXEMTEC GmbH Device, method, and use of the device for adjusting, assembling and/or testing an electro-optical system
CN114640791A (en) * 2022-01-27 2022-06-17 浙江大华技术股份有限公司 Lens angle adjusting method and device, computer equipment and camera

Also Published As

Publication number Publication date
JP6729960B2 (en) 2020-07-29
JPWO2019159427A1 (en) 2020-04-02
TW201935058A (en) 2019-09-01

Similar Documents

Publication Publication Date Title
WO2019159427A1 (en) Camera module adjustment device and camera module adjustment method
JP4984491B2 (en) Focus detection apparatus and optical system
KR101409644B1 (en) Three-dimensional shape measuring apparatus
JP2005274925A (en) Focusing method and focusing device
US9267797B2 (en) Range-finding device and imaging apparatus
US7692128B2 (en) Focus control method for an optical apparatus which inspects a photo-mask or the like
WO2006028183A1 (en) Lens system adjusting device and lens system adjusting method using it, and production device for imaging device and production method for imaging device
JP2013257162A (en) Distance measuring device
JP5007070B2 (en) Exposure equipment
KR101428864B1 (en) Focus position changing apparatus and confocal optical apparatus using the same
WO2016157291A1 (en) Measuring head and eccentricity measuring device provided with same
JP2007333987A (en) Method for manufacturing camera module
JP4557799B2 (en) ADJUSTING METHOD AND ADJUSTING DEVICE FOR DIGITAL CAMERA
KR101568980B1 (en) Automatic focus control apparatus and automatic focus control method using the same
KR101478572B1 (en) Auto Focus System Using Zoom Objective Lens
JP4546781B2 (en) Imaging apparatus and color misregistration correction program
JP4696730B2 (en) Focus measuring device
JP2012181341A (en) Microscope device
JP2000214368A (en) Method and device for adjusting optical axis of lens system
JP7036396B1 (en) Autofocus device
JP2006165883A (en) Focus adjusting device and focus adjusting method
JP2016008816A (en) Shape measurement device, control method of shape measurement device and shape measurement program
JP2018141908A (en) Focus detection device, focus control device, imaging device, focus detection method, and focus detection program
JP2009036824A (en) Focusing method and focusing system
JP2002072058A (en) Device and method for adjusting camera

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019527930

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906540

Country of ref document: EP

Kind code of ref document: A1